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Abstract—Humans have the ability to perform various combi-
nations of skills without having to relearn the overall resulting
skill every single time. For example, we prefer to learn easy
motions and then combine them in flexible ways to perform
complicated movements in dance. Enabling robots to combine or
compose skills is essential for their deployment in unstructured
environments where they will be required to adapt based on their
surroundings. Without such composition robots would have to
learn a separate policy for each task which can be combinatorially
expensive. To this end, we propose a compositional approach to
blend different robot skills using diffusion models. We compose
configuration-space diffusion policies for novel motion generation
resulting from the corresponding skill combinations. We show
that the compositional framework can be utilized to interpolate
between different skills leading to greater flexibility in motion. By
utilizing interpolation along with composition, we can not only
constrain the motion but also generate novel trajectories. We also
propose a novel metric based on Maximum Mean Discrepancy
and the Forward Kinematics kernel: MMD-FK to quantitatively
evaluate the composed robot motion in the task-space while
remaining agnostic to the space of policy composition.

I. INTRODUCTION

For robots to be deployed in unstructured environments and
interact with humans, they have to combine different skills
and motions in their movements based on the situation. For
example, can a robot wiggle its end-effector while moving
forward to clean a table. This requires combination of a wig-
gling motion and a reaching motions. This wiggling motion
can be combined with different primitive motions to clean, to
wash dishes, to fit a bed-sheet, to iron a cloth, etc. Can robots
be expected to learn all these skills separately or can they
combine known primitives to perform novel motion? Despite
the ongoing work on enabling robots to learn a wide variety of
skills for them to be deployed along side humans, limited work
has addressed this problem of combining robot motions. In
this work, we propose a compositional approach to efficiently
generate robot motions composing base motion primitives zero
shot. Previous works have used compositional approaches to
constrain robot motion [41, 44], as it enables sampling from
common high probability regions. However, we show that we
can also interpolate between different motions enabling the
generation of novel trajectories that the model has not learned
before.

Robot learning has seen many recent advancements that
allow robots to learn a wide array of skills such as flipping
the pancake or spreading sauce on the pizza base [8, 47].
One approach to advance the field is to scale the size of

the training data and the model enabling large models to
learn varied action distributions [6, 31]. While this approach
has shown considerable promise in terms of generalization,
it requires large computational overheads and massive data
collection, which may not be entirely possible in the case
of robotics. Data collection in robotics is costly and there is
a need to develop models that combine and reuse existing
skills [5]. Efficiency of learning new skills and being able to
reuse them will be crucial for robot learning to be successful
in unstructured environments. Compositionality is one such
approach that aims to maximize the reuse of policies or
representations. Compositionality can be induced in various
aspects of the policy learning process for sample efficiency
gains. Compositional agents learn a set of base policies or
representations for the given data using the objective of
maximizing their composability to solve novel tasks. Func-
tional [27], representational [2], temporal [4, 43] and policy
composition [19, 33, 44] feature prominently in the machine
learning and robotics literature. Policy composition enables
embodied agents to reuse two or more of their learned policies
together for sampling from a novel distribution. Previously,
a mixture of experts [21] such as a weighted average or a
product of distributions [19] representing sub-policies has been
used to model skill, motion or constraint composition. Unlike
other forms, in policy composition, the distributions learned
for motions or constraints are probabilistically composed and
the resulting sample is generated from the new probability
landscape.

To that end, there is a surge of recent works that use
diffusion models for policy composition, corresponding to
images [11, 12] and even robot trajectories [44]. Diffusion
models have shown impressive performance in robotics and
learn different modes of the data distribution faithfully [8].
In this work we use diffusion models to compose learned
policies zero-shot to create novel blended robot motions. We
train policies in the configuration-space of manipulators to be
able to learn more complex motions that are difficult to achieve
with only end-effector control. Previous works have shown
robot policy composition using diffusion models in the end-
effector [41], tool [44] or object space [25] to constrain their
trajectory or generalize it to novel objects. However to the best
of our knowledge, policy composition has not been shown to
generate novel trajectories in the task space. Our contributions
in this work are the following:
• We compose learned configuration-space diffusion policies



Fig. 1: Here we depict an example of policy composition in the configuration space leading to interpolation. A reach policy π1 where the
robot moves in a straight line and a policy that learns to draw a circle π2 about an axis parallel to the line are trained independently. Their
composition πw

1 π
1−w
2 results in a spiral that is visible in the task-space of the robot, without needing any new demonstrations for it. Varying

w allows us to blend these motions in different proportions generating new spirals. To the best of our knowledge, ours is the first work to
show how policy composition can enable novel motion generation. Moreover, we also propose a novel metric MMD-FK that evaluates the
composed robot motion in task space while being agnostic to the actual space of the distribution composition. More examples of composition
can be found on our project website: https://sites.google.com/asu.edu/comp-styles/.

to generate composed motions in the task-space. We be-
lieve ours is the first work to generate novel trajectories
using a compositional framework. We show that weighted
average of the score involved in composing diffusion
models results in interpolation between the distributions.

• We propose a novel metric based on Maximum Mean
Discrepancy and the Forward Kinematics kernel: MMD-
FK to evaluate the composed robot motion in the task
space, agnostic of the actual space of the composition of
distributions.

II. BACKGROUND

A. Compositionality in learning
Several works have used compositional approaches to show

sample efficiency or generalization in learning. Compositional
representations have been explored in natural language pro-
cessing, such as word embeddings [28], with Andreas [2]
suggesting a metric to measure the extent of compositionality
in the generated representations. Mendez and Eaton [27]
survey the functional form of composition where compo-
sitionality is induced through modular architectures serving
defined purposes such as encoding the robot morphology or
task. Polices can be composed temporally, by stacking them
sequentially such as options in reinforcement learning [4].
Policies can also be composed probabilistically, such as a
product or mixture of experts [19]. A long line of works in
reinforcement learning (RL) probabilistically compose learned
distributions for sample efficiency gains using entropic [15]
approaches and in the model-based RL setting [16, 17]. In
supervised learning, traditionally energy based models have
been utilized to probabilistically compose distributions [11],
since the energy functions could be added to obtain a product
of corresponding distributions, from which samples could then
be generated using Markov Chain Monte Carlo (MCMC).
Recently, the number of works leveraging compositionality
has surged owing to the discovery of the connection between
energy based models and diffusion models and the ease
of training the latter [12]. Liu et al. [25] and Yang et al.
[45] compose learned constraints for generalizing to their
novel combinations, similar to the work of Liu et al. [24]

on composing learned object relations in images. Relevant
to our work, Urain et al. [41] use energy based models to
compose different motions for obstacle avoidance. However,
the distributions are handcrafted and not learned. Wang et al.
[44] compose learned distributions for the task of robotic tool
use, but these policies are task-conditional and unconditional
versions of the same task, and do not result in generation of
novel motion.

B. Diffusion Models

Our aim is to learn the action distribution aL0 for a fixed
trajectory length L from D demonstrations. Here, we use a
to denote action for all the trajectory time-steps for brevity
and drop the L notation. Gaussian diffusion models [36] learn
the reverse diffusion kernel pθ(at|at−1) for a fixed forward
kernel that adds Gaussian noise at each step q(at|at−1) =
N (at;

√
αtat−1, (1 − αt)I), such that q(aT ) ≈ N (0, I).

Here t <= T represents the diffusion time-step and αt the
noise schedule. To generate trajectories from the learned data
distribution pθ(a0), we sample at time step T from N (0, I)
and apply the reverse diffusion kernel pθ(at|at−1) at each
time step. For training the model, maximization of the log-
likelihood of the data distribution log q(a0) and reparametriza-
tion of the forward diffusion kernel yields the following loss
used in practise [20]:

Lt(θ) = Eq(a0)N (ϵ0;0,I)
[
λt[||ϵ0 − ϵ̂θ(at, o, t)||22]

]
(1)

Here λt is a function of αt, and the network ϵθ is conditioned
on observation o. We train our model to predict the noise ϵ0
added to action a0 for generating the noisy action at taken as
the input to the network. Tweedie’s formula [13] can be used to
show that ϵ0, and consequently ϵθ are proportional to the score
of the diffused data distribution q(at) =

∫
q(at|a0)q(a0)da0

[26].
−1√
1− ᾱt

ϵ̂θ(at, t) ≈
−1√
1− ᾱt

ϵ0 = ∇alog q(at) (2)

C. Energy Based Models (EBMs)

EBMs are a class of probabilistic models of the form
pθ(a) = efθ(a)

Z where Z(θ) =
∫
efθ(a)da is the normalizing

https://sites.google.com/asu.edu/comp-styles/


constant. Denoising score matching (DSM) [42] used to train
EBMs [38] minimizes the Fisher divergence between the
model pθ(a) and the Gaussian-smoothed data distribution
q(ã) =

∫
q(a)N (ã; a, σ2

t I)da at various noise scales σt.

Jσt
(θ) = Eq(a,ã)

[
1

2
||∇ãlog q(ã|a)−∇ãlog pθ(ã)||22

]
(3)

This circumvents the normalizing constant by evaluating the
gradient of the log-probability of the model ∇apθ(ã) =
∇afθ(ã) at different noise scales. Equation 3 simplifies to
[42]:

Jσt
(θ) = Eq(a)N (ϵ;0,I)

[
|| ϵ
σt

+∇afθ(a+ σtϵ)||22
]

(4)

Once trained, MCMC methods such as Langevin [3] can
be used to sample from EBMs since they only depend on the
score of the data distribution. This approach is also known in
the literature as score-based modeling [37].

D. Policy Composition and Sampling

Song et al. [39] show that score-based and denoising
diffusion models can be considered as discretizations of a
family of stochastic differential equations (SDE) that slowly
add noise to the data distribution. For the generation process,
the time-reversal of this SDE was given by Anderson [1]
da =

[
f(a, t)− g(t)2∇alog qt(a)

]
dt + g(t)dw̄, where w̄ is

a standard Wiener process for reverse time, g(t) is the scalar
diffusion coefficient and f(·, t) is the drift coefficient. The dis-
cretization of the reverse SDE equation leads to the ancestral
sampling [39] method proposed by Ho et al. [20] at−1 ∼
N
(
at;

1√
αt

[at + (1− αt)∇at
log q(at)] ,

√
1− αtI

)
. Equa-

tion 3 is then used to obtain an estimate of the score of the
perturbed data distribution ∇alog qt(a), where the transition
kernel q(ã|a) varies between approaches. Diffusion models use
a forward transition kernel of N (ã;

√
ᾱta, (1 − ᾱt)I) while

score-based model typically use N (ã; a, σ2
t I), where αt and

σt are respective noise scales.
Du et al. [12] suggest an equivalence between the loss

functions of diffusion in Equation 1 and score-based models in
Equation 4 to present the result in Equation 5. The same can
be verified through the substitution of the diffusion transition
kernel q(at|a) in Equation 3 and parametrizing the score with
the gradient of the energy function ∇afθ(a + σtϵ), only to
obtain Equation 4.

−1√
1− ᾱt

ϵ̂θ(at, t) ≈ ∇alog qt(at) ≈ ∇afθ(a+ σtϵ) (5)

To sample from the product distribution, we need the
score of the composition at each noise scale of the ancestral
sampling chain. Our product distribution can be expressed as
pcomp(a0) = p1θ(a0) ∗ p2θ(a0) ∝ ef

1
θ (a0)+f2

θ (a0), where a0 has
been specifically written to reflect that the distributions are
composed in the data space. Then the score of the composed
distribution at diffusion time t can be written as:

∇at
log qcomp(at) = ∇at

log

(∫ [∏
qi(a0)

]
q(at|a0)da0

)
(6)

A long line of works instead add the individual
scores of the distributions being composed∑

i

(
∇at log

[∫
qi(a0)q(at|a0)da0

])
, since Equation 6 is

not tractable. Du et al. [12] bring this out as the reason for
inferior quality of samples from composed image distributions
and suggest Annealed MCMC samplers instead of ancestral
sampling that does not result in the correct sequence
of marginals expected by the reverse diffusion process.
Unadjusted Langevin Dynamics (ULA) [35], also used by
score-based models [39], samples from the reverse transition
kernel N

(
at; at−1 +

σ2
L

2 ∇at log p(at), σ
2
LI
)

, where σ2
L

2

corresponds to the step size. Metropolis corrections lead to
better sample quality but require explicit parametrization of
the energy function, leading to more computational overhead
[12].

III. METHODOLOGY

A. Blending Motions Using Diffusion Models
Diffusion models have shown impressive results for com-

positional generation [11, 12]. As elaborated in Section II-D,
diffusion and score-based models can be understood as dis-
cretizations of forward and reverse SDEs, where the score of
the noisy data distribution can be estimated from Equation
3. Varying forward transition kernels q(at|a0) give rise to
different marginals q(at) at each time-step for diffusion and
score-based models. The score of the marginal of the com-
posed distribution can be written as Equation 6. Substituting
the forward transition kernel for diffusion models q(at|a0) in
Equation 6, we get:

∇at
log

(∫ [∏
qi(a0)

]
Φ

(
at −

√
ᾱta0

1− ᾱt

)
da0

)
(7)

Where Φ is the standard normal distribution. Substituting√
ᾱta0 as a′0, we get the following equation which resembles

Gaussian convolution corresponding to the forward transition
kernel for score-based models.

∇at
log

(∫ [∏
qi(

a′0√
ᾱt

)

]
Φ

(
at − a′0
1− ᾱt

)
da′0

)
(8)

For brevity, we have eliminated the constant terms in
Equations 7 and 8 due to the action of log. This resembles
the score of the composed distribution corresponding to the
forward transition kernel of score-based models, with an extra
factor of 1√

ᾱt
multiplied to the input of each distribution

being composed. Here, we have split the effect of the mean
and variance of the forward diffusion transition kernel to
suggest that the individual distributions being composed are
not invariant across time-steps.

For blending between distributions at each time-step, a
weighted average of the scores returned by the individual
policies can be utilized. This is equivalent to sampling from∏N

i pwi
i where

∑N
i wi = 1, where p indicates the distribution

at a specific timestep. We can write the averaged score estimate
as

1

N

N∑
i

(
∇at log

[∫
qi(

a′0√
ᾱt

)Φ

(
at − a′0
1− ᾱt

)
da′0

])
(9)



Fig. 2: This panel of figures shows the result of 100 samples from A: the individual distributions. B: Derived from the approximated score
giving equal weighting to both. C: Giving 2:1 weighting to the distribution 1 and 2 respectively D: Giving 1:2 weighting to the distributions.
The scores are normalized with respect to their weights. These images clearly show that diffusion models can have an interpolating effect
between two distributions based on the weighting of the scores.

As suggested by [12], for sampling from composed distribu-
tions, ULA along with ancestral sampling is used to ameliorate
the issue of mismatch between the sequence of marginals
resulting from the approximation and true composition. An-
nealed MCMC sampling at different noise scales helps the
sampling process converge to a sequence of distributions that
is different from the one implied by Equation 8. However, we
utilize this to our advantage by using the resulting sequence
of marginals to blend distributions. The score approximated
by Equation 9 composes perturbed (and temperature scaled)
distributions, rather than perturbing the composed distribu-
tion, at each time-step. Similar to the effect of introducing
perturbations at different scales observed by [39], composing
perturbed distributions populates the low density regions with
a score estimate directed towards the mean of the reverse
diffusion transition kernel q(at−1|at, a0). Equation 9 can be
equivalently written as Equation 10, where µi are the means
of the individual reverse transition kernels.

1

1− αt

(√
ᾱt

N

N∑
i=1

µi(at, t)− at

)
(10)

We hypothesize that the distribution converges to regions
where the net weighted scores cancel to zero. This suggests
that composing diffusion models using this commonly used
approximation has an interpolating-effect between the indi-
vidual distributions through the weighted averaging of scores.
This interpolation tends to actual composition of temperature
scaled distributions as the noise tends to zero at the end of the
sampling process.

To verify our claims, we train two diffusion models on
2D data samples from Gaussian’s with means at (5, 5) and
(−5,−5) and variance 1. The data distribution has limited
overlap. The results on composing them using reverse diffu-
sion sampling are shown in figure 2. On adjusting the weight
applied to the score of each model, the samples derived from
the approximated score of the composition shift towards the
respective distributions, implying that we can blend them in
relative proportions of their scores.

B. Composition Metric

We learn several base policies in the configuration-space
using demonstrations generated in simulation. These base

policies are then composed to generate novel motion. The
demonstrations for the base policies are generated based on
trajectories in the task-space, following which differential
inverse kinematics is used to obtain configuration-space tra-
jectories. This is essential as then the effect of composition
can also be evaluated in the task space, rather than the
configuration-space. Notably, the work by De Bortoli [10]
bounds the convergence of diffusion models when the data
distribution is supported by a low-dimensional manifold.

To the best of our knowledge, there is no existing approach
or dataset in robotics that enables quantitative evaluation of
samples from the composed policy. Wang et al. [44] and
Urain et al. [41] use success rate as a metric to evaluate
policy composition. However, this is not indicative of the
quality of the composed motion. Since we want to evaluate
a composed probability distribution using samples, we require
a metric that measures the distance between the composed
and the individual distributions, usually in the absence of the
ground truth composition. Several integral probability metrics
have been proposed in the image generation literature such
a FID [18] and Maximum Mean Discrepancy (MMD) [14]
to quantitatively evaluate the generated samples with respect
to the data distribution. However, evaluating the quality of the
composed motion in the task space is a complex problem as the
space of policy composition may be different. Since the effect
of motion composition is visible in the task space, the metric
for evaluating the composed motion should also operate in the
task-space, while our policies compose in the configuration-
space. To that end, we propose a novel approach to measure
the quality of composition for robot motion called MMD-FK.
Our metric for m and n samples from the two distributions
respectively can be expressed as:

ˆdist
2

MMD−FK(X,Y ) =
1

m(m− 1)

m∑
i=1

m∑
j ̸=i

KFK(xi, xj)+

1

n(n− 1)

n∑
i=1

n∑
j ̸=i

KFK(yi, yj)

− 2

mn

m∑
i=1

n∑
j=1

KFK(xi, yj)

(11)
It leverages MMD for it’s kernel support that enables mea-



surement of the distance between two distributions in terms
of the distance between their feature means in a latent space.
Lastly, for the kernel that will take configuration state as the
input to evaluate task-space distances, we use the positive-
definite Forward Kinematics kernel as suggested in Das and
Yip [9]. Here KFK is the positive-definite Forward Kinematics
kernel in Equation 12. Equation 12 sums over the m control
points defined on the robot, typically associated with each
link in the kinematic chain. For our purposes, one control
point on each kinematic chain allows us to capture the
movements of the links of the robot in the task-space. In
Equation 12, KRQ is a second-order rational quadratic kernel
KRQ(x, x

′) =
(
1 + γ

2 ||x− x′||2
)−2

, with the width of the
kernel being γ > 0.

KFK(x, x′) =
1

M

M∑
m=1

KRQ(FKm(x), FKm(x′)) (12)

IV. EXPERIMENTAL RESULTS

A. Data Generation and Model Architecture

We generate data using damped-least squares based differ-
ential inverse kinematics [7] for Franka Research-3 robot 1

in Mujoco [40]. We generate 250 demonstrations for training
each of the base policies. We generate demonstrations for
motor primitives [29] of arm extension (reach task), shaking,
oscillating and circling about the x, y and z directions/axis.
Unlike previous works that compose broad-based action distri-
butions [44, 41], we show our results on narrow distributions
to illustrate novel motion generation more clearly. We also
train policies with multiple primitives to validate our compo-
sitional framework, as explained in the subsequent sections.
We generate demonstrations for different states in the task-
space of the robot and record the joint states at the control
frequency.

Our policies are trained on the smaller variant of DiT [32],
conditioned on the initial state of the robot in configuration
space. The model ϵ̂θ(at, o, t) learns to predict the noise that
was added to the input at, conditioned on the diffusion time-
step t and the observation o using AdaLN [34]. We train all
the models to predict the whole trajectory of a set length L,
conditioned on the initial state of the robot.

B. Results

We present results for 3 cases- composition of distributions
corresponding to multiple primitives, blending single-primitive
distributions and interpolating between multi-primitive distri-
butions. We graphically show samples of the rollout from the
individual and composed polices and also evaluate the MMD-
FK distance between them and the ground-truth, wherever
available.

1) Composition of Policies with Common Primitives:
We train policies with multiple primitives to test if our
compositional approach is able to sample from regions of
high probability in both the distributions. We train a policy

1https://franka.de/research

to reach towards the +X or +Y direction and another to
reach towards the +X or the −Y direction. We expect the
composed policy to sample from the modes corresponding to
reaching towards the +X direction, as can be seen in figure
3. Composing policies to sample from the common regions of
high probability was also shown for the reach and obstacle
avoidance task by [41], however using analytically crafted
policies. The MMD-FK metrics obtained for this specific case
are provided in table I.

TABLE I: Composition: MMD-FK values between samples from the
composed and the individual distributions. We also show the value
between the composed distribution and the expected ground truth +X.
Values are shown both for reverse diffusion and ULA.

+X/+Y +X/-Y +X
Reverse Diffusion 0.055 0.056 0.0578

ULA 0.0518 0.0529 0.061

2) Blending Single-Primitive Distributions: We show in-
terpolation between policies by leveraging the approximation
used for composing diffusion models III-A. We compose a
policy learned to follow a circular trajectory in the YZ plane
and a reach policy moving along the X axis to create a spiral,
as shown in figure 1. We further can modulate the interpolation
by re-weighting the addition of scores corresponding to the
individual policies. The MMD-FK distance for the interpo-
lation is as given in table II. For comparison, the distance
obtained using the metric between policy rollouts and ground-
truth demonstrations for the reach-X and circle-YZ motions
are 0.01 and 0.017.

TABLE II: Interpolation: MMD-FK values between samples from the
interpolated and the individual distributions. Values are shown both
for reverse diffusion and ULA. We measure the distance between the
spiral and the individual distributions of circle and reach.

Reach Circle
Reverse Diffusion 0.1662 0.1393

ULA 0.1674 0.1394

3) Interpolating Between Multi-Primitive Distributions:
Interpolation between two single-primitives distributions may
also be achieved by directly sampling from the modes of
the individual policies and then adding the configuration-
space values together. However, this brute-force way does not
interpolate faithfully for multi-modal distributions as is usually
the case for real world policies. We show that it is possible
to use our compositional framework to interpolate between
the nearest modes of two policies in the presence of other
modes. We show two test cases where we isolate modes from
distributions and generate novel motions by interpolating from
them. We isolate modes in policies trained to reach +X or +Y,
and +X or -Y using the directional similarity of the trajectories
of circles, as shown in figure 4 and 5.



Fig. 3: This panel of figures shows the policy rollout for A: Policy trained on +X and +Y data. B: Policy trained on +X and -Y data. C:
Composed policy from A and B sampled using reverse diffusion. D: Composed policy sampled using ULA. The composed samples are
primarily generated from +X as expected.

Fig. 4: This panel of figures shows the policy rollout for A: Policy trained on +X and +Y data. B: Policy trained on circle data C: Composed
policy from A and B sampled using reverse diffusion. D: Composed policy sampled using ULA. The expected outcome of the composition
is an interpolation between the circle and the reach towards +Y axis due to the directional similarity. We are able to isolate the mode from
the policy and generate a novel motion by interpolating between circle and reach towards +Y. We see better sample quality from ULA over
reverse diffusion, which supports the claims by [12].

Fig. 5: This panel of figures shows the policy rollout for A: Policy trained on +X and -Y data. B: Policy trained on circle data in the XY
plane C: Composed policy from A and B sampled using reverse diffusion. D: Composed policy sampled using ULA. The expected outcome
of the composition is an interpolation between the circle and the reach towards -Y axis due to the directional similarity. We are able to
isolate the -Y mode from the policy and generate a novel motion by interpolating between circle and reach towards -Y.



TABLE III: Interpolation: MMD-FK values between samples from
the interpolated and the individual distributions. Values are shown
both for reverse diffusion and ULA. We measure the distance between
the spring and the circle in YZ plane and multi-modal policy of
reaching +X or +Y.

Reach Circle
Reverse Diffusion 0.1644 0.2297

ULA 0.1718 0.2387

V. DISCUSSION AND LIMITATIONS

There are many applications of blending between motions
such as inducing various styles in robot movement. There is
a long line of works on generating content conforming to
specific styles such as anime, sketch or comic for images
[46] and polite, toxic or Shakespearean for text [22]. This
is achieved through style transfer from a given sample [46],
or through text conditioned generation [30, 23]. Generating
the same content in different styles from a model meets the
specific demands of the consumers of the content. However,
this requirement is not limited to texts or images but also
applies to the way humans, and consequently robots behave.
Our method can help induce styles in different motions, thus
filling the gap in robotics.

Our work has several limitations which form the possible
avenues for future research.

• In this work we have combined primitive motions. In
future, we would like to extend this work to more
complex skills and possibly visuo-motor policies.

• We would like to explore if the interpolated motion can
be used as a prior for few-shot learning of a novel skill.

• We observe better quality of trajectories when sampled
using ULA for some of the compositions. However,
this is not reflected in our metric possibly due to the
overpowering effect of jitters.

VI. CONCLUSION

In conclusion, we propose a novel approach to blend mo-
tions using diffusion models by utilizing a weighted average of
scores, an approximation employed to sample from composed
distributions. This can be leveraged in robotics to generate
novel motion by blending specific modes of distributions. We
generate data for chosen motor primitives in the configuration
space and show that our method can faithfully blend the
nearest modes of two distributions. Finally, we also propose a
novel metric to evaluate composed robot motions in the task-
space, irrespective of the actual space of composition. We have
several avenues to improve our work, such as application to
real world domains and developing a better calibrated metric
to discriminate the quality of the composed trajectory.
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