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Abstract

Extending CLIP models to semantic segmentation remains a considerable chal-
lenge, largely due to the misalignment between their image-level pre-training
objectives and the pixel-level spatial understanding required for dense predictions.
Prior efforts have achieved encouraging results by reorganizing the final layer and
feature representations of CLIP to enhance dense predictions. However, these
approaches often inherit the global alignment bias of the final layer, leading to
suboptimal spatial discriminability and segmentation performance. In this work,
we propose TLH-CLIP, a novel training-free framework that systematically exploits
the spatial discriminability across Token, Layer and Head levels in CLIP for dense
predictions. Through comprehensive analysis, we uncover three key findings: (i)
some anomalous tokens emerges in the final layers, which are category-agnostic
but disproportionately attract attention from semantically meaningful patch tokens,
thereby degrading spatial discriminability; (ii) the final few layers primarily en-
hance global image-text alignment with great sacrifice of local discriminability
(e.g., last 3 layers in ViT-B-16 and 5 layers in ViT-L-14); (iii) a few attention heads
(e.g., 10 out of 144 in ViT-B/16) demonstrate strong spatial discriminability across
different datasets. Motivated by these insights, we propose three complementary
techniques: abnormal token replacement, semantic-spatial reweighting, and se-
lective head enhancement to effectively recover spatial coherence and improve
segmentation performance without any additional training, auxiliary pre-trained
networks, or extensive hyperparameter tuning. Extensive experiments on 8 com-
mon semantic segmentation benchmarks demonstrate that TLH-CLIP achieves
state-of-the-art performance across diverse scenarios, highlighting its effectiveness
and practicality for real-world deployment.

1 Introduction

Recent advances in vision-language pretrained models, such as CLIP [[1], have demonstrated remark-
able generalization and open-vocabulary recognition capabilities at the image level, thereby opening
up possibilities for transferring image-text alignment to pixel-level tasks. Despite this progress, they
often underperform in dense prediction tasks like semantic segmentation, primarily due to their
limited capacity to localize fine-grained visual details [2} 3]]. To address these limitations, several
studies have incorporated trainable modules into CLIP, typically relying on additional forms of
supervision such as dense annotations for a restricted set of categories [4, 15, 16l [7] or supplementary
image-text pairs [8} 9} [10, [11}, [12]. Although these approaches have demonstrated improved seg-
mentation performance, they incur significant computational and annotation costs. Furthermore, the
dependence on limited supervision often undermines the generalizability of the model, making it
prone to overfitting the training distribution.
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These challenges have sparked increasing interest in training-free methods(3} [13} 14} [15, [16} 17, 18,
19, 120]], which aim to adapt CLIP’s pre-trained representations for semantic segmentation without
additional training, while preserving its generalization capability. A key difficulty in this direction is
enhancing spatial representations for accurate pixel-level predictions. For instance, MaskCLIP[14]
computes similarity between key features in the final attention layer to enrich patch embeddings.
SCLIP [3] replaces the standard query-key attention with correlative self-attention (query-query
and key-key). ClearCLIP [15] further removes residual connections and discards the FFN in the
final layer to reduce noise and improve spatial alignment. ResCLIP [20]] incorporates attention
maps from earlier layers to refine final-layer attention map. However, these methods largely focus
on modifying the final-layer attention, often leading to suboptimal ambiguous local relationships
and noisy segmentation. To address spatial limitations, some approaches incorporate features from
auxiliary backbones such as DINO [21} [17], SAM [17, 22]], or diffusion models [23} 24]. While
effective, these methods incur significant computational and memory overhead.

Motivated by these limitations, we begin with a layer-wise analysis of spatial discriminability and
text-semantic alignment within the CLIP model. As shown in Figure[I] we observe a clear spatial-
semantic trade-off in the final layers: spatial discriminability drops sharply, while the improvement
in semantic alignment is relatively marginal. To understand the cause of this phenomenon, we
further examine internal token interactions and structural patterns across layers. Through attention
map visualizations, we find that certain abnormal tokens emerge in the deeper layers, attracting
disproportionately high attention from nearly all spatial positions. This behavior causes the majority
of tokens to converge on a small subset, thereby disrupting the spatial coherence of the representation.
Further analysis reveals that these abnormal tokens exhibit sparse and high-magnitude activations.
Moreover, they are class-agnostic, as their similarity remains consistent across different positions,
layers, and input samples, indicating a lack of semantic specificity. Contrary to prior assumptions that
such tokens encode global semantic content, our findings suggest they may instead function as bias
components that offset global-mean features, thereby facilitating alignment with text embeddings.

Based on the analysis, we propose TLH-CLIP, a training-free framework that leverages the inher-
ent properties of CLIP to enhance the spatial discriminability of visual features while preserving
their semantic alignment. TLH-CLIP comprises three complementary strategies: abnormal token
replacement (ATR), spatial-semantic reweighting (SSR), and selective head enhancement (SHE).
Specifically, the ATR employs hoyer scores to identify abnormal tokens by thresholding their char-
acteristic sparsity. Once detected, these anomalous tokens are replaced with a weighted average
of normal tokens, based on spatial distance. To mitigate the degradation of spatial discriminability
in the earlier final layers, SSR reweights the contributions of the residual pathway relative to the
attention and FFN submodules. This adjustment restores a better balance between spatial coherence
and semantic abstraction, leveraging the fact that late-intermediate layers exhibit stronger spatial
discriminability while maintaining comparable levels of semantic alignment. Finally, SHE further
enhances spatial coherence by selectively aggregating features from attention heads with high spatial
discriminability, using them to refine the output representations. Experimental results demonstrate
that TLH-CLIP achieves significant performance improvements when integrated into various baseline
methods, establishing new state-of-the-art results across eight benchmark datasets.

Contributions. Our contributions can be summarized as follows:

* We conduct a comprehensive analysis of spatial discriminability at the token, head, and layer levels.

* We propose TLH-CLIP, a novel training-free approach, terms TLH-CLIP. To the best of our
knowledge, this is the first work to explicitly modify the inference procedure prior to the final layer,
enabling improved spatial coherence without compromising semantic alignment.

* The extensive experiment results on open-vocabulary semantic segmentation tasks consistently
demonstrate the effectiveness of the proposed method.

2 Analysis

2.1 Preliminaries

CLIP employs a Vision Transformer (ViT) [25]] as its image encoder to generate visual representations
that are aligned with corresponding textual descriptions. The vision encoder first tokenizes an input
image of size H x W X 3 by dividing it into a grid of non-overlapping patches of size P x P,
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yielding h = H/P rows and w = W/ P columns of patches. Each patch is then linearly projected
into a D-dimensional embedding space, x; € R, and augmented with positional embeddings. An
additional learnable [CLS] token is prepended to the sequence and is later used for image-level
prediction. The resulting token sequence is denoted as X° = [x{,x9,...,x0 ] € RO+ XD Thig
sequence is passed through a stack of L Transformer encoder layers, each consisting of a multi-head
self-attention (MSA) module followed by a feed-forward network (FFN). Let LN denotes layer

normalization, the token representations are updated at each layer [ as follow:
X! = X! 4 Attn(LN(X! 1)), (1)
X! = X! + FEN(LN(XY). )

The CLIP model is originally trained on large-scale image—text pairs for open-vocabulary image
recognition tasks. To extend it to semantic segmentation, a natural approach is to compute the
similarity between the visual tokens X* = [xI,... xE ] from the final Transformer layer and
the textual embeddings of C' category names, denoted by t € RE*P_ This results in a patch-text
similarity map of size hw x C. Denote t. as the embedding of the c-th class name, the final
segmentation prediction is obtained by applying an argmax operation over the class dimension of

this similarity map, as follows:

A (xf,te)
¢(x;) = arg max —p -, 3)
e [l - Iltell

Ideally, for effective semantic segmentation, the vision encoder should produce feature representations
that satisfy two key properties:

 Spatial discriminability (SD): token features should exhibit high internal consistency within the
same semantic category while remaining clearly distinguishable from those of other categories,
thereby enabling accurate and clean segmentation results.

* Semantic alignment (SA): token features should be well-aligned with their corresponding textual
embeddings to enable semantically meaningful segmentation results.

Beyond their importance in open-vocabulary semantic segmentation, these two properties are also
more highly relevant to the development of multimodal large language models (MLLMs), as the
vision encoder of CLIP is often directly employed to extract visual representations without additional
training, serving as input to downstream language models such as LLaVA [26| 27]. In this work,
we aim to enhance the spatial discriminability of CLIP features in a training-free manner, thereby
preserving the its strong generalization capability.

2.2 Analysis of layer-wise spatial discriminability and semantic alignment

Significant decline in SD with marginal gains in SA in the final layers. To assess whether CLIP
visual features exhibit the desired properties, we investigate the layer-wise SD and SA within CLIP
models. To quantitatively assess SD property, we follow the evaluation protocol proposed in [28]. In
particular, we extract patch-level feature representations from the vision encoder for each image and
associate them with corresponding semantic labels using the ground-truth segmentation masks from
Pascal VOC [29], PASCAL Context [30]], ADE20K [31]], and COCO-Stuff [32] datasets. Specifically,
let x} € RP and xz- € RP denote the feature representations of two image patches i and j extracted
from the [-th layer of the encoder. These feature vectors are ¢5-normalized, and their cosine similarity
is computed to serve as the prediction of a binary classifier that indicates whether the two patches
belong to the same semantic category. Given the corresponding semantic labels ¢(x;) and t(x;),
the target value for classification is set to 1 if ¢(x;) = ¢(x;), and O otherwise. To evaluate the SA
property, we extract the intermediate representations x. € R® from each individual visual token
at layer [, and use them as inputs to the final layer to project these features into the final visual
latent space for semantic prediction. Following [[15]], we remove the FFN and residual connections
in the final layer to avoid introducing contaminating semantic information. Additionally, inspired
by [14], we replace the last-layer attention matrix with an identity matrix to avoid noisy integration
during the final attention computation. The final visual representation of each layers can be expressed
as vl = xXtWLWL ¢ RP, where WL and WL denotes the value and output project matrix in
last-layer MSA module. Based on these representations, SA is measured using the average accuracy
between the predicted and ground-truth semantic labels, following Equation (3)).
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Figure 1: Layer-wise analysis of spatial discriminability (blue curves) and semantic alignment (orange

curves) within the CLIP vision encoders across different datasets. The final layer is excluded from the
analysis to avoid discrepancies caused by prior modifications to the last-layer in different methods.

layer 4 layer 7 layer 10 layer 12

layer 1

Figure 2: Visualization of the abnormal token phenomenon in the attention maps across different
layers of the ViT-B/16 model in the CLIP vision encoder.

We present the layerwise SD and SA scores for both the ViT-B/16 and ViT-L/14 models used as the
CLIP vision encoder in Figurem From the results, we make the following observations:

* The SD of CLIP exhibits an inverted U-shaped curve across layers: it initially increases in the early
stages but declines in the deeper layers. This decline is especially prominent in the final layers. For
example, the last two layers ( (excluding the final layer)) of the ViT-B/16 model and the last five
layers of the ViT-L/14 model show a marked reduction in spatial discriminability.

» SA follows an approximately monotonic increasing pattern across layers: it improves substantially
in the early layers but gradually saturates in the final layers, offering only marginal gains thereafter.

These findings offer a nuanced understanding of why CLIP has proven effective for open-vocabulary
semantic segmentation. In particular, the strong semantic alignment observed in the final layers
explains why prior work often leverages last-layer features for aligning visual tokens with textual
categories. However, the significant decline in spatial discriminability in these layers reveals a key
limitation as they may lack the fine-grained spatial distinctions necessary for producing accurate and
precise segmentation masks. In this work, we aim to address this limitation by proposing methods
that jointly preserve spatial structure and semantic alignment through a systematic exploitation of
spatial discriminability across token, layer, and head levels. Before introducing our approach, we first
investigate the underlying causes of the decline in spatial discriminability in the next subsection.
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2.3 Analysis of abnormal tokens

Class-agnostic sparse and large-norm tokens. To understand the progression within the vision
encoder, we analyze attention maps across layers. As shown in Figure [2] deeper layers exhibit a
small set of dominant tokens that receive disproportionately high attention from nearly all spatial
locations, causing most tokens to focus on this subset, consistent with prior observations [33}[18].This
leads to a gradual decline in spatial discriminability, which is essential for accurate segmentation. To
further characterize these dominant tokens, we compare their features with those of normal tokens.
As illustrated in Figure [3] dominant tokens exhibit sparse and consistent activation patterns, with only
a few channels maintaining high activation. To quantify this sparsity, we adopt the hoyer score [34]:

VD — [} 1

Ix!|2
vVD-1"

where x. € R? is the feature vector of the i-th token at layer /. We use this metric to quantify
sparsity and visualize its distribution across layers and token positions in Figure [3(b). To evaluate
whether dominant tokens encode meaningful semantics, we analyze their pairwise cosine similarity
across spatial locations, layers, and image samples on the ImageNet validation set. As shown
in Figure 4] these tokens exhibit strong invariance across positions and inputs, indicating limited
semantic specificity. Contrary to prior assumptions that they capture global semantic content, our
results suggest they act more like bias components that offset global-mean features, facilitating text
alignment, similar to the bias term in final-layer classifiers under neural collapse [35.[36].

H(x}) = 4

3 Method

In this section, we provide a detailed description of our training-free framework, which comprises
three components: Abnormal Token Replacement (ATR) in Section [3.1] Spatial-Semantic Reweight-
ing (SSR) in Section[3.2] and Selective Head Enhancement (SHE) in Section [3.3] Each component is
complementary, and together they work synergistically to enhance the spatial discriminability of the
CLIP model, based on our previous analysis.

3.1 Abnormal token replacement (ATR)

To mitigate the adverse effects of these anomalous tokens, we propose a simple yet effective strategy
to suppress their influence prior to the final layer. As demonstrated in our earlier analysis, these tokens
exhibit characteristically sparse activation patterns. To systematically identify them, we employ
the hoyer score #(x!) defined before as a sparsity-based criterion. Tokens with scores exceeding
a predefined threshold 7 are deemed anomalous and grouped into the set A; = {i|H(x}) > 7}.
After identifying them, we suppress their influence using an unnormalized 2-dimensional Gaussian
kernel. Specifically, each anomalous token at spatial position (m,n) € A is replaced by a weighted
aggregation of its neighboring non-anomalous tokens:

w h 1 1
1 o Zz’:l Zj:l wm,n,i,jxi,j
)

_ V(m,n) € A s)
m,n w h ’
D it Zj:l winnm
0, it (i,j) € A
l _ . .
Win,n,i,j — {eXp (_W)7 otherwise ©)

Here, o controls the spatial extent of smoothing, and the weights w, ;, ; ; ensure that only normal
tokens contribute to the reconstruction of anomalous ones. Empirically, we find that applying this
strategy before the penultimate layer leads to a performance drop, likely due to the removal of inherent
biases encoded in abnormal tokens, which substantially alters the inference process. Therefore, we
apply it only at the penultimate layer, i.e., with [ = L — 1.

3.2 Spatial-semantic reweighting (SSR)

After mitigating the influence of anomalous tokens in the input to the last layer, the model exhibits
improved spatial discriminability. However, a critical challenge remains: anomalous tokens present
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Figure 3: Illustration of the sparsity and high-norm characteristics of abnormal tokens. Figure (a)
shows the attention map of the red anchor token. Figure (b) presents the Hoyer score distribution
across layers and spatial positions. Figures (c)—(e) depict the channel activations of a normal token
(red) and two abnormal tokens (yellow and blue) highlighted in Figure (a).

Figure 4: Layer-wise cosine similarity among abnormal tokens across positions, layers and samples.

in earlier layers may have already disrupted the spatial coherence of feature representations, limiting
the effectiveness of final-layer refinements. Based on our layer-wise analysis, the final few layers
overly emphasize alignment with text embeddings, the marginal gains in semantic alignment come at
the cost of a pronounced decline in spatial discriminability. To address this imbalance, we propose a
spatial-semantic reweighting strategy that enhances the model’s spatial awareness while preserving
its semantic alignment capabilities. Given the feature representation X'~ at the [-th layer within
the final few layers (e.g., layers 10—11 in ViT-B/16 and layers 20-23 in ViT-L/14), we reweight
the forward pass by upweighting the residual pathway and downweighting the attention and MLP
submodules, as follows:

X = (1+a)X" 4+ (1 — a)Attn(LN(X!1)), (7)

X! = (1+a)X! + (1 — a)FEN(LN(X')), (8)
where @ € [0, 1] is a reweighting coefficient that controls the relative degree of emphasis on the
residual signal. As « increases, the [-th block increasingly preserves spatially discriminative features
from earlier layers via the residual pathway, while diminishing the dominant influence of semantic
aggregation in the attention and MLP submodules. To the best of our knowledge, prior work has
primarily focused on reforming the final layer or modifying its representations to improve performance.
However, these approaches often inherit the global semantic alignment bias inherent in the final few
layers, resulting in a substantial decline in the spatial discriminability of the extracted features. In
contrast, our SSR strategy explicitly mitigates this limitation by rebalancing the contributions of
residual and semantic components in intermediate layers preceding the final layer.

3.3 Selective head enhancement (SHE)

Strong spatial discriminability of some attention heads. While the proposed strategies effectively
enhance the spatial discriminability in the final layers, the overall spatial discriminability of the
features output by the CLIP vision encoder may still remain suboptimal. Inspired by recent studies [37,
38| revealing that different attention heads capture distinct visual concepts, such as number, shape and
texture, this motivates us to investigate whether certain heads are specifically responsible for encoding
spatial discriminability. To identify such heads, we follow the formulation introduced in [39} [37],
which rewrites the multi-head self-attention (MSA) output as a summation over H independent
attention heads: Attn(LN(X!)) = Zthl Al VIW!L ¢ ROAMXD where Al and VY denote the
attention and value matrices for the h-th head at layer [, and W is the output projection matrix
shared across all heads. We extract the contribution of the h-th head at layer [ and apply abnormal
token resolution as follows:

X =g (AL VW), ©9)
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Figure 5: Head-wise analysis of spatial discriminability within the ViT-B/16 vision backbone across
multiple datasets. To ensure consistency, the final layer is excluded, and only the top 50 attention
heads are visualized in each figure for clarity.

where o(+) denotes the abnormal token replacement operation defined previously. To assess the SD
of each attention head, we adopt the same AUC-based metric as the preceding layer-level analysis.
Figure[5]shows the head AUC distribution for ViT-B/16, with ViT-L/14 results in the appendix. From
the figure, we observe that the output features from certain attention heads, such as the 9th head in
the 8th layer, consistently exhibit high AUC scores across different datasets, suggesting that these
heads are more effective at capturing SD information than others.

Building on this observation, we propose to selectively leverage high-performing heads to enhance
the spatial discriminability of the output representations. Let AUC] ;, denote the AUC score of the

representations from the h-th head in the I-th layer for dataset s € {VOC, Context, ADE, Stuff}. To
obtain a dataset-agnostic measure of discriminability, we compute the average AUC score for each
head across all datasets, denoted as AUC; ;. The distribution of these average scores is provided in

the appendix. We rank all heads by their AUC; j, scores and select the top-k to form the set Hgpy.
The corresponding feature representations are then aggregated as: Xopr = % Z( L)€ Huopn XUk This

ilopkimpk

|[Xopie ||
pairwise similarity among visual tokens. To mitigate the influence of spurious interactions between
tokens from different semantic categories, we apply a thresholding operation with a predefined
parameter 3, resulting in the filtered similarity map S, where Sg(¢, j) = S(4, 5) if S(4,j) > 8, and
S5(i,j) = 0 otherwise. The resulting Sg is then column-wise normalized, and subsequently used to
refine the final-layer features by X2 ! = Norm(Sz)XL~1.

aggregated feature Xtopk is used to construct a similarity map S = , which captures the

4 Experiment Results

Evaluation datasets. We follow the standard evaluation protocol from prior works [3]
and assess our method on eight widely used semantic segmentation benchmarks. For clarity, we
group them into two categories and use abbreviated names throughout the paper. The first category
excludes background and includes Pascal VOC (VOC20), Pascal Context [30] (Context59),
COCO-Stuff [32] (Stuff), ADE20K (ADE), and Cityscapes [40] (City). The second includes
background and consists of VOC21, Context60, and COCO-Object (Object). We use CLIP
models with ViT-B/16 and ViT-L/14 backbones via MMSegmentation [41], and report results using
the mean Intersection-over-Union (mloU). All hyperparameters are fixed across datasets without
task-specific tuning. Additional implementation details are provided in the appendix.

4.1 Comparison with existing methods.

We compare our approach against a comprehensive set of open-vocabulary semantic segmentation
(OVSS) methods, including the direct baseline CLIP [[1]], as well as several state-of-the-art training-
free approaches: MaskCLIP [14]], CLIPSurgery [[13]], SCLIP [3]], NACLIP [16], ClearCLIP [15],
LAVG [42], and ResCLIP [20]. We also include several influential weakly supervised methods,
such as GroupViT [53]], ReCo [43]], and TCL [8]]. Unless otherwise specified, all reported results are
taken directly from the respective original papers and ResCLIP [20]. As our method is orthogonal to
approaches that primarily target improvements in the final-layer attention, we additionally evaluate its
effectiveness when integrated with recent state-of-the-art methods that employ specialized attention
mechanisms in the last layer, including SCLIP [3]], ClearCLIP [13], and ResCLIP [20]]. For fair
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Table 1: Performance comparison of our approach with other methods on eight semantic segmentation
benchmarks following the evaluation protocol in SectionE} Our results are marked in gray.

With a background class Without background class
VOC21 Context60 Object VOC20 City Context59 ADE Stuff

Methods Training Avg.

+TLH-CLIP (ours)
ClearCLIP [15]
+TLH-CLIP (ours)
ResCLIP [20]
+TLH-CLIP (ours)

64.8 34.8 36.6 863 36.1 37.6 18.0 24.9 42.4 (+3.3)
57.0 322 325 823 328 358 17.3 24.0 39.2
63.9 352 356 857 37.8 388 19.2 25.8 42.7 (+3.5)
60.0 32.7 340 855 356 358 17.7 23.8 40.6
63.9 35.5 353 86.8 382 382 19.1 25.5 42.8 (+2.2)

ReCo [43]] v 25.1 19.9 157 577 211 223 112 14.8 235
GroupViT [3]] v 523 18.7 275 797 185 234 104 153 30.7
TCL [8]] v 51.2 24.3 304 775 231 303 149 19.6 33.9
CLIP [1] X 16.2 1.1 55 418 55 9.2 2.1 44 11.6
MaskCLIP [14] X 38.8 23.6 206 749 164 264 9.8 14.8 28.2
CLIPSurgery [13] X 552 18.7 275 797 185 234 104 153 31.1
LaVG [42] X 62.1 31.6 342 825 262 347 15.8 23.2 38.8
NACLIP [16] X 58.9 322 332 797 355 352 174 233 394
SCLIP [3] X 59.7 31.7 335 815 323 345 16.5 22.7 39.1

X

X

X

X

X

comparison, we exclude the Semantic Feedback Refinement module in ResCLIP, as it relies on the
computationally expensive PAMR [44] post-processing, which is inconsistent with our evaluation
setting. For comprehensiveness, results on the ViT-L/14 architecture are provided in the appendix.

In Table |1} we summarize the performance of various open-vocabulary semantic segmentation
models on benchmark datasets using the ViT-B/16 backbone. Our proposed TLH-CLIP consistently
enhances the performance of state-of-the-art approaches, including SCLIP [3], ClearCLIP [[15], and
ResCLIP [20]. Notably, when integrated with ResCLIP [20], TLH-CLIP achieves state-of-the-art
results, outperforming leading weakly supervised methods. As a plug-and-play solution, TLH-CLIP
yields consistent improvements across all datasets compared to the respective baselines, demonstrating
its strong generalization capability. We further evaluate performance on the ViT-L/14 backbone. In
line with observations from [20], existing methods generally exhibit a performance drop exceeding
2% mloU when adapting to a different backbone; for instance, ClearCLIP [[L5] suffers a notable
decline of 2.7% mloU. In contrast, when augmented with TLH-CLIP, this performance degradation
is significantly alleviated, highlighting the robustness of our approach. Across both backbones,
TLH-CLIP delivers substantial improvements over baseline methods, validating its effectiveness.

4.2 Experimental analysis

In this section, we conduct comprehensive ablation studies to validate the effectiveness of our
proposed method. We adopt SCLIP [3]] as the baseline, which enhances spatial correlation by
modifying the attention mechanism in the final layer, replacing the standard QK ' attention with a
combination of QQ—r + KKT. In addition, following prior work [[15} 20], we remove the residual
connections and FFN from the final transformer block to isolate the impact of attention refinement.

Analysis of the hoyer threshold parameter 7. Our method relies on hoyer sparsity to identify
anomalous tokens, making the sparsity threshold 7 a critical hyperparameter. We conduct a systematic
evaluation, as shown in Table At 7 = 0.2, many normal tokens are misclassified, leading
to excessive smoothing and degraded performance. As 7 increases to 0.4, performance steadily
improves, but plateaus between 0.5 and 0.8, with a decline observed beyond this range. The broad
stable region indicates a clear sparsity gap between normal and abnormal tokens, highlighting the
robustness of ATR to threshold selection. Based on this analysis, we fix 7 = 0.5 for all experiments.

Analysis of spatial-semantic reweighting parameters and number of Layers. To evaluate the
impact of the reweighting strength « and the range of layers involved, from I to leng, we perform
a comprehensive sensitivity analysis. The results are summarized in Table |3 We observe that
the best performance is obtained when reweighting is applied to layers 10-11 in the ViT-B/16
backbone. This aligns with our earlier findings that these layers experience a marked decline in
spatial discriminability while yielding only marginal improvements in semantic alignment. Extending
reweighting to include layer 9 results in a slight gain in spatial discriminability but introduces noisy
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Table 2: Study of hoyer sparsity threshold 7. Table 3: Study of (Isart, lend, @) in SSR module.

T C60 Obj C59 City Avg (Istart, lend; ) CO60  Obj  C39 City Avg
=02 08 20 1.5 1.7 1.5 baseline 324 329 360 343 339
T=04 328 340 36.6 347 345 (9,11,0.1) 327 320 365 367 345
T=05 328 342 367 347 34.6 (10,11,0.1) 331 334 369 356 348
=08 328 339 36.6 347 345 (11,11,0.1) 327 341 364 349 345
=09 328 339 366 343 344 (10,11,0.05) 328 337 364 350 345
baseline 324 329 36.0 343 339 (10,11,02) 32,6 31.7 365 36.6 344

Table 4: Study of number of selected heads &. Table 5: Combination of three strategies.

k C60  Obj €59 City Avg Methods Module mloU A

baseline 328 342 367 347 346 ATR SSR SHE

layer(!l =8) 339 37.1 37.1 350 358

k=1 334 37.1 366 354 353 baseline - - - 33.9 -

k=10 348 376 379 363 36.7 v v - 353 +1.4
k=30 347 373 379 364 36.6 v - v 367 428
k =50 347 373 37.8 363 36.5 Ours v v v 374 +3.5

semantic signals, ultimately leading to a reduction in segmentation performance. In addition, we
examine the effect of varying the reweighting threshold parameter .. As «v increases from 0 to 0.1,
performance improves steadily, indicating a beneficial balance between spatial and semantic cues.
However, further increasing « leads to a performance drop, as it incorporates more noisy semantic
information from earlier layers and significantly perturbs the input distribution of subsequent layers.

Analysis of the number of selected heads. We study the effect of varying the number of top-%
attention heads selected for enhancement, as shown in Table El} Empirically, we find that SHE is
most effective when combined with ATR; without ATR, the spatially coherent similarity maps can
cause normal tokens to be fused with abnormal ones. Therefore, we adopt the baseline SCLIP model
equipped with ATR as our baseline. On the ViT-B/16 backbone, increasing & from 1 to 10 improves
segmentation accuracy, as aggregating multiple spatially discriminative heads helps suppress spurious
correlations. However, performance declines when & becomes too large due to the inclusion of noisy
or less informative heads, which introduce undesired cross-category interactions. We also compare
head- and layer-level selection (best I = 8), finding that head-level selection consistently performs
better, as discriminative heads are distributed across layers, while entire-layer selection introduces
irrelevant heads and degrades performance.

Study of each individual components In the previous parts, we evaluated the effectiveness of each
individual component. Table 5| presents their combinations, which yield a substantial improvement
of 3.5 mloU, achieving a final mIoU of 37.5 on these four datasets. These results highlight the
complementary contributions of each module to the overall segmentation performance.

5 Conclusion

In this paper, we present a comprehensive analysis of the spatial discriminability of pretrained
CLIP models across the token, layer, and head levels. Our study reveals three key findings: (1)
the emergence of class-agnostic abnormal tokens with sparse, high-norm activations; (2) a notable
decline in spatial discriminability in the final layers, despite marginal gains in semantic alignment;
and (3) consistently strong spatial discriminability in specific attention heads. Motivated by these
observations, we propose TLH-CLIP, a training-free framework that enhances spatial discriminability
while preserving semantic alignment. TLH-CLIP introduces three complementary components: (1)
abnormal token replacement, (2) spatial-semantic reweighting, and (3) selective head enhancement.
Unlike prior methods that focus on modifying the final attention layer, our approach provides
lightweight, plug-and-play modules compatible with existing architectures. Extensive experiments
on multiple segmentation benchmarks demonstrate that TLH-CLIP consistently outperforms strong
baselines. Moreover, as CLIP vision encoders are often frozen during the training of MLLMs, our
findings offer valuable insights for improving visual understanding in broader MLLMs.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims about of analysis discov-
ery and the proposed method, matching our experimental results.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: As noted in the paper, the proposed methods can mitigate but not entirely
resolve the decline in spatial discriminability in the final layers.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of the experimental settings in Section[d]and
the appendix. Additionally, the ablation studies present the rationale behind the choice of
hyperparameters used in this work.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:[Yes]

Justification: The implementation code is included in the supplementary materials and will
be made publicly available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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657 * At submission time, to preserve anonymity, the authors should release anonymized
658 versions (if applicable).

659 * Providing as much information as possible in supplemental material (appended to the
660 paper) is recommended, but including URLSs to data and code is permitted.

661 6. Experimental setting/details

662 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
663 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
664 results?

665 Answer: [Yes]

666 Justification: We provide detailed descriptions of the experimental settings in Section 4] and
667 the appendix. Additionally, the ablation studies present the rationale behind the choice of
668 hyperparameters used in this work.

669 Guidelines:

670 » The answer NA means that the paper does not include experiments.

671 * The experimental setting should be presented in the core of the paper to a level of detail
672 that is necessary to appreciate the results and make sense of them.

673 * The full details can be provided either with the code, in appendix, or as supplemental
674 material.

675 7. Experiment statistical significance

676 Question: Does the paper report error bars suitably and correctly defined or other appropriate
677 information about the statistical significance of the experiments?

678 Answer:

679 Justification: Since our method is training-free and directly uses the pretrained CLIP model
680 weights without any additional optimization, issues related to statistical significance do not
681 arise.

682 Guidelines:

683 * The answer NA means that the paper does not include experiments.

684 * The authors should answer "Yes" if the results are accompanied by error bars, confi-
685 dence intervals, or statistical significance tests, at least for the experiments that support
686 the main claims of the paper.

687 * The factors of variability that the error bars are capturing should be clearly stated (for
688 example, train/test split, initialization, random drawing of some parameter, or overall
689 run with given experimental conditions).

690 * The method for calculating the error bars should be explained (closed form formula,
691 call to a library function, bootstrap, etc.)

692 * The assumptions made should be given (e.g., Normally distributed errors).

693 * It should be clear whether the error bar is the standard deviation or the standard error
694 of the mean.

695 e It is OK to report 1-sigma error bars, but one should state it. The authors should
696 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
697 of Normality of errors is not verified.

698 * For asymmetric distributions, the authors should be careful not to show in tables or
699 figures symmetric error bars that would yield results that are out of range (e.g. negative
700 error rates).

701 o If error bars are reported in tables or plots, The authors should explain in the text how
702 they were calculated and reference the corresponding figures or tables in the text.

703 8. Experiments compute resources

704 Question: For each experiment, does the paper provide sufficient information on the com-
705 puter resources (type of compute workers, memory, time of execution) needed to reproduce
706 the experiments?

707 Answer: [Yes]
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Justification: The details about computer resources used in the experiments are reported in
the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper adheres to the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

18


https://neurips.cc/public/EthicsGuidelines

759
760
761

762

763

764

765

766
767
768

770
771

772
773
774

775

776
777
778

779

780
781

782

784

785
786

787

788
789

790
791
792
793

794
795

796
797
798

799
800

801

802

803

804

805
806
807

808
809

12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: he paper poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original owners of assets (e.g., code, data, models), used in the paper are
properly credited.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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