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ABSTRACT

Accurately and efficiently extracting main content from general web pages is of
great significance for obtaining training data for large models. Using well-pre-
trained decoder-only generative language models offers excellent document com-
prehension capabilities, thereby effectively enhancing parsing quality. However,
it remains constrained by issues such as context window length, inference cost,
and format hallucination. We present Dripper, an efficient HTML main content
extraction framework powered by lightweight language models, which addresses
these challenges through four key innovations: (1) We design a specialized HTML
simplification algorithm that reduces input token count to 22% compared to raw
HTML while preserving critical structural information; (2) We reformulate main
content extraction as a semantic block sequence classification task, significantly
reducing inference cost; (3) We introduce a controlled decoding mechanism that
strictly constrains the output space through logits processors, effectively eliminat-
ing hallucination issues common in small-scale models; (4) We propose Main-
WebBench, an evaluation dataset containing over 7,800 web pages with metic-
ulously human-annotated main content extraction labels. Experimental results
demonstrate that using only a 0.6B parameter model, Dripper achieves state-of-
the-art performance across all evaluation benchmarks and outperforms all baseline
methods, attaining an ROUGE-N F1 score of 81.58%(83.13% with fall-back strat-
egy) on our proposed MainWebBench dataset.

1 INTRODUCTION

The World Wide Web forms the foundational data repository for modern AI, serving as the primary
source for training corpora like C4 (Raffel et al., 2020) and for building the knowledge graphs that
power large-scale applications (Wang et al., 2019). The sheer scale of this resource is immense, with
web archiving projects like Common Crawl (Common Crawl Foundation) preserving billions of new
pages each month. This massive volume presents a fundamental challenge for data utilization: the
raw, unstructured HTML must first be converted into high-quality, structured data. Accordingly, the
development of robust and accurate content extraction techniques has become a critical prerequisite
for a wide range of downstream information processing tasks (Vogels et al., 2018b).

The primary obstacle lies in the failure of traditional extraction methods to handle the web’s in-
herent complexity. While HTML standards provide semantic tags with clear intended uses—such
as <article> for main content or <aside> for sidebars—their adoption in practice is highly
inconsistent (Wang et al., 2022), rendering simple tag-based rules unreliable. Similarly, heuris-
tic methods based on statistical properties like text or link density often falter. Even pages built
from the same template can exhibit vast statistical variations simply due to differences in their core
content, undermining the stability of these metrics. Furthermore, vision-based approaches like diff-
bot (Diffbot, 2025) are often rendered ineffective in large-scale offline processing scenarios. Web
archives like Common Crawl typically store only raw HTML, lacking the corresponding CSS files
required to render a page as its developer originally intended. These fundamental challenges ex-
plain why established tag-based, heuristic, and vision-based methods struggle to achieve both high
accuracy and robust generalization. While the semantic understanding of well-trained decoder-only
language models offers a promising theoretical solution (Wang et al., 2025), their direct application
is thwarted by a distinct set of severe practical barriers. First, excessive context length makes pro-
cessing raw HTML infeasible at scale.Our analysis of 14,000 Common Crawl files shows 29.3% of
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pages exceeded 32k tokens and 21.0% surpassed 128k tokens, lengths that far exceed the context
windows of most SLMs. Second, the structural complexity of HTML presents a critical trade-off.
While stripping all tags is an effective way to significantly reduce input length, this action simul-
taneously destroys the vital structural information they contain. Without these cues, an algorithm
cannot reliably distinguish main content from noise and perform accurate extraction. Finally, LLMs
are prone to output hallucination (Ji et al., 2023), a tendency to generate content not present in
the source document, which constitutes a critical failure for an extraction task that demands high
fidelity.

To address these challenges, we introduce Dripper, a novel framework that reframes web content
extraction as an efficient Sequential Block Classification task, specifically designed for Small Lan-
guage Models (SLMs). Our three-stage pipeline begins with a pre-processing step that simplifies
the raw HTML, making it tractable for a compact model. We then employ a 0.6B parameter SLM,
Dripper-0.6B, to perform a localized binary classification on each semantic block of the simplified
document. To ensure perfect output fidelity and eliminate hallucinations, we guide the SLM’s de-
coding with a custom logits processor, forcing it to produce a structured sequence of labels. Finally,
a post-processing step uses these high-confidence labels to precisely extract the corresponding con-
tent blocks from the original HTML structure. The text from these selected blocks is then evaluated
against the ground truth using ROUGE-N F1 as the primary metric. This approach circumvents the
context length and hallucination issues inherent in holistic generative methods.

Our main contributions are summarized as follows:

(1) We introduce a novel HTML simplification algorithm that strips redundant information while
preserving critical structural markers, compressing the average document size by 22% and making
processing feasible for SLMs.

(2) The HTML document is represented as a sequence of semantic blocks, which transforms the
task into a series of localized binary classifications. This approach dramatically reduces the prob-
lem’s complexity while retaining essential hierarchical and contextual relationships.

(3) We design a constrained decoding mechanism using a custom logits processor. This converts
the task from open-ended generation to producing a fixed, structured output, thereby systematically
eliminating hallucinations and ensuring high-fidelity results.

(4) To facilitate rigorous and comprehensive evaluation, we construct and will publicly release
MainWebBench, a new large-scale benchmark with over 7,800 meticulously annotated samples,
making it seven times larger than any existing public alternative. Our experiments demonstrate that
Dripper, using only a 0.6B parameter model, achieves state-of-the-art performance, outperform-
ing all baselines on MainWebBench with a leading F1 score of 81.58%, which increases to 83.13%
when augmented with a fallback strategy. Our trained model weights1,code2 and the MainWebBench
benchmark3 are publicly available.

2 RELATED WORK

Main text extraction aims to extract main content from raw HTML while filtering out boilerplate
elements such as navigation and advertisements, a critical technique for building high-quality web
corpora. The methods for accomplishing this task have evolved through several distinct paradigms,
each addressing the limitations of its predecessor.

Heuristic and rule-based Methods. Early approaches predominantly relied on manually engi-
neered heuristics to distinguish main content from boilerplate. These methods operate on the obser-
vation that content-rich regions differ structurally from noisy elements, using features like text-to-tag
ratios (CETR) (Weninger et al., 2010), visual cues from the rendered page (VIPS) (Cai et al., 2003),
or a combination of heuristics such as link and stop-word density (Readability (Mozilla, 2015),
jusText (Pomikálek, 2011)). While computationally efficient, these methods are often brittle and
require continuous maintenance to adapt to evolving web design patterns.

1https://huggingface.co/anonymous-s2wrvq/Dripper
2https://anonymous.4open.science/r/dripper-1825
3https://huggingface.co/datasets/anonymous-s2wrvq/MainWebBench
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Supervised Learning Methods. To move beyond handcrafted rules, subsequent work approached
body text extraction as a supervised machine learning problem. This paradigm shift began with
classic methods like Boilerpipe (Kohlschütter et al., 2010), Dragnet (Peters & Lecocq, 2013), which
treated the task as a classification problem using manually designed features. The advent of deep
learning marked a further evolution from feature engineering to representation learning. (Vogels
et al., 2018a; Leonhardt et al., 2020; Zhou et al., 2021). To better leverage the hierarchical structure
of HTML, subsequent research introduced Graph Neural Networks (GNNs) (Zhou et al., 2021)
and Transformer-based architectures like WebFormer (Endrédy & Novák, 2013), which improved
extraction accuracy by capturing complex relationships between nodes. While achieving higher
accuracy, these models often require substantial labeled data, and their complex architectures incur
significant computational overhead.

Hybrid Systems and Production Tools. In parallel with academic advancements, a suite of pow-
erful open-source tools has emerged, often blending multiple techniques for practical application.
Trafilatura (Barbaresi, 2021) has become a strong baseline by integrating a sophisticated cascade of
rules with established algorithms like jusText (Pomikálek, 2011) and Readability (Mozilla, 2015)
as fallbacks. Other tools, such as magic-html (opendatalab, 2024), focus on simplifying complex
HTML structures before extraction, often as part of larger document AI ecosystems. More recently,
frameworks such as crawl4ai (UncleCode, 2024) have adopted an explicitly hybrid architecture,
combining rule-based selectors, traditional machine learning, and Large Language Models (LLMs)
to provide versatile solutions for AI data pipelines.

Generative-Language-based Methods. Recent months have seen rapid progress in decoder-only
large language models. Base models pre-trained on massive, high-quality, and highly-diverse cor-
pora have become the de-facto starting point for most NLP tasks. The most representative work in
this line is ReaderLM-v2 (Wang et al., 2025), which frames main-content extraction as an HTML-to-
Markdown translation problem. Starting from a 1.5 B-parameter Qwen2.5 checkpoint, the authors
first extend the context window to 512 k tokens through continual pre-training, then fine-tune with
supervised fine-tuning (SFT) and direct-preference optimization (DPO) to produce clean Markdown.
This pipeline reuses the open-source model zoo and inference-acceleration stacks already available
in the LLM community. Nevertheless, even the official best-practice implementation 4 still expects
the full, un-pruned HTML page as input and generates the complete body text in one pass. This in-
curs heavy computational overhead and, during long-sequence generation, often produces unwanted
artifacts such as repetitions or un-escaped HTML tags. Consequently, the potential of SLMs for
extraction remains largely untapped.

3 METHODOLOGY

In this section, we detail the methodology of our Dripper framework. We begin in §3.1 with an
overview of the system’s three-stage architecture. Next, in §3.2, we elaborate on the core pre-
processing and post-processing modules that enable efficient extraction. We then formally define
the task as a sequence labeling problem in §3.3. Finally, in §3.4, we introduce our constrained
decoding mechanism, which uses a custom logits processor to eliminate hallucinations.

3.1 SYSTEM ARCHITECTURE OVERVIEW

The Dripper framework operates through a three-stage pipeline: pre-processing, SLM-based extrac-
tion, and post-processing. As illustrated in Figure1, the system takes a raw HTML document as
input and transforms it into a clean, structured Markdown output.

The process begins with the pre-processing module, which takes a raw HTML document and gen-
erates two distinct representations. The first is a Simplified HTML, which is simplified and
chunked. The second is a Mapping HTML, which is only chunked but otherwise unmodified. This
parallel representation is crucial for ensuring the final extracted content remains a valid subtree of
the original Document Object Model (DOM). The Simplified HTML is then passed to Dripper-
0.6B, which identifies and labels the main content blocks. The decoding process is constrained
by a custom logits processor to guarantee the structural integrity and correctness of the output for-
mat. Finally, in the post-processing stage, the Dripper-0.6B’s classification output is used to prune

4https://huggingface.co/jinaai/ReaderLM-v2
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Raw HTML

Simplified HTML

<div _item_id="1">
ad content

</div>

<div_item_id="2">
Here is main 

content
</div>

<div 
_item_id
="3">

page 
links

</div>

Mapping HTML

<div     data-anno-uid=a>
ad content

</div>

<div     data-anno-uid=b>
<b>Here is</b>

<i> main content </i>
</div>

<div     data-
anno-uid=c>
<ul><li>
page link 1

</li>
<li>
page links 2
</li></ul>
</div> Post-Processing

Pre-Processing

Main HTML (html)

<div       data-anno-uid=b>
<b>Here is</b>

<i> main content </i>
</div>

Noise
Clean

Main Content (md)
html2text

  Dripper-0.6B Classification Output (json) 
{"1": "other", "2": "main", "3": "other", "4": "other"...}

 Logit    
Processor 

Figure 1: An overview of the Dripper framework, which operates as a three-stage pipeline. (1)
Pre-processing: A raw HTML document is converted into two parallel representations: Simplified
HTML for model input and Mapping HTML for final reconstruction. (2) Dripper-0.6B Extraction:
Dripper-0.6B performs sequential block classification on the simplified input, guided by a custom
logits processor to output a structured sequence. (3) Post-processing: The labels are used to select
the corresponding blocks from Mapping HTML to construct the final, clean Main Content.

the Mapping HTML, yielding the final Main HTML. For downstream usability, Main HTML is
converted into Markdown format using the html2text5 library.

3.2 PRE-PROCESSING AND POST-PROCESSING

Raw HTML is primarily designed for visual rendering, not for semantic interpretation by language
models. Naively including all tags and attributes results in excessively long input sequences. Our
pre-processing module is therefore guided by a multi-faceted strategy for simplification and chunk-
ing. The process begins with the (1) preemptive removal of non-content tags, such as <style>,
<script>, <header>, and <aside>. Concurrently, we perform (2) attribute simplification,
pruning all attributes except for class and id, which often carry the most valuable semantic cues for
distinguishing content blocks. Following this, the document undergoes (3) block-level chunking,
where it is segmented at elements that typically induce a line break in rendering. This strategy treats
cohesive units like tables (<table>) and lists (<ul>) as indivisible blocks to preserve their in-
tegrity. To handle the common misuse of tables for page layout, we apply heuristic rules to permit
splitting within them when necessary. Finally, to manage excessively long individual blocks, such
as a table with many cells, a list with numerous items, or an overly long paragraph, we employ (4)
partial content truncation. For instance, we may retain only a subset of table cells or the initial
200 characters of a long paragraph, as we empirically find this partial data is sufficient for accurate
classification while significantly reducing input length.

This pre-processing pipeline transforms Raw HTML into a sequence of simplified blocks ready for
Dripper-0.6B. To ensure the final output is a valid DOM subtree, the Mapping HTML is generated
in parallel by applying only the block-level chunking to the original, unmodified HTML. The post-
processing module then uses the Dripper-0.6B’s output to select the corresponding content-bearing
blocks from this Mapping HTML to construct the final result.

3.3 TASK FORMULATION

The system architecture detailed above effectively transforms the content extraction task into a well-
defined sequence labeling problem. Formally, our pre-processing module converts an HTML doc-

5https://pypi.org/project/html2text/
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ument into a sequence of n simplified blocks, X = [x1, x2, . . . , xn]. Each block xi has a corre-
sponding ground-truth label yi ∈ {0, 1}, where 1 indicates main content and 0 indicates boilerplate.
The core task is to train a model fθ that takes the sequence X as input and produces a predicted
label sequence, Ypred = fθ(X), where Ypred = [y′1, y

′
2, . . . , y

′
n]. This predicted sequence is then

used by the post-processing module to select the corresponding blocks from the Mapping HTML
and construct the final Main HTML.

This sequence labeling formulation is highly efficient and reliable. By simplifying and chunking
the input, the token load on the model is substantially reduced. Furthermore, framing the task as
a classification of discrete blocks constrains the output to a simple sequence of binary labels. This
design minimizes the required output length and, by avoiding free-form text generation, inherently
eliminates the risk of hallucination, guaranteeing that the extracted content is a faithful subset of the
original document.

3.4 CONSTRAINED DECODING VIA A CUSTOM LOGITS PROCESSOR

To eliminate hallucination and guarantee a valid output format, we implement a custom logits pro-
cessor that functions as a deterministic finite state machine (FSM) during decoding. The FSM
precisely controls the generation of the JSON-like output structure (e.g., {”1”: ”main”, ...}) by de-
terministically managing all syntactic tokens, such as braces, quotes, and numeric keys. At each
decoding step, it masks the SLM’s logits, permitting the model to make a probabilistic choice only
at the single critical juncture of classifying a block. At this point, the vocabulary is restricted to just
’main’ and ’other’, effectively converting the task into a series of high-confidence binary classifi-
cations. This method guarantees syntactically perfect output, fundamentally removing the risk of
format errors or extraneous content, and enables even a small 0.6B model to perform this structured
prediction task with perfect fidelity.

4 DATASET AND BENCHMARK

In this section, we detail the construction of our large-scale training dataset (Section 4.1) and our
new evaluation benchmark, MainWebBench (Section 4.2), along with its evaluation metrics.

4.1 TRAINING DATA CONSTRUCTION

To train our model effectively, we construct a large-scale, multi-faceted training dataset engineered
to capture the diversity of the modern web. The dataset is curated through a three-stage sampling
and filtering pipeline, ensuring variety in page layout, language, and document format.

Stage 1: Layout-Diverse Sampling. The initial stage focuses on capturing structural diversity. We
begin by grouping pages by domain across 107 dumps of the Common Crawl dataset. For each do-
main, we featurize the DOM tree structure of its pages (capped at 10,000 randomly sampled pages
for larger domains) and computed their pairwise cosine similarity. We then apply the DBSCAN
algorithm to these feature vectors to identify distinct layout clusters. From this process, we sam-
ple one representative webpage from each of approximately 40 million unique clusters, yielding a
candidate pool of 40 million structurally diverse pages.

Stage 2: Multilingual and Format-Aware Filtering. From this candidate pool, the second stage
filtered for linguistic and format diversity. We first extract the main content of each page using
Trafilatura and then employ Fasttext lid-1766 model for language identification. This
step produced a balanced 10-million-page subset (4.75M English, 4.75M Chinese, 0.5M other lan-
guages). To further enhance diversity, we categorize these pages using the format classifier proposed
by (Wettig et al., 2025a). A final balanced sampling across these identified formats results in a set
of approximately 1 million pages (485k English, 487k Chinese, 50k other) for the final annotation
stage.

Stage 3: Final Annotation. In the final stage, we process these 1 million pages through our simpli-
fication algorithm (detailed in Section 3.2). The resulting Simplified HTML is then provided to

6https://fasttext.cc/docs/en/language-identification.html
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the Deepseek-chat API with a carefully crafted prompt (see Appendix Figure 6) to generate block-
level labels. This automated pipeline yields approximately 1 million pages with high-quality, block-
level annotations. After a final filtering step to remove samples containing no main content (i.e., all
blocks were labeled as ’other’), we obtain our final training dataset of 870,945 samples.

4.2 MAINWEBBENCH: A NEW BENCHMARK FOR CONTENT EXTRACTION

To facilitate a more rigorous and fine-grained evaluation of web content extraction, we construct
MainWebBench, a new benchmark comprising 7,887 meticulously annotated samples. Each sam-
ple contains four keys: ’html’( the raw html document); ’main html’( the ground-truth as a valid
html subtree identified by human annotators); ’convert main content’( a Markdown representation,
generated from the ground-truth); and ’meta’( a rich set of annotations). MainWebBench is de-
signed to serve as a gold-standard resource for evaluating extraction accuracy and enabling multi-
dimensional performance analysis. An example data entry is shown in Appendix Figure 4.

4.2.1 BENCHMARK CONSTRUCTION

MainWebBench is constructed using a hybrid sampling strategy to ensure broad representation: 90%
of pages are randomly sampled from Common Crawl to cover the long-tail of the web, while 10%
are drawn from a list of top-ranking websites (Chinaz Alexa7) to include popular, well-designed
pages. To address the ambiguity in defining ”main content,” we establish annotation rules based
on two principles: Contextual Integrity, which includes content integral to the primary article
(e.g., abstracts, references) and excludes peripheral elements (e.g., related-articles sidebars); and
Human-Generated Content, which focuses on substantive material like article bodies and com-
ments while filtering out auto-generated metadata (e.g., timestamps). Each page is meticulously
annotated through a rigorous multi-stage process by using a custom-built tool( see Appendix Figure
3). Furthermore, we enrich the benchmark with rich metadata annotations—including language,
style, a quantitative difficulty level, and rich content tags—enabling fine-grained analysis. More
details of benchmark construction can be found in Appendix A.5

4.2.2 EVALUATION METRICS

To accommodate the two primary output formats of extraction tools—(1) raw Markdown text and
(2) Main HTML document—we establish a standardized evaluation protocol. For the latter case,
all Main HTML outputs are first converted to a canonical Markdown representation using the
html2text library to ensure a fair and consistent comparison. The primary evaluation metric
is the ROUGE-N F1 score, computed between the predicted Markdown and the ground-truth. We
use the jieba tokenizer for all computations and set N=5. We specifically choose ROUGE-N instead
of ROUGE-L, as the latter’s Longest Common Subsequence (LCS) algorithm has prohibitive com-
putational complexity on the long documents in our benchmark, making ROUGE-N a more scalable
and practical choice for evaluation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Supervised fine-tuning. We employ the Qwen3-0.6B( (Team, 2025)) model as our base model,
which is the smallest model in the Qwen3 series, featuring a 32K context window and support for
over 100 languages. Supervised fine-tuning is performed using the Llama-Factory( (Zheng et al.,
2024)) framework, training on the full set of 870K samples for a fixed total of 4 epochs. We use the
last checkpoint as Dripper-0.6B.

Baseline Methods. To comprehensively evaluate Dripper, we compare it against a diverse set of
establish and state-of-the-art content extraction systems. Our comparison spans a wide spectrum
of approaches, including classic heuristic and rule-based systems, supervised learning methods,
production-grade hybrid tools, and recent large language model-based extractors. A detailed list and
description of each baseline method is provided in Appendix, Table 4.

7https://malexa.chinaz.com/
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Evaluation Modes. To ensure a fair comparison across tools with diverse output capabilities, we
established a clear evaluation protocol. We test every applicable output format for each tool and
use a consistent suffix to denote the mode: -HTML+MD for tools that output an intermediate HTML
which we convert to Markdown; -MD for tools that natively output Markdown; and -TEXT for tools
that natively output plain text. Because Dripper cannot process inputs that exceed its context-length
limit, we assign a score of 0 to such inputs. Following the practice of Trafilatura, which uses a
fallback algorithm for parsing failures, we also test a version of our method, Dripper fallback, which
invokes Trafilatura for oversized inputs.

5.2 RESULT OF OVERHEAD REDUCTION

The computational cost of a decoder-only language model is primarily determined by the input and
output sequence lengths, with its complexity approximated by Equation (1).

Cost ≈
(
Ld (N2 +MN+M2) + Ld2 (N +M)

)
flops (1)

where L is the number of attention layers, d is the hidden-state dimension, N is the number of input
tokens, and M is the number of output tokens. For Qwen3-0.6B we set L = 28 and d = 1024.

To quantify the efficiency gains of our approach, we compare its cost against a naive generative
baseline. The baseline cost is estimated by using Raw HTML as input to generate the full Mark-
down content. For our method, we use Simplified HTML as input and the structured JSON
classification as output. We measure the token lengths for both scenarios on the MainWebBench,
and the results are detailed in Table 1.

Table 1: Computational overhead comparison on MainWebBench. The Pre-process column distin-
guishes the methods: Without denotes the naive baseline (generating full Markdown from Raw
HTML), while With denotes the Dripper framework (predicting JSON labels from Simplified
HTML). We report mean and median values for Input/Output token lengths and estimated infer-
ence cost (FLOPs), with the Ratio row demonstrating the efficiency gains of Dripper.

Pre-process
Input length (tokens) Output length (tokens) Cost estimate (flops)

mean median mean median mean median

Without 44705.9 31987.0 2303.7 675.0 1.102× 1014 3.206× 1013

With 5734.5 3109.0 383.4 187.0 5.702× 1012 5.254× 1011

Ratio 12.83% 9.72% 16.64% 27.70% 5.18% 1.64%

The results reveal a substantial reduction in computational overhead. Our pre-processing pipeline
dramatically shortens the input, reducing the mean token count to just 12.83% of Raw HTML, which
is crucial for fitting within the model’s context window. Simultaneously, reframing the task to output
a compact JSON classification reduces the mean output length to 16.64% of the full content. These
two synergistic effects culminate in a remarkable reduction in computational load, lowering the
mean inference cost to just 5.18% of the naive approach. This makes SLM-based content extraction
not only feasible but also highly efficient and controllable.

5.3 RESULTS ON MAINWEBBENCH

We present the main performance comparison on our MainWebBench benchmark in Table 2. The
results are broken down by various tracks, including difficulty levels and the presence of rich content.

The results clearly demonstrate that Dripper achieves state-of-the-art performance, significantly out-
performing all baseline methods across every track. The standalone Dripper model achieves an over-
all score of 0.8182, surpassing the best baseline, magic-html (0.7091), by a large margin. Notably,
Dripper shows exceptional strength on challenging content types where traditional methods falter,
such as pages with tables, equations, and especially conversational layouts (0.8028 vs. 0.5766 for the
best baseline). This highlights the robustness of our semantic, block-based classification approach.
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Table 2: Performance comparison on MainWebBench (ROUGE-N F1). Methods are categorized
by Mode: HTML+MD denotes tools outputting intermediate HTML converted to Markdown, while
MD and TEXT denote native Markdown and Plain Text outputs, respectively. Results are stratified
by Overall performance, Difficulty Level (simple, mid, hard), and specific Rich Content Types (sub-
sets containing tables, code, equations, or conversational text).

name mode all simple mid hard table code equation conversational

magic-html (opendatalab, 2024) Html+MD 0.7091 0.7811 0.7095 0.6367 0.6681 0.8471 0.8470 0.4678
Readability (Mozilla, 2015) Html+MD 0.6491 0.7370 0.6525 0.5570 0.5896 0.7774 0.7800 0.4608
Trafilatura (Barbaresi, 2021) Html+MD 0.6358 0.7277 0.6391 0.5396 0.5505 0.6006 0.7327 0.5750
Resiliparse (Bevendorff et al., 2018) TEXT 0.6233 0.7099 0.6283 0.5304 0.5473 0.6474 0.7829 0.5346
Trafilatura MD 0.6237 0.7115 0.6279 0.5305 0.5400 0.5741 0.7168 0.5766
Trafilatura TEXT 0.6049 0.6900 0.6088 0.5149 0.5271 0.5566 0.6955 0.5681
html2text (Swartz et al., 2025) MD 0.5977 0.7499 0.5812 0.4678 0.5937 0.7729 0.7129 0.5494
BoilerPy3 (Riebold et al., 2023) TEXT 0.5413 0.6347 0.5448 0.4434 0.4380 0.4833 0.6590 0.4695
GNE (Kingname et al., 2024) Html+MD 0.5148 0.6477 0.4942 0.4098 0.4129 0.5495 0.6160 0.3296
news-please (Hamborg et al., 2017) TEXT 0.5012 0.5399 0.5250 0.4307 0.4193 0.5118 0.6701 0.4073
jusText (Pomikálek, 2011) TEXT 0.4770 0.5132 0.5070 0.4010 0.3962 0.3779 0.6652 0.5222
BoilerPy3 Html+MD 0.4766 0.6443 0.4706 0.3174 0.3783 0.5532 0.6157 0.4103
Goose3 (Lababidi et al., 2025) TEXT 0.4354 0.4514 0.4645 0.3808 0.3589 0.2900 0.6376 0.3064
ReaderLM-v2 (Wang et al., 2025) MD 0.2264 0.3374 0.2078 0.1403 0.1801 0.2431 0.2927 0.1537
Dripper Html+MD 0.8182 0.8837 0.8178 0.7536 0.7693 0.8368 0.8889 0.7671
Dripper fallback Html+MD 0.8399 0.9010 0.8392 0.7799 0.7964 0.8673 0.9067 0.8028

Additionally, due to limitations in preprocessing capacity and model generalization, Dripper occa-
sionally fails to extract meaningful content from certain pages. We note that since Dripper follows
a fundamentally different technical approach compared to rule-based systems like Trafilatura,
its failures tend to be orthogonal to those of such systems. This allows for a straightforward fallback
strategy: when Dripper returns no valid output, we use Trafilatura as a backup. With this
mechanism, the combined system (Dripper fallback) achieves an overall F1 score of 0.8399. This
result indicates that our semantic approach not only establishes a new state-of-the-art on its own but
can also be effectively combined with existing methods to improve robustness and coverage.

5.4 ABLATION STUDY

To analyze the data efficiency of our approach, we fine-tune the Qwen3-0.6B model on training
subsets of increasing size: 2k, 5k, 10k, 100k, and 870k. We evaluate each resulting checkpoint on
MainWebBench, from which we excluded samples whose simplified HTML exceeded our 32k token
context window, as the standard Dripper model is designed to score 0 on such oversized inputs. This
results in a performance gap of about 1.9% (0.818 for the full bench and 0.834 for the filtered bench).

2k 5k 10k 100k 870k
Dataset Size

0.70

0.75

0.80

0.85

0.90

RO
U

G
E-

N
 F

1 
Sc

or
e

0.770

0.753

+2.3% 0.796

0.790

+0.8%
0.811

0.809

+0.2%
0.829

0.828

+0.1%

0.834
0.834

W/ Logit Processor
W/O Logit Processor

Figure 2: Impact of the logits processor on perfor-
mance across various training data scales.

To isolate the impact of our constrained
decoding mechanism, we compare the per-
formance of models trained with and with-
out the custom logits processor. As shown
in Figure 2, the logits processor pro-
vides a consistent performance improve-
ment across nearly all data scales. The
most significant gain (+2.3%) is observed
at the 2k data scale, indicating that the
FSM provides a strong structural prior
that helps the model learn the task more
efficiently in low-data regimes. As the
training set grows, the model begins to
learn the output format implicitly, and
the performance gap narrows. Neverthe-
less, the logits processor provides an ab-
solute guarantee of a syntactically perfect,
hallucination-free output. This ensures
the output is always stable and machine-
readable, preventing format errors that
would otherwise disrupt downstream tasks
and making the processor a critical component for production-level reliability.
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5.5 PERFORMANCE ON WCEB

To assess the generalization capabilities of Dripper, we evaluate it on the Web Content Extraction
Benchmark (WCEB, (Bevendorff et al., 2023)) , a comprehensive and unified benchmark. WCEB
addresses inconsistencies prevalent in many legacy datasets—such as plain-text-only ground truths,
file encoding errors, and corrupted content from script injections—by providing a filtered and stan-
dardized collection. Since the ground truths in this consolidated benchmark are in plain text, we
adapt our evaluation protocol by using the html-text8 library for the final conversion, a configu-
ration we denote as Html+TEXT. To enable a more granular analysis, we also apply our difficulty
stratification scheme to this dataset. A detailed description of the benchmark can be found in Ap-
pendix, Table 5.

Table 3: Generalization performance on the WCEB dataset
(ROUGE-N F1). Given the benchmark’s plain-text ground truth,
Mode is defined as: Html+TEXT (converting extracted HTML
to text) or TEXT (native text output). Results are stratified by
Overall performance and Difficulty Level (simple, mid, hard) to
demonstrate model robustness across varying page complexities.

name mode all simple mid hard

Trafilatura TEXT 0.7833 0.8122 0.7785 0.7609
Trafilatura Html+TEXT 0.7791 0.7896 0.7758 0.7731
Readability Html+TEXT 0.7642 0.7744 0.7595 0.7601
magic-html Html+TEXT 0.7506 0.7780 0.7573 0.7144
Goose3 TEXT 0.7272 0.7432 0.7312 0.7059
Resiliparse TEXT 0.7225 0.7697 0.7052 0.6985
news-please TEXT 0.7048 0.7051 0.7103 0.6970
justText TEXT 0.6936 0.7445 0.6966 0.6389
BoilerPy3 TEXT 0.6221 0.6481 0.6468 0.5631
html2text TEXT 0.6142 0.7273 0.6165 0.4982
BoilerPy3 Html+TEXT 0.6015 0.6532 0.6035 0.5474
GNE Html+TEXT 0.5166 0.5138 0.5069 0.5323
ReaderLM-v2 TEXT 0.3077 0.3718 0.2928 0.2636
Dripper Html+TEXT 0.8002 0.8293 0.8005 0.7707
Dripper fallback Html+TEXT 0.8154 0.8363 0.8143 0.7959

The results on this suite of nine
established benchmarks, pre-
sented in Table 3, confirm Drip-
per’s strong generalization ca-
pabilities. Our method again
establishes a new state-of-the-
art, with the standalone Drip-
per model (0.8002) outperform-
ing the strongest prior method,
Trafilatura (0.7833). Fur-
thermore, echoing the find-
ings on MainWebBench, the
Dripper fallback strategy again
demonstrates the complemen-
tary nature of our SLM-based
approach and traditional heuris-
tics, boosting the score further
to 0.8154. This strong perfor-
mance across a diverse collec-
tion of legacy datasets highlights
Dripper’s robustness, setting a
new state-of-the-art for general
web content extraction.

6 CONCLUSION

In this work, we introduce Dripper, a highly efficient and accurate framework for web content extrac-
tion. We demonstrate that our custom-trained 0.6B parameter Small Language Model, Dripper-0.6B,
achieves state-of-the-art performance by reframing the extraction problem. Our approach’s success
is rooted in three key technical contributions. First, our HTML Simplification Algorithm intelli-
gently strips redundant tags and attributes, drastically reducing the input token count while preserv-
ing essential structural cues. This simplified document is then processed through our novel Sequen-
tial Block Classification paradigm, which transforms the open-ended extraction task into a series
of simple, localized binary classifications. Finally, to guarantee absolute fidelity, our Deterministic
Logits Processor constrains the SLM’s output during the decoding phase, which completely elimi-
nates the risk of hallucination and ensures a syntactically perfect structured output. To rigorously
validate our method, we also construct and release MainWebBench, a new large-scale benchmark
of 7,887 samples, on which Dripper-0.6B proves its superiority over all baselines. Furthermore, by
integrating a heuristic-based fallback for inputs that exceed its context window, our Dripper fallback
variant pushes performance even higher, demonstrating the robustness and complementary nature of
our method.

8https://pypi.org/project/html-text/
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7 LIMITATION AND FUTURE WORK

Despite careful web preprocessing development, 1.3% of Common Crawl pages still exceed
Qwen3’s content-window limit post-simplification and remain unprocessable. Additionally, extreme
DOM structures in some pages break chunking/simplification algorithms, hindering effective main
text extraction. Future fixes include enhancing preprocessing and extending the base model’s con-
text window via continued pre-training (to relax preprocessing’s token budget). Moreover, while
we use Qwen3’s smallest 0.6B model to cut overhead, scaling to 100B-scale pages poses cost is-
sues. A promising solution is tailoring data recipes for web parsing to pre-train small (0.01B–0.1B)
dedicated base models from scratch, lowering inference costs.

8 REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. The architecture of our pro-
posed framework, Dripper, and its core components are detailed in the Methodology Section 3.
The construction of our large-scale training dataset is described in Section 4.1, while the creation
and structure of our new benchmark are detailed in the MainWebBench Section 4.2. Our complete
experimental setup, including all baselines, evaluation protocols, and metrics, is presented in the
Experiments Section 5. To facilitate direct verification and future work, we have made our resources
publicly available: the full source code9, the trained Dripper model weights10, and the complete
MainWebBench benchmark11.
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A APPENDIX

A.1 BASELINE METHODS FOR WEB CONTENT EXTRACTION

Table 4: An overview of the baseline methods for web content extraction.
Method Description

Heuristic and Rule-Based Methods

Readability Reader view algorithm for removing distracting elements
jusText Two-pass processing with block size, link density, and stopword heuristics
Goose3 Article extractor with hand-crafted rules
html2text Simple HTML to markdown converter
GNE Text and symbol density-based extraction using mathematical formulas
Resiliparse Fast and robust heuristic extractor with HTML parsing

Supervised Learning Methods

BoilerPy3 Python port of Boilerpipe, decision tree-based text block classification

Hybrid Systems and Production Tools

Trafilatura Sophisticated rule cascade with jusText and Readability as fallbacks
news-please Meta-extractor combining multiple extractors for news articles
magic-html HTML structure simplification for extraction pipelines

Pre-trained Language Models

ReaderLM-v2 SLM-based content extraction with semantic understanding

A.2 STANDARD BENCHMARKS

Table 5: Details of the datasets that comprise the Web Content Extraction Benchmark (WCEB).
Dataset Pages Source & Characteristics

CleanEval 738 De-facto standard dataset from 2007 shared task combining development and eval-
uation sets of English web pages with basic structural markup ground truth

CleanPortalEval 71 Extension of CleanEval featuring multi-page samples from 4 major news domains

CETD 700 Created for density-based extractor evaluation across 6 domains

Dragnet 1,379 Combined sources from popular RSS feeds, 23 major news sites, 178 Technorati
blogs, plus CETR and CleanEval conversions

L3S-GN1 621 Created by BoilerPipe authors with unique HTML annotation using span-wrapped
CSS classes for 5-level content relevance

Google-
Trends-2017

180 Dataset created for BoilerNet neural network training featuring binary CSS class
annotations on DOM leaf nodes to distinguish content from boilerplate

Readability 115 Mozilla reader mode test suite with original and simplified HTML for evaluation

Scrapinghub 181 Created by Zyte for benchmarking proprietary extraction services

13
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A.3 SCREENSHOT OF THE WEB PAGE ANNOTATION TOOL

Figure 3: Screenshot of the web page annotation tool. The main content selection is highlighted in
blue on the left, with a real-time preview on the right.

A.4 EXAMPLE DATA FROM MAINWEBBENCH

1 {
2 "track_id": "XXXX",
3 "html": "<html><body><h1 cc-select=True>Hello

world!</h1><aside>advertisement</aside></body></html>",↪→
4 "main_html": "<html><body><h1>Hello world!</h1></body></html>",
5 "convert_main_content": "# Hello world!",
6 "meta": {
7 "language": "en",
8 "style": "Normal",
9 "level": "easy",

10 "table": "without",
11 "code": "without",
12 "equation": "without"
13 }
14 }

Figure 4: An example data from MainWebBench. It includes the raw source, the ground-truth main
HTML, its Markdown conversion, and a rich set of metadata for fine-grained analysis.

A.5 BENCHMARK CONSTRUCTION

Data Sampling. MainWebBench is constructed using a hybrid sampling strategy to ensure both
broad representation and relevance. 90% of the samples are randomly drawn from the Common
Crawl dataset to cover the long-tail web, while the remaining 10% are sampled from a list of top-
ranking websites (Chinaz Alexa12) to include popular, professionally designed pages. The final
benchmark is highly diverse, containing pages from 5,434 unique top-level and 5,904 unique second-
level domains.

Annotation Rules. To address the ambiguity in defining ”main content” for unconventional lay-
outs, we establish two core annotation principles. First, Contextual Integrity dictates that content
integral to the main article—such as a table of contents, abstract, or reference list—is included.
Conversely, contextually independent elements like ”related articles” sidebars or copyright footers
are excluded. Second, the main content is defined as Human-Generated Content, including article
bodies, user comments, and Q&A posts, while associated auto-generated metadata like usernames
and timestamps are excluded.

Annotation Process. The annotation for each page followed a rigorous three-stage process using
a custom-built tool(see Appendix, Figure 3) that allowed for tag-level granularity. The process

12https://malexa.chinaz.com/
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involved: (1) an initial pass by one annotator, (2) a review and correction pass by a second annotator,
and (3) a final quality assurance check by a senior inspector, who made the final adjudication to
resolve any discrepancies. Pages uninterpretable due to rendering issues were discarded.

Metadata Annotation. To enable detailed, fine-grained analysis, we annotate each page with a rich
set of metadata. This includes Language, identified by GPT-5(OpenAI, 2025) and labeled as en
(English) or non en (other), and Style, classified by GPT-5 as Conversational for pages with
user-generated content or Normal otherwise. We also develop a quantitative Difficulty Level, de-
termined by an overall complexity score calculated for each page. To compute this score,
we first measure four distinct metrics: DOM structural complexity (based on tree depth and width),
text distribution sparsity (transitions between text/non-text nodes), content-type diversity (a count of
rich content types), and link density (the ratio of hyperlinked text). These four values are individu-
ally normalized, and their weighted sum produces the final score. Based on the distribution of this
overall complexity score across the benchmark, we then categorize pages into simple,
medium, and hard using the 30th and 70th percentiles as dynamic thresholds. Finally, we add
Rich Content Tags to identify the presence of tables (<table>), code blocks (<code>), and
mathematical formulas (<math> or LaTeX patterns) using BeautifulSoup.

A.6 DETAILED BENCHMARK STATISTICS

In this section, we provide granular statistics regarding the composition of MainWebBench to
demonstrate its diversity and coverage. MainWebBench consists of 7,887 samples. As detailed
in Section 4.2.1, the composition follows a hybrid sampling strategy: 90% are randomly sampled
from Common Crawl to capture the “long-tail” of the web, while 10% are sampled from top-ranking
websites to ensure the inclusion of popular, high-quality pages.

Domain Diversity. The dataset covers 5,945 unique domains, confirming that the data is not dom-
inated by a few sources but possesses a high degree of diversity. Table 6 lists the top 10 domains
sorted by sample count. Furthermore, the benchmark spans 150 distinct Top-Level Domains (TLDs),
indicating a broad spectrum of global regions and website categories. The distribution of the top 10
TLDs is presented in Table 7.

Page Category Distribution. We utilized GPT-5 to classify the semantic type of every page in the
benchmark. As visually demonstrated in Figure 5, the dataset covers a diverse range of page layouts,
ranging from standard news articles to forums and product pages.

Language Diversity. The dataset includes web pages in 46 different languages. We present the
partial language statistics (top 10) in Table 8. The complete statistical files have been uploaded to
Hugging Face13.

Table 6: Partial Domain Statistics (Top 10 Sorted by Sample Count). This table highlights the variety
in page styles, difficulty levels, and rich content elements even within the most frequent domains.

Domain Count Percent Lang Style Level Table Code Eq.
aniruddhadeb.com 39 0.49% en Article simple 1 9 36
politics.stackexchange.com 30 0.38% en Forum mid 0 0 0
www.ask.com 29 0.37% en Article simple 1 0 3
en.wikipedia.org 27 0.34% en Article hard 20 1 0
www.china.org.cn 23 0.29% en Article simple 21 0 0
money.cnn.com 22 0.28% en Article hard 18 0 7
data.epo.org 21 0.27% en Article simple 21 0 0
m.weibo.cn 19 0.24% zh Forum simple 0 0 0
spanish.china.org.cn 15 0.19% es Article simple 14 0 0
china.org.cn 14 0.18% en Article mid 13 0 0

A.7 PROMPT FOR DATA SYNTHESIS

13https://huggingface.co/anonymous-s2wrvq/Dripper
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Table 7: Partial Top-Level Domain (TLD) Dis-
tribution (Top 10).

TLD Count Percent

com 4550 57.69%
org 816 10.35%
cn 459 5.82%
net 318 4.03%
uk 235 2.98%
edu 180 2.28%
de 101 1.28%
au 94 1.19%
ru 69 0.87%
gov 59 0.75%

Table 8: Partial Language Distribution (Top 10)
in the benchmark.

Language Count Percent

English 6711 85.09%
Chinese 716 9.08%
Spanish 61 0.77%
German 51 0.65%
Japanese 48 0.61%
Russian 45 0.57%
French 36 0.46%
Italian 22 0.28%
Korean 20 0.25%
Portuguese 17 0.22%

Figure 5: Top 15 Web Page Subcategory Distribution. The types were classified semantically using
GPT-5. The distribution shows a wide coverage from standard articles to forums and product pages.

A.8 ANALYSIS OF CLASSIFICATION METRICS

In this section, we provide a detailed analysis of the model’s internal classification performance
relative to the final extraction quality. In fact, we closely monitored these metrics (Precision, Recall,
and F1) throughout our model development process to assess internal classification performance.
We provide these results in Table 9.

Table 9: Block-level classification metrics and ROUGE-N F1 across different training data sizes.
Data Size Block-level Precision Block-level Recall Block-level F1 ROUGE-N F1
2k 0.877 0.781 0.756 0.770
5k 0.875 0.810 0.781 0.796
10k 0.888 0.823 0.800 0.811
100k 0.900 0.838 0.821 0.829
870k 0.898 0.843 0.826 0.834
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While the data confirms our model’s strong classification capability, we deliberately chose ROUGE-
N as our primary reporting metric for three key reasons.

First, our pre-processing creates blocks with significant content length variance. A block can range
from a single boilerplate word to a 2,000-word main article. Standard classification metrics treat all
blocks equally, meaning a model could achieve a high F1 score by correctly classifying hundreds
of tiny boilerplate blocks while missing the single, massive main content block. This would yield a
high classification score but a completely failed extraction.

Secondly, ROUGE-N better aligns with the end-user’s objective, which is to obtain the complete
main text. By measuring the overlap between the extracted text and the ground truth, ROUGE
implicitly weights blocks by their information content, ensuring that the metric reflects the actual
utility of the output.

Finally, prioritizing ROUGE-N ensures consistency with established benchmarks in the web extrac-
tion literature, where ROUGE-L or ROUGE-N are the standard metrics for comparison.

A.9 PERFORMANCE COMPARISON OF LLM AND DRIPPER

We compared performance of Dripper with GPT-5 (OpenAI, 2025), DeepSeek-V3.2-Exp
(DeepSeek-AI, 2025) and Claude-Sonnet-4-5-20250929 (Anthropic, 2025) on the same input. No-
tably, our 0.6B Dripper model (0.8182) achieves 98.4% of the performance level of the state-of-
the-art Claude-Sonnet-4.5 (0.8319). Although frontier LLMs exhibit a slight advantage in handling
complex formatting tasks such as equations and conversational content, our Dripper fallback strat-
egy effectively bridges this gap, achieving an overall F1 score of 0.8399 that surpasses even the
best-performing frontier models. Crucially, Dripper delivers this SOTA-level performance using a
lightweight, locally deployable model, thereby avoiding the prohibitive latency and costs associated
with querying massive frontier models for web-scale extraction.

Table 10: Performance Comparison of LLM and Dripper
Model All Simple Mid Hard Table Code Equation Conversational
GPT-5 0.8302 0.8815 0.8301 0.7792 0.7957 0.8707 0.9161 0.7992
DeepSeek-V3 0.8252 0.8826 0.8244 0.7690 0.7804 0.8440 0.9113 0.8160
Claude-Sonnet-4.5 0.8319 0.8890 0.8329 0.7737 0.7919 0.8619 0.9273 0.8062

Dripper 0.8182 0.8837 0.8178 0.7536 0.7693 0.8368 0.8889 0.7671
Dripper fallback 0.8399 0.9010 0.8392 0.7799 0.7964 0.8673 0.9067 0.8028

A.10 DETAILED PRE-PROCESSING ALGORITHM

In this section, we provide a comprehensive description of the HTML simplification algorithm,
which serves as the cornerstone of the Dripper framework. The primary goal of this algorithm is to
drastically reduce the HTML token count while preserving the critical semantic and structural
cues necessary for accurate content classification. This is achieved through a multi-stage process
applied to the raw HTML.

1. DOM Cleaning and Pruning. We first parse the HTML and proactively remove entire sub-
trees known to be boilerplate. This includes tags such as <script>, <style>, <header>,
<footer>, and <nav>. Furthermore, we heuristically remove elements whose class or id at-
tributes contain keywords like ‘nav’, ‘footer’, or ‘header’, or which have CSS styles indicating they
are hidden (e.g., display: none).

2. Attribute Simplification. To reduce noise and token overhead, we strip nearly all attributes
from all elements. The only exceptions are the class and id attributes, which are often the most
informative semantic markers in modern web design, and for <img> tags, we also preserve the src
(excluding large base64 data) and alt attributes.

3. Semantic Block Segmentation. The core of our method involves converting the cleaned DOM
tree into a linear sequence of semantic blocks. We perform a recursive traversal of the DOM, seg-
menting it at natural block-level boundaries. Our algorithm intelligently handles mixed content:

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1. It identifies and preserves atomic block-level elements (e.g., a standalone paragraph or
<div>).

2. It aggregates consecutive inline elements (e.g., <span>, links with text) and unwrapped
text nodes into coherent blocks, wrapping them in a custom tag if necessary to maintain
structure.

3. It makes special provisions for complex structures like tables and lists, ensuring they are
treated as single, indivisible units where appropriate.

4. Content Truncation within Blocks. To handle excessively long blocks (e.g., a massive list or
a very long paragraph), we apply a conservative truncation strategy. We recursively traverse the
block’s content, limiting the total plain text to a predefined maximum length (e.g., 200 characters)
while meticulously preserving the overall HTML tag structure. This ensures the model receives a
representative sample of the content for classification without being overwhelmed by length.

Parallel Generation Strategy. A critical innovation in our pipeline is the parallel generation of
Simplified HTML and Mapping HTML.Both representations undergo identical block segmen-
tation, ensuring a one-to-one correspondence between blocks. However, Simplified HTML used
for model input undergoes the full pruning and truncation process (steps 1-4). In contrast, Mapping
HTML, used for final output reconstruction, undergoes only the initial cleaning (step 1) and segmen-
tation (step 3), preserving the original, un-truncated

Finally, we inject a unique item id attribute to each block in both the Simplified and Mapping
HTML. This allows the classification labels produced by Dripper-0.6B on the simplified sequence
to be precisely mapped back to the rich, original content blocks for the final extraction.

A.11 TRAINING CONFIGURATIONS

The specific hyperparameters and training configurations for supervised fine-tuning model are
shown in table 11

Table 11: Supervised Fine-tuning (SFT) Configuration Details
Category Parameter Value

Model & Framework
Base Model Qwen3-0.6B
Fine-tuning Method Full-parameter SFT
Training Framework LLaMA-Factory(Zheng et al., 2024)

Training Dynamics
Epochs 4
Global Batch Size 128
Max Sequence Length 32,000

Optimizer & Scheduler
Learning Rate Scheduler Cosine
Peak Learning Rate 1.00E-04
Warmup Ratio 0.1

Hardware & Efficiency Hardware 32× NVIDIA A100 GPU
Precision BF16

A.12 DOMAIN-SPECIFIC EVALUATION RESULTS

To comprehensively assess the generalization capabilities of our framework, we utilized the Topic
and Format classifiers proposed by Wettig et al. (2025b) to categorize all 7,887 samples in the
MainWebBench. Based on this classification, we calculated the ROUGE-N F1 scores for all methods
across 24 distinct topics (e.g., Science & Tech, Finance, Health) and 24 distinct formats (e.g., News
Article, Tutorial, Forum).

As shown in Table 12, Dripper fallback consistently secures the 1st place ranking across various
topic and format categories. On average, it outperforms the strongest existing baseline (magic-
html) by approximately 19%, demonstrating the exceptional robustness of this strategy. The stan-
dalone Dripper model consistently ranks second.
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These results consistently demonstrate our model’s strong capabilities across diverse domains. The
complete breakdown of performance scores for every individual Topic and Format category is pre-
sented in Tables 13 - 16.

Table 12: Average ROUGE-N F1 Scores and Rankings across Topics and Formats. Dripper and its
fallback variant consistently outperform all baselines.

(a) Topic Classification

Method Avg Score Rank

Dripper fallback 0.8583 1
Dripper 0.8330 2
magic-html 0.7209 3
readability 0.6829 4
trafilatura-html-md 0.6725 5
resiliparse 0.6672 6
trafilatura-md 0.6596 7
trafilatura-text 0.6413 8
html2text-md 0.6185 9
boilerpy3-text 0.5811 10
newsplease 0.5595 11
gne 0.5499 12
justtext 0.5412 13
boilerpy3-html-md 0.5229 14
goose3 0.4775 15
readerlm 0.2492 16

(b) Format Classification

Method Avg Score Rank

Dripper fallback 0.8320 1
Dripper 0.8102 2
magic-html 0.6974 3
readability 0.6342 4
trafilatura-html-md 0.6259 5
resiliparse 0.6122 7
trafilatura-md 0.6144 6
trafilatura-text 0.5956 8
html2text-md 0.5827 9
boilerpy3-text 0.5377 10
newsplease 0.4944 12
gne 0.5049 11
justtext 0.4766 13
boilerpy3-html-md 0.4676 14
goose3 0.4321 15
readerlm 0.2205 16

Table 13: Detailed ROUGE-N F1 Scores across Topics (Part 1/2).
Method Home & Hobbies Politics Education Software Crime & Law Science & Tech Food & Drink Social Life Sports & Fitness History Finance Literature
Dripper fallback 0.7971 0.9119 0.8543 0.7890 0.8956 0.8519 0.8654 0.8547 0.8373 0.8334 0.8505 0.8107
Dripper 0.7993 0.8886 0.8301 0.7730 0.8558 0.8281 0.8452 0.8337 0.8210 0.7884 0.8340 0.7667
magic-html 0.6176 0.8139 0.7093 0.6505 0.8140 0.7433 0.6673 0.7102 0.7035 0.6983 0.7578 0.6751
readability 0.5147 0.7899 0.6439 0.6167 0.7555 0.6851 0.5963 0.6302 0.6464 0.6438 0.6922 0.6284
trafilatura-html 0.5430 0.7709 0.6344 0.6140 0.7475 0.6621 0.6360 0.6758 0.6129 0.6424 0.6657 0.6492
resiliparse 0.5570 0.7402 0.6238 0.5858 0.7341 0.6599 0.5997 0.6144 0.6058 0.6171 0.6420 0.5947
trafilatura-md 0.5283 0.7654 0.6216 0.5975 0.7346 0.6483 0.6474 0.6731 0.6102 0.6280 0.6572 0.6201
trafilatura-text 0.5084 0.7416 0.6010 0.5762 0.7166 0.6319 0.6140 0.6534 0.5951 0.6162 0.6357 0.6025
html2text-md 0.4830 0.6093 0.6032 0.6637 0.6065 0.6877 0.5093 0.5967 0.6031 0.6165 0.6310 0.5927
boilerpy3-text 0.5009 0.6802 0.5361 0.4822 0.6630 0.5417 0.5672 0.5559 0.5311 0.5284 0.5661 0.4851
newsplease 0.4599 0.5631 0.5055 0.4752 0.6435 0.4688 0.5134 0.4816 0.5240 0.4541 0.5474 0.4892
gne 0.4150 0.6554 0.5287 0.4422 0.6664 0.5294 0.4669 0.5335 0.5081 0.5099 0.5393 0.4806
justtext 0.5003 0.5195 0.4805 0.4236 0.6053 0.4322 0.5200 0.4454 0.4888 0.4387 0.5201 0.4683
boilerpy3-html 0.3806 0.5962 0.4893 0.4802 0.5605 0.5173 0.4603 0.4998 0.4573 0.4627 0.5189 0.4421
goose3 0.4256 0.4930 0.4312 0.3864 0.5748 0.3966 0.4815 0.4124 0.4661 0.4087 0.4785 0.3786
readerlm 0.1651 0.3002 0.2556 0.2045 0.3151 0.2485 0.2119 0.2357 0.2234 0.2113 0.2586 0.1899

Table 14: Detailed ROUGE-N F1 Scores across Topics (Part 2/2).
Method Health Entertainment Transportation Hardware Art & Design Games Fashion Religion Software Dev Travel Industrial Adult
Dripper fallback 0.8806 0.8331 0.8320 0.8135 0.7774 0.7823 0.7526 0.8674 0.8420 0.8017 0.8386 0.7948
Dripper 0.8555 0.8144 0.8124 0.7832 0.7756 0.7509 0.7315 0.8357 0.8156 0.7908 0.8219 0.7927
magic-html 0.7776 0.6662 0.6716 0.6705 0.5899 0.6890 0.6061 0.7775 0.7299 0.6582 0.6930 0.6482
readability 0.7219 0.6465 0.5678 0.5964 0.5314 0.6206 0.4388 0.7286 0.6631 0.6444 0.6218 0.5961
trafilatura-html 0.7126 0.6314 0.5852 0.5818 0.5047 0.5971 0.5003 0.6762 0.5692 0.6133 0.5968 0.5980
resiliparse 0.7031 0.6025 0.6071 0.5590 0.5157 0.5841 0.5112 0.6684 0.6051 0.6276 0.5663 0.5685
trafilatura-md 0.6969 0.6212 0.5785 0.5628 0.5013 0.5853 0.4971 0.6665 0.5271 0.6023 0.5829 0.5930
trafilatura-text 0.6782 0.6046 0.5571 0.5469 0.4837 0.5738 0.4755 0.6465 0.5123 0.5823 0.5643 0.5763
html2text-md 0.6188 0.5826 0.5556 0.5254 0.4761 0.6154 0.3885 0.6758 0.7313 0.5124 0.5495 0.5514
boilerpy3-text 0.6423 0.5238 0.5515 0.4783 0.5037 0.4785 0.4175 0.6242 0.3926 0.5793 0.5297 0.5465
newsplease 0.5912 0.4901 0.5032 0.4410 0.4857 0.4316 0.3565 0.6161 0.4519 0.4845 0.4131 0.4749
gne 0.6194 0.5116 0.4756 0.4428 0.4366 0.4467 0.3772 0.5425 0.4698 0.4671 0.5052 0.5473
justtext 0.5685 0.4645 0.5030 0.4580 0.4644 0.4758 0.3988 0.5481 0.3159 0.5447 0.4004 0.4530
boilerpy3-html 0.5584 0.4624 0.4471 0.3716 0.4052 0.4428 0.3018 0.5619 0.4264 0.4516 0.4295 0.4986
goose3 0.5192 0.4299 0.4599 0.3936 0.3853 0.3804 0.3594 0.5662 0.3011 0.4487 0.3846 0.4083
readerlm 0.2732 0.1949 0.2185 0.1930 0.1797 0.2047 0.1157 0.2638 0.1977 0.1964 0.1989 0.2366
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Table 15: Detailed ROUGE-N F1 Scores across Formats (Part 1/2).
Method Comment Section Structured Data About (Org.) About (Pers.) Tutorial Product Page Content Listing Customer Support User Review Spam / Ads News (Org.) Knowledge Article
Dripper fallback 0.7843 0.7310 0.8370 0.7547 0.9129 0.7971 0.6961 0.8392 0.8042 0.8178 0.9078 0.9047
Dripper 0.7415 0.7020 0.8283 0.7229 0.9018 0.7865 0.6646 0.8348 0.7868 0.8039 0.9000 0.8986
magic-html 0.4510 0.6045 0.7043 0.6254 0.8048 0.6425 0.5218 0.7598 0.5396 0.6960 0.8255 0.8142
readability 0.4429 0.4765 0.6429 0.5260 0.7666 0.5365 0.4500 0.6371 0.5104 0.6965 0.7723 0.7870
trafilatura-html 0.5362 0.4261 0.6637 0.5967 0.7301 0.5448 0.4888 0.6849 0.5837 0.6487 0.7410 0.7355
trafilatura-md 0.5364 0.4201 0.6404 0.5788 0.7122 0.5245 0.4608 0.6583 0.5855 0.6358 0.7387 0.7216
resiliparse 0.4799 0.4261 0.6177 0.5664 0.7260 0.5541 0.4932 0.6913 0.6074 0.5594 0.6908 0.7260
trafilatura-text 0.5311 0.3986 0.6296 0.5620 0.6895 0.5068 0.4486 0.6302 0.5787 0.6144 0.7127 0.7005
html2text-md 0.6010 0.6363 0.5113 0.4970 0.6975 0.4573 0.5982 0.6274 0.4946 0.5001 0.5491 0.6227
boilerpy3-text 0.4256 0.2503 0.6468 0.4808 0.6271 0.5128 0.2840 0.6163 0.5338 0.5295 0.6815 0.6333
gne 0.2889 0.2810 0.6057 0.4517 0.5841 0.4470 0.2974 0.5013 0.4403 0.5613 0.6649 0.6256
newsplease 0.3592 0.2387 0.5726 0.4586 0.6609 0.4437 0.3417 0.6157 0.5394 0.3120 0.5894 0.6461
justtext 0.5093 0.1470 0.6460 0.4728 0.6483 0.4604 0.2739 0.6219 0.6065 0.1823 0.5098 0.5447
boilerpy3-html 0.3933 0.2646 0.4876 0.4081 0.5856 0.3799 0.2572 0.5328 0.4197 0.4704 0.5436 0.5362
goose3 0.2805 0.1509 0.5731 0.3824 0.6198 0.4131 0.2293 0.5034 0.4695 0.1697 0.5335 0.5632
readerlm 0.1540 0.1168 0.2597 0.1493 0.3050 0.1556 0.1259 0.2683 0.1886 0.2269 0.2945 0.2647

Table 16: Detailed ROUGE-N F1 Scores across Formats (Part 2/2).
Method Academic Writing Personal Blog Creative Writing FAQ Nonfiction Writing Truncated News Article Audio Transcript Legal Notices Documentation Listicle Q&A Forum
Dripper fallback 0.8943 0.9086 0.8913 0.9280 0.9756 0.7097 0.9535 0.9555 0.9462 0.8769 0.9423 0.8303
Dripper 0.8444 0.8927 0.8097 0.8609 0.9641 0.7164 0.9466 0.9033 0.9192 0.8174 0.9251 0.8207
magic-html 0.8533 0.7698 0.8137 0.5514 0.9301 0.4891 0.8865 0.8881 0.9066 0.8082 0.8673 0.5470
readability 0.7765 0.7291 0.7896 0.6627 0.9179 0.4756 0.8693 0.8519 0.8916 0.7552 0.8033 0.6228
trafilatura-html 0.7933 0.7141 0.7516 0.6959 0.8700 0.4748 0.8330 0.8526 0.7982 0.6028 0.7814 0.5921
trafilatura-md 0.7781 0.7193 0.7252 0.7175 0.8634 0.4678 0.8268 0.8322 0.7780 0.5510 0.7772 0.5816
resiliparse 0.7767 0.7458 0.7129 0.7701 0.8894 0.4148 0.7675 0.8369 0.8034 0.6662 0.7737 0.7163
trafilatura-text 0.7628 0.7053 0.7050 0.6847 0.8484 0.4577 0.7973 0.8214 0.7589 0.5347 0.7521 0.5608
html2text-md 0.7734 0.6064 0.7053 0.6914 0.7577 0.3122 0.5856 0.8108 0.8701 0.8293 0.6909 0.4195
boilerpy3-text 0.6720 0.6399 0.6485 0.6150 0.8390 0.4478 0.7804 0.7502 0.7463 0.4333 0.6640 0.4872
gne 0.6584 0.5974 0.6908 0.4510 0.8065 0.4224 0.7529 0.7052 0.7880 0.4829 0.6907 0.4033
newsplease 0.6260 0.6915 0.5124 0.6744 0.8476 0.3524 0.6324 0.7799 0.7123 0.4373 0.7317 0.6525
justtext 0.6370 0.7155 0.4381 0.7084 0.8461 0.3432 0.5643 0.7810 0.6824 0.3567 0.7281 0.5653
boilerpy3-html 0.6422 0.5575 0.6371 0.6178 0.7643 0.3265 0.6710 0.7428 0.8026 0.5231 0.6212 0.3654
goose3 0.5321 0.6184 0.3610 0.6698 0.8174 0.3836 0.6142 0.7118 0.5075 0.3190 0.6972 0.3404
readerlm 0.3292 0.2374 0.2802 0.2861 0.4097 0.1237 0.3553 0.3630 0.3996 0.2452 0.3138 0.1282

A.13 USE OF LARGE LANGUAGE MODELS

A large language model is used as a writing assistant during the preparation of this manuscript. The
primary use of the LLM is for improving grammar, clarity, and phrasing of the text. The LLM does
not contribute to the core research ideas, experimental design, data analysis, or the formulation of
our conclusions. The authors have reviewed and edited all text and take full responsibility for the
final content of this paper.
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f"""As a front-end engineering expert in HTML, your task is to analyze
the given HTML structure and accurately classify elements with the
{ITEM_ID_ATTR} attribute as either "main" (primary content) or
"other" (supplementary content). Your goal is to precisely extract
the primary content of the page, ensuring that only the most
relevant information is labeled as "main" while excluding
navigation, metadata, and other non-essential elements.

↪→
↪→
↪→
↪→
↪→
↪→

Guidelines for Classification:
Primary Content ("main")
Elements that constitute the core content of the page should be

classified as "main". These typically include:↪→
For Articles, News, and Blogs:

The main text body of the article, blog post, or news content.
Images embedded within the main content that contribute to the article.
For Forums & Discussion Threads:

The original post in the thread.
Replies and discussions that are part of the main conversation.
For Q&A Websites:

The question itself posted by a user.
Answers to the question and replies to answers that contribute to the

discussion.↪→
For Other Content-Based Pages:

Any rich text, paragraphs, or media that serve as the primary focus of
the page.↪→

Supplementary Content ("other")
Elements that do not contribute to the primary content but serve as

navigation, metadata, or supporting information should be
classified as "other". These include:

↪→
↪→

Navigation & UI Elements:
Menus, sidebars, footers, breadcrumbs, and pagination links.
"Skip to content" links and accessibility-related text.
Metadata & User Information:

Article titles, author names, timestamps, and view counts.
Like counts, vote counts, and other engagement metrics.
Advertisements & Promotional Content:

Any section labeled as "Advertisement" or "Sponsored".
Social media sharing buttons, follow prompts, and external links.
Related & Suggested Content:

"Read More", "Next Article", "Trending Topics", and similar sections.
Lists of related articles, tags, and additional recommendations.
Task Instructions:
You will be provided with a simplified HTML structure containing

elements with an {ITEM_ID_ATTR} attribute. Your job is to analyze
each element's function and determine whether it should be
classified as "main" or "other".

↪→
↪→
↪→

Response Format:
Return a JSON object where each key is the {ITEM_ID_ATTR} value, and the

corresponding value is either "main" or "other", as in the
following example:

↪→
↪→

{{"1": "other","2": "main","3": "other"}}
Important Notes:
Do not include any explanations in the output, only return the JSON.
Ensure high accuracy by carefully distinguishing between primary content

and supplementary content.↪→
Err on the side of caution, if an element seems uncertain, classify it

as "other" unless it clearly belongs to the main content.↪→

Input HTML:
{html_str}

Output format should be a JSON-formatted string representing a
dictionary where keys are item_id strings and values are either
'main' or 'other'. Make sure to include ALL item_ids from the
input HTML

↪→
↪→
↪→

"""

Figure 6: Prompt template for Main HTML classification.
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