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Abstract

Extending CLIP models to semantic segmentation remains a considerable chal-1

lenge, largely due to the misalignment between their image-level pre-training2

objectives and the pixel-level spatial understanding required for dense predictions.3

Prior efforts have achieved encouraging results by reorganizing the final layer and4

feature representations of CLIP to enhance dense predictions. However, these5

approaches often inherit the global alignment bias of the final layer, leading to6

suboptimal spatial discriminability and segmentation performance. In this work,7

we propose TLH-CLIP, a novel training-free framework that systematically exploits8

the spatial discriminability across Token, Layer and Head levels in CLIP for dense9

predictions. Through comprehensive analysis, we uncover three key findings: (i)10

some anomalous tokens emerges in the final layers, which are category-agnostic11

but disproportionately attract attention from semantically meaningful patch tokens,12

thereby degrading spatial discriminability; (ii) the final few layers primarily en-13

hance global image-text alignment with great sacrifice of local discriminability14

(e.g., last 3 layers in ViT-B-16 and 5 layers in ViT-L-14); (iii) a few attention heads15

(e.g., 10 out of 144 in ViT-B/16) demonstrate strong spatial discriminability across16

different datasets. Motivated by these insights, we propose three complementary17

techniques: abnormal token replacement, semantic-spatial reweighting, and se-18

lective head enhancement to effectively recover spatial coherence and improve19

segmentation performance without any additional training, auxiliary pre-trained20

networks, or extensive hyperparameter tuning. Extensive experiments on 8 com-21

mon semantic segmentation benchmarks demonstrate that TLH-CLIP achieves22

state-of-the-art performance across diverse scenarios, highlighting its effectiveness23

and practicality for real-world deployment.24

1 Introduction25

Recent advances in vision-language pretrained models, such as CLIP [1], have demonstrated remark-26

able generalization and open-vocabulary recognition capabilities at the image level, thereby opening27

up possibilities for transferring image-text alignment to pixel-level tasks. Despite this progress, they28

often underperform in dense prediction tasks like semantic segmentation, primarily due to their29

limited capacity to localize fine-grained visual details [2, 3]. To address these limitations, several30

studies have incorporated trainable modules into CLIP, typically relying on additional forms of31

supervision such as dense annotations for a restricted set of categories [4, 5, 6, 7] or supplementary32

image-text pairs [8, 9, 10, 11, 12]. Although these approaches have demonstrated improved seg-33

mentation performance, they incur significant computational and annotation costs. Furthermore, the34

dependence on limited supervision often undermines the generalizability of the model, making it35

prone to overfitting the training distribution.36
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These challenges have sparked increasing interest in training-free methods[3, 13, 14, 15, 16, 17, 18,37

19, 20], which aim to adapt CLIP’s pre-trained representations for semantic segmentation without38

additional training, while preserving its generalization capability. A key difficulty in this direction is39

enhancing spatial representations for accurate pixel-level predictions. For instance, MaskCLIP[14]40

computes similarity between key features in the final attention layer to enrich patch embeddings.41

SCLIP [3] replaces the standard query-key attention with correlative self-attention (query-query42

and key-key). ClearCLIP [15] further removes residual connections and discards the FFN in the43

final layer to reduce noise and improve spatial alignment. ResCLIP [20] incorporates attention44

maps from earlier layers to refine final-layer attention map. However, these methods largely focus45

on modifying the final-layer attention, often leading to suboptimal ambiguous local relationships46

and noisy segmentation. To address spatial limitations, some approaches incorporate features from47

auxiliary backbones such as DINO [21, 17], SAM [17, 22], or diffusion models [23, 24]. While48

effective, these methods incur significant computational and memory overhead.49

Motivated by these limitations, we begin with a layer-wise analysis of spatial discriminability and50

text-semantic alignment within the CLIP model. As shown in Figure 1, we observe a clear spatial-51

semantic trade-off in the final layers: spatial discriminability drops sharply, while the improvement52

in semantic alignment is relatively marginal. To understand the cause of this phenomenon, we53

further examine internal token interactions and structural patterns across layers. Through attention54

map visualizations, we find that certain abnormal tokens emerge in the deeper layers, attracting55

disproportionately high attention from nearly all spatial positions. This behavior causes the majority56

of tokens to converge on a small subset, thereby disrupting the spatial coherence of the representation.57

Further analysis reveals that these abnormal tokens exhibit sparse and high-magnitude activations.58

Moreover, they are class-agnostic, as their similarity remains consistent across different positions,59

layers, and input samples, indicating a lack of semantic specificity. Contrary to prior assumptions that60

such tokens encode global semantic content, our findings suggest they may instead function as bias61

components that offset global-mean features, thereby facilitating alignment with text embeddings.62

Based on the analysis, we propose TLH-CLIP, a training-free framework that leverages the inher-63

ent properties of CLIP to enhance the spatial discriminability of visual features while preserving64

their semantic alignment. TLH-CLIP comprises three complementary strategies: abnormal token65

replacement (ATR), spatial-semantic reweighting (SSR), and selective head enhancement (SHE).66

Specifically, the ATR employs hoyer scores to identify abnormal tokens by thresholding their char-67

acteristic sparsity. Once detected, these anomalous tokens are replaced with a weighted average68

of normal tokens, based on spatial distance. To mitigate the degradation of spatial discriminability69

in the earlier final layers, SSR reweights the contributions of the residual pathway relative to the70

attention and FFN submodules. This adjustment restores a better balance between spatial coherence71

and semantic abstraction, leveraging the fact that late-intermediate layers exhibit stronger spatial72

discriminability while maintaining comparable levels of semantic alignment. Finally, SHE further73

enhances spatial coherence by selectively aggregating features from attention heads with high spatial74

discriminability, using them to refine the output representations. Experimental results demonstrate75

that TLH-CLIP achieves significant performance improvements when integrated into various baseline76

methods, establishing new state-of-the-art results across eight benchmark datasets.77

Contributions. Our contributions can be summarized as follows:78

• We conduct a comprehensive analysis of spatial discriminability at the token, head, and layer levels.79

• We propose TLH-CLIP, a novel training-free approach, terms TLH-CLIP. To the best of our80

knowledge, this is the first work to explicitly modify the inference procedure prior to the final layer,81

enabling improved spatial coherence without compromising semantic alignment.82

• The extensive experiment results on open-vocabulary semantic segmentation tasks consistently83

demonstrate the effectiveness of the proposed method.84

2 Analysis85

2.1 Preliminaries86

CLIP employs a Vision Transformer (ViT) [25] as its image encoder to generate visual representations87

that are aligned with corresponding textual descriptions. The vision encoder first tokenizes an input88

image of size H × W × 3 by dividing it into a grid of non-overlapping patches of size P × P ,89
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yielding h = H/P rows and w = W/P columns of patches. Each patch is then linearly projected90

into a D-dimensional embedding space, xi ∈ RD, and augmented with positional embeddings. An91

additional learnable [CLS] token is prepended to the sequence and is later used for image-level92

prediction. The resulting token sequence is denoted as X0 = [x0
cls,x

0
1, . . . ,x

0
hw] ∈ R(1+hw)×D. This93

sequence is passed through a stack of L Transformer encoder layers, each consisting of a multi-head94

self-attention (MSA) module followed by a feed-forward network (FFN). Let LN denotes layer95

normalization, the token representations are updated at each layer l as follow:96

X̂l = Xl−1 + Attn(LN(Xl−1)), (1)

Xl = X̂l + FFN(LN(X̂l)). (2)

The CLIP model is originally trained on large-scale image–text pairs for open-vocabulary image97

recognition tasks. To extend it to semantic segmentation, a natural approach is to compute the98

similarity between the visual tokens XL = [xL
1 , . . . ,x

L
hw] from the final Transformer layer and99

the textual embeddings of C category names, denoted by t ∈ RC×D. This results in a patch-text100

similarity map of size hw × C. Denote tc as the embedding of the c-th class name, the final101

segmentation prediction is obtained by applying an argmax operation over the class dimension of102

this similarity map, as follows:103

ĉ(xi) = argmax
c

⟨xL
i , tc⟩

∥xL
i ∥ · ∥tc∥

, (3)

Ideally, for effective semantic segmentation, the vision encoder should produce feature representations104

that satisfy two key properties:105

• Spatial discriminability (SD): token features should exhibit high internal consistency within the106

same semantic category while remaining clearly distinguishable from those of other categories,107

thereby enabling accurate and clean segmentation results.108

• Semantic alignment (SA): token features should be well-aligned with their corresponding textual109

embeddings to enable semantically meaningful segmentation results.110

Beyond their importance in open-vocabulary semantic segmentation, these two properties are also111

more highly relevant to the development of multimodal large language models (MLLMs), as the112

vision encoder of CLIP is often directly employed to extract visual representations without additional113

training, serving as input to downstream language models such as LLaVA [26, 27]. In this work,114

we aim to enhance the spatial discriminability of CLIP features in a training-free manner, thereby115

preserving the its strong generalization capability.116

2.2 Analysis of layer-wise spatial discriminability and semantic alignment117

Significant decline in SD with marginal gains in SA in the final layers. To assess whether CLIP118

visual features exhibit the desired properties, we investigate the layer-wise SD and SA within CLIP119

models. To quantitatively assess SD property, we follow the evaluation protocol proposed in [28]. In120

particular, we extract patch-level feature representations from the vision encoder for each image and121

associate them with corresponding semantic labels using the ground-truth segmentation masks from122

Pascal VOC [29], PASCAL Context [30], ADE20K [31], and COCO-Stuff [32] datasets. Specifically,123

let xl
i ∈ RD and xl

j ∈ RD denote the feature representations of two image patches i and j extracted124

from the l-th layer of the encoder. These feature vectors are ℓ2-normalized, and their cosine similarity125

is computed to serve as the prediction of a binary classifier that indicates whether the two patches126

belong to the same semantic category. Given the corresponding semantic labels t(xi) and t(xj),127

the target value for classification is set to 1 if t(xi) = t(xj), and 0 otherwise. To evaluate the SA128

property, we extract the intermediate representations xl
i ∈ RD from each individual visual token129

at layer l, and use them as inputs to the final layer to project these features into the final visual130

latent space for semantic prediction. Following [15], we remove the FFN and residual connections131

in the final layer to avoid introducing contaminating semantic information. Additionally, inspired132

by [14], we replace the last-layer attention matrix with an identity matrix to avoid noisy integration133

during the final attention computation. The final visual representation of each layers can be expressed134

as vl
i = xl

iW
L
v W

L
o ∈ RD, where WL

v and WL
o denotes the value and output project matrix in135

last-layer MSA module. Based on these representations, SA is measured using the average accuracy136

between the predicted and ground-truth semantic labels, following Equation (3).137
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(a) VOC (ViT-B) (b) Context (ViT-B) (c) ADE (ViT-B) (d) COCO-Stuff (ViT-B)

(e) VOC (ViT-L) (f) Context (ViT-L) (g) ADE (ViT-L) (h) COCO-Stuff (ViT-L)

Figure 1: Layer-wise analysis of spatial discriminability (blue curves) and semantic alignment (orange
curves) within the CLIP vision encoders across different datasets. The final layer is excluded from the
analysis to avoid discrepancies caused by prior modifications to the last-layer in different methods.

layer 1 layer 4 layer 7 layer 10 layer 12

Figure 2: Visualization of the abnormal token phenomenon in the attention maps across different
layers of the ViT-B/16 model in the CLIP vision encoder.

We present the layerwise SD and SA scores for both the ViT-B/16 and ViT-L/14 models used as the138

CLIP vision encoder in Figure 1. From the results, we make the following observations:139

• The SD of CLIP exhibits an inverted U-shaped curve across layers: it initially increases in the early140

stages but declines in the deeper layers. This decline is especially prominent in the final layers. For141

example, the last two layers ( (excluding the final layer)) of the ViT-B/16 model and the last five142

layers of the ViT-L/14 model show a marked reduction in spatial discriminability.143

• SA follows an approximately monotonic increasing pattern across layers: it improves substantially144

in the early layers but gradually saturates in the final layers, offering only marginal gains thereafter.145

These findings offer a nuanced understanding of why CLIP has proven effective for open-vocabulary146

semantic segmentation. In particular, the strong semantic alignment observed in the final layers147

explains why prior work often leverages last-layer features for aligning visual tokens with textual148

categories. However, the significant decline in spatial discriminability in these layers reveals a key149

limitation as they may lack the fine-grained spatial distinctions necessary for producing accurate and150

precise segmentation masks. In this work, we aim to address this limitation by proposing methods151

that jointly preserve spatial structure and semantic alignment through a systematic exploitation of152

spatial discriminability across token, layer, and head levels. Before introducing our approach, we first153

investigate the underlying causes of the decline in spatial discriminability in the next subsection.154
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2.3 Analysis of abnormal tokens155

Class-agnostic sparse and large-norm tokens. To understand the progression within the vision156

encoder, we analyze attention maps across layers. As shown in Figure 2, deeper layers exhibit a157

small set of dominant tokens that receive disproportionately high attention from nearly all spatial158

locations, causing most tokens to focus on this subset, consistent with prior observations [33, 18].This159

leads to a gradual decline in spatial discriminability, which is essential for accurate segmentation. To160

further characterize these dominant tokens, we compare their features with those of normal tokens.161

As illustrated in Figure 3, dominant tokens exhibit sparse and consistent activation patterns, with only162

a few channels maintaining high activation. To quantify this sparsity, we adopt the hoyer score [34]:163

H(xl
i) =

√
D − |xl

i|1
|xl

i|2√
D − 1

, (4)

where xl
i ∈ RD is the feature vector of the i-th token at layer l. We use this metric to quantify164

sparsity and visualize its distribution across layers and token positions in Figure 3(b). To evaluate165

whether dominant tokens encode meaningful semantics, we analyze their pairwise cosine similarity166

across spatial locations, layers, and image samples on the ImageNet validation set. As shown167

in Figure 4, these tokens exhibit strong invariance across positions and inputs, indicating limited168

semantic specificity. Contrary to prior assumptions that they capture global semantic content, our169

results suggest they act more like bias components that offset global-mean features, facilitating text170

alignment, similar to the bias term in final-layer classifiers under neural collapse [35, 36].171

3 Method172

In this section, we provide a detailed description of our training-free framework, which comprises173

three components: Abnormal Token Replacement (ATR) in Section 3.1, Spatial-Semantic Reweight-174

ing (SSR) in Section 3.2, and Selective Head Enhancement (SHE) in Section 3.3. Each component is175

complementary, and together they work synergistically to enhance the spatial discriminability of the176

CLIP model, based on our previous analysis.177

3.1 Abnormal token replacement (ATR)178

To mitigate the adverse effects of these anomalous tokens, we propose a simple yet effective strategy179

to suppress their influence prior to the final layer. As demonstrated in our earlier analysis, these tokens180

exhibit characteristically sparse activation patterns. To systematically identify them, we employ181

the hoyer score H(xl
i) defined before as a sparsity-based criterion. Tokens with scores exceeding182

a predefined threshold τ are deemed anomalous and grouped into the set Al = {i|H(xl
i) > τ}.183

After identifying them, we suppress their influence using an unnormalized 2-dimensional Gaussian184

kernel. Specifically, each anomalous token at spatial position (m,n) ∈ A is replaced by a weighted185

aggregation of its neighboring non-anomalous tokens:186

xl
m,n =

∑w
i=1

∑h
j=1 w

l
m,n,i,jx

l
i,j∑w

i=1

∑h
j=1 w

l
m,n,i,j

, ∀(m,n) ∈ A (5)

wl
m,n,i,j =

{
0, if (i, j) ∈ A
exp

(
− (m−i)2+(n−j)2

2σ2

)
, otherwise

(6)

Here, σ controls the spatial extent of smoothing, and the weights wm,n,i,j ensure that only normal187

tokens contribute to the reconstruction of anomalous ones. Empirically, we find that applying this188

strategy before the penultimate layer leads to a performance drop, likely due to the removal of inherent189

biases encoded in abnormal tokens, which substantially alters the inference process. Therefore, we190

apply it only at the penultimate layer, i.e., with l = L− 1.191

3.2 Spatial-semantic reweighting (SSR)192

After mitigating the influence of anomalous tokens in the input to the last layer, the model exhibits193

improved spatial discriminability. However, a critical challenge remains: anomalous tokens present194
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(a) Attn map (b) Hoyer Map (c) Normal Token (d) Abnormal Token (e) Abnormal Token

Figure 3: Illustration of the sparsity and high-norm characteristics of abnormal tokens. Figure (a)
shows the attention map of the red anchor token. Figure (b) presents the Hoyer score distribution
across layers and spatial positions. Figures (c)–(e) depict the channel activations of a normal token
(red) and two abnormal tokens (yellow and blue) highlighted in Figure (a).

Figure 4: Layer-wise cosine similarity among abnormal tokens across positions, layers and samples.

in earlier layers may have already disrupted the spatial coherence of feature representations, limiting195

the effectiveness of final-layer refinements. Based on our layer-wise analysis, the final few layers196

overly emphasize alignment with text embeddings, the marginal gains in semantic alignment come at197

the cost of a pronounced decline in spatial discriminability. To address this imbalance, we propose a198

spatial-semantic reweighting strategy that enhances the model’s spatial awareness while preserving199

its semantic alignment capabilities. Given the feature representation Xl−1 at the l-th layer within200

the final few layers (e.g., layers 10–11 in ViT-B/16 and layers 20–23 in ViT-L/14), we reweight201

the forward pass by upweighting the residual pathway and downweighting the attention and MLP202

submodules, as follows:203

X̂l = (1 + α)Xl−1 + (1− α)Attn(LN(Xl−1)), (7)

Xl = (1 + α)X̂l + (1− α)FFN(LN(X̂l)), (8)
where α ∈ [0, 1] is a reweighting coefficient that controls the relative degree of emphasis on the204

residual signal. As α increases, the l-th block increasingly preserves spatially discriminative features205

from earlier layers via the residual pathway, while diminishing the dominant influence of semantic206

aggregation in the attention and MLP submodules. To the best of our knowledge, prior work has207

primarily focused on reforming the final layer or modifying its representations to improve performance.208

However, these approaches often inherit the global semantic alignment bias inherent in the final few209

layers, resulting in a substantial decline in the spatial discriminability of the extracted features. In210

contrast, our SSR strategy explicitly mitigates this limitation by rebalancing the contributions of211

residual and semantic components in intermediate layers preceding the final layer.212

3.3 Selective head enhancement (SHE)213

Strong spatial discriminability of some attention heads. While the proposed strategies effectively214

enhance the spatial discriminability in the final layers, the overall spatial discriminability of the215

features output by the CLIP vision encoder may still remain suboptimal. Inspired by recent studies [37,216

38] revealing that different attention heads capture distinct visual concepts, such as number, shape and217

texture, this motivates us to investigate whether certain heads are specifically responsible for encoding218

spatial discriminability. To identify such heads, we follow the formulation introduced in [39, 37],219

which rewrites the multi-head self-attention (MSA) output as a summation over H independent220

attention heads: Attn(LN(Xl)) =
∑H

h=1 A
l
hV

l
hW

l
o ∈ R(1+hw)×D, where Al

h and Vl
h denote the221

attention and value matrices for the h-th head at layer l, and Wl
o is the output projection matrix222

shared across all heads. We extract the contribution of the h-th head at layer l and apply abnormal223

token resolution as follows:224

Xl,h = σ(Al
hV

l
hW

l
o), (9)
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(a) VOC (ViT-B) (b) Context (ViT-B) (c) ADE (ViT-B) (d) Stuff (ViT-B)

Figure 5: Head-wise analysis of spatial discriminability within the ViT-B/16 vision backbone across
multiple datasets. To ensure consistency, the final layer is excluded, and only the top 50 attention
heads are visualized in each figure for clarity.

where σ(·) denotes the abnormal token replacement operation defined previously. To assess the SD225

of each attention head, we adopt the same AUC-based metric as the preceding layer-level analysis.226

Figure 5 shows the head AUC distribution for ViT-B/16, with ViT-L/14 results in the appendix. From227

the figure, we observe that the output features from certain attention heads, such as the 9th head in228

the 8th layer, consistently exhibit high AUC scores across different datasets, suggesting that these229

heads are more effective at capturing SD information than others.230

Building on this observation, we propose to selectively leverage high-performing heads to enhance231

the spatial discriminability of the output representations. Let AUCs
l,h denote the AUC score of the232

representations from the h-th head in the l-th layer for dataset s ∈ {VOC,Context,ADE,Stuff}. To233

obtain a dataset-agnostic measure of discriminability, we compute the average AUC score for each234

head across all datasets, denoted as AUCl,h. The distribution of these average scores is provided in235

the appendix. We rank all heads by their AUCl,h scores and select the top-k to form the set Htopk.236

The corresponding feature representations are then aggregated as: Xtopk = 1
k

∑
(l,h)∈Htopk

Xl,h. This237

aggregated feature Xtopk is used to construct a similarity map S =
XtopkX

⊤
topk

∥Xtopk∥2 , which captures the238

pairwise similarity among visual tokens. To mitigate the influence of spurious interactions between239

tokens from different semantic categories, we apply a thresholding operation with a predefined240

parameter β, resulting in the filtered similarity map Sβ , where Sβ(i, j) = S(i, j) if S(i, j) ≥ β, and241

Sβ(i, j) = 0 otherwise. The resulting Sβ is then column-wise normalized, and subsequently used to242

refine the final-layer features by XL−1 = Norm(Sβ)X
L−1.243

4 Experiment Results244

Evaluation datasets. We follow the standard evaluation protocol from prior works [3, 15, 16]245

and assess our method on eight widely used semantic segmentation benchmarks. For clarity, we246

group them into two categories and use abbreviated names throughout the paper. The first category247

excludes background and includes Pascal VOC [29] (VOC20), Pascal Context [30] (Context59),248

COCO-Stuff [32] (Stuff), ADE20K [31] (ADE), and Cityscapes [40] (City). The second includes249

background and consists of VOC21, Context60, and COCO-Object [32] (Object). We use CLIP [1]250

models with ViT-B/16 and ViT-L/14 backbones via MMSegmentation [41], and report results using251

the mean Intersection-over-Union (mIoU). All hyperparameters are fixed across datasets without252

task-specific tuning. Additional implementation details are provided in the appendix.253

4.1 Comparison with existing methods.254

We compare our approach against a comprehensive set of open-vocabulary semantic segmentation255

(OVSS) methods, including the direct baseline CLIP [1], as well as several state-of-the-art training-256

free approaches: MaskCLIP [14], CLIPSurgery [13], SCLIP [3], NACLIP [16], ClearCLIP [15],257

LAVG [42], and ResCLIP [20]. We also include several influential weakly supervised methods,258

such as GroupViT [5], ReCo [43], and TCL [8]. Unless otherwise specified, all reported results are259

taken directly from the respective original papers and ResCLIP [20]. As our method is orthogonal to260

approaches that primarily target improvements in the final-layer attention, we additionally evaluate its261

effectiveness when integrated with recent state-of-the-art methods that employ specialized attention262

mechanisms in the last layer, including SCLIP [3], ClearCLIP [15], and ResCLIP [20]. For fair263
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Table 1: Performance comparison of our approach with other methods on eight semantic segmentation
benchmarks following the evaluation protocol in Section 4. Our results are marked in gray.

Methods Training With a background class Without background class Avg.
VOC21 Context60 Object VOC20 City Context59 ADE Stuff

ReCo [43] ✓ 25.1 19.9 15.7 57.7 21.1 22.3 11.2 14.8 23.5
GroupViT [5] ✓ 52.3 18.7 27.5 79.7 18.5 23.4 10.4 15.3 30.7
TCL [8] ✓ 51.2 24.3 30.4 77.5 23.1 30.3 14.9 19.6 33.9
CLIP [1] ✗ 16.2 7.7 5.5 41.8 5.5 9.2 2.1 4.4 11.6
MaskCLIP [14] ✗ 38.8 23.6 20.6 74.9 16.4 26.4 9.8 14.8 28.2
CLIPSurgery [13] ✗ 55.2 18.7 27.5 79.7 18.5 23.4 10.4 15.3 31.1
LaVG [42] ✗ 62.1 31.6 34.2 82.5 26.2 34.7 15.8 23.2 38.8
NACLIP [16] ✗ 58.9 32.2 33.2 79.7 35.5 35.2 17.4 23.3 39.4

SCLIP [3] ✗ 59.7 31.7 33.5 81.5 32.3 34.5 16.5 22.7 39.1
+TLH-CLIP (ours) ✗ 64.8 34.8 36.6 86.3 36.1 37.6 18.0 24.9 42.4 (+3.3)
ClearCLIP [15] ✗ 57.0 32.2 32.5 82.3 32.8 35.8 17.3 24.0 39.2
+TLH-CLIP (ours) ✗ 63.9 35.2 35.6 85.7 37.8 38.8 19.2 25.8 42.7 (+3.5)
ResCLIP [20] ✗ 60.0 32.7 34.0 85.5 35.6 35.8 17.7 23.8 40.6
+TLH-CLIP (ours) ✗ 63.9 35.5 35.3 86.8 38.2 38.2 19.1 25.5 42.8 (+2.2)

comparison, we exclude the Semantic Feedback Refinement module in ResCLIP, as it relies on the264

computationally expensive PAMR [44] post-processing, which is inconsistent with our evaluation265

setting. For comprehensiveness, results on the ViT-L/14 architecture are provided in the appendix.266

In Table 1, we summarize the performance of various open-vocabulary semantic segmentation267

models on benchmark datasets using the ViT-B/16 backbone. Our proposed TLH-CLIP consistently268

enhances the performance of state-of-the-art approaches, including SCLIP [3], ClearCLIP [15], and269

ResCLIP [20]. Notably, when integrated with ResCLIP [20], TLH-CLIP achieves state-of-the-art270

results, outperforming leading weakly supervised methods. As a plug-and-play solution, TLH-CLIP271

yields consistent improvements across all datasets compared to the respective baselines, demonstrating272

its strong generalization capability. We further evaluate performance on the ViT-L/14 backbone. In273

line with observations from [20], existing methods generally exhibit a performance drop exceeding274

2% mIoU when adapting to a different backbone; for instance, ClearCLIP [15] suffers a notable275

decline of 2.7% mIoU. In contrast, when augmented with TLH-CLIP, this performance degradation276

is significantly alleviated, highlighting the robustness of our approach. Across both backbones,277

TLH-CLIP delivers substantial improvements over baseline methods, validating its effectiveness.278

4.2 Experimental analysis279

In this section, we conduct comprehensive ablation studies to validate the effectiveness of our280

proposed method. We adopt SCLIP [3] as the baseline, which enhances spatial correlation by281

modifying the attention mechanism in the final layer, replacing the standard QK⊤ attention with a282

combination of QQ⊤ +KK⊤. In addition, following prior work [15, 20], we remove the residual283

connections and FFN from the final transformer block to isolate the impact of attention refinement.284

Analysis of the hoyer threshold parameter τ . Our method relies on hoyer sparsity to identify285

anomalous tokens, making the sparsity threshold τ a critical hyperparameter. We conduct a systematic286

evaluation, as shown in Table 2. At τ = 0.2, many normal tokens are misclassified, leading287

to excessive smoothing and degraded performance. As τ increases to 0.4, performance steadily288

improves, but plateaus between 0.5 and 0.8, with a decline observed beyond this range. The broad289

stable region indicates a clear sparsity gap between normal and abnormal tokens, highlighting the290

robustness of ATR to threshold selection. Based on this analysis, we fix τ = 0.5 for all experiments.291

Analysis of spatial-semantic reweighting parameters and number of Layers. To evaluate the292

impact of the reweighting strength α and the range of layers involved, from lstart to lend, we perform293

a comprehensive sensitivity analysis. The results are summarized in Table 3. We observe that294

the best performance is obtained when reweighting is applied to layers 10–11 in the ViT-B/16295

backbone. This aligns with our earlier findings that these layers experience a marked decline in296

spatial discriminability while yielding only marginal improvements in semantic alignment. Extending297

reweighting to include layer 9 results in a slight gain in spatial discriminability but introduces noisy298
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Table 2: Study of hoyer sparsity threshold τ .
τ C60 Obj C59 City Avg

τ = 0.2 0.8 2.0 1.5 1.7 1.5
τ = 0.4 32.8 34.0 36.6 34.7 34.5
τ = 0.5 32.8 34.2 36.7 34.7 34.6
τ = 0.8 32.8 33.9 36.6 34.7 34.5
τ = 0.9 32.8 33.9 36.6 34.3 34.4
baseline 32.4 32.9 36.0 34.3 33.9

Table 3: Study of (lstart, lend, α) in SSR module.
(lstart, lend, α) C60 Obj C59 City Avg

baseline 32.4 32.9 36.0 34.3 33.9
(9, 11, 0.1) 32.7 32.0 36.5 36.7 34.5

(10, 11, 0.1) 33.1 33.4 36.9 35.6 34.8
(11, 11, 0.1) 32.7 34.1 36.4 34.9 34.5

(10, 11, 0.05) 32.8 33.7 36.4 35.0 34.5
(10, 11, 0.2) 32.6 31.7 36.5 36.6 34.4

Table 4: Study of number of selected heads k.
k C60 Obj C59 City Avg

baseline 32.8 34.2 36.7 34.7 34.6
layer(l = 8) 33.9 37.1 37.1 35.0 35.8

k = 1 33.4 37.1 36.6 35.4 35.3
k = 10 34.8 37.6 37.9 36.3 36.7
k = 30 34.7 37.3 37.9 36.4 36.6
k = 50 34.7 37.3 37.8 36.3 36.5

Table 5: Combination of three strategies.
Methods Module mIoU ∆

ATR SSR SHE

baseline – – – 33.9 –
✓ ✓ – 35.3 +1.4
✓ – ✓ 36.7 +2.8

Ours ✓ ✓ ✓ 37.4 +3.5

semantic signals, ultimately leading to a reduction in segmentation performance. In addition, we299

examine the effect of varying the reweighting threshold parameter α. As α increases from 0 to 0.1,300

performance improves steadily, indicating a beneficial balance between spatial and semantic cues.301

However, further increasing α leads to a performance drop, as it incorporates more noisy semantic302

information from earlier layers and significantly perturbs the input distribution of subsequent layers.303

Analysis of the number of selected heads. We study the effect of varying the number of top-k304

attention heads selected for enhancement, as shown in Table 4. Empirically, we find that SHE is305

most effective when combined with ATR; without ATR, the spatially coherent similarity maps can306

cause normal tokens to be fused with abnormal ones. Therefore, we adopt the baseline SCLIP model307

equipped with ATR as our baseline. On the ViT-B/16 backbone, increasing k from 1 to 10 improves308

segmentation accuracy, as aggregating multiple spatially discriminative heads helps suppress spurious309

correlations. However, performance declines when k becomes too large due to the inclusion of noisy310

or less informative heads, which introduce undesired cross-category interactions. We also compare311

head- and layer-level selection (best l = 8), finding that head-level selection consistently performs312

better, as discriminative heads are distributed across layers, while entire-layer selection introduces313

irrelevant heads and degrades performance.314

Study of each individual components In the previous parts, we evaluated the effectiveness of each315

individual component. Table 5 presents their combinations, which yield a substantial improvement316

of 3.5 mIoU, achieving a final mIoU of 37.5 on these four datasets. These results highlight the317

complementary contributions of each module to the overall segmentation performance.318

5 Conclusion319

In this paper, we present a comprehensive analysis of the spatial discriminability of pretrained320

CLIP models across the token, layer, and head levels. Our study reveals three key findings: (1)321

the emergence of class-agnostic abnormal tokens with sparse, high-norm activations; (2) a notable322

decline in spatial discriminability in the final layers, despite marginal gains in semantic alignment;323

and (3) consistently strong spatial discriminability in specific attention heads. Motivated by these324

observations, we propose TLH-CLIP, a training-free framework that enhances spatial discriminability325

while preserving semantic alignment. TLH-CLIP introduces three complementary components: (1)326

abnormal token replacement, (2) spatial-semantic reweighting, and (3) selective head enhancement.327

Unlike prior methods that focus on modifying the final attention layer, our approach provides328

lightweight, plug-and-play modules compatible with existing architectures. Extensive experiments329

on multiple segmentation benchmarks demonstrate that TLH-CLIP consistently outperforms strong330

baselines. Moreover, as CLIP vision encoders are often frozen during the training of MLLMs, our331

findings offer valuable insights for improving visual understanding in broader MLLMs.332
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NeurIPS Paper Checklist501

The checklist is designed to encourage best practices for responsible machine learning research,502

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove503

the checklist: The papers not including the checklist will be desk rejected. The checklist should504

follow the references and follow the (optional) supplemental material. The checklist does NOT count505

towards the page limit.506

Please read the checklist guidelines carefully for information on how to answer these questions. For507

each question in the checklist:508

• You should answer [Yes] , [No] , or [NA] .509

• [NA] means either that the question is Not Applicable for that particular paper or the510

relevant information is Not Available.511

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).512

The checklist answers are an integral part of your paper submission. They are visible to the513

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it514

(after eventual revisions) with the final version of your paper, and its final version will be published515

with the paper.516

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.517

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a518

proper justification is given (e.g., "error bars are not reported because it would be too computationally519

expensive" or "we were unable to find the license for the dataset we used"). In general, answering520

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we521

acknowledge that the true answer is often more nuanced, so please just use your best judgment and522

write a justification to elaborate. All supporting evidence can appear either in the main paper or the523

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification524

please point to the section(s) where related material for the question can be found.525

IMPORTANT, please:526

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",527

• Keep the checklist subsection headings, questions/answers and guidelines below.528

• Do not modify the questions and only use the provided macros for your answers.529

1. Claims530

Question: Do the main claims made in the abstract and introduction accurately reflect the531

paper’s contributions and scope?532

Answer: [Yes]533

Justification: The abstract and introduction clearly state the claims about of analysis discov-534

ery and the proposed method, matching our experimental results.535

Guidelines:536

• The answer NA means that the abstract and introduction do not include the claims537

made in the paper.538

• The abstract and/or introduction should clearly state the claims made, including the539

contributions made in the paper and important assumptions and limitations. A No or540

NA answer to this question will not be perceived well by the reviewers.541

• The claims made should match theoretical and experimental results, and reflect how542

much the results can be expected to generalize to other settings.543

• It is fine to include aspirational goals as motivation as long as it is clear that these goals544

are not attained by the paper.545

2. Limitations546

Question: Does the paper discuss the limitations of the work performed by the authors?547

Answer: [Yes]548
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Justification: As noted in the paper, the proposed methods can mitigate but not entirely549

resolve the decline in spatial discriminability in the final layers.550

Guidelines:551

• The answer NA means that the paper has no limitation while the answer No means that552

the paper has limitations, but those are not discussed in the paper.553

• The authors are encouraged to create a separate "Limitations" section in their paper.554

• The paper should point out any strong assumptions and how robust the results are to555

violations of these assumptions (e.g., independence assumptions, noiseless settings,556

model well-specification, asymptotic approximations only holding locally). The authors557

should reflect on how these assumptions might be violated in practice and what the558

implications would be.559

• The authors should reflect on the scope of the claims made, e.g., if the approach was560

only tested on a few datasets or with a few runs. In general, empirical results often561

depend on implicit assumptions, which should be articulated.562

• The authors should reflect on the factors that influence the performance of the approach.563

For example, a facial recognition algorithm may perform poorly when image resolution564

is low or images are taken in low lighting. Or a speech-to-text system might not be565

used reliably to provide closed captions for online lectures because it fails to handle566

technical jargon.567

• The authors should discuss the computational efficiency of the proposed algorithms568

and how they scale with dataset size.569

• If applicable, the authors should discuss possible limitations of their approach to570

address problems of privacy and fairness.571

• While the authors might fear that complete honesty about limitations might be used by572

reviewers as grounds for rejection, a worse outcome might be that reviewers discover573

limitations that aren’t acknowledged in the paper. The authors should use their best574

judgment and recognize that individual actions in favor of transparency play an impor-575

tant role in developing norms that preserve the integrity of the community. Reviewers576

will be specifically instructed to not penalize honesty concerning limitations.577

3. Theory assumptions and proofs578

Question: For each theoretical result, does the paper provide the full set of assumptions and579

a complete (and correct) proof?580

Answer: [NA]581

Justification: This paper does not include theoretical results.582

Guidelines:583

• The answer NA means that the paper does not include theoretical results.584

• All the theorems, formulas, and proofs in the paper should be numbered and cross-585

referenced.586

• All assumptions should be clearly stated or referenced in the statement of any theorems.587

• The proofs can either appear in the main paper or the supplemental material, but if588

they appear in the supplemental material, the authors are encouraged to provide a short589

proof sketch to provide intuition.590

• Inversely, any informal proof provided in the core of the paper should be complemented591

by formal proofs provided in appendix or supplemental material.592

• Theorems and Lemmas that the proof relies upon should be properly referenced.593

4. Experimental result reproducibility594

Question: Does the paper fully disclose all the information needed to reproduce the main ex-595

perimental results of the paper to the extent that it affects the main claims and/or conclusions596

of the paper (regardless of whether the code and data are provided or not)?597

Answer: [Yes]598

Justification: We provide detailed descriptions of the experimental settings in Section 4 and599

the appendix. Additionally, the ablation studies present the rationale behind the choice of600

hyperparameters used in this work.601
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Guidelines:602

• The answer NA means that the paper does not include experiments.603

• If the paper includes experiments, a No answer to this question will not be perceived604

well by the reviewers: Making the paper reproducible is important, regardless of605

whether the code and data are provided or not.606

• If the contribution is a dataset and/or model, the authors should describe the steps taken607

to make their results reproducible or verifiable.608

• Depending on the contribution, reproducibility can be accomplished in various ways.609

For example, if the contribution is a novel architecture, describing the architecture fully610

might suffice, or if the contribution is a specific model and empirical evaluation, it may611

be necessary to either make it possible for others to replicate the model with the same612

dataset, or provide access to the model. In general. releasing code and data is often613

one good way to accomplish this, but reproducibility can also be provided via detailed614

instructions for how to replicate the results, access to a hosted model (e.g., in the case615

of a large language model), releasing of a model checkpoint, or other means that are616

appropriate to the research performed.617

• While NeurIPS does not require releasing code, the conference does require all submis-618

sions to provide some reasonable avenue for reproducibility, which may depend on the619

nature of the contribution. For example620

(a) If the contribution is primarily a new algorithm, the paper should make it clear how621

to reproduce that algorithm.622

(b) If the contribution is primarily a new model architecture, the paper should describe623

the architecture clearly and fully.624

(c) If the contribution is a new model (e.g., a large language model), then there should625

either be a way to access this model for reproducing the results or a way to reproduce626

the model (e.g., with an open-source dataset or instructions for how to construct627

the dataset).628

(d) We recognize that reproducibility may be tricky in some cases, in which case629

authors are welcome to describe the particular way they provide for reproducibility.630

In the case of closed-source models, it may be that access to the model is limited in631

some way (e.g., to registered users), but it should be possible for other researchers632

to have some path to reproducing or verifying the results.633

5. Open access to data and code634

Question: Does the paper provide open access to the data and code, with sufficient instruc-635

tions to faithfully reproduce the main experimental results, as described in supplemental636

material?637

Answer:[Yes]638

Justification: The implementation code is included in the supplementary materials and will639

be made publicly available.640

Guidelines:641

• The answer NA means that paper does not include experiments requiring code.642

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/643

public/guides/CodeSubmissionPolicy) for more details.644

• While we encourage the release of code and data, we understand that this might not be645

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not646

including code, unless this is central to the contribution (e.g., for a new open-source647

benchmark).648

• The instructions should contain the exact command and environment needed to run to649

reproduce the results. See the NeurIPS code and data submission guidelines (https:650

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.651

• The authors should provide instructions on data access and preparation, including how652

to access the raw data, preprocessed data, intermediate data, and generated data, etc.653

• The authors should provide scripts to reproduce all experimental results for the new654

proposed method and baselines. If only a subset of experiments are reproducible, they655

should state which ones are omitted from the script and why.656
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• At submission time, to preserve anonymity, the authors should release anonymized657

versions (if applicable).658

• Providing as much information as possible in supplemental material (appended to the659

paper) is recommended, but including URLs to data and code is permitted.660

6. Experimental setting/details661

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-662

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the663

results?664

Answer: [Yes]665

Justification: We provide detailed descriptions of the experimental settings in Section 4 and666

the appendix. Additionally, the ablation studies present the rationale behind the choice of667

hyperparameters used in this work.668

Guidelines:669

• The answer NA means that the paper does not include experiments.670

• The experimental setting should be presented in the core of the paper to a level of detail671

that is necessary to appreciate the results and make sense of them.672

• The full details can be provided either with the code, in appendix, or as supplemental673

material.674

7. Experiment statistical significance675

Question: Does the paper report error bars suitably and correctly defined or other appropriate676

information about the statistical significance of the experiments?677

Answer: [No]678

Justification: Since our method is training-free and directly uses the pretrained CLIP model679

weights without any additional optimization, issues related to statistical significance do not680

arise.681

Guidelines:682

• The answer NA means that the paper does not include experiments.683

• The authors should answer "Yes" if the results are accompanied by error bars, confi-684

dence intervals, or statistical significance tests, at least for the experiments that support685

the main claims of the paper.686

• The factors of variability that the error bars are capturing should be clearly stated (for687

example, train/test split, initialization, random drawing of some parameter, or overall688

run with given experimental conditions).689

• The method for calculating the error bars should be explained (closed form formula,690

call to a library function, bootstrap, etc.)691

• The assumptions made should be given (e.g., Normally distributed errors).692

• It should be clear whether the error bar is the standard deviation or the standard error693

of the mean.694

• It is OK to report 1-sigma error bars, but one should state it. The authors should695

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis696

of Normality of errors is not verified.697

• For asymmetric distributions, the authors should be careful not to show in tables or698

figures symmetric error bars that would yield results that are out of range (e.g. negative699

error rates).700

• If error bars are reported in tables or plots, The authors should explain in the text how701

they were calculated and reference the corresponding figures or tables in the text.702

8. Experiments compute resources703

Question: For each experiment, does the paper provide sufficient information on the com-704

puter resources (type of compute workers, memory, time of execution) needed to reproduce705

the experiments?706

Answer: [Yes]707
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Justification: The details about computer resources used in the experiments are reported in708

the appendix.709

Guidelines:710

• The answer NA means that the paper does not include experiments.711

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,712

or cloud provider, including relevant memory and storage.713

• The paper should provide the amount of compute required for each of the individual714

experimental runs as well as estimate the total compute.715

• The paper should disclose whether the full research project required more compute716

than the experiments reported in the paper (e.g., preliminary or failed experiments that717

didn’t make it into the paper).718

9. Code of ethics719

Question: Does the research conducted in the paper conform, in every respect, with the720

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?721

Answer: [Yes]722

Justification: The paper adheres to the NeurIPS Code of Ethics.723

Guidelines:724

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.725

• If the authors answer No, they should explain the special circumstances that require a726

deviation from the Code of Ethics.727

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-728

eration due to laws or regulations in their jurisdiction).729

10. Broader impacts730

Question: Does the paper discuss both potential positive societal impacts and negative731

societal impacts of the work performed?732

Answer: [NA]733

Justification: There is no societal impact of the work performed.734

Guidelines:735

• The answer NA means that there is no societal impact of the work performed.736

• If the authors answer NA or No, they should explain why their work has no societal737

impact or why the paper does not address societal impact.738

• Examples of negative societal impacts include potential malicious or unintended uses739

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations740

(e.g., deployment of technologies that could make decisions that unfairly impact specific741

groups), privacy considerations, and security considerations.742

• The conference expects that many papers will be foundational research and not tied743

to particular applications, let alone deployments. However, if there is a direct path to744

any negative applications, the authors should point it out. For example, it is legitimate745

to point out that an improvement in the quality of generative models could be used to746

generate deepfakes for disinformation. On the other hand, it is not needed to point out747

that a generic algorithm for optimizing neural networks could enable people to train748

models that generate Deepfakes faster.749

• The authors should consider possible harms that could arise when the technology is750

being used as intended and functioning correctly, harms that could arise when the751

technology is being used as intended but gives incorrect results, and harms following752

from (intentional or unintentional) misuse of the technology.753

• If there are negative societal impacts, the authors could also discuss possible mitigation754

strategies (e.g., gated release of models, providing defenses in addition to attacks,755

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from756

feedback over time, improving the efficiency and accessibility of ML).757

11. Safeguards758
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Question: Does the paper describe safeguards that have been put in place for responsible759

release of data or models that have a high risk for misuse (e.g., pretrained language models,760

image generators, or scraped datasets)?761

Answer: [NA]762

Justification: he paper poses no such risks763

Guidelines:764

• The answer NA means that the paper poses no such risks.765

• Released models that have a high risk for misuse or dual-use should be released with766

necessary safeguards to allow for controlled use of the model, for example by requiring767

that users adhere to usage guidelines or restrictions to access the model or implementing768

safety filters.769

• Datasets that have been scraped from the Internet could pose safety risks. The authors770

should describe how they avoided releasing unsafe images.771

• We recognize that providing effective safeguards is challenging, and many papers do772

not require this, but we encourage authors to take this into account and make a best773

faith effort.774

12. Licenses for existing assets775

Question: Are the creators or original owners of assets (e.g., code, data, models), used in776

the paper, properly credited and are the license and terms of use explicitly mentioned and777

properly respected?778

Answer: [Yes]779

Justification: The original owners of assets (e.g., code, data, models), used in the paper are780

properly credited.781

Guidelines:782

• The answer NA means that the paper does not use existing assets.783

• The authors should cite the original paper that produced the code package or dataset.784

• The authors should state which version of the asset is used and, if possible, include a785

URL.786

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.787

• For scraped data from a particular source (e.g., website), the copyright and terms of788

service of that source should be provided.789

• If assets are released, the license, copyright information, and terms of use in the790

package should be provided. For popular datasets, paperswithcode.com/datasets791

has curated licenses for some datasets. Their licensing guide can help determine the792

license of a dataset.793

• For existing datasets that are re-packaged, both the original license and the license of794

the derived asset (if it has changed) should be provided.795

• If this information is not available online, the authors are encouraged to reach out to796

the asset’s creators.797

13. New assets798

Question: Are new assets introduced in the paper well documented and is the documentation799

provided alongside the assets?800

Answer: [NA]801

Justification: The paper does not release new assets.802

Guidelines:803

• The answer NA means that the paper does not release new assets.804

• Researchers should communicate the details of the dataset/code/model as part of their805

submissions via structured templates. This includes details about training, license,806

limitations, etc.807

• The paper should discuss whether and how consent was obtained from people whose808

asset is used.809
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• At submission time, remember to anonymize your assets (if applicable). You can either810

create an anonymized URL or include an anonymized zip file.811

14. Crowdsourcing and research with human subjects812

Question: For crowdsourcing experiments and research with human subjects, does the paper813

include the full text of instructions given to participants and screenshots, if applicable, as814

well as details about compensation (if any)?815

Answer: [NA]816

Justification: The paper does not involve crowdsourcing nor research with human subjects.817

Guidelines:818

• The answer NA means that the paper does not involve crowdsourcing nor research with819

human subjects.820

• Including this information in the supplemental material is fine, but if the main contribu-821

tion of the paper involves human subjects, then as much detail as possible should be822

included in the main paper.823

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,824

or other labor should be paid at least the minimum wage in the country of the data825

collector.826

15. Institutional review board (IRB) approvals or equivalent for research with human827

subjects828

Question: Does the paper describe potential risks incurred by study participants, whether829

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)830

approvals (or an equivalent approval/review based on the requirements of your country or831

institution) were obtained?832

Answer: [NA]833

Justification: The paper does not involve crowdsourcing nor research with human subjects.834

Guidelines:835

• The answer NA means that the paper does not involve crowdsourcing nor research with836

human subjects.837

• Depending on the country in which research is conducted, IRB approval (or equivalent)838

may be required for any human subjects research. If you obtained IRB approval, you839

should clearly state this in the paper.840

• We recognize that the procedures for this may vary significantly between institutions841

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the842

guidelines for their institution.843

• For initial submissions, do not include any information that would break anonymity (if844

applicable), such as the institution conducting the review.845

16. Declaration of LLM usage846

Question: Does the paper describe the usage of LLMs if it is an important, original, or847

non-standard component of the core methods in this research? Note that if the LLM is used848

only for writing, editing, or formatting purposes and does not impact the core methodology,849

scientific rigorousness, or originality of the research, declaration is not required.850

Answer: [NA]851

Justification: The core method development in this research does not involve LLMs as any852

important, original, or non-standard components.853

Guidelines:854

• The answer NA means that the core method development in this research does not855

involve LLMs as any important, original, or non-standard components.856

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)857

for what should or should not be described.858
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