Under review as a conference paper at ICLR 2026

DRIPPER: TOKEN-EFFICIENT MAIN HTML EXTRAC-
TION WITH A LIGHTWEIGHT LM

Anonymous authors
Paper under double-blind review

ABSTRACT

Accurately and efficiently extracting main content from general web pages is of
great significance for obtaining training data for large models. Using well-pre-
trained decoder-only generative language models offers excellent document com-
prehension capabilities, thereby effectively enhancing parsing quality. However,
it remains constrained by issues such as context window length, inference cost,
and format hallucination. We present Dripper, an efficient HTML main content
extraction framework powered by lightweight language models, which addresses
these challenges through four key innovations: (1) We design a specialized HTML
simplification algorithm that reduces input token count to 22% compared to raw
HTML while preserving critical structural information; (2) We reformulate main
content extraction as a semantic block sequence classification task, significantly
reducing inference cost; (3) We introduce a controlled decoding mechanism that
strictly constrains the output space through logits processors, effectively eliminat-
ing hallucination issues common in small-scale models; (4) We propose Main-
WebBench, an evaluation dataset containing over 7,800 web pages with metic-
ulously human-annotated main content extraction labels. Experimental results
demonstrate that using only a 0.6B parameter model, Dripper achieves state-of-
the-art performance across all evaluation benchmarks and outperforms all base-
line methods, attaining an ROUGE-N F1 score of 81.58%(83.13% with fall-back
strategy) on our proposed MainWebBench dataset.

1 INTRODUCTION

The World Wide Web forms the foundational data repository for modern Al, serving as the primary
source for training corpora like C4(Raffel et al.| |2020) and for building the knowledge graphs that
power large-scale applications(Wang et al.l[2019). The sheer scale of this resource is immense, with
web archiving projects like Common Crawl(Common Crawl Foundation)) preserving billions of new
pages each month. This massive volume presents a fundamental challenge for data utilization: the
raw, unstructured HTML must first be converted into high-quality, structured data. Accordingly, the
development of robust and accurate content extraction techniques has become a critical prerequisite
for a wide range of downstream information processing tasks(Vogels et al.,|2018b).

The primary obstacle lies in the failure of traditional extraction methods to handle the web’s inher-
ent complexity. While HTML standards provide semantic tags with clear intended uses—such as
<article> for main content or <aside> for sidebars—their adoption in practice is highly incon-
sistentWang et al.| (2022), rendering simple tag-based rules unreliable. Similarly, heuristic methods
based on statistical properties like text or link density often falter. Even pages built from the same
template can exhibit vast statistical variations simply due to differences in their core content, un-
dermining the stability of these metrics. Furthermore, vision-based approaches like diffbot(Diffbot,
2025) are often rendered ineffective in large-scale offline processing scenarios. Web archives like
Common Crawl typically store only raw HTML, lacking the corresponding CSS files required to
render a page as its developer originally intended. These fundamental challenges explain why es-
tablished tag-based, heuristic, and vision-based methods struggle to achieve both high accuracy
and robust generalization. While the semantic understanding of well-trained decoder-only language
models offers a promising theoretical solution(Wang et al.,[2025), their direct application is thwarted
by a distinct set of severe practical barriers. First, excessive context length makes processing raw
HTML infeasible at scale.Our analysis of 14,000 Common Crawl files shows 29.3% of pages ex-

Under review as a conference paper at ICLR 2026

ceeded 32k tokens and 21.0% surpassed 128k tokens, lengths that far exceed the context windows
of most SLMs. Second, the structural complexity of HTML presents a critical trade-off. While
stripping all tags is an effective way to significantly reduce input length, this action simultaneously
destroys the vital structural information they contain. Without these cues, an algorithm cannot reli-
ably distinguish main content from noise and perform accurate extraction. Finally, LLMs are prone
to output hallucination (Ji et al.| 2023), a tendency to generate content not present in the source
document, which constitutes a critical failure for an extraction task that demands high fidelity.

To address these challenges, we introduce Dripper, a novel framework that reframes web content
extraction as an efficient Sequential Block Classification task, specifically designed for Small Lan-
guage Models (SLMs). Our three-stage pipeline begins with a pre-processing step that simplifies
the raw HTML, making it tractable for a compact model. We then employ a 0.6B parameter SLM,
Dripper-0.6B, to perform a localized binary classification on each semantic block of the simplified
document. To ensure perfect output fidelity and eliminate hallucinations, we guide the SLM’s de-
coding with a custom logits processor, forcing it to produce a structured sequence of labels. Finally,
a post-processing step uses these high-confidence labels to precisely extract the corresponding con-
tent blocks from the original HTML structure. The text from these selected blocks is then evaluated
against the ground truth using ROUGE-N F1 as the primary metric. This approach circumvents the
context length and hallucination issues inherent in holistic generative methods.

Our main contributions are summarized as follows:

(1) We introduce a novel HTML simplification algorithm that strips redundant information while
preserving critical structural markers, compressing the average document size by 22% and making
processing feasible for SLMs.

(2) The HTML document is represented as a sequence of semantic blocks, which transforms the
task into a series of localized binary classifications. This approach dramatically reduces the prob-
lem’s complexity while retaining essential hierarchical and contextual relationships.

(3) We design a constrained decoding mechanism using a custom logits processor. This converts
the task from open-ended generation to producing a fixed, structured output, thereby systematically
eliminating hallucinations and ensuring high-fidelity results.

(4) To facilitate rigorous and comprehensive evaluation, we construct and will publicly release
MainWebBench, a new large-scale benchmark with over 7,800 meticulously annotated samples,
making it seven times larger than any existing public alternative. Our experiments demonstrate that
Dripper, using only a 0.6B parameter model, achieves state-of-the-art performance, outperform-
ing all baselines on MainWebBench with a leading F1 score of 81.58 %, which increases to 83.13%
when augmented with a fallback strategy. Our trained model Weightcod and the MainWebBench
benchmarkﬂ are publicly available.

2 RELATED WORK

Main text extraction aims to extract main content from raw HTML while filtering out boilerplate
elements such as navigation and advertisements, a critical technique for building high-quality web
corpora. The methods for accomplishing this task have evolved through several distinct paradigms,
each addressing the limitations of its predecessor.

Heuristic and rule-based Methods. Early approaches predominantly relied on manually engi-
neered heuristics to distinguish main content from boilerplate. These methods operate on the obser-
vation that content-rich regions differ structurally from noisy elements, using features like text-to-tag
ratios (CETR)(Weninger et al.,[2010), visual cues from the rendered page (VIPS)(Cai et al.| 2003),
or a combination of heuristics such as link and stop-word density (Readability(Mozilla, [2015), jus-
Text(Pomikalek}2011)). While computationally efficient, these methods are often brittle and require
continuous maintenance to adapt to evolving web design patterns.

"https://huggingface.co/anonymous-s2wrvg/Dripper
Zhttps://anonymous.4open.science/r/dripper-1825
3https://huggingface.co/datasets/anonymous-s2wrvq/MainWebBench

Under review as a conference paper at ICLR 2026

Supervised Learning Methods. To move beyond handcrafted rules, subsequent work approached
body text extraction as a supervised machine learning problem. This paradigm shift began with
classic methods like Boilerpipe(Kohlschiitter et al.,|2010), Dragnet(Peters & Lecocq,|2013)), which
treated the task as a classification problem using manually designed features. The advent of deep
learning marked a further evolution from feature engineering to representation learning. (Vogels
et al.,|2018a; Leonhardt et al., [2020; [Zhou et al., [2021)). To better leverage the hierarchical structure
of HTML, subsequent research introduced Graph Neural Networks (GNNs)(Zhou et al.| 2021)) and
Transformer-based architectures like WebFormer(Endrédy & Novak, 2013)), which improved extrac-
tion accuracy by capturing complex relationships between nodes. While achieving higher accuracy,
these models often require substantial labeled data, and their complex architectures incur significant
computational overhead.

Hybrid Systems and Production Tools. In parallel with academic advancements, a suite of pow-
erful open-source tools has emerged, often blending multiple techniques for practical application.
Trafilatura(Barbaresi, |2021) has become a strong baseline by integrating a sophisticated cascade
of rules with established algorithms like jusText(Pomikalek, [2011) and Readability(Mozilla, [2015))
as fallbacks. Other tools, such as magic-html(opendatalabl 2024)), focus on simplifying complex
HTML structures before extraction, often as part of larger document Al ecosystems. More recently,
frameworks such as crawl4ai(UncleCodel 2024} have adopted an explicitly hybrid architecture, com-
bining rule-based selectors, traditional machine learning, and Large Language Models (LLMs) to
provide versatile solutions for Al data pipelines.

Generative-Language-based Methods. Recent months have seen rapid progress in decoder-only
large language models. Base models pre-trained on massive, high-quality, and highly-diverse cor-
pora have become the de-facto starting point for most NLP tasks. The most representative work in
this line is ReaderLM-v2(Wang et al.|[2025)), which frames main-content extraction as an HTML-to-
Markdown translation problem. Starting from a 1.5 B-parameter Qwen2.5 checkpoint, the authors
first extend the context window to 512 k tokens through continual pre-training, then fine-tune with
supervised fine-tuning (SFT) and direct-preference optimization (DPO) to produce clean Markdown.
This pipeline reuses the open-source model zoo and inference-acceleration stacks already available
in the LLM community. Nevertheless, even the official best-practice implementationﬂ still expects
the full, un-pruned HTML page as input and generates the complete body text in one pass. This in-
curs heavy computational overhead and, during long-sequence generation, often produces unwanted
artifacts such as repetitions or un-escaped HTML tags. Consequently, the potential of SLMs for
extraction remains largely untapped.

3 METHODOLOGY

In this section, we detail the methodology of our Dripper framework. We begin in §3.1] with an
overview of the system’s three-stage architecture. Next, in §3.2] we elaborate on the core pre-
processing and post-processing modules that enable efficient extraction. We then formally define
the task as a sequence labeling problem in §3.3] Finally, in §3.4 we introduce our constrained
decoding mechanism, which uses a custom logits processor to eliminate hallucinations.

3.1 SYSTEM ARCHITECTURE OVERVIEW

The Dripper framework operates through a three-stage pipeline: pre-processing, SLM-based extrac-
tion, and post-processing. As illustrated in FigurdI] the system takes a raw HTML document as
input and transforms it into a clean, structured Markdown output.

The process begins with the pre-processing module, which takes a raw HTML document and gen-
erates two distinct representations. The first is a Simplified HTML, which is simplified and
chunked. The second is a Mapping HTML, which is only chunked but otherwise unmodified. This
parallel representation is crucial for ensuring the final extracted content remains a valid subtree of
the original Document Object Model (DOM). The Simplified HTML is then passed to Dripper-
0.6B, which identifies and labels the main content blocks. The decoding process is constrained
by a custom logits processor to guarantee the structural integrity and correctness of the output for-
mat. Finally, in the post-processing stage, the Dripper-0.6B’s classification output is used to prune

*https://huggingface.co/jinaai/ReaderLM-v2

Under review as a conference paper at ICLR 2026

Raw HTML @
Noise
Clean @

Main Content (md)
Simplified HTML Mapping HTML html2text

Main HTML (html)

1% Pre-Processing

«div_item_id="1"> <div <div data-anno-uid=a> «div data-

ad content _item_id ad content anno-uid=c> div data-anno-uid=b:
</div ="3" </div> «v <$a anno u'(/b>,

page link 1 0 /i
«div_item_id="2"> f,aﬁe «div data-anno-uid=b> :ﬁl,p </div>
inks
 <«/b> page links 2
! . <i> </i> </lix

</div> <oratiz </div> </div> 14 Post-Processing

) Logit : Classification Output (json)
"Q Dripper-0.6B Processor n {lllll:llo.‘,hernlllzll:nmainll‘llsll:||°1,herll’||4n:||°1,her.n".}

Figure 1: An overview of the Dripper framework, which operates as a three-stage pipeline. (1)
Pre-processing: A raw HTML document is converted into two parallel representations: Simplified
HTML for model input and Mapping HTML for final reconstruction. (2) Dripper-0.6B Extraction:
Dripper-0.6B performs sequential block classification on the simplified input, guided by a custom
logits processor to output a structured sequence. (3) Post-processing: The labels are used to select
the corresponding blocks from Mapping HTML to construct the final, clean Main Content.

the Mapping HTML, yielding the final Main HTML. For downstream usability, Main HTML is
converted into Markdown format using the htletextE] library.

3.2 PRE-PROCESSING AND POST-PROCESSING

Raw HTML is primarily designed for visual rendering, not for semantic interpretation by language
models. Naively including all tags and attributes results in excessively long input sequences. Our
pre-processing module is therefore guided by a multi-faceted strategy for simplification and chunk-
ing. The process begins with the (1) preemptive removal of non-content tags, such as <style>,
<script>, <header>, and <aside>. Concurrently, we perform (2) attribute simplification,
pruning all attributes except for class and id, which often carry the most valuable semantic cues for
distinguishing content blocks. Following this, the document undergoes (3) block-level chunking,
where it is segmented at elements that typically induce a line break in rendering. This strategy treats
cohesive units like tables (<table>) and lists () as indivisible blocks to preserve their in-
tegrity. To handle the common misuse of tables for page layout, we apply heuristic rules to permit
splitting within them when necessary. Finally, to manage excessively long individual blocks, such
as a table with many cells, a list with numerous items, or an overly long paragraph, we employ (4)
partial content truncation. For instance, we may retain only a subset of table cells or the initial
200 characters of a long paragraph, as we empirically find this partial data is sufficient for accurate
classification while significantly reducing input length.

This pre-processing pipeline transforms Raw HTML into a sequence of simplified blocks ready for
Dripper-0.6B. To ensure the final output is a valid DOM subtree, the Mapping HTML is generated
in parallel by applying only the block-level chunking to the original, unmodified HTML. The post-
processing module then uses the Dripper-0.6B’s output to select the corresponding content-bearing
blocks from this Mapping HTML to construct the final result.

3.3 TASK FORMULATION

The system architecture detailed above effectively transforms the content extraction task into a well-
defined sequence labeling problem. Formally, our pre-processing module converts an HTML doc-

>https://pypi.org/project/html2text/

Under review as a conference paper at ICLR 2026

ument into a sequence of n simplified blocks, X = [z1,29,...,2,]. Each block x; has a corre-
sponding ground-truth label y; € {0, 1}, where 1 indicates main content and 0 indicates boilerplate.
The core task is to train a model fy that takes the sequence X as input and produces a predicted
label sequence, Yy eqa = fo(X), where Yyred = (U1, Y, - - -, ys]. This predicted sequence is then
used by the post-processing module to select the corresponding blocks from the Mapping HTML
and construct the final Main HTML.

This sequence labeling formulation is highly efficient and reliable. By simplifying and chunking
the input, the token load on the model is substantially reduced. Furthermore, framing the task as
a classification of discrete blocks constrains the output to a simple sequence of binary labels. This
design minimizes the required output length and, by avoiding free-form text generation, inherently
eliminates the risk of hallucination, guaranteeing that the extracted content is a faithful subset of the
original document.

3.4 CONSTRAINED DECODING VIA A CUSTOM LOGITS PROCESSOR

To eliminate hallucination and guarantee a valid output format, we implement a custom logits pro-
cessor that functions as a deterministic finite state machine (FSM) during decoding. The FSM
precisely controls the generation of the JSON-like output structure (e.g., {’1”: ”"main”, ...}) by de-
terministically managing all syntactic tokens, such as braces, quotes, and numeric keys. At each
decoding step, it masks the SLM’s logits, permitting the model to make a probabilistic choice only
at the single critical juncture of classifying a block. At this point, the vocabulary is restricted to just
’main’ and ’other’, effectively converting the task into a series of high-confidence binary classifi-
cations. This method guarantees syntactically perfect output, fundamentally removing the risk of
format errors or extraneous content, and enables even a small 0.6B model to perform this structured
prediction task with perfect fidelity.

4 DATASET AND BENCHMARK

In this section, we detail the construction of our large-scale training dataset (Section 4.1)) and our
new evaluation benchmark, MainWebBench (Section @, along with its evaluation metrics.

4.1 TRAINING DATA CONSTRUCTION

To train our model effectively, we construct a large-scale, multi-faceted training dataset engineered
to capture the diversity of the modern web. The dataset is curated through a three-stage sampling
and filtering pipeline, ensuring variety in page layout, language, and document format.

Stage 1: Layout-Diverse Sampling. The initial stage focuses on capturing structural diversity. We
begin by grouping pages by domain across 107 dumps of the Common Crawl dataset. For each do-
main, we featurize the DOM tree structure of its pages (capped at 10,000 randomly sampled pages
for larger domains) and computed their pairwise cosine similarity. We then apply the DBSCAN
algorithm to these feature vectors to identify distinct layout clusters. From this process, we sam-
ple one representative webpage from each of approximately 40 million unique clusters, yielding a
candidate pool of 40 million structurally diverse pages.

Stage 2: Multilingual and Format-Aware Filtering. From this candidate pool, the second stage
filtered for linguistic and format diversity. We first extract the main content of each page using
Trafilatura and then employ the Fasttext lid-17dﬂ model for language identification. This
step produced a balanced 10-million-page subset (4.75M English, 4.75M Chinese, 0.5M other lan-
guages). To further enhance diversity, we categorize these pages using the format classifier proposed
by [Wettig et al.| (2025). A final balanced sampling across these identified formats results in a set of
approximately 1 million pages (485k English, 487k Chinese, 50k other) for the final annotation
stage.

Stage 3: Final Annotation. In the final stage, we process these 1 million pages through our simpli-
fication algorithm (detailed in Section[3.2). The resulting Simplified HTML is then provided to

Shttps://fasttext.cc/docs/en/language-identification.html

Under review as a conference paper at ICLR 2026

the Deepseek-chat API with a carefully crafted prompt (see Appendix Figure[5) to generate block-
level labels. This automated pipeline yields approximately 1 million pages with high-quality, block-
level annotations. After a final filtering step to remove samples containing no main content (i.e., all
blocks were labeled as “other’), we obtain our final training dataset of 870,945 samples.

4.2 MAINWEBBENCH: A NEW BENCHMARK FOR CONTENT EXTRACTION

To facilitate a more rigorous and fine-grained evaluation of web content extraction, we construct
MainWebBench, a new benchmark comprising 7,887 meticulously annotated samples. Each sam-
ple contains four keys: “html’(the raw html document); main_html’(the ground-truth as a valid
html subtree identified by human annotators); ’convert_main_content’(a Markdown representation,
generated from the ground-truth); and 'meta’(a rich set of annotations). MainWebBench is de-
signed to serve as a gold-standard resource for evaluating extraction accuracy and enabling multi-
dimensional performance analysis. An example data entry is shown in Appendix Figure 4]

4.2.1 BENCHMARK CONSTRUCTION

MainWebBench is constructed using a hybrid sampling strategy to ensure broad representation: 90%
of pages are randomly sampled from Common Crawl to cover the long-tail of the web, while 10%
are drawn from a list of top-ranking websites (Chinaz Alexﬂ) to include popular, well-designed
pages. To address the ambiguity in defining “main content,” we establish annotation rules based
on two principles: Contextual Integrity, which includes content integral to the primary article
(e.g., abstracts, references) and excludes peripheral elements (e.g., related-articles sidebars); and
Human-Generated Content, which focuses on substantive material like article bodies and com-
ments while filtering out auto-generated metadata (e.g., timestamps). Each page is meticulously
annotated through a rigorous multi-stage process by using a custom-built tool(see Appendix Figure
[B). Furthermore, we enrich the benchmark with rich metadata annotations—including language,
style, a quantitative difficulty level, and rich content tags—enabling fine-grained analysis. More
details of benchmark construction can be found in Appendix

4.2.2 EVALUATION METRICS

To accommodate the two primary output formats of extraction tools—(1) raw Markdown text and
(2) Main HTML document—we establish a standardized evaluation protocol. For the latter case,
all Main HTML outputs are first converted to a canonical Markdown representation using the
html2text library to ensure a fair and consistent comparison. The primary evaluation metric
is the ROUGE-N F1 score, computed between the predicted Markdown and the ground-truth. We
use the jieba tokenizer for all computations and set N=5. We specifically choose ROUGE-N instead
of ROUGE-L, as the latter’s Longest Common Subsequence (LCS) algorithm has prohibitive com-
putational complexity on the long documents in our benchmark, making ROUGE-N a more scalable
and practical choice for evaluation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Supervised fine-tuning. We employ the Qwen3-0.6B((Team), 2025)) model as our base model,
which is the smallest model in the Qwen3 series, featuring a 32K context window and support for
over 100 languages. Supervised fine-tuning is performed using the Llama-Factory((Zheng et al.,
2024]))) framework, training on the full set of 870K samples for a fixed total of 4 epochs. We use the
last checkpoint as Dripper-0.6B.

Baseline Methods. To comprehensively evaluate Dripper, we compare it against a diverse set of
establish and state-of-the-art content extraction systems. Our comparison spans a wide spectrum
of approaches, including classic heuristic and rule-based systems, supervised learning methods,
production-grade hybrid tools, and recent large language model-based extractors. A detailed list and
description of each baseline method is provided in Appendix, Table

"https://malexa.chinaz.com/

Under review as a conference paper at ICLR 2026

Evaluation Modes. To ensure a fair comparison across tools with diverse output capabilities, we
established a clear evaluation protocol. We test every applicable output format for each tool and
use a consistent suffix to denote the mode: ~HTML+MD for tools that output an intermediate HTML
which we convert to Markdown; —MD for tools that natively output Markdown; and ~TEXT for tools
that natively output plain text. Because Dripper cannot process inputs that exceed its context-length
limit, we assign a score of 0 to such inputs. Following the practice of Trafilatura, which uses a
fallback algorithm for parsing failures, we also test a version of our method, Dripper_fallback, which
invokes Trafilatura for oversized inputs.

5.2 RESULT OF OVERHEAD REDUCTION

The computational cost of a decoder-only language model is primarily determined by the input and
output sequence lengths, with its complexity approximated by Equation

Cost ~ (Ld (N* + MN + M?) + Ld® (N +M)) flops (1)

where L is the number of attention layers, d is the hidden-state dimension, IV is the number of input
tokens, and M is the number of output tokens. For Qwen3-0.6B we set L = 28 and d = 1024.

To quantify the efficiency gains of our approach, we compare its cost against a naive generative
baseline. The baseline cost is estimated by using Raw HTML as input to generate the full Mark-
down content. For our method, we use Simplified HTML as input and the structured JSON
classification as output. We measure the token lengths for both scenarios on the MainWebBench,
and the results are detailed in Table [11

Table 1: Token-length and cost comparison.

Pre-process . . ;
mean median mean median mean median

Input length (tokens) | Output length (tokens) Cost estimate (flops)

Without 447059 31987.0 | 2303.7 675.0 1.102 x 10 3.206 x 103
With 5734.5 3109.0 3834 187.0 5.702 x 10'2 5.254 x 10**

Ratio | 1283% 9.72% | 1664% 27.70% | 5.18% 1.64%

The results reveal a substantial reduction in computational overhead. Our pre-processing pipeline
dramatically shortens the input, reducing the mean token count to just 12.83% of Raw HTML, which
is crucial for fitting within the model’s context window. Simultaneously, reframing the task to output
a compact JSON classification reduces the mean output length to 16.64% of the full content. These
two synergistic effects culminate in a remarkable reduction in computational load, lowering the
mean inference cost to just 5.18% of the naive approach. This makes SLM-based content extraction
not only feasible but also highly efficient and controllable.

5.3 RESULTS ON MAINWEBBENCH

We present the main performance comparison on our MainWebBench benchmark in Table 2| The
results are broken down by various tracks, including difficulty levels and the presence of rich content.

The results clearly demonstrate that Dripper achieves state-of-the-art performance, significantly out-
performing all baseline methods across every track. The standalone Dripper model achieves an over-
all score of 0.8182, surpassing the best baseline, magic-html (0.7091), by a large margin. Notably,
Dripper shows exceptional strength on challenging content types where traditional methods falter,
such as pages with tables, equations, and especially conversational layouts (0.8028 vs. 0.5766 for the
best baseline). This highlights the robustness of our semantic, block-based classification approach.

Additionally, due to limitations in preprocessing capacity and model generalization, Dripper occa-
sionally fails to extract meaningful content from certain pages. We note that since Dripper follows
a fundamentally different technical approach compared to rule-based systems like Trafilatura,
its failures tend to be orthogonal to those of such systems. This allows for a straightforward fallback
strategy: when Dripper returns no valid output, we use Trafilatura as a backup. With this

Under review as a conference paper at ICLR 2026

Table 2: Mean ROUGE-N F1 on MainWebBench with different tracks

name mode all simple mid hard table code equation conversational
magic-html(opendatalab/[2024) Html+MD 0.7091 0.7811 0.7095 0.6367 0.6681 0.8471 0.8470 0.4678
Readability(Mozillal[2015) Html+MD 0.6491 0.7370 0.6525 0.5570 0.5896 0.7774 0.7800 0.4608
Trafilatura(Barbaresi||[2021) Html+MD 0.6358 0.7277 0.6391 0.5396 0.5505 0.6006 0.7327 0.5750
Trafilatura MD 0.6237 0.7115 0.6279 0.5305 0.5400 0.5741 0.7168 0.5766
Trafilatura TEXT 0.6049 0.6900 0.6088 0.5149 0.5271 0.5566 0.6955 0.5681
html2text(Swartz et al.|[2025) MD 0.5977 0.7499 0.5812 0.4678 0.5937 0.7729 0.7129 0.5494
BoilerPy3(Riebold et al.||2023) TEXT 0.5413 0.6347 0.5448 0.4434 04380 0.4833 0.6590 0.4695
GNE(Kingname et al.[[2024) Html+MD 0.5148 0.6477 0.4942 0.4098 0.4129 0.5495 0.6160 0.3296
news-please(Hamborg et al.|[2017) TEXT 0.5012 0.5399 0.5250 0.4307 0.4193 0.5118 0.6701 0.4073
jusText(Pomikalek!201T) TEXT 0.4770 0.5132 0.5070 0.4010 0.3962 0.3779 0.6652 0.5222
BoilerPy3 Html+MD 0.4766 0.6443 0.4706 0.3174 0.3783 0.5532 0.6157 0.4103
Goose3(Lababidi et al.|[2025) TEXT 0.4354 0.4514 0.4645 0.3808 0.3589 0.2900 0.6376 0.3064
ReaderLM-vZ(Wang et al.|[2025) MD 0.2264 03374 0.2078 0.1403 0.1801 0.2431 0.2927 0.1537
Dripper Html+MD 0.8182 0.8837 0.8178 0.7536 0.7693 0.8368 0.8889 0.7671
Dripper_fallback Html+MD 0.8399 0.9010 0.8392 0.7799 0.7964 0.8673 0.9067 0.8028

mechanism, the combined system (Dripper_fallback) achieves an overall F1 score of 0.8399. This
result indicates that our semantic approach not only establishes a new state-of-the-art on its own but
can also be effectively combined with existing methods to improve robustness and coverage.

5.4 ABLATION STUDY

To analyze the data efficiency of our approach, we fine-tune the Qwen3-0.6B model on training
subsets of increasing size: 2k, Sk, 10k, 100k, and 870k. We evaluate each resulting checkpoint on
MainWebBench, from which we excluded samples whose simplified HTML exceeded our 32k token
context window, as the standard Dripper model is designed to score O on such oversized inputs. This
results in a performance gap of about 1.9% (0.818 for the full bench and 0.834 for the filtered bench).

To isolate the impact of our constrained

decoding mechanism, we compare the per- 0.90
formance of models trained with and with-

out the custom logits processor. As shown

in Figure 2] the logits processor pro- 0.85 -
vides a consistent performance improve-
ment across nearly all data scales. The
most significant gain (+2.3%) is observed
at the 2k data scale, indicating that the
FSM provides a strong structural prior
that helps the model learn the task more
efficiently in low-data regimes. As the
training set grows, the model begins to
learn the output format implicitly, and 0.701
the performance gap narrows. Neverthe-

less, the logits processor provides an ab-

solute guarantee of a syntactically perfect, 2k 5k 10k
hallucination-free output. This ensures Dataset Size

the output is always stable and machine- Figure 2: Impact of the logits processor on perfor-
readable, preventing format errors that mance across various training data scales.

would otherwise disrupt downstream tasks

and making the processor a critical component for production-level reliability.

m= W/ Logit Processor
W/O Logit Processor

0.834
0.80 0.828

0.809
0.790

0.75

ROUGE-N F1 Score

0.753)

T T
100k 870k

5.5 PERFORMANCE ON WCEB

To assess the generalization capabilities of Dripper, we evaluate it on the Web Content Extraction
Benchmark (WCEB, (Bevendorff et al., 2023)) , a comprehensive and unified benchmark. WCEB
addresses inconsistencies prevalent in many legacy datasets—such as plain-text-only ground truths,
file encoding errors, and corrupted content from script injections—by providing a filtered and stan-
dardized collection. Since the ground truths in this consolidated benchmark are in plain text, we

Under review as a conference paper at ICLR 2026

adapt our evaluation protocol by using the html-t extﬂlibrary for the final conversion, a configu-
ration we denote as Htm1+TEXT. To enable a more granular analysis, we also apply our difficulty
stratification scheme to this dataset. A detailed description of the benchmark can be found in Ap-
pendix, Table[5]

The results on this suite of nine

established benchmarks, pre- Table 3: Results on WCEB

sented in Table El confirm Drip- ~_hame mode all simple mid hard
per’s strong generalization ca- Trafilatura TEXT 0.7833 0.8122 0.7785 0.7609
pabilities. Our method again Trafilatura HtmI+TEXT 0.7791 0.7896 0.7758 0.7731
establishes a new state-of-the- Readability Html+TEXT 0.7642 0.7744 0.7595 0.7601
art, with the standalone Drlp_ maglc-html Html+TEXT 0.7506 0.7780 0.7573 0.7144
per model (0.8002) outperform- - (0] TEXT 07048 07051 07103 04970
H . news-please

I;lfat?i f:gﬂ%f;t(gr;%ggetng_’ justText TEXT 0.6936 07445 0.6966 0.6389
thermore. echoine the find. BoierPy3 TEXT 0.6221 0.6481 0.6468 0.5631
) - echoing html2text TEXT 0.6142 0.7273 0.6165 0.4982
ings on MainWebBench, the pgjerpy3 Htm+TEXT 0.6015 0.6532 0.6035 0.5474
Dripper_fallback strategy again GNE Html+TEXT 05166 0.5138 0.5069 0.5323
demonstrates the complemen- ReaderLM-v2 TEXT 0.3077 0.3718 0.2928 0.2636
tary nature of our SLM-based Dripper HtmI+TEXT 0.8002 0.8293 0.8005 0.7707

approach and traditional heuris- Dripper_fallback HtmI+TEXT 0.8154 0.8363 0.8143 0.7959
tics, boosting the score further to
0.8154. This strong performance across a diverse collection of legacy datasets highlights Dripper’s
robustness, setting a new state-of-the-art for general web content extraction.

6 CONCLUSION

In this work, we introduce Dripper, a highly efficient and accurate framework for web content extrac-
tion. We demonstrate that our custom-trained 0.6B parameter Small Language Model, Dripper-0.6B,
achieves state-of-the-art performance by reframing the extraction problem. Our approach’s success
is rooted in three key technical contributions. First, our HTML Simplification Algorithm intelli-
gently strips redundant tags and attributes, drastically reducing the input token count while preserv-
ing essential structural cues. This simplified document is then processed through our novel Sequen-
tial Block Classification paradigm, which transforms the open-ended extraction task into a series
of simple, localized binary classifications. Finally, to guarantee absolute fidelity, our Deterministic
Logits Processor constrains the SLM’s output during the decoding phase, which completely elimi-
nates the risk of hallucination and ensures a syntactically perfect structured output. To rigorously
validate our method, we also construct and release MainWebBench, a new large-scale benchmark
of 7,887 samples, on which Dripper-0.6B proves its superiority over all baselines. Furthermore, by
integrating a heuristic-based fallback for inputs that exceed its context window, our Dripper_fallback
variant pushes performance even higher, demonstrating the robustness and complementary nature of
our method.

7 LIMITATION AND FUTURE WORK

Despite careful web preprocessing development, 1.3% of Common Crawl pages still exceed
Qwen3’s content-window limit post-simplification and remain unprocessable. Additionally, extreme
DOM structures in some pages break chunking/simplification algorithms, hindering effective main
text extraction. Future fixes include enhancing preprocessing and extending the base model’s con-
text window via continued pre-training (to relax preprocessing’s token budget). Moreover, while
we use Qwen3’s smallest 0.6B model to cut overhead, scaling to 100B-scale pages poses cost is-
sues. A promising solution is tailoring data recipes for web parsing to pre-train small (0.01B-0.1B)
dedicated base models from scratch, lowering inference costs.

8https://pypi.org/project/html-text/

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. The architecture of our pro-
posed framework, Dripper, and its core components are detailed in the Methodology Section
The construction of our large-scale training dataset is described in Section while the creation
and structure of our new benchmark are detailed in the MainWebBench Section[d.2] Our complete
experimental setup, including all baselines, evaluation protocols, and metrics, is presented in the
Experiments Section@ To facilitate direct verification and future work, we have made our resources
publicly available: the full source cod the trained Dripper model Weight and the complete
MainWebBench benchmark]

REFERENCES

Adrien Barbaresi. Trafilatura: A web scraping library and command-line tool for text discovery
and extraction. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing: System
Demonstrations, pp. 122—-131, 2021.

Janek Bevendorff, Sanket Gupta, Johannes Kiesel, and Benno Stein. An Empirical Comparison of
Web Content Extraction Algorithms. In 46th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 2023). ACM, 2023. doi: 10.1145/3539618.
3591920. URL https://dl.acm.org/doi/10.1145/3539618.3591920.

Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Vips: a vision-based page segmentation
algorithm. 2003.

Common Crawl Foundation. Common crawl: Open-source web crawl data & infrastructure.
https://commoncrawl.org/.

Diffbot. Extract API: Structured Data Extraction, 2025. URL https://www.diffbot.com/
products/extract/.

Istvdn Endrédy and Attila Novdk. More effective boilerplate removal-the goldminer algorithm.
Polibits, (48):79-83, 2013.

Felix Hamborg, Norman Meuschke, Corinna Breitinger, and Bela Gipp. news-please: A generic
news crawler and extractor. In Proceedings of the 15th International Symposium of Information
Science, pp. 218-223, March 2017. doi: 10.5281/zenodo.4120316.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
computing surveys, 55(12):1-38, 2023.

Kingname et al. Generalnewsextractor, 2024. URL https://github.com/
GeneralNewsExtractor/GeneralNewsExtractor.

Christian Kohlschiitter, Peter Fankhauser, and Wolfgang Nejdl. Boilerplate detection using shallow
text features. In Proceedings of the third ACM international conference on Web search and data
mining, pp. 441-450, 2010.

Mahmoud Lababidi et al. goose3, 2025. URL https://github.com/goose3/goose3l

Jurek Leonhardt, Avishek Anand, and Megha Khosla. Boilerplate removal using a neural sequence
labeling model. In Companion Proceedings of the Web Conference 2020, pp. 226-229, 2020.

Mozilla. Readability.js, 2015. URL https://github.com/mozilla/readability,

opendatalab. magic-html. https://github.com/opendatalab/magic—html, 2024.

“https://anonymous.4open.science/r/dripper-1825
https://huggingface.co/anonymous-s2wrvg/Dripper
"https://huggingface.co/datasets/anonymous-s2wrvg/MainWebBench

10

https://dl.acm.org/doi/10.1145/3539618.3591920
https://commoncrawl.org/
https://www.diffbot.com/products/extract/
https://www.diffbot.com/products/extract/
https://github.com/GeneralNewsExtractor/GeneralNewsExtractor
https://github.com/GeneralNewsExtractor/GeneralNewsExtractor
https://github.com/goose3/goose3
https://github.com/mozilla/readability
https://github.com/opendatalab/magic-html

Under review as a conference paper at ICLR 2026

Matthew E Peters and Dan Lecocq. Content extraction using diverse feature sets. In Proceedings of
the 22nd international conference on world wide web, pp. 89-90, 2013.

Jan Pomikélek. Removing boilerplate and duplicate content from web corpora. Disertacni prdce,
Masarykova univerzita, Fakulta informatiky, 2011.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1-67, 2020. URL http:
//Jjmlr.org/papers/v21/20-074.html.

John Riebold et al. Boilerpy3,2023. URLhttps://github.com/jmriebold/BoilerPy3.

Aaron Swartz, Charlie Tanksley, et al. html2text, 2025. URL https://pypi.org/project/
html2text/L

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

UncleCode. Crawl4ai: Open-source llm friendly web crawler & scraper. https://github.
com/unclecode/crawldai, 2024.

Thijs Vogels, Octavian-Eugen Ganea, and Carsten Eickhoff. Web2text: Deep structured boilerplate
removal. In European Conference on Information Retrieval, pp. 167-179. Springer, 2018a.

Thijs Vogels, Octavian-Eugen Ganea, and Carsten Eickhoff. Web2text: Deep structured boilerplate
removal. CoRR, abs/1801.02607, 2018b. URL http://arxiv.org/abs/1801.02607.

Feng Wang, Zesheng Shi, Bo Wang, Nan Wang, and Han Xiao. Readerlm-v2: Small language model
for html to markdown and json. arXiv preprint arXiv:2503.01151, 2025.

Peilu Wang, Hao Jiang, Jingfang Xu, and Qi Zhang. Knowledge graph construction and applications
for web search and beyond. Data Intelligence, 1(4):333-349, 2019.

Qifan Wang, Yi Fang, Anirudh Ravula, Fuli Feng, Xiaojun Quan, and Dongfang Liu. Webformer:
The web-page transformer for structure information extraction. In Proceedings of the ACM Web
Conference 2022, pp. 3124-3133, 2022.

Tim Weninger, William H Hsu, and Jiawei Han. Cetr: content extraction via tag ratios. In Proceed-
ings of the 19th international conference on World wide web, pp. 971-980, 2010.

Alexander Wettig, Kyle Lo, Sewon Min, Hannaneh Hajishirzi, Danqi Chen, and Luca Soldaini.
Organize the web: Constructing domains enhances pre-training data curation, 2025. URL
https://arxiv.org/abs/2502.10341.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yonggiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372|

Yichao Zhou, Ying Sheng, Nguyen Vo, Nick Edmonds, and Sandeep Tata. Simplified dom trees for
transferable attribute extraction from the web. arXiv preprint arXiv:2101.02415, 2021.

11

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://github.com/jmriebold/BoilerPy3
https://pypi.org/project/html2text/
https://pypi.org/project/html2text/
https://arxiv.org/abs/2505.09388
https://github.com/unclecode/crawl4ai
https://github.com/unclecode/crawl4ai
http://arxiv.org/abs/1801.02607
https://arxiv.org/abs/2502.10341
http://arxiv.org/abs/2403.13372

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 BASELINE METHODS FOR WEB CONTENT EXTRACTION

Table 4: Baseline Methods for Web Content Extraction

Method

Description

Heuristic and Rule-Based Methods

Readability

jusText

Goose3
html2text

GNE

Reader view algorithm for removing distracting elements

Two-pass processing with block size, link density, and stopword heuristics
Article extractor with hand-crafted rules

Simple HTML to markdown converter

Text and symbol density-based extraction using mathematical formulas

Supervised Learning Methods

BoilerPy3

Python port of Boilerpipe, decision tree-based text block classification

Hybrid Systems and Production Tools

Trafilatura
news-please
magic-html

Sophisticated rule cascade with jusText and Readability as fallbacks
Meta-extractor combining multiple extractors for news articles
HTML structure simplification for extraction pipelines

Pre-trained Language Models

ReaderLM-v2

SLM-based content extraction with semantic understanding

A.2 STANDARD BENCHMARKS

Table 5: Details of Web Content Extraction Datasets

Dataset Pages Source & Characteristics

CleanEval 738 De-facto standard dataset from 2007 shared task combining development and eval-
uation sets of English web pages with basic structural markup ground truth

CleanPortalEval 71 Extension of CleanEval featuring multi-page samples from 4 major news domains

CETD 700 Created for density-based extractor evaluation across 6 domains

Dragnet 1,379 Combined sources from popular RSS feeds, 23 major news sites, 178 Technorati
blogs, plus CETR and CleanEval conversions

L3S-GN1 621 Created by BoilerPipe authors with unique HTML annotation using span-wrapped
CSS classes for 5-level content relevance

Google- 180 Dataset created for BoilerNet neural network training featuring binary CSS class

Trends-2017 annotations on DOM leaf nodes to distinguish content from boilerplate

Readability 115 Mozilla reader mode test suite with original and simplified HTML for evaluation

Scrapinghub 181 Created by Zyte for benchmarking proprietary extraction services

12

Under review as a conference paper at ICLR 2026

A.3 SCREENSHOT OF THE WEB PAGE ANNOTATION TOOL

The sar

fan (b Awwnwsaratogian com)

Saratoga Film Forum's Movie Buzz: ‘Barbara' a Coid-War East Germany thriller

By AY GODINE

Wednesday, May 15, 2013

e population of a

1 SARATOGA SPRINGS - Trat e, for instance,
get w onsider how long it took

3 iz

© 2015 The Saratogian (attp:

Figure 3: Screenshot of the web page annotation tool. The main content selection is highlighted in
blue on the left, with a real-time preview on the right.

A.4 EXAMPLE DATA FROM MAINWEBBENCH

{
"track_id": "XXXX",
"html": "<html><body><hl cc-select=True>Hello
— world!</hl><aside>advertisement</aside></body></html>",
"main_html": "<html><body><hl>Hello world!</hl></body></html>",
"convert_main_content": "# Hello world!",
"meta": {
"language": "en",
"style": "Normal",
"level": "easy",
"table": "without",
"code": "without",
"equation": "without"
}
}

Figure 4: An example data from MainWebBench. It includes the raw source, the ground-truth main
HTML, its Markdown conversion, and a rich set of metadata for fine-grained analysis.

A.5 BENCHMARK CONSTRUCTION

Data Sampling. MainWebBench is constructed using a hybrid sampling strategy to ensure both
broad representation and relevance. 90% of the samples are randomly drawn from the Common
Crawl dataset to cover the long-tail web, while the remaining 10% are sampled from a list of top-
ranking websites (Chinaz Alexﬂ to include popular, professionally designed pages. The final
benchmark is highly diverse, containing pages from 5,434 unique top-level and 5,904 unique second-
level domains.

Annotation Rules. To address the ambiguity in defining “main content” for unconventional lay-
outs, we establish two core annotation principles. First, Contextual Integrity dictates that content
integral to the main article—such as a table of contents, abstract, or reference list—is included.
Conversely, contextually independent elements like related articles” sidebars or copyright footers
are excluded. Second, the main content is defined as Human-Generated Content, including article
bodies, user comments, and Q&A posts, while associated auto-generated metadata like usernames
and timestamps are excluded.

Annotation Process. The annotation for each page followed a rigorous three-stage process using
a custom-built tool(see Appendix, Figure [3)) that allowed for tag-level granularity. The process

Zhttps://malexa.chinaz.com/

13

Under review as a conference paper at ICLR 2026

involved: (1) an initial pass by one annotator, (2) a review and correction pass by a second annotator,
and (3) a final quality assurance check by a senior inspector, who made the final adjudication to
resolve any discrepancies. Pages uninterpretable due to rendering issues were discarded.

Metadata Annotation. To enable detailed, fine-grained analysis, we annotate each page with a
rich set of metadata. This includes Language, identified by GPT-5 and labeled as en (English)
or non_en (other), and Style, classified by GPT-5 as Conversational for pages with user-
generated content or Normal otherwise. We also develop a quantitative Difficulty Level, deter-
mined by an overall complexity_score calculated for each page. To compute this score,
we first measure four distinct metrics: DOM structural complexity (based on tree depth and width),
text distribution sparsity (transitions between text/non-text nodes), content-type diversity (a count of
rich content types), and link density (the ratio of hyperlinked text). These four values are individu-
ally normalized, and their weighted sum produces the final score. Based on the distribution of this
overall_complexity_score across the benchmark, we then categorize pages into simple,
medium, and hard using the 30th and 70th percentiles as dynamic thresholds. Finally, we add
Rich Content Tags to identify the presence of tables (<table>), code blocks (<code>), and
mathematical formulas (<math> or LaTeX patterns) using BeautifulSoup.

A.6 PROMPT FOR DATA SYNTHESIS

A.7 USE OF LARGE LANGUAGE MODELS

A large language model is used as a writing assistant during the preparation of this manuscript. The
primary use of the LLM is for improving grammar, clarity, and phrasing of the text. The LLM does
not contribute to the core research ideas, experimental design, data analysis, or the formulation of
our conclusions. The authors have reviewed and edited all text and take full responsibility for the
final content of this paper.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

f"""As a front-end engineering expert in HTML, your task is to analyze
the given HTML structure and accurately classify elements with the
{ITEM_ID_ATTR} attribute as either "main" (primary content) or
"other" (supplementary content). Your goal is to precisely extract
the primary content of the page, ensuring that only the most
relevant information is labeled as "main" while excluding
navigation, metadata, and other non-essential elements.
Guidelines for Classification:
Primary Content ("main")
Elements that constitute the core content of the page should be
— classified as "main". These typically include:
For Articles, News, and Blogs:
The main text body of the article, blog post, or news content.
Images embedded within the main content that contribute to the article.
For Forums & Discussion Threads:
The original post in the thread.
Replies and discussions that are part of the main conversation.
For Q&A Websites:
The question itself posted by a user.
Answers to the question and replies to answers that contribute to the
— discussion.
For Other Content-Based Pages:
Any rich text, paragraphs, or media that serve as the primary focus of
— the page.
Supplementary Content ("other")
Elements that do not contribute to the primary content but serve as
— navigation, metadata, or supporting information should be
— classified as "other". These include:
Navigation & UI Elements:
Menus, sidebars, footers, breadcrumbs, and pagination links.
"Skip to content" links and accessibility-related text.
Metadata & User Information:
Article titles, author names, timestamps, and view counts.
Like counts, vote counts, and other engagement metrics.
Advertisements & Promotional Content:
Any section labeled as "Advertisement" or "Sponsored".
Social media sharing buttons, follow prompts, and external links.
Related & Suggested Content:
"Read More", "Next Article", "Trending Topics", and similar sections.
Lists of related articles, tags, and additional recommendations.
Task Instructions:
You will be provided with a simplified HTML structure containing
— elements with an {ITEM_ID_ATTR} attribute. Your job is to analyze
— each element's function and determine whether it should be
— classified as "main" or "other".
Response Format:
Return a JSON object where each key is the {ITEM_ID_ATTR} value, and the
— corresponding value is either "main" or "other", as in the
— following example:
{{lllll: llother",llzll: Ilmain",ll3ll: Ilotherll}}
Important Notes:
Do not include any explanations in the output, only return the JSON.
Ensure high accuracy by carefully distinguishing between primary content
— and supplementary content.
Err on the side of caution, if an element seems uncertain, classify it
— as "other" unless it clearly belongs to the main content.

Lol

Input HTML:
{html_str}

Output format should be a JSON-formatted string representing a
— dictionary where keys are item_id strings and values are either
< 'main' or 'other'. Make sure to include ALL item_ids from the
— input HTML

nun

Figure 5: Prompt template fi)g Main HTML classification.

	Introduction
	Related Work
	Methodology
	System Architecture Overview
	Pre-processing and Post-processing
	Task Formulation
	Constrained Decoding via a Custom Logits Processor

	Dataset and Benchmark
	Training Data Construction
	MainWebBench: A New Benchmark for Content Extraction
	Benchmark Construction
	Evaluation Metrics

	Experiments
	Experimental Setup
	Result of overhead reduction
	Results on MainWebBench
	Ablation Study
	Performance on WCEB

	Conclusion
	Limitation and Future work
	Reproducibility Statement
	Appendix
	Baseline Methods for Web Content Extraction
	Standard Benchmarks
	Screenshot of the web page annotation tool
	Example data from MainWebBench
	Benchmark Construction
	Prompt for data synthesis
	Use of Large Language Models

