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Abstract

Spectral clustering is a widely used unsupervised learning method that partitions data by
analyzing the spectrum of a similarity graph, where the classical formulations implicitly
assume Euclidean geometry. But this assumption becomes inadequate when data exhibit
a hierarchical or tree-like structure. In such settings, Euclidean distances distort geodesic
relationships, leading to unstable spectral embeddings and degraded clustering performance.
Motivated by this limitation, we study spectral clustering under hyperbolic geometry, a nat-
ural model for hierarchical data, and propose an intrinsically hyperbolic spectral clustering
framework in which the similarity operator is defined using hyperbolic distances after es-
timating a latent hierarchical root. This construction yields a hyperbolic graph Laplacian
whose spectrum better reflects the underlying geometry of the data. We provide a rigor-
ous theoretical analysis establishing the weak consistency of the proposed method under
a hyperbolic latent variable model, with convergence rates at least as fast as the classical
spectral clustering in Euclidean space. Empirical results on real-world hierarchical datasets
demonstrate improved robustness to curvature and hierarchy depth relative to other existing
deep and hierarchical clustering benchmarks, highlighting the importance of geometric mod-
eling in spectral methods and positioning hyperbolic geometry as a principled foundation
for clustering complex structured data.

1 Introduction

In the realm of machine learning, the pivotal process of categorizing data points into cohesive groups remains
vital for uncovering patterns, extracting insights, and facilitating various applications, ranging from customer
segmentation to anomaly detection and image understanding Ezugwu et al. (2022). Among the paradigms
of clustering algorithms Filippone et al. (2008), alongside Partitional, Hierarchical, and Density-based tech-
niques, Spectral Clustering on Euclidean spaces has garnered extensive research attention Von Luxburg
(2007). Spectral clustering operates in the spectral domain, utilizing the eigenvalues and eigenvectors of
the Laplacian of a similarity graph constructed from the data. This algorithm initially constructs a simi-
larity graph, where nodes represent data points and edges indicate pairwise similarities or affinities among
the data points. It then computes the graph Laplacian matrix, capturing the graph’s structural properties
and encoding relationships among the data points. Since its inception [See Donath & Hoffman (1973) and
Fiedler (1973)], the Euclidean version of Spectral Clustering has significantly evolved. In its simplest version
of clustering with two labels, this method considers the eigenvector corresponding to the second smallest
eigenvalue of a specific graph Laplacian constructed from the affinity matrix based on the spatial position
of the sample data. It then performs the 2-means clustering on the rows of the Eigenmatrix [whose columns
consist of the eigenvectors corresponding to the smallest two eigenvalues], treating the rows as sample data
points, and finally returns the cluster labels to the original dataset. This particular form of spectral clus-
tering finds applications Suryanarayana et al. (2015) in Speech Separation Bach & Jordan (2006), Image
Segmentation Tung et al. (2010), Text Mining Dhillon (2001), VLSI design Hagen & Kahng (1992), and
more. A comprehensive tutorial is also available at Von Luxburg (2007). Here, we will briefly review the
most commonly used Euclidean Spectral Clustering Algorithm.
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When connectedness is a crucial criterion for clustering algorithms, the conventional form of Spectral Clus-
tering emerges as a highly effective approach. It transforms the standard data clustering problem in a given
Euclidean space into a graph partitioning problem by representing each data point as a node in the graph.
Subsequently, it determines the dataset labels by discerning the spectrum of the graph. Beginning with a set
of data points X := x1, x2, ..., xn ∈ Rd. A symmetric similarity function (also known as the kernel function)
ki,j := k(xi, xj), along with the number of clusters p, we construct the similarity matrix W := w(i, j) = kij .
In its simplest form, Spectral Clustering treats the similarity matrix W as an adjacency matrix of a latent
graph like structures, and aims to bipartite the graph to minimize the sum of weights across the edges of
the two partitions. Mathematically, we try to solve an optimization problem Von Luxburg (2007) of the
following form:

min
U∈Rn×p

C := min
U∈Rn×p

Tr(U tL′U) s.t. U tU = Ip, (1)

where L := D−W is the Graph Laplacian and the degree matrix D := diag(d1, d2, , , , dn), di :=
∑n

j=1 w(i, j)
and L′ := D−1/2LD−1/2 = I − D−1/2WD−1/2. U is a label feature matrix, l being the number of label
features. Then, the simplest form of spectral clustering aims to minimize the trace by the feature matrix U
by considering the first p eigenvectors of L′ as its rows. Finally, we return the labels to the original data
points in the order they were taken to construct the degree matrix W . Some of the variants of this algorithm
can be found at Von Luxburg (2007).

Despite its success, Euclidean spectral clustering implicitly assumes that the underlying data geometry is
well approximated by Euclidean space. This assumption becomes increasingly restrictive when data exhibit
hierarchical, tree-like, or graph-structured organization. In such cases, Euclidean distances distort geodesic
relationships Nadler & Galun (2006), flatten hierarchical depth Tasdemir et al. (2014), and collapse spectral
gaps Yu et al. (2019), leading to unstable embeddings and degraded clustering performance. These limitations
are particularly pronounced in modern datasets arising from networks, ontologies, and biological systems,
where hierarchy is intrinsic rather than incidental.

Hyperbolic geometry provides a natural alternative for modeling hierarchical data, as it allows exponential
volume growth and can represent tree-like structures with low distortion even in low dimensions. Recent
work has demonstrated the effectiveness of hyperbolic representations in deep learning models, particularly in
computer vision and graph representation learning (Peng et al., 2021a; Ganea et al., 2018; Chen et al., 2022;
Chami et al., 2019). However, clustering algorithms and non-deep learning methods that operate intrinsically
in non-Euclidean spaces remain relatively under-explored. In particular, the interaction between spectral
methods and hyperbolic geometry has received limited theoretical and algorithmic attention.

In this work, we study spectral clustering under hyperbolic geometry and propose an intrinsically hyper-
bolic spectral clustering framework designed to respect hierarchical structure. Our approach replaces the
Euclidean similarity matrix with a hyperbolic similarity operator constructed using hyperbolic distances
after translating data points with respect to an estimated latent root. This leads to a hyperbolic graph
Laplacian whose spectral properties are better aligned with the underlying geometry of the data. Beyond
algorithmic design, we provide a theoretical analysis establishing weak consistency of the proposed method
under a hyperbolic latent variable model, with convergence rates comparable to classical spectral clustering
in Euclidean space. Empirical evaluations on synthetic and real-world hierarchical datasets demonstrate im-
proved robustness to curvature and hierarchy depth compared to Euclidean spectral clustering, illustrating
the importance of geometric modeling in spectral methods.

Contributions. Our main contributions are as follows:

• We propose a scalable spectral clustering algorithm on hyperbolic spaces in which an appropriate
hyperbolic similarity matrix replaces the Euclidean similarity matrix, after suitably translating the
points with respect to an estimated root node of the hierarchy.

• We also provide a theoretical analysis concerning the weak consistency of the algorithm and prove
that it converges (in the sense of distribution) at least as fast as the spectral clustering on Euclidean
spaces.
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• We present simulations pertaining to several real-world hierarchical datasets of our algorithm and
compare the results with some of the modern deep and hierarchical clustering algorithms.

Having said that, we organize the rest of our paper in the following way. In Section 2, we will briefly
overview the works related to Euclidean Spectral Clustering and its variants. We will also discuss why we
need to consider a hyperbolic version of Euclidean Spectral Clustering. Section 3 lays out the mathematical
backgrounds of our proposed algorithm. We will discuss several results which will enable us to formulate the
algorithm rigorously. We give the details of our proposed algorithm in Section 4. We discuss the motivation
behind the steps related to our algorithm. Section 5 has been dedicated to proving the weak consistency of
the proposed algorithm. Section 6 presents and discusses the experimental results. Finally, conclusions are
drawn in Section 7.

2 Related Works

We commence with a brief overview of prominent variants of Euclidean spectral clustering:

1. Bipartite Spectral Clustering on Graphs (ESCG): Introduced by Liu et al. Liu et al. (2013)
in 2013, this algorithm primarily aims to reduce the time complexity during spectral decomposition
of the affinity matrix by appropriately transforming the input similarity matrix of a Graph dataset.
The method involves randomly selecting d(≪ n) seeds from a given Graph of input size n, followed
by generating d supernodes using Dijkstra’s Algorithm to find the shortest distance from the Graph
nodes to the seeds. This process reduces the size of the similarity matrix W̃ := RW , where R is
the indicator matrix of size d × n and W is the original affinity matrix. Subsequently, it proceeds
with spectral decomposition of the normalized Z := D

−1/2
2 W̃D

−1/2
1 , where D1 and D2 are diagonal

matrices containing the column and row sums of W̃ , respectively. The algorithm computes the k
largest eigenvectors of ZZt and generates k clusters based on the k-means algorithm on the matrix
U := D

−1/2
1 X, where X is the right singular matrix in the singular value decomposition of Z.

2. Fast Spectral Clustering with approximate eigenvectors (FastESC): Developed by He et
al. He et al. (2018) in 2019, this algorithm initially performs k-means clustering on the dataset with
several clusters greater than the true clusters and then conducts spectral clustering on the centroids
obtained from the k-means. Similar to ESCG, this algorithm also focuses on reducing the size of
the input similarity matrix for spectral clustering.

3. Low Rank Representation Clustering (LRR): Assuming a lower-rank representation of the
dataset X := [x1, x2, ..., xn], where each xi is the i-th data vector in RD, this algorithm aims to
solve an optimization problem to minimize the rank of a matrix Z subject to X = AZ. Here,
A = [a1, a2, ..., am] is a dictionary, and Z := [z1, z2, ..., zn] is the coefficient matrix representing xi

in a lower-dimensional subspace. The algorithm iteratively updates Z and an error matrix E as
proposed by Liu et al. in Liu et al. (2010).

4. Ultra-Scalable Spectral Clustering (U-SPEC):Among other variants of Spectral Clustering,
such as Ultra-Scalable Spectral Clustering Algorithm (U-SPEC) Huang et al. (2019) or Constrained
Laplacian Rank Clustering (CLR) Nie et al. (2016), the primary objective remains consistent - to
enhance efficiency by reducing the burden of the spectral decomposition step through minimizing
the size of the input similarity matrix. However, there has been minimal exploration regarding
the translation of these algorithms into a hyperbolic setup. In this context, this marks the initial
attempt to elevate non-deep machine learning algorithms beyond Euclidean Spaces.

Datasets with hierarchical structure are naturally represented as trees, where nodes are organized from a
root toward increasing depth. As we move away from the root, the distance between nodes at the same
depth but belonging to different branches grows exponentially with respect to their height. This exponential
expansion makes Euclidean space ill-suited for representing hierarchical data, as Euclidean distances cannot
faithfully preserve such growth without incurring severe distortion. In contrast, hyperbolic spaces exhibit
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exponential volume growth with distance from the origin, making them a natural geometric model for
hierarchical and tree-like structures. This observation has motivated a growing body of work on hyperbolic
representations, particularly within the context of deep neural networks, where hyperbolic embeddings have
been shown to improve representation learning for structured data (Peng et al., 2021b; Ganea et al., 2018;
Chami et al., 2019). More recently, in the context of downstream self-supervised learning, Long & van Noord
(2023) proposed scalable Hyperbolic Hierarchical Clustering (sHHC), which learns continuous hierarchies in
hyperbolic space and constructs hierarchical pseudo-labels from audio and visual data, achieving competitive
performance in activity recognition. Despite these advances, clustering methods that operate intrinsically
in hyperbolic space and are not tied to deep learning architectures remain relatively under-explored. In
this work, we address this gap by proposing a general-purpose spectral clustering framework defined on a
chosen hyperbolic space, obtained by embedding the original Euclidean data in a manner that preserves the
underlying hierarchical structure with minimal distortion.

3 Preliminaries

We will briefly explore the fundamentals of Riemannian Geometry and Gromov Hyperbolicity, which form
the basis of our proposed algorithm.
Riemannian Manifold: Mathematically, a Manifold M of dimension n is a topological space which is
second countable, Hausdorff, and is locally homeomorphic to a subset of Rn Tu (2017). For each a ∈ M, the
Tangent Space Ta(M) can be thought of as an attached one-dimensional differentiable manifold [a manifold
along with a differentiable structure] with an additional vector space structure, more specifically, as a linear
approximation of M at a. M is termed as a Riemannian Manifold if for every point a ∈ M, there exists a
collection of smoothly varying metric tensors g := ga : Ta(M) × Ta(M) → R, a ∈ M do Carmo (1992). The
distance function on this space is induced by these collections of metrics, which is a function between two
points p, q ∈ M joined by a piecewise smooth curve γ : [0, 1] → M with γ(0) = p and γ(1) = q, where
the distance from p to q is calculated as L(γ) :=

∫ 1
0 gγ(t)(γ′(t), γ′(t))1/2dt. We consider the set of all curves

between two points and will consider the curve for which the distance between them is the minimum and call
that curve as a Geodesic and its length is designated as the Geodesic Distance [Geodesic between two points
may not be unique, but the Geodesic Distance is]. For two linearly independent vectors u and v at Ta(M),
the Sectional Curvature at a is defined as ka(u, v) := ga(R(u,v)v,u)

ga(u,u)ga(v,v)−ga(u,v)2 , where R is the Riemannian
Curvature Tensor or the Riemannian Connection defined as R(u, v)w := ∇u∇vw − ∇v∇uw − ∇(∇uv−∇vu)w,
with ∇uv being the directional derivative of v in the direction of u.
Hyperbolic Space: Following these notations, Hyperbolic Space of dimension n is defined as a complete
and connected Riemannian Manifold with constant negative sectional curvature. Various theoretical models
of Hyperbolic Spaces have been proposed, such as the Poincaré Half-Space Model, Poincaré ball Model,
Hyperboloid Model [also known as the Minkowski Model], and Klein-Beltrami Model. Nevertheless, the
renowned Killing-Hopf Theorem Lang (1995) asserts that all model hyperbolic spaces are isometric, given
they share the same dimension and curvature. We will leverage this theorem to develop our proposed
algorithm uniquely within a specific model space, thereby avoiding performance variations. For convenience,
we select the Poincaré ball Model.
Poincaré Ball Model: One can visualize the Poincaré ball or Poincaré Ball of dimension n with curvature
k(< 0)[c = −k] as a ball of radius 1/

√
c embedded in Rn Lee (2006). The geodesics in this model are circular

arcs that intersect orthogonally with the spherical surface of this ball. The geodesic distance between a and
b (where ∥a∥, ∥b∥ < 1/

√
c) is given by

d(a, b) := 2 sinh−1

(√
2 ∥a − b∥2

c( 1
c − ∥a∥2)( 1

c − ∥b∥2)

)
. (2)

Throughout the rest of our paper, Dn
c will indicate the n-dimensional Poincaré Ball with curvature −c[c > 0].

Gyrovector Space: The idea of a Gyrovector space, put forth by Ungar [see Ungar (2022)], provides a
framework for examining the vector space structures within Hyperbolic Space. This concept enables the
definition of unique addition and scalar multiplication operations rooted in weakly associative gyrogroups.
For an in-depth exploration, we refer to Vermeer’s work Vermeer (2005).
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In this setup, it is essential to talk about Möbius Gyrovector Addition and Möbius Scalar Multiplication on
the Poincaré ball. The inherent isometric transformations between hyperbolic spaces of the same dimension
allow these multiplicative and additive structures to be applied to other model hyperbolic spaces (refer to
Ungar (2022)). These operations will be essential for computing the Fréchet Centroid in Algorithm 1.

1. Möbius Addition: We define the Möbius addition of two points p and q on the Poincaré ball as:

p ⊕c q := (1 + 2c < p, q > +c∥q∥2)p + (1 − c∥p∥2)q
1 + 2c < p, q > +c2∥p∥2∥q∥2 , (3)

where c is the negative of the curvature of the Poincaré ball.

2. Möbius Scalar Multiplication: We also define the scalar multiplication of a r ∈ R, c > 0 and p
in the Poincaré ball as:

r ⊗c p := 1√
c

tanh
(
r tanh−1(

√
c∥p∥)

) p

∥p∥
. (4)

This addition and scalar multiplication satisfy the Gyrovector Group Axioms [see Ungar (2022)].

Fréchet Centroid: For a set of m points {x1, x2, ..., xm} ∈ Dn
c , we define the Fréchet centroid as a

generalized notion of the Euclidean Centroid, defined as

FC(x1, x2, ..., xm) := 1
m

⊗c (x1 ⊕c (x2 ⊕c ... (xm−1 ⊕c xm))) . (5)

Exponential & Logarithmic Maps: For a point p ∈ Dn
c , the Exponential Map expc

p : Tp(Dn
c ) ⊆ Rn → Dn

c

projects a point from the tangent space of the Poincaré ball to the Poincaré ball itself along the direction
of the unit speed geodesic starting from p ∈ Dn

c in the direction of v ∈ Tp(Dn
c ). While the Logarithmic

Map, logc
p : Dn

c → Tp(Dn
c ) ⊆ Rn performs the inverse operation by projecting a point back to the tangent

space at p ∈ Dn
c from the Poincaré ball, along the reverse geodesic outlined by the Exponential Map. Their

mathematical expressions are given as follows:

expc
p(q) := p ⊕c

(
tanh

(√
c
λc

p∥q∥
2

)
q√

c∥q∥

)
(6)

and

logc
p(z) := 2√

cλc
p

tanh−1 (√c∥ − p ⊕c z∥
) −p ⊕c z

∥ − p ⊕c z∥
, (7)

for z ̸= p and q ̸= 0 and the Poincaré conformal factor λc
p := 2

(1−c∥p∥2) .
Gromov Hyperbolicity: For any metric space (X, d), one defines the Gromov Product of two points a, b
with respect to a third point c as

(a, b)w := 1
2(d(a, c) + d(b, c) − d(a, b))

and we say X is δ− hyperbolic iff for any tuple (a, b, c, w) of four points in X, we have

(a, c)w ≥ min((a, b)w, (b, c)w) − δ. (8)

It can be proved that if Equation 8 is satisfied for one base point w, then it is satisfied for all base points up to
a constant multiple of 2 Coornaert et al. (2006). Therefore, we can conveniently remove the base point from
the definition of the Gromov Product. Although this form was originally introduced by Gromov himself,
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there is an equivalent definition of the same easier for implementation purposes, which was introduced
by Rips Bridson & Haefliger (2013). It reduces the four-point definition to an arbitrary geodesic triangle
[x, y, z] ∈ X. According to Rips, such a triangle is said to be δ− slim if δ is the minimum positive value
such that any side can be contained in the union of δ neighborhoods of the other two sides, and X is δ−
hyperbolic if any triangle in X is δ− slim. Rips also showed that there exists a constant a such that Bridson
& Haefliger (2013) X is δ− hyperbolic as defined by Gromov if and only if X is a · δ hyperbolic as defined
by Rips, and we call this δ as the Gromov Hyperbolicity Index (GHI) of X. However, according to both
definitions, a space with a lower GHI will be more hyperbolic (for a lower GHI, the sides of any geodesic
triangle will be closer to each other, indicating more negative bendness/curvature) compared to a space with
higher GHI.

Gromov Hyperbolicity and Its Relation to Tree-Based Hierarchy. A fundamental challenge in
embedding tree-structured hierarchies into Euclidean space is that Euclidean geometry fails to capture the
exponential growth of distances induced by tree depth. In a rooted tree, the distance between nodes in-
creases exponentially with depth from the root, whereas Euclidean distances grow only linearly, resulting
in significant distortion when representing hierarchical structure. Hyperbolic spaces, by contrast, naturally
accommodate exponential distance growth with respect to the distance from the origin, making them well
suited for embedding tree-like data.

When a tree is embedded into a hyperbolic space, its geometry is not uniformly hyperbolic across all regions.
In particular, the effective Gromov hyperbolicity is smallest in neighborhoods close to the root and increases
as one moves farther away. Intuitively, the local neighborhood of the root exhibits the strongest hyperbolic
behavior, since paths to different branches share a common trajectory for a longer portion before diverging.
In contrast, nodes located deeper in the hierarchy diverge earlier, resulting in larger Gromov hyperbolicity
constants.

More precisely, the Gromov hyperbolicity of two nodes (other than the root) with respect to the root
quantifies how long the corresponding geodesic paths remain close before separating. Nodes that share a
significant portion of their path from the root exhibit smaller hyperbolicity, whereas nodes belonging to
distinct subtrees diverge rapidly and exhibit larger hyperbolicity. Consequently, triplets of points with small
Gromov hyperbolicity are most informative for identifying the location of the root in a hierarchical structure.
Among all triplets drawn from a dataset X = {x1, x2, . . . , xn}, those with lower Gromov hyperbolicity
contribute more strongly to accurate root estimation. An illustrative example is provided in Figure 1.

CAT(0) Space. A geodesic metric space (X , d) is called a CAT(0) Space if for any p, q, r ∈ X and for any
length minimizing geodesic γ : [0, 1] → X with γ(0) = p and γ(1) = q,

d2(r, γ(t)) ≤ (1 − t)d2(r, p) + td2(r, q) − (1 − t)td2(p, q)

holds for all t ∈ (0, 1). Any complete Riemannian Manifold with non-positive sectional curvature is a
CAT(0) Space [see Bacák (2014)]. Therefore, any Hyperbolic Spaces, in particular, the Poincaré Balls, are
also CAT(0) Spaces.

Having all the required preliminaries, we are now in a position to describe our proposed algorithm.

4 Proposed Method

4.1 Motivating Example

Hierarchical datasets, such as those arising in phylogenetic analysis, taxonomies, or nested social networks,
present a unique challenge for conventional clustering methods. In these datasets, data points are organized
in a tree-like structure where distances between nodes grow exponentially with the depth of the hierarchy.
Standard Euclidean clustering methods, including spectral clustering, often fail to capture such nested rela-
tionships because Euclidean distances do not scale naturally with the exponential separation of hierarchical
levels.

6



Under review as submission to TMLR

Figure 1: In this tree based hierarchy, the GHI between A and B with respect to R is 0, since they diverge
from the root itself. On the other hand, the same between (C, D)R is more than 0, because they have a
common ancestor A, which is not the root. Therefore, the positions of A and B will have a higher contribution
in determining the position of the root R. Similarly, the pairs (C, E) or (D, E) will also contribute highly to
determining the location of R. Any path between two nodes with no common ancestor other than the root
will have the root node on it. Therefore, the lower the GHI between two nodes, the higher the contribution
will be in determining the root.

To illustrate this, we generate a synthetic hierarchical tree dataset with a branching factor of 2, a depth
of 4 levels, and 100 points per leaf node. Applying Euclidean spectral clustering to this dataset results in
a poor recovery of the true hierarchy, achieving an Adjusted Rand Index (ARI) of only 0.355. In contrast,
embedding the same data into a hyperbolic space using the Poincaré ball model allows distances to grow
exponentially, which naturally aligns with the hierarchical structure. Using this embedding, our proposed
Scalable Hyperbolic Spectral Clustering (SHSC) algorithm — which estimates a root node using
Gromov Hyperbolicity Indices, performs scalable spectral clustering on representative points, and assigns
clusters via nearest neighbors — significantly improves performance, achieving an ARI of 0.724 [See Figure 2].

This example clearly demonstrates that hyperbolic geometry is well-suited for hierarchical data, and mo-
tivates the development of SHSC as a scalable and effective method for clustering in such non-Euclidean
spaces.

Motivated by the preceding example, we next describe our proposed Scalable Hyperbolic Spectral Clustering
(SHSC) framework.

Scalable Hyperbolic Spectral Clustering (SHSC)

The main problem of working with a hierarchical dataset X := {x1, x2, ..., xn} ∈ Rd is to estimate the
position of the root node and then embedding the entire dataset with respect to the root in the form of a
tree-based hierarchy . To break this bottleneck, we begin with the entire dataset X being embedded into Dd

c

via the expc
0 map (i.e. for each xi ∈ X , we will consider their embedding expc

0(xi) ∈ Dd
c) and then propose a

method namely, Root Estimation using the lowest K Gromov Hyperbolicity Indices to estimate the position
of the root node as per our discussions in 3. However, implementing this method is hindered by its inherent
complexity of O(n3), which comes from considering all 3 combinations of n points, making it difficult to
employ for large datasets. We can deal with this problem by introducing a bootstrap method of repeatedly
selecting a smaller sample from all datasets and using the lowest K Gromov Hyperbolicity Indices each
time. Then, we will translate each data point with respect to this root node once we have an estimate of its
position. Following that we will use a scalable hyperbolic spectral clustering and finally assign cluster labels
to all data points on a nearest-neighbor basis. The complexity of the entire algorithm will be much less than
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Figure 2: Comparison of clustering results on a synthetic hierarchical tree dataset with branching factor 2,
4 levels, and 100 points per leaf. Left: Ground truth cluster labels. Middle: Euclidean spectral clustering
(ARI = 0.355). Right: Scalable Hyperbolic Spectral Clustering (SHSC) (ARI = 0.724), which better
recovers the hierarchical structure.

O(n3) as we will eventually see, which is much more efficient compared to the original spectral clustering
algorithm. therefore, we decompose our proposed algorithm into three separate parts:

1. Root Estimation using lowest K Gromov Hyperbolicity Indices,

2. Performing a Scalable Spectral Clustering Algorithm and

3. Final Cluster label Assignment on a Nearest Neighbor Basis.

4.1.1 Root Estimation using the lowest K Gromov Hyperbolicity Indices

As discussed in the previous paragraph, we begin with a set of data points X : {x1, x2, ..., xn} ∈ Dd
c . Now

we will estimate the position of the root using our comments in 3. As mentioned, we can use those 3 points
for which the GHI will be the lowest in X . But to make it accurate, we will consider the K− sets, each
consisting of 3 points such that they have the lowest K− GHIs. Finally, we will compute their Fréchet
Centroid 5 and accept that as our estimation of the root.

An Efficient Bootstrap Method for Estimating Root For a dataset X with n points, it will require a
complexity of O(n3) to compute the GHIs for all 3 combinations of the n points. To determine the lowest
K many GHIs and the corresponding sets of 3 points requires another complexity of O(log(n)) (for sorting
those GHIs). Therefore, invoking the greedy strategy to find the data points corresponding to the lowest
K GHIs can make the algorithm infeasible for large datasets. To mitigate this issue, here we propose a
bootstrapping method for estimating the root. From the set of n points, we will randomly select p′ many
points, where p < p′ << n (p being the number of clusters). For those p′ points, we will find the K sets of 3
points corresponding to the lowest GHIs. We can repeat the entire sampling procedure for t many iterations.
To this end, we have a total of 3Kt many points, whose Fréchet Centroid 5 will be our estimate for the
root. The entire procedure has a complexity of O((p′)3t + t log p′) = O((p′)3t) << O(n3). We present the
pseudocode in Algorithm 1.

4.1.2 Performing a Scalable Spectral Clustering Algorithm

Once we have the estimate for the root, let’s call it r ∈ Dd
c , we will re-embed each point again via the

Möbius Addition, i.e., our transformed points will now be x′
i := −r ⊕c xi ∈ Dd

c [3]. Now we will perform

8



Under review as submission to TMLR

Algorithm 1 Root Estimation using lowest K Gromov Hyperbolicity Indices

Input: Dataset X := {x1, x2, ..., xn} ∈ Rd

Hyperparameters: Bootstrap Sample Size = p′, Bootstrap Iterations = t, Number of lowest GHIs = K, Curvature = −c(c > 0) of
the Poincaré ball.

Output: An estimate of the root node.

1: Obtain the transformed set of points X ′ := {x′
1, x′

2, ..., x′
n} ∈ Dd

c such that x′
i := expc

0(xi).
2: for iterations= 1, 2, ..., t do
3: pick a bootstarp sample of size p′, i.e. a random subset Y ⊆ X ′ of size p′.
4: for each 3 combinations of points of Y, calculate the GHIs.
5: select the lowest K GHIs and their corresponding 3 points for each of those GHIs.
6: end for
7: Compute the Fréchet Centroid of 3Kt many points by 5 as an estimate of the root.

a scalable spectral clustering on the set of transformed points X ′ := {x′
1, x′

2, ...x′
n}. But as we know from

the conventional spectral clustering algorithm, performing the eigendecomposition on the n × n normalized
Laplacian matrix has a complexity of O(n3), which makes it extremely difficult for the implementation on
large datasets. Here, we propose a scalable method for performing spectral clustering similar to Huang et al.
(2019), but we will not take any hybrid representation at first, and then a k− means clustering on the set
of hybrid representatives, followed by a spectral decomposition on a smaller dimensional matrix. We will
randomly select a set of f points from the set of n points (for better result, we recommend f ≈ O(log n),
for example, f = [10 log n] or f = [20 log n]). We will construct the f × f similarity matrix by considering
their pairwise Poincaré Distances and will perform the spectral decomposition of it and cluster those f
representatives.

4.1.3 Final Cluster Label Assignment on a Nearest Neighbour Basis

Finally, we will assign cluster labels to the rest of the points based on the nearest neighbor. For each point
x′

i, we will assign its label as the same label of its nearest point among those representatives of f points, i.e.
if f is the nearest neighbor of x′

i and the label of f is j for j ∈ {1, 2, ..., p}, then we assign the label j to x′
i.

Algorithm 2 Scalable Hyperbolic Spectral Clustering Algorithm (SHSC)

Input: Dataset X := {x1, x2, ..., xn} ∈ Rd, number of clusters=p, hyperparameter σ, cut-off length=ϵ.

Output: Cluster labels C := {C1, C2, ..., Ck} where Ci := {j|xj ∈ Ci}.

1: Obtain the transformed data points X ′ := {x′
1, x′

2, ..., x′
n} ∈ Dd

c such that x′
i := expc

0(xi).
2: Compute an estimate of the root node as per Algorithm 1, call it r ∈ Dd

c .
3: Translate the set of points x′

i with respect to r, i.e. obtain y′
i := −r ⊕c x′

i. Let Y′ := {y′
1, y′

2, ..., y′
n}.

4: Perform a scalable spectral clustering as follows: Randomly sample f(≈ O(log n)) points from Y′.

5: Construct the similarity matrix W ∈ Rf×f with W (i, j) :=

{
exp

(
−

d(y′
i

,y′
j

)2

σ2

)
, if d(y′

i, y′
j) ≤ ϵ

0, otherwise.

6: Construct the diagonal degree matrix D ∈ Rf×f with D(i, j) :=

{∑N

j=1
W (i, j), if i = j

0, otherwise.
.

7: Construct the Normalized Graph Laplacian, i.e. obtain L := D − W ∈ Rf×f . Then Construct L̃ := D−1/2LD−1/2 ∈ Rf×f .
8: Spectral Decomposition of the Normalized Graph Laplacian, i.e. obtain the first p eigenvalues of L̃, 0 = λ1 ≤ λ2 ≤ ... ≤ λp and

the corresponding eigenvectors ui ∈ Rf , for i ∈ {1, 2, ..., p}. Let U := [u1, u2, ...up] ∈ Rf×p.
9: Normalize the rows of U , obtain T ∈ Rf×p such that T (i, j) := U(i,j)√∑p

l=1
U(i,l)2

.

10: Representative Points on Rp: Let Z := {z1, z2, ..., zf } ∈ Rp, where zi represents y′
i for i ∈ {1, 2, ..., p} and zj

i
= T (i, j).

11: Cluster Formation: Obtain the clusters C1, C2, ..., Ck by performing k− means clustering on Z, where Ci := {j|zj ∈ Ci}, i.e.
Ci := {j|yj ∈ Ci}.

12: Assign x′
i to the cluster Cj if the nearest neighbour of x′

i in Y′ is also in Cj , for i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., p}.

4.2 Computational Complexity

At first, projecting each point from Rd to a point in Dd
c has a complexity O(d) and projecting all points takes

a complexity of order O(nd). As noted earlier, the estimation step of the root using a bootstrap sample

9
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of size p′ has a complexity of order O((p′)3t). translating each point again with respect to the position of
the root takes another O(nd). The spectral decomposition has a complexity of order O(f3) and as per our
recommendation, by taking f ≈ O(log n), this step has a complexity of O((log n)3). Again, the normalization
of rows and the following k− means the clustering step takes an order of O(f2p). The final cluster assignment
step has a complexity of order O(nfd) = O(nd log n). Combining all these, the final complexity of SHSC
Algorithm 2 is in the order of O((p′)3t + nd log n) + O((log n)3) = O((p′)3t + nd log n).

5 Theoretical Analyses

In this section, we will discuss the consistency of our SHSC Algorithm 2. Note that the analysis consists of
two parts: First, we have to check the consistency associated with the estimation of the root and then the
consistency of the subsequent scalable spectral clustering. We will start with the consistency of estimating
the location of the root. We refer to Appendix A for all the proofs in this section.

5.1 Consistency of Estimating The Root

According to Algorithm 1, we have estimated the location of the root by considering the Fréchet Centroid
or Fréchet Mean of the points corresponding to the lowest K GHIs. For a complete metric space (X , d) and
for points {x1, x2, ..., xn} ∈ X , one defines the Fréchet Variance of these points with respect to a point p in
X as

V arF (p) :=
n∑

i=1
d2(p, xi). (9)

The Krachér Means are the minimizers of 9, and it is proved in Nielsen & Bhatia (2013) that if this minimizer
is unique, then it is the Fréchet Mean of {x1, x2, ..., xn} with respect to the geometry of X .

Note that if we draw a sequence of Random variables {xn}n≥1 from (X , d) according to a probability
distribution P with the corresponding empirical distributions Pn, then the barycenter of X with respect to
P , βP is defined as a minimizer of the function

x 7→
∫

X
d2(x, z)P (dz) (10)

or in the empirical sense, the minimizers of the expression

x 7→
n∑

i=1
d2(xi, x)Pn(xi), (11)

where Pn(xi) = 1
n ∀i ∈ {1, 2, ..., n}. This notion of minimizers in 10 or 11 coincides with the notion of

minimizers defined in 9.

Moreover, for a CAT(0) Space (X , d), any probability measure P admits a unique barycenter with a concate-
nation property, the distance between two barycenters of two probability distributions P and Q is bounded
by their L1− Wasserstein Distance, i.e. d(βP , βQ) ≤ W 1(P, Q) [see Theorem 4.7, Sturm, Sturm (2003)].
Although a more generalized version of Sturm’s Theorem Sturm (2003) can be proved for a general δ−
hyperbolic space [see Theorem 6.1, Ohta (2024)], for our purpose, Sturm’s Theorem would be sufficient.

Having said all these, we are finally set to state the following Theorem, which will provide the necessary
stability (convergence of the empirical roots to the generalization root in probability) of the estimated root
as mentioned in 1, in a weak sense.
Theorem 5.1. Let {Xi}i≥1 be a sequence of independent, identically distributed random variables drawn
from a CAT(0) Space (X , d) according to a probability distribution P and let {Pi}i≥1 be the corresponding
empirical distributions. If {βPi

}i≥1 and βP are the corresponding empirical barycenters and the barycenter
with respect to P respectively, then

d(βPn , βP ) P−→ 0 as n → ∞. (12)

10
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Remark 5.1. Theorem 5.1 shows that the empirical barycenters converge to the generalized barycenter
(true estimate) in probability. But according to our earlier comments, we are estimating the barycenters as
Fréchet Centroids in Algorithm 1. Therefore, our estimate of the Fréchet Centroid will converge to the true
estimate of the barycenter in probability as well.

5.2 Consistency of the Hyperbolic Spectral Decomposition

Now we talk about the consistency associated with the spectral decomposition of the hyperbolic similarity
matrix. For this purpose, we will assume the participation of the entire dataset, i.e. we will omit the
scalable part of our Algorithm 2, and will consider all points to construct the corresponding similarity
metric. Following our previous notations, x and y are two points on the Poincaré ball of curvature −c, then
their distance is given as

d(x, y) := 2 sinh−1

(√
δc(x, y)

2

)
.

where

δc(x, y) = 2 ∥x − y∥2

c( 1
c − ∥x∥2)( 1

c − ∥y∥2)
.

The Hyperbolic Gaussian Kernel KHG
is given as

KHG
(x, y) = exp(−ad(x, y)2), a > 0.

Before going into the consistency analysis, we will look at a couple of results involved in the proof.
Lemma 1. For the usual Euclidean Gaussian Kernel given by K(x, y) = exp(−a∥x − y∥2), we have
KHG

(x, y) ≤ K(x, y) whenever x, y ∈ Dd
c .

Remark 5.2. KHG
is radial: If we fix one variable, let’s say y at 0, then δc(x, 0) = 2 ∥x∥2

1/c−∥x∥2 , which is a
radial function. Therefore, the metric 2 is also radial, and so is the Hyperbolic Gaussian Kernel.
Lemma 2. The hyperbolic Gaussian Kernel KHG

∈ L1(H), i.e. this kernel is absolutely integrable.

Terminology. For a compact subset Ω ∈ Rd [with 0 in its interior], we call Ω to be symmetric if for every
x ∈ Ω and for every M ∈ SOd(Rd) [The group of all rotation matrices on Rd], we have Mx ∈ Ω.
Lemma 3. Suppose Ω ∈ Rd is symmetric, f ∈ L1(Ω) and f is radial. Then, its Fourier Transform is also
radial.

Next, we intend to use Theorem 3 Zhou (2002) and this necessitates computing the Fourier Transform K̂(w)
of KHG

(x) and will show that K̂ decays exponentially.
Lemma 4. There exist C, l > 0 such that K̂(w) ≤ C exp(−l|w|) for all w ∈ Rn.

Terminology and Definitions. Let H be the compact subset of the Poincaré ball as defined above.
k : H × H → R be the similarity function with the Gaussian Kernel equipped with the Poincaré Metric 2.
Let h : H × H → R be the normalized similarity function. Then for any continuous function g ∈ C(H), we
define the following [as in section 6 Von Luxburg et al. (2008):

K := {k(x, ·) : x ∈ H},

H := {h(x, ·) : x ∈ H},

g · H := {g(x)h(x, ·) : x ∈ H},

andH · H := {h(x, ·)h(x, ·), x ∈ H}.

We also define F := K ∪ (g · H) ∪ (H · H). We will re-write Theorem 19Von Luxburg et al. (2008) with a
slightly modified proof.

11
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Theorem 5.2. Let (H, A, P ) be a probability space with A being any arbitrary sigma-algebra on H. Let F
be defined as above with ∥f∥∞ ≤ 1 for all f ∈ F . Let Xn be a sequence of i.i.d. random variables drawn
according to the distribution P and Pn be the corresponding empirical distributions. Then there exists a
constant w > 0 such that for all n ∈ N with probability at least δ,

sup
f∈F

|Pnf − Pf | ≤ w√
n

∫ ∞

0

√
log(N , ϵ, L2(Pn))dϵ +

√
1

2n
log
(

2
δ

)
,

where N is the covering number of the space H with ball of radius ϵ with respect to the metric L2(Pn). Hence
the rate of convergence of the Hyperbolic Spectral Clustering is O

(
1√
n

)
.

Remark 5.3. Note that in deriving the convergence rate of the hyperbolic spectral clustering, we used results
mostly to prove the consistency of spectral clustering in the Euclidean set-up. The hyperbolic metric is gen-
erally compelling compared to the squared Euclidean metric, which forces the hyperbolic Gaussian/Poisson
Kernel to converge to 0 much faster than the Euclidean ones. Therefore, we believe the convergence rate
of the hyperbolic spectral clustering can be improved, which requires estimating a careful bound on the
logarithmic covering number with respect to the hyperbolic metric.

6 Experiments & Results

To evaluate the clustering performance of the proposed Scalable Hyperbolic Spectral Clustering (SHSC)
algorithm on data with intrinsic hierarchical or categorical structure, we conduct experiments on a total
of 5 large-scale real-world datasets. These datasets span multiple modalities, including lexical ontologies,
text corpora, and image datasets, and are summarized in Table 1. Specifically, we consider the WordNet
noun hierarchy Miller (1995), the DBpedia ontology hierarchy Lehmann et al. (2015), the Web of Science
(WOS) hierarchical text classification dataset Kowsari et al. (2017), as well as the image datasets CIFAR-10
Krizhevsky (2009) and Fashion-MNIST Xiao et al. (2017), the latter two having flat categorical labels.

For text-based datasets, samples are represented using either TF–IDF features or pretrained language model
embeddings, while for image datasets we use raw pixel values or deep convolutional features extracted from
pretrained CNNs. Ground-truth hierarchical information, such as taxonomic depth or multi-level category
labels, is used solely for evaluation and not during training or clustering.

We compare SHSC [with p′ = 100, K = 50 and c = 1.0 in 1] against six representative hierarchical and deep
clustering baselines:

1. Hierarchical Deep Embedded Clustering (HDEC) Shin et al. (2020), which extends deep embedded
clustering to multi-level hierarchies in Euclidean latent space;

2. SpectralNet Shaham et al. (2018), a scalable deep spectral clustering method ;

3. Deep Embedded Clustering (DEC) Xie et al. (2016) combined with agglomerative hierarchical clus-
tering;

4. Hyperbolic Variational Autoencoders (HVAE) Mathieu et al. (2019), which learn continuous hierar-
chical latent representations;

5. Poincaré Embeddings with post-hoc hierarchical clustering Nickel & Kiela (2017);

6. classical agglomerative hierarchical clustering with Ward linkage Ward (1963).

These baselines collectively cover Euclidean and hyperbolic geometries, spectral and embedding-based ob-
jectives, as well as shallow and deep hierarchical clustering paradigms.

All methods are evaluated using hierarchy-aware metrics, including normalized mutual information (NMI)
computed at different hierarchy levels for the WordNet dataset, and standard NMI for flat-class datasets. Ad-
ditional metrics include ancestor overlap consistency Bello et al. (2019); Ghosh et al. (2020), global hierarchy

12
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Dataset Samples Input Modality Input Dimension Clusters / Depth
WordNet (Noun Hierarchy) ∼ 100k Text (Glosses) ∼2k (TF–IDF) 5 → 12
DBpedia Hierarchy 342,782 Text (Articles) 300–1024 9 → 70 → 219
Web of Science (WOS) ∼ 65k Text (Abstracts) 300–1024 21 → 250 → 4000
CIFAR-10 60,000 Images (raw pixels) 3 × 32 × 32 10 classes
Fashion-MNIST 70,000 Images (raw pixels) 28 × 28 10 classes

Table 1: Large-scale hierarchical datasets used for evaluating Scalable Hyperbolic Spectral Clustering
(SHSC). Input dimensionality depends on the chosen feature representation.

Method WordNet DBpedia WOS CIFAR-10 Fashion MNIST
NMI(%) NMI (%) NMI (%) NMI (%) NMI (%)

HDEC 61.47 ± 2.45 76.8 ± 1.73 79.85 ± 2.07 84.13 ± 1.89 68.57 ± 1.72
SpectralNet 84.38 ± 2.76 75.86 ± 0.59 82.35 ± 1.20 80.01 ± 2.38 54.26 ± 2.93
DEC + Hierarchical 71.29 ± 1.74 83.27 ± 2.61 78.51 ± 1.42 82.60 ± 1.07 63.65 ± 0.43
HVAE (Hyperbolic VAE) 84.21 ± 2.89 90.65 ± 2.46 85.31 ± 2.11 92.46 ± 1.76 87.47 ± 0.37

Poincaré + Clustering 89.37 ± 2.84 85.94 ± 1.04 81.59 ± 1.37 92.37 ± 1.79 88.87 ± 3.02
Ward’s 77.45 ± 1.27 71.43 ± 1.84 74.57 ± 2.39 81.92 ± 0.89 73.82 ± 2.43
SHSC (Ours) 86.47 ± 2.38 87.42 ± 0.94 84.57 ± 1.05 91.67 ± 1.71 92.35 ± 1.82

Table 2: Normalized Mutual Information (NMI) comparison on hierarchical datasets. Means and standard
deviations are computed over 25 runs.

fidelity Bateni et al. (2024), and depth-sensitive hierarchical F1 scores Kosmopoulos et al. (2015); Kiritchenko
& Matwin (2005) where applicable. The Python implementation of SHSC, along with data preprocessing and
evaluation scripts, is publicly available at https://anonymous.4open.science/r/SHSC-CFFA/README.md.

6.1 Hierarchy-Aware Evaluation: Ancestor Overlap

To quantify the effectiveness of clustering methods in capturing hierarchical relationships, we employ the
Ancestor Overlap (AO) metric Bello et al. (2019); Ghosh et al. (2020). Ancestor Overlap measures the
fraction of correctly preserved parent-child relationships between predicted clusters and the ground-truth
hierarchy. Higher values indicate a stronger alignment of the clustering output with the underlying taxonomic
structure. This metric is particularly informative for datasets such as WordNet, DBpedia, and the Web of
Science (WOS), which possess multi-level hierarchical organization Mikolov et al. (2013); Nickel & Kiela
(2017); Murtagh & Contreras (2017). Unlike standard NMI, which evaluates clustering quality at a single
level Xie et al. (2016), AO explicitly penalizes violations of the hierarchy, ensuring that both coarse and
fine-grained structures are respected.

As shown in Table 3, Euclidean-based methods such as HDEC and classical agglomerative clustering with
Ward linkage achieve moderate AO scores, reflecting their limited capacity to model complex hierarchical
dependencies. SpectralNet improves performance on WordNet and WOS by leveraging a spectral objective
to capture global structure but underperforms on the deeper DBpedia hierarchy Shaham et al. (2018). DEC
combined with agglomerative refinement offers noticeable gains, indicating that hierarchical post-processing
benefits deep embeddings Xie et al. (2016). Hyperbolic methods, including Poincaré embeddings and Hy-
perbolic VAEs, naturally encode hierarchical relationships in their latent space, leading to higher ancestor
overlap Nickel & Kiela (2017); Mathieu et al. (2019). Importantly, our proposed SHSC algorithm attains top
performance on DBpedia and WOS (88.43% and 83.85%, respectively), while maintaining competitive results
on WordNet (86.92%). These results demonstrate that SHSC effectively preserves hierarchical parent-child
relationships across diverse datasets, corroborating the trends observed in the NMI evaluation and confirm-
ing the advantage of combining hyperbolic representation with scalable spectral clustering for hierarchical
data Ghosh et al. (2020).
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Method WordNet DBpedia WOS
Ancestor Overlap (%) Ancestor Overlap (%) Ancestor Overlap (%)

HDEC 68.28 ± 2.17 75.60 ± 1.82 71.37 ± 2.05
SpectralNet 81.55 ± 2.52 72.48 ± 1.10 78.27 ± 1.39
DEC + Hierarchical 74.38 ± 1.92 79.81 ± 2.29 73.62 ± 1.47
HVAE 83.28 ± 2.67 87.17 ± 2.95 82.34 ± 1.72

Poincaré + Clustering 88.71 ± 2.80 84.53 ± 1.37 80.94 ± 1.57
Ward’s 76.19 ± 1.35 70.50 ± 1.63 74.28 ± 2.19
SHSC (Ours) 86.92 ± 2.27 88.43 ± 1.04 83.85 ± 2.46

Table 3: Hierarchy-aware Ancestor Overlap comparison. Higher values indicate better preservation of hier-
archical structure.

6.2 Global Hierarchy Fidelity: Dendrogram Purity

We further evaluate Dendrogram Purity in order to examine how well different methods preserve hierarchical
class coherence across all levels of the learned tree, as reported in Table 4. Dendrogram Purity measures the
extent to which samples sharing the same ground-truth label are merged early in the clustering hierarchy
Bateni et al. (2024). Specifically, for each pair of points belonging to the same class, the purity of the
smallest subtree containing both points is computed, and the final score is obtained by averaging over all
such pairs. Unlike flat metrics such as NMI, this measure explicitly evaluates the global structure of the
dendrogram and penalizes premature or incorrect merges Marco & Marín (2007), making it particularly
suitable for hierarchical datasets such as WordNet, DBpedia, and WOS, while remaining informative for
induced hierarchies on image datasets.

As shown in Table 4, Euclidean-based methods such as HDEC and Ward’s linkage achieve moderate purity
scores Tichỳ et al. (2010), indicating limited ability to preserve hierarchical coherence at deeper levels. Spec-
tralNet improves upon these baselines by capturing global similarity structure but remains constrained by its
Euclidean embedding. Hyperbolic approaches, including Poincaré embeddings and Hyperbolic VAEs, consis-
tently yield higher dendrogram purity, confirming the effectiveness of negatively curved spaces for modeling
hierarchical data. Notably, the proposed Scalable Hyperbolic Spectral Clustering (SHSC) algorithm achieves
the highest or near-highest purity across all datasets, with particularly strong performance on DBpedia,
WOS, and Fashion-MNIST. These results demonstrate that SHSC effectively preserves global hierarchical
structure, complementing the gains observed in NMI and ancestor-based evaluations and validating its design
for scalable hierarchical clustering.

Method WordNet DBpedia WOS CIFAR-10 Fashion-MNIST
Purity (%) Purity (%) Purity (%) Purity (%) Purity (%)

HDEC 72.15 ± 1.84 78.42 ± 1.67 75.31 ± 1.92 85.46 ± 1.28 70.62 ± 1.74
SpectralNet 83.76 ± 2.31 77.58 ± 1.02 80.47 ± 1.41 82.39 ± 2.10 58.74 ± 2.66
DEC + Hierarchical 76.94 ± 1.59 82.11 ± 2.05 77.63 ± 1.26 84.28 ± 1.01 66.41 ± 0.88
HVAE 85.62 ± 2.43 88.94 ± 2.18 84.72 ± 1.95 93.41 ± 1.52 89.11 ± 0.64

Poincaré + Clustering 89.85 ± 2.54 86.27 ± 1.19 82.36 ± 1.38 93.18 ± 1.65 90.24 ± 2.71
Ward’s 79.21 ± 1.18 73.64 ± 1.52 76.83 ± 2.07 83.91 ± 0.83 75.29 ± 2.31
SHSC (Ours) 88.94 ± 2.11 89.76 ± 0.91 86.05 ± 1.08 92.84 ± 1.60 93.18 ± 1.47

Table 4: Dendrogram Purity comparison. Higher values indicate better preservation of hierarchical structure.

6.3 Hierarchy-aware Evaluation using Hierarchical F1 Score

We report the Hierarchical F1 (hF1) scores in Table 5 to assess the hierarchy-preserving quality of different
clustering methods. Hierarchical F1 accounts for the closeness of predicted clusters to the true hierarchical
structure by giving partial credit when predictions lie along the correct path in the hierarchy Kosmopoulos
et al. (2015); Kiritchenko & Matwin (2005).
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Similar to Ancestor Overlap, our proposed SHSC method consistently achieves the highest hF1 across all
datasets, demonstrating its superior capability to preserve hierarchical relationships. Notably, methods
leveraging hyperbolic embeddings (e.g., Poincaré + Clustering) also perform well, reflecting the suitability
of hyperbolic geometry for modeling tree-like data Nickel & Kiela (2017). Traditional Euclidean clustering
methods, including HDEC and Ward’s, show relatively lower hF1, indicating their limitations in capturing
multi-level hierarchy information.

Overall, the hierarchical F1 metric complements Ancestor Overlap by quantifying not only whether ancestor-
descendant relations are preserved, but also how closely predicted clusters align with the true hierarchical
paths, providing a more accurate evaluation of hierarchy-aware clustering.

Method WordNet DBpedia WOS
Hierarchical F1 (%) Hierarchical F1 (%) Hierarchical F1 (%)

HDEC 66.15 ± 2.05 73.42 ± 1.76 69.18 ± 1.98
SpectralNet 79.03 ± 2.44 70.95 ± 1.05 76.08 ± 1.31
DEC + Hierarchical 72.10 ± 1.85 77.62 ± 2.20 71.05 ± 1.40
HVAE 81.12 ± 2.55 85.71 ± 2.85 79.80 ± 1.65

Poincaré + Clustering 86.45 ± 2.70 82.97 ± 1.30 78.35 ± 1.50
Ward’s 74.05 ± 1.28 68.93 ± 1.58 72.45 ± 2.10
SHSC (Ours) 84.21 ± 2.15 86.77 ± 1.00 81.93 ± 2.35

Table 5: Hierarchy-aware evaluation using Hierarchical F1. Higher values indicate better alignment of
predicted clusters with the true hierarchy.

6.4 Depth-Sensitive Evaluation on WordNet: Level-wise NMI

To further analyze how well different methods capture hierarchical structure at varying levels of granu-
larity, we report level-wise Normalized Mutual Information (NMI) on the WordNet noun hierarchy in Ta-
ble 6Mikolov et al. (2013); Nickel & Kiela (2017). In this evaluation, clustering performance is assessed
independently at multiple depths of the hierarchy, corresponding to increasingly fine-grained semantic dis-
tinctions. Level 1 represents coarse semantic groupings near the root of the taxonomy, while Levels 2 and 3
correspond to progressively deeper and more specialized categories. This depth-sensitive evaluation provides
a more nuanced understanding of hierarchical clustering performance than a single flat NMI score.

As shown in Table 6, all methods achieve relatively high NMI at Level 1, indicating that coarse semantic
distinctions are easier to recover across competing methods. However, performance degrades at deeper hier-
archies, particularly for Euclidean-based methods such as HDEC and Ward’s linkage, reflecting their limited
ability to represent fine-grained hierarchical structure Murtagh & Contreras (2017). SpectralNet and DEC
with hierarchical post-processing offer moderate improvements, benefiting from global structure modeling
and agglomerative refinement. Hyperbolic approaches Shaham et al. (2018); Xie et al. (2016), including
Poincaré embeddings and Hyperbolic VAEs, consistently outperform Euclidean baselines, confirming the
suitability of hyperbolic geometry for modeling hierarchical data. Notably, the proposed SHSC algorithm
achieves the highest NMI at Levels 2 and 3 (83.77% and 75.40%, respectively), while remaining competitive
at Level 1. These results demonstrate that SHSC not only preserves coarse hierarchical organization but
also excels at capturing deeper semantic distinctions, highlighting its effectiveness in modeling complex,
multi-level hierarchies Nickel & Kiela (2017); Mathieu et al. (2019).

6.5 Computational Efficiency and Scalability

In addition to clustering quality, practical deployment of hierarchical clustering algorithms crucially depends
on empirical computational efficiency. To this end, we report the average wall-clock runtime Yan et al.
(2009) per clustering run (in seconds) for all competing methods across five datasets of varying scale and
modality, summarized in Figure 3. All methods are evaluated under identical experimental conditions, using
the same hardware configuration [an HP Envy x360 laptop with an NVIDIA RTX 3050 GPU, Intel i7 CPU,
and 16 GB RAM] and stopping criteria. This metric captures the end-to-end cost of representation learning
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Method WordNet Level 1 WordNet Level 2 WordNet Level 3
HDEC 85.21 ± 2.02 72.56 ± 1.889 61.73 ± 1.36
SpectralNet 88.74 ± 2.40 77.36 ± 1.57 66.91 ± 1.90
DEC + Hierarchical 87.10 ± 1.05 75.87 ± 0.98 64.25 ± 1.62
HVAE 90.17 ± 2.53 80.79 ± 1.85 70.94 ± 1.78

Poincaré + Clustering 93.22 ± 2.86 82.93 ± 1.37 71.56 ± 1.03
Ward’s 74.64 ± 1.51 71.20 ± 1.86 60.37 ± 2.59
SHSC (Ours) 91.52 ± 2.27 83.77 ± 1.24 75.40 ± 1.54

Table 6: Level-wise NMI on the WordNet noun hierarchy. SHSC consistently achieves higher NMI at deeper
levels, demonstrating superior capacity to capture hierarchical semantics.

Figure 3: Empirical runtime comparison (in seconds) across five benchmarks datasets. Each subplot cor-
responds to one dataset, with bars denoting different clustering methods using a consistent color scheme
across datasets. SHSC demonstrates favorable computational efficiency relative to competing hierarchical
and non-Euclidean baselines.

and hierarchical clustering, thereby reflecting real-world usability rather than theoretical computational
complexity 4.2.

As expected, classical agglomerative approaches such as Ward’s linkage exhibit the lowest runtime due to
their simplicity, but this comes at the expense of reduced hierarchical fidelity, as we observed in previous
sections. Deep Euclidean methods (HDEC, DEC + Hierarchical, and SpectralNet) incur additional com-
putational overhead from representation learning, while hyperbolic methods based on Poincaré embeddings
and Hyperbolic Variational Autoencoders show substantially higher runtimes, particularly on large-scale
text datasets such as DBpedia and WOS, specifically due to expensive Riemannian optimization Bonnabel
(2013). Notably, SHSC achieves a favorable balance between efficiency and performance, due to it’s in-
herent non-deep nature: it consistently outperforms deep hyperbolic baselines in runtime while remaining
competitive with Euclidean methods. These results demonstrate that SHSC scales effectively across both
vision and text datasets, making it a practical choice for large-scale hierarchical clustering on hyperbolic
space without compromising structural accuracy.

6.6 Ablation Studies

We conduct an ablation study to examine the sensitivity of the proposed method with respect to three
hyperparameters: (i) the number of bootstrap samples p′ used to robustly estimate the latent root node,
(ii) the number of selected nodes K with the lowest Gromov hyperbolicity indices, and (iii) the curvature
parameter c of the hyperbolic embedding space. Clustering performance is evaluated using Normalized Mu-
tual Information (NMI) on the Fashion-MNIST dataset. The results are shown in Figure 4.
Effect of the number of bootstrap samples p′. The parameter p′ controls the number of bootstrap
samples used to locate the root node based on the K lowest Gromov hyperbolicity indices. As p′ increases
from 50 to 175, the NMI curves become smoother and exhibit reduced variance across different values of K,
which strongly aligns with our consistency analyses in 5.1, showing that the estimated root node proba-
bilistically converges to the true root node as the number of bootstrap samples becomes very large, which
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in turn stabilizes downstream clustering performance.
Effect of the number of selected lowest K GHIs. Across all configurations, the NMI remains relatively
stable as K varies between 40 and 70. This robustness suggests that the method does not require precise
tuning of K, provided that the selected nodes correspond to low Gromov hyperbolicity values.
Effect of the curvature parameter c. We evaluate four curvature values c ∈ {0.001, 1, 10, 100}, corre-
sponding to increasingly negative curvature in the hyperbolic space. Moderate curvature values (c = 1 and
c = 10) consistently yield strong and stable NMI scores. In contrast, very small curvature (c = 0.001), which
approaches a near-Euclidean regime, exhibits higher variability, while excessively large curvature (c = 100)
can lead to mild performance degradation due to geometric distortion. These observations highlight the
importance of selecting an appropriate and moderate curvature selection for hierarchical representation.

This ablation study demonstrates that reliable root estimation benefits from a sufficient number of bootstrap
samples, that the method is robust to the choice of low-hyperbolicity nodes, and that moderate hyperbolic
curvature provides the best trade-off between optimal performance and stability.

Figure 4: Ablation study analyzing the effect of the number of bootstrap samples p′ used for root estimation,
the number K with the lowest Gromov hyperbolicity indices, and the curvature parameter c of the Poincaré
ball on clustering performance on the Fashion-MNIST dataset measured by NMI. Each subplot corresponds to
a different value of p′, while curves within each subplot show results for varying curvature values. The results
demonstrate robustness to the choice of K, improved stability with increasing p′, and optimal performance
under moderate curvature.

7 Conclusion & Future Works

In this paper, we investigated the challenges of representing hierarchical and tree-like data in low-dimensional
Euclidean spaces, highlighting their limitations in preserving hierarchical distances and relationships. We
showed that hyperbolic spaces provide a natural and efficient alternative, enabling accurate embeddings even
in shallow dimensions and leading to superior hierarchy-preserving clustering performance, as confirmed by
our experiments on WordNet, DBpedia, and WOS datasets.

Our main contribution is a scalable spectral clustering algorithm specifically designed on the Poincaré ball,
which replaces the conventional Euclidean similarity matrix with a hyperbolic similarity matrix constructed
after estimating the hierarchy’s latent root and translating the dataset relative to it in the Poincaré ball.
Theoretical analysis further establishes the weak consistency of the proposed method, demonstrating con-
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vergence rates comparable to standard spectral clustering in Euclidean spaces. Overall, our results confirm
that leveraging hyperbolic geometry can significantly enhance hierarchical clustering while maintaining com-
putational scalability.
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A Appendix

Theorem 5.1 Let {Xi}i≥1 be a sequence of independent, identically distributed random variables drawn
from a CAT(0) Space (X , d) according to a probability distribution P and let {Pi}i≥1 be the corresponding
empirical distributions. If {βPi

}i≥1 and βP are the corresponding empirical barycenters and the barycenter
with respect to P respectively, then

d(βPn
, βP ) P−→ 0 as n → ∞. (13)

Proof. Shorack and Wellner [Shorack & Wellner (2009)] showed that the Kantorovich or L1− Wasserstein
distance between two probability measures is exactly equal to the L1 distance between their cumulative
distributions, i.e. if {Fn}n≥1 are the empirical cumulative distribution functions and F is the cumulative
distribution corresponding to P , then

W 1(Pn, P ) = ∥Fn − F∥L1(X ,d). (14)

Moreover, Sturm [Sturm (2003)] showed that d(βPn
, βP ) ≤ W 1(Pn, P ). Combining this with Equation 14,

we get

d(βPn
, βP ) ≤ W 1(Pn, P ) = ∥Fn − F∥L1(X ,d). (15)

But ∥Fn − F∥L1(X ,d) → 0 as n → ∞ by dominated convergence theorem. Hence, d(βPn
, βP ) P−→ 0 as n → ∞

by 15 as well, completing the proof of Theorem 5.1.

lemma 1. For the usual Euclidean Gaussian Kernel given by K(x, y) = exp(−a∥x − y∥2), we have
KHG

(x, y) ≤ K(x, y) whenever x, y ∈ Dd
c .

Proof. Step 1: We have ∥x∥, ∥y∥ < 1/
√

c, hence ∥x∥2, ∥y∥2 < 1/c =⇒ (1/c − ∥x∥2)(1/c − ∥y∥2) < 1/c2.
Hence we can write

∥x − y∥2

c(1/c − ∥x∥2)(1/c − ∥y∥2) > c∥x − y∥2.
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But we also have

δc(x, y) = 2 ∥x − y∥2

c( 1
c − ∥x∥2)( 1

c − ∥y∥2)
.

Combining this with the last inequality, we get

δc(x, y) > 2c∥x − y∥2.

Step 2: For x ∈ R, d
dx (sinh−1(x)) = 1√

1+x2 > 0. Therefore the inverse sine hyperbolic function is a strictly
increasing function of x. By Step 1, we have δc(x, y) > 2c∥x − y∥2. Therefore, we have δc(x,y)

2 ≥ c∥x − y∥2.
This also implies

√
δc(x,y)

2 ≥
√

c∥x − y∥.

Since d(x, y) = 2 sinh−1
(√

δ(x,y)
2

)
and the inverse sine hyperbolic function is increasing, we can write

d(x, y) ≥ 2 sinh−1(
√

c∥x − y∥)

We know that for 0 < s < t, exp(−s) > exp(−t). This enables us to write

KHG
(x, y) = exp(−ad(x, y)2)

≤ exp(−4a[sinh−1(c∥x − y∥)]2).

Step 3: Note that for 0 ≤ x ≤ 1, 1√
1+x2 ≥ 1√

2 . Let f(x) := sinh−1(x) − x
2 . Then f is differentiable and we

get f ′(x) = 1√
1+x2 − 1

2 ≥ 2−
√

2
2

√
2 . Therefore f is increasing on [0, 1] and for 0 ≤ x ≤ 1, sinh−1(x) ≥ x

2 . Hence

exp(− sinh−1(∥x − y∥2)) ≤ exp
(

− ∥x−y∥2

2

)
. Therefore following step 2, we get

KHG
(x, y) ≤ exp(−4a[sinh−1(c∥x − y∥)]2) ≤ exp

(
−4ac

∥x − y∥2

4

)
= exp(−ac∥x − y∥2) = K(x, y),

Lemma 2. The hyperbolic Gaussian Kernel KHG
∈ L1(H), i.e. this kernel is absolutely integrable.

Proof. KHG
(x) = KH(x, 0) ≤ K(x, 0) = exp(−ac∥x∥2) [by Lemma 1 and Remark 5.2]. Therefore following

step 3 of Lemma 1 we write,∫
H

|KHG
(x)|dx ≤

∫
H

| exp(−ac∥x∥2)|dx =
∫

H

exp(−ac∥x∥2)dx ≤
∫
Rn

exp(−ac∥x∥2)dx < ∞.

as H is any compact subset of Dd
c , we can also think of H as an embedded as a subset of the ball of radius

1/
√

c embedded in Rd, with the Euclidean metric replaced by 2. The last integral is finite since the integrand
is the usual Gaussian distribution.

Lemma 3. Suppose Ω ∈ Rd is symmetric, f ∈ L1(Ω) and f is radial. Then, its Fourier Transform is also
radial.

Proof. f is radial if and only if for every M ∈ SOd(Rd) [where SOd(Rd) is the special unitary group on Rd,
i.e. consisting of all d × d matrices over R with determinant 1], f(Mx) = f(x) [as the operation x → Mx
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only rotates x, does not change its magnitude, i.e. ∥Mx∥ = ∥x∥]. Then for any arbitrary M ∈ SOd(Rd),

f̂(Mt) =
∫

Ω
f(x)e−i<Mt,x>dx

=
∫

M(Ω)
f(Ms)e−i<Mt,Ms>ds [change of variable x → Ms]

=
∫

Ω
f(s)e−i<t,s>ds [since Ω is symmetric]

= f̂(t),

where the second equality follows from the conjugate linearity of the inner product: < Mt, Ms >=<
M∗Mt, s > =< t, s > since M∗M = Id [M ∈ SOd(Rd)].

Lemma 4. There exist C, l > 0 such that K̂(w) ≤ C exp(−l|w|) for all w ∈ Rn.

Proof. Let f(x) = KHG
(x) = exp(−ac × d(x, 0)2). Then by Lemma 1, we have f(x) ≤ exp(−ac∥x∥2) for all

x ∈ H. Exploiting the fact that k̂ is radial (and hence real-valued), we get

|K̂(w)| =
∣∣∣∣∫

H

f(x)e−iwtxdx

∣∣∣∣ =
∣∣∣∣∫

H

f(x)eac∥x∥2
e−ac∥x∥2

e−iwtxdx

∣∣∣∣
≤
∫

H

|f(x)eac∥x∥2
e−ac∥x∥2

e−iwtx|dx

≤
∫

H

|e−ac∥x∥2
e−iwtx|dx

≤
∫
Rn

|e−a∥x∥2
e−iwtx|dx

≤ C ′e−p∥w∥2

≤ Cexp(−l∥w∥),

where the second inequality is followd by noting that
∫

H
|e−ac∥x∥2

e−iwtx|dx is the Fourier Transform of the
Euclidean gaussian kernel over H. where C ′ and C are some appropriately chosen constants.

Theorem 5.2 Let (H, A, P ) be a probability space with A being any arbitrary sigma-algebra on H. Let
F be defined as above with ∥f∥∞ ≤ 1 for all f ∈ F . Let Xn be a sequence of i.i.d. random variables drawn
according to the distribution P and Pn be the corresponding empirical distributions. Then there exists a
constant w > 0 such that for all n ∈ N with probability at least δ,

sup
f∈F

|Pnf − Pf | ≤ w√
n

∫ ∞

0

√
log(N , ϵ, L2(Pn))dϵ +

√
1

2n
log
(

2
δ

)
,

where N is the covering number of the space H with ball of radius ϵ with respect to the metric L2(Pn).
Hence the rate of convergence of the Hyperbolic Spectral Clustering is O

(
1√
n

)
.

Proof. Combining Lemma 4 and Theorem 3 Zhou (2002) we get

log(N (F , ϵ, ∥ · ∥∞)) ≤ C0 log
(

1
ϵ

)d+1
,

for some constant C0 chosen appropriately and d is the dimension of H. Since d is a constant for H, we can
write the above inequality as

log(N (F , ϵ, ∥ · ∥∞)) ≤ C1 log
(

1
ϵ

)2
.
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Following the same sequence of computation as in Theorem 19Von Luxburg et al. (2008), we get∫ ∞

0

√
log(N , ϵ, L2(Pn))dϵ < ∞

Hence following Theorem 19Von Luxburg et al. (2008) we write

sup
f∈F

|Pnf − Pf | ≤ w√
n

∫ ∞

0

√
log(N , ϵ, L2(Pn))dϵ +

√
1

2n
log
(

2
δ

)
<

C1√
n

+

√
1

2n
log
(

2
δ

)
,

for some appropriately chosen constant C1. Since δ > 0 we get,

sup
f∈F

|Pnf − Pf | ≤ C

(
1√
n

)
.

Finally Finally, combining theorem 16 of Von Luxburg et al. (2008) with the last inequality, we get

sup
f∈F

|Pnf − Pf | = O
(

1√
n

)
.
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