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ABSTRACT

Adversarial defense aims to find true semantic labels of adversarial examples,
where diffusion-based adversarial purification as intriguing adversarial defense
methods can restore data perturbed by unseen attacks to clean distribution without
training classifiers. However, unimodal diffusion-based approaches rely on noise
schedules to implicitly preserve labels, whereas recently proposed multimodal
variants add textual control but require adversarial training and heavy distillation.
Both approaches lack theoretical guarantees. In this work, we propose MultiDAP
that uses multimodal diffusion models for adversarial purification. MultiDAP
first learn prompts from clean text-image pair data for clean image generation,
where context tokens are numerical instead of text templates such as “a photo
of a ·” for rich contextual information and hence enhance adversarial robustness.
Given learned prompts and adversarial examples, MultiDAP then purify inputs via
minimizing regularized DDPM losses iteratively for only a few steps. Theoretical
guarantees for two phases are also provided. In experiments, our proposed model
achieve improvement of zero-shot adversarial defense performance over unimodal
diffusion models and multimodal variants with text templates.

1 INTRODUCTION

Adversarial defense is fundamentally concerned with recovering the true semantic label information
from adversarial examples which are perturbed by human imperceptible but carefully crafted noise
for deep learning classifiers to predict incorrect labels (Goodfellow et al., 2014). Adversarial
purification has recently emerged as a promising paradigm for adversarial defense (Shi et al., 2021;
Yoon et al., 2021; Nie et al., 2022; Wang et al., 2022a; Bai et al., 2024; Lei et al., 2025). Unlike
adversarial training (Croce and Hein, 2020; Laidlaw et al., 2021; Dolatabadi et al., 2022; Wang
et al., 2023a), which explicitly trains classifiers on adversarial examples, adversarial purification
methods employ generative models to remove adversarial perturbations before classification (Song
et al., 2017; Nie et al., 2022). This strategy offers two key advantages. First, it does not need to
retrain classifiers on generated attacks, thereby reducing computational overhead. Second, it provides
stronger generalization to unseen adversarial attacks, as adversarial purification directly restores
clean data distributions. However, early adversarial purification methods are based on generative
adversarial networks (GANs) and energy-based models (EBMs) and fall behind adversarial training
methods, because of their limited generative power (Nie et al., 2022).

Diffusion models have rapidly become the mainstream approach for adversarial purification due to
their remarkable generative power and ability to approximate complex data distributions (Nie et al.,
2022; Wang et al., 2022a; Chen et al., 2024a; Zhang et al., 2025; Bai et al., 2024). By progressively
adding Gaussian noise and removing it, diffusion models can effectively reconstruct clean samples
from corrupted or perturbed inputs, making them particularly well-suited for removing adversarial
perturbations (Nie et al., 2022). However, most existing work relies on unimodal diffusion models
which attempt to preserve semantic information implicitly by injecting Gaussian noise to a specific
level in the forward process and then denoising the input. Hence unimodal approaches often struggle
to fully obtain semantic label information, limiting defense against stronger or adaptive attacks.

To address this limitation, one step control purification has recently been proposed as the first
multimodal diffusion model for adversarial purification. It leverages ControlNet to include additional
modalities (e.g., textual prompts) for adversarial purification and thus preserves more semantic label
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information than unimodal approaches (Lei et al., 2025). This importance of multi-modal information
was first discovered from the fact that human can easily identify the true label of adversarial examples,
in contrast to deep learning models on solely pixel spaces. The reason is that human cognition
relies on semantic information from the context and is immune to distribution variations induced by
adversarial attacks, whereas the deep learning models classify images via statistical distributional
associations (Zhou et al., 2024) and are vulnerable to adversarial attacks. However, one step control
purification still faces three critical challenges: (i) it lacks theoretical guarantees regarding purification
effectiveness, and (ii) it still relies on adversarial training to learn robust cross-modal alignment,
and more importantly, (iii) without knowledge distillation, the iterative reverse process of diffusion
models will incur substantial computational overhead. These efficiency issues limit their practicality
for real-time or large-scale adversarial defense.

In this paper, we propose Multimodal Diffusion for Adversarial Purification (MultiDAP) which
leverages a single text-to-image diffusion model backbone. Unlike unimodal diffusion models for
adversarial purification solely relying on image features, our approach conditions the diffusion model
on textual prompts to infuse semantic information. In order to obtain the prompts which steer
zero-shot adversarial purification, we design a paradigm to learn prompts for stable diffusion models
from clean large-scale text-image pairs. This design not only leverages the powerful generative
capacity of diffusion models but also capitalizes on the rich contextual representations encoded by
the text encoder. With prompt-based conditioning, we introduce a more expressive feature space
that distinguishes adversarial attacks from genuine content more effectively. Furthermore, we also
propose to efficiently purify adversarial examples via prompt-guided likelihood maximization which
only requires a few purification steps. Experiments demonstrate that MultiDAP achieves superior
zero-shot adversarial defense performance compared to unimodal diffusion models on the CIFAR-10,
CIFAR-100 and ImageNet-1K datataset. These results highlight the dual contribution of our work:
introducing a theoretically grounded framework for adversarial purification and delivering practical
improvements for real-world deployment.

2 RELATED WORK

Unimodal Diffusion Models for Adversarial Defense. Diffusion models have demonstrated
remarkable performance in generative tasks, owing to their ability to progressively refine noisy
data to high-quality output. This generative nature has been explored for robustness in various
contexts, including adversarial purification (Nie et al., 2022), adversarial training (Wang et al.,
2023b) and robust classification methods (Chen et al., 2024a). A notable application of diffusion
models lies in purification-based defenses, where adversarially perturbed inputs are restored to their
clean counterparts. Methods leveraging guided diffusion models have shown efficacy in removing
perturbations while preserving the underlying data features, making them suitable for tasks like
classification (Lee and Kim, 2023; Xiao et al., 2022; Bai et al., 2024; Yeh et al., 2024). Additionally,
diffusion-based classifier have gained traction by integrating generative and discriminative modelling
(Zimmermann et al., 2021; Clark and Jaini, 2023; Chen et al., 2024a). Their robustness to input
perturbations and adversarial attack is attributed to optimal empirical score function (Chen et al.,
2024b). While these approaches highlight the versatility of diffusion models in adversarial defense,
they often face challenges in efficiency, effectiveness from unimodality and theoretical guarantees,
motivating further investigations.

Multimodal Approaches in Adversarial Defense. Recent advances in vision-language models
(VLMs) have demonstrated potentials of multimodal information in improving robustness. Models
such as CLIP (Radford et al., 2021) learn joint embeddings of images and text, enabling strong
cross-modal alignment that provides richer semantic priors than unimodal vision models. This
multimodal alignment has inspired adversarial finetuning (Schlarmann et al., 2024), adversarial
prompt tuning (Zhang et al., 2024; Li et al., 2024; Sheng et al., 2025), and multimodal defenses
leveraging vision-language pretraining (Wang et al., 2025). These approaches hold clear advantages:
auxiliary modalities such as text can act as high-level semantic constraints, guiding models toward
correct semantic label predictions. Nevertheless, current multimodal robustness methods face critical
limitations. Many rely on adversarial training to establish robust cross-modal alignment, and recently
proposed first multimodal diffusion model for adversarial purification: one step control purification
in particular suffer from substantial computational overhead due to multi-step denoising if knowl-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

edge distillation is not used (Lei et al., 2025). Furthermore, theoretical guarantees remain largely
absent, leaving their robustness difficult to formally assess. These challenges motivate the need
for approaches that combine multimodal semantic priors with efficiency and provable purification
guarantees—precisely the focus of our proposed Multimodal Diffusion for Adversarial Purification.

3 MULTIMODAL DIFFUSION MODELS FOR ADVERSARIAL PURIFICATION

3.1 PROBLEM SETUP

Let x ∈ X denote a clean input with label y, and xadv = x+ δ be an adversarial example generated
under perturbation constraint ∥δ∥p ≤ ϵ. Here the perturbation δ is constrained under an ℓp-norm
threat model, with p ∈ {2,∞} being the most common cases. The ℓ∞ attack bounds the maximum
per-pixel distortion, ensuring imperceptibility, while the ℓ2 attack restricts the overall perturbation.

Adversarial purification aims to transform an adversarial input xadv back to a sample xpur that lies
close to the clean data manifold, such that f(xpur) = y. Recent works have demonstrated that
diffusion models are particularly well suited for this task, due to their strong generative ability to
approximate complex data distributions (Nie et al., 2022).

A diffusion model (Song et al., 2020) defines a forward noising process that gradually perturbs clean
data x0 into Gaussian noise through a sequence of latent variables {xt}Tt=0:

q(xt | xt−1) = N
(
xt;

√
1− βt xt−1, βtI

)
,

where {βt} is a variance schedule (Ho et al., 2020). This process ensures that as t→ T , the sample
xT approaches pure noise, as T is large enough. The reverse denoising process is parameterized by a
neural network ϵθ, which predicts the added noise and iteratively reconstructs clean data:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) .

The mean term µθ(xt, t) is computed from this noise prediction via a closed-form reparameterization:
µθ(xt, t) =

1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
, where αt = 1 − βt and ᾱt =

∏t
s=1 αs. The covariance

Σθ(xt, t) is typically fixed by the variance schedule {βt}, though some variants allow it to be partially
learned for improved sample quality (Nichol and Dhariwal, 2021). Together, µθ and Σθ define the
Gaussian reverse step, while ϵθ remains the core predicted quantity that drives the denoising trajectory.

For adversarial purification, the intuition is to inject the adversarial input xadv into the forward
process at a chosen noise level t, so that adversarial perturbations are drowned out by Gaussian noise
(Nie et al., 2022). Then, the reverse process denoises xt step by step, ideally converging to a purified
sample xpur close to the clean distribution. Formally, the purification mapping can be written as:

xpur ∼ P (xadv) = pθ(x
pur | xadv

t , t), with xadv
t ∼ q(xt | xadv).

Here xadv
t denotes the adversarial input injected into the forward noising process at step t, and xpur is

the purified output after reverse diffusion. This framework has achieved strong empirical robustness
across various benchmarks (Nie et al., 2022; Wang et al., 2022b; Chen et al., 2024a).

However, existing diffusion-based purification suffers from two main drawbacks: (i) the denoising
process is essentially unimodal, since it is conditioned only on Gaussian noise schedules without
leveraging explicit semantic cues (text prompts), which limits its ability to preserve class-consistent
information; and (ii) the multi-step reverse process is computationally expensive, making such
defenses inefficient for real-time deployment. These limitations motivate our proposed Multimodal
Diffusion for Adversarial Purification with explicit prompt guidance and improved efficiency.

3.2 STABLE DIFFUSION WITH PROMPT LEARNING

While diffusion-based purification can remove adversarial perturbations, prior defenses typically rely
on small, unimodal diffusion models to approximate the data distribution (Nie et al., 2022). Limited
representational capacity often leads to suboptimal likelihood estimates and unstable denoising
trajectories, where semantic information may not be faithfully preserved.
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To address this limitation, we adopt Stable Diffusion—a large-scale latent diffusion model (LDM)—
as our backbone (Rombach et al., 2022). Pretrained on massive image–text corpora, Stable Diffusion
provides substantially stronger modeling power and a richer, more informative likelihood landscape
than small diffusion models. Moreover, operating in a compact latent space enables high-resolution
synthesis with improved efficiency compared to pixel-space diffusion (Rombach et al., 2022; Dhariwal
and Nichol, 2021). This stronger backbone lets our purifier start denoising from a more faithful
approximation of the clean data manifold, reducing reliance on long reverse diffusion chains and
mitigating semantic drift.

Formally, Stable Diffusion operates in a latent space defined by a variational autoencoder (VAE).
Given an input image x, the encoder maps it into a compact latent representation z = EVAE(x), where
EVAE denote the encoder. Given a class label or textual description y, we obtain a prompt embedding
through a text encoder ep = Etext(p), where p is the input text, such as ‘a photo of a cat’. In our
approach, these embeddings serve as semantic conditions that guide the purification process. The
denoising network ϵθ(xt, t, ep) is implemented as a U-Net with cross-attention, which predicts the
noise at each timestep. The denoising network ϵθ(xt, t, ep) is trained with the standard denoising
diffusion probabilistic model (DDPM) objective (Ho et al., 2020), which treats noise prediction as
score matching:

LDDPM(θ) = Ex0,ep,t,ϵ∼N (0,I)

[ ∥∥ϵ− ϵθ
(√

ᾱt x0 +
√
1− ᾱt ϵ, t, ep

) ∥∥2
2

]
,

where αt = 1− βt and ᾱt =
∏t

s=1 αs denote the variance schedule. This loss enforces the network
to accurately predict the added Gaussian noise at each timestep, which is equivalent to maximizing a
variational lower bound on the conditional data likelihood. In our case, the conditioning ep provides
semantic priors that explicitly align the denoising trajectory with the true class, thereby enhancing
the stability and fidelity of purification.

Prompt Learning Objective. A central challenge for purification-based defenses lies in the ac-
curacy of likelihood estimation during denoising. Although Stable Diffusion provides a strong
backbone, its conditioning typically depends on fixed or manually designed text prompts, which
may be generic and fail to provide task-specific guidance. Such limitations are particularly critical
for adversarial purification, where the model must recover the clean data distribution from inputs
corrupted by imperceptible but adversarial perturbations. To overcome this issue, we propose a
prompt learning module that explicitly optimizes prompt embeddings from clean data, allowing the
model to acquire semantic priors that are robust to adversarial noise.

In general, a prompt p can be represented as a concatenation of M learnable context tokens,

pcontext = [v1, v2, . . . , vM ],

where each vm ∈ Rd has the same dimensionality as the text encoder’s word embeddings (e.g.,
d = 512 for CLIP). In prior works, such context tokens are often combined with a class-specific
token (e.g., the word “cat”), yielding a class-dependent prompt p = [pcontext, pclass] that provides
label-conditioned guidance. By contrast, our objective is to design a class-agnostic prompt that
captures global semantic priors without relying on class labels. This choice is crucial for adversarial
purification, since the ground-truth label of an adversarial input is typically unknown at inference
time. We therefore optimize a shared prompt vector p directly from clean data, such that it enhances
the unconditional likelihood estimation of the diffusion model.

Our prompt learning module is optimized by reusing the standard DDPM noise-prediction loss, with
the key difference that only the prompt parameters p are updated while the diffusion backbone θ
remains frozen:

Lprompt(p) = Ex0,t,ϵ

[ ∥∥ϵ− ϵθ
(√

ᾱt x0 +
√
1− ᾱt ϵ, t, p

) ∥∥2
2

]
.

Optimizing this loss is equivalent to maximizing a variational lower bound on the likelihood pθ(x0 |
p). Thus, the learned prompt p∗ serves as a universal semantic prior that stabilizes the denoising
trajectory and improves the fidelity of adversarial purification without requiring class labels or
adversarial training.

Similar to prompt learning in CLIP (Zhou et al., 2022), we optimize the learnable context tokens
using a gradient-based method, such as Adam (Kingma, 2014)). In each training iteration, we sample
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Algorithm 1: Prompt Learning on Stable Diffusion (class-agnostic)

Input: Frozen diffusion backbone θ (VAE, U-Net ϵθ), clean images {x(b)}, steps T , optimizer
(Adam), prompt length M , iters N .

Output: Learned class-agnostic prompt p⋆ = [v1, . . . , vM ].
1 Initialize learnable tokens p = [v1, . . . , vM ] (random or text-init).
2 for n = 1, . . . , N do
3 Sample a mini-batch {x(b)}; sample t ∼ Unif({1, . . . , T}) and ϵ ∼ N (0, I).
4 xt ←

√
ᾱt x

(b) +
√
1− ᾱt ϵ

5 Lprompt ←
∥∥ϵ− ϵθ(xt, t, p)

∥∥2
2

(average over batch).
6 Update p← Adam

(
p,∇pLprompt

)
while keeping θ frozen.

7 return p⋆ ← p.

a mini-batch of clean data points x(b), apply the forward diffusion process to obtain noisy latents x(b)
t

with Gaussian noise ϵ, and evaluate the prompt loss Lprompt with the current tokens p = [v1, . . . , vM ].
The gradients are then backpropagated through the denoising network ϵθ(x

(b)
t , t, p) to update the

prompt parameters. This process is repeated until convergence, yielding a shared prompt vector
p∗ that minimizes the denoising objective. The detailed optimization procedure is summarized in
Algorithm 1. Compared to full model fine-tuning, optimizing only a small set of prompt parameters
significantly reduces trainable variables, which mitigates overfitting and keeps computational cost
manageable, while still providing strong semantic guidance for purification.

Theoretical Guarantee: Prompt Learning Improves Likelihood. We show that optimizing the
class-agnostic prompt p with the DDPM objective monotonically increases a variational lower bound
(ELBO) of the unconditional data likelihood under a fixed diffusion model θ.
Theorem 1 (Prompt learning improves the likelihood lower bound). Let x0 ∼ pdata denote clean
latents, and let xt =

√
ᾱtx0 +

√
1− ᾱt ϵ with ϵ ∼ N (0, I). Fix the diffusion backbone parameters

θ, and optimize only the prompt p using the DDPM objective. Then the optimal prompt p⋆ =
argminp Lprompt(p) maximizes the evidence lower bound (ELBO) on the data likelihood pθ(x0 | p),

log p
θ
(x0 | p⋆) ≥ log p

θ
(x0 | p), ∀ p,

where log p
θ

denotes the variational lower bound.

Moreover, ∇pLVLB(p) and ∇pLprompt(p) are colinear since the weights wt are positive. Thus
updating p along −∇pLprompt strictly decreases LVLB for sufficiently small step size, thereby
monotonically increasing the likelihood.
Corollary 1 (Score matching view). The objective Lprompt is equivalent to minimizing a weighted
Fisher divergence between the conditional score∇xt log pθ(xt | p) and the forward diffusion score
∇xt

log q(xt | z0). Hence optimizing p aligns the model score with the true score, which directly
improves the data likelihood log pθ(x0 | p⋆) ≥ log pθ(x0 | p),∀ p.

3.3 PROMPT-GUIDED LIKELIHOOD MAXIMIZATION FOR PURIFICATION

Given an adversarial input xadv , we purify it by maximizing the model likelihood under the learned
class-agnostic prompt p⋆ while using the pretrained diffusion backbone θ. We obtain a noisy image
by the forward diffusion

xadv
t⋆ =

√
ᾱt⋆ x

adv
0 +

√
1− ᾱt⋆ ϵ, ϵ ∼ N (0, I).

Our goal is to recover an x0 that maximizes the posterior (or the conditional likelihood surrogate)

xpur
0 ∈ argmax

x0

log pθ(x
adv
t⋆ | x0, p

⋆) + log p(x0), (1)

where p(x0) is the prior. Maximizing (1) is intractable directly, so we instead minimize the purification
“simple loss” with respect to the image variable x0, while conditioning on the learned prompt p⋆:

xpur
0 ∈ argmin

x0

Et,ϵ

∥∥ϵ− ϵθ
(√

ᾱt x0 +
√
1− ᾱt ϵ, t, p

⋆
)∥∥2

2︸ ︷︷ ︸
=: LDDPM(x0;p⋆)

+ λR(x0, x
adv), (2)
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Algorithm 2: Purification via Regularized DDPM-Loss Minimization in Pixel Space

Input: Adversarial image xadv , learned prompt p⋆, frozen θ, steps T1 T2, Purification steps N
(e.g., 5), step size η, optional regularizer weight λ.

Output: Purified image xpur.
1 x

(0)
0 ← xadv for n = 0, . . . , N − 1 do

2 Sample t ∼ Unif({T1, . . . , T2}) and ϵ ∼ N (0, I).
3 xt ←

√
ᾱt x

(n)
0 +

√
1− ᾱt ϵ

4 Lpur ←
∥∥ϵ− ϵθ(xt, t, p

⋆)
∥∥2
2
+ λR

(
x
(n)
0 , xadv

)
5 g ← ∇x0

Lpur

6 x
(n+1)
0 ← Π[0,1]

(
x
(n)
0 − η g

)
7 xpur ← x

(N)
0

8 return xpur.

where t is sampled uniformly from {1, . . . , T}, ϵ ∼ N (0, I), and R is an optional proximity or
naturalness regularizer (e.g.,R(x0, x

adv) = ∥x0−xadv∥22 or a TV prior). By Theorem 1, minimizing
LDDPM w.r.t. p tightens the ELBO; when optimizing w.r.t. x0, Eq. (2) serves as a surrogate that
increases the conditional likelihood under p⋆.

Gradient and Update. Let xt(x0, ϵ) =
√
ᾱt x0 +

√
1− ᾱt ϵ. The gradient of Eq. (2) is

∇x0LPur = ∇x0Et,ϵ

[√
ᾱt∇xt

∥∥ϵ− ϵθ(xt, t, p
⋆)
∥∥2
2

]
+ λ∇x0R(x0, x

adv),

where we define LPur = LDDPM + λ∇x0
R(x0, x

adv) and we perform a few iterations of gradient
descent with box constraints:

x
(k+1)
0 = Π[0,1]

(
x
(k)
0 − η∇x0LPur(x

(k)
0 ; p⋆)

)
, x

(0)
0 = xadv,

where Π[0,1] clips pixels to the valid range and η is the step size. In practice, we estimate the
expectations with a single (t, ϵ) per iteration and use 5–10 steps; the prompt guidance p⋆ stabilizes
the descent by injecting high-level semantics, yielding fast and faithful purification in pixel space.
Besides, we adopt the proximity regularizer R(x0, x

adv) = ∥x0 − xadv∥22 with a fixed weight
λ = 0.9, which encourages purified outputs to remain close to the original adversarial inputs while
removing perturbations. The overall purification process is summarized in Algorithm 2.

Theory: Stochastic One–Sample Purification and Few–Step Ascent We analyze the pixel–space
purification objective

Lpur = LDDPM(x0; p
⋆) + λR(x0, x

adv). (3)

Let xt(x0, ϵ) =
√
ᾱtx0 +

√
1− ᾱtϵ and denote ℓ(x0; t, ϵ) =

∥∥ϵ− ϵθ(zt, t, p
⋆)
∥∥2
2
. We update x0 by

projected SGD with one sampled (t, ϵ) per step:

x
(k+1)
0 = Π[0,1]

(
x
(k)
0 − η g(x

(k)
0 ; tk, ϵk)

)
, g(x0; t, ϵ) =: ∇x0

(
ℓ(x0; t, ϵ) + λR(x0, x

adv)
)
.

Assumptions. (A1) Smoothness: LPur(x0; p
⋆) is L–smooth on [0, 1]d. (A2) Bounded variance:

E
[
∥g(x0; t, ϵ) − ∇LPur(x0; p

⋆)∥22
]
≤ σ2. (A3) Regularizer: R is convex and LR–smooth (e.g.,

∥x0 − xadv∥22 or TV with smooth surrogate).
Lemma 1 (Unbiased one–sample gradient with bounded variance). With the reparameterization
zt(x0, ϵ), the stochastic gradient is unbiased:

Et,ϵ

[
g(x0; t, ϵ)

]
= ∇x0LPur(x0; p

⋆),

and satisfies Assumption (A2).

Proof Sketch. Differentiate under the expectation using reparameterization; the Jacobian ∂xt/∂x0 =√
ᾱtI is deterministic. Linearity of expectation and the uniform sampling of t give the unbiasedness.

Bounded variance follows from (A1) and standard Lipschitz/activation bounds on ϵθ.
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Theorem 2 (Expected descent of the purification loss). Under (A1)–(A3), let η ≤ 1/(2L). Then the
projected SGD iterate satisfies

E
[
LPur(x

(k+1)
0 ; p⋆)

]
≤ E

[
LPur(x

(k)
0 ; p⋆)

]
− η

2
E
[
∥∇LPur(x

(k)
0 ; p⋆)∥22

]
+

η2L

2
σ2.

Consequently, after K steps,

1

K

K−1∑
k=0

E
[
∥∇LDDPM(x

(k)
0 ; p⋆)∥22

]
≤ 2(LDDPM(x

(0)
0 ; p⋆)− Linf )

ηK
+ ηLσ2,

where Linf is the infimum over [0, 1]d.

Proof Sketch. Apply the standard smoothness (descent) lemma to the projected step and take expec-
tations. Use Lemma 1 to replace E[g] with the true gradient and bound the variance term by σ2.
Summing the per–step inequality yields the average–gradient bound.

We further verify the practical validity of the assumptions used in Theorem 2 through empirical
measurements of the local Lipschitz constant and gradient variance; see Appendix A.3 for details.

Why Single (t, ϵ) and Few Steps Suffice. The one–sample estimator is unbiased but noisy; this
stochasticity serves as exploration that helps escape local pixel–level artifacts, while Theorem 2
guarantees expected descent provided η is small. Moreover, the bound shows O(1/K) decay of the
average gradient norm up to a variance floor ηLσ2, so a small fixed number of steps (N = 5–20)
already yields a measurable reduction of the loss/ELBO gap—matching our practice.

4 EXPERIMENTS

4.1 EXPERIMENTAL DESIGN

This section presents an extensive empirical study to validate the effectiveness of the proposed
Multimodal Diffusion for Adversarial Purification (MultiDAP). We describe experimental setups
(datasets and implementation), report quantitative and qualitative results under adversarial attacks,
and provide ablations dissecting the contributions of different design choices.

Datasets and Model Architectures. We evaluate our method on three standard benchmarks:
CIFAR-10, CIFAR-100, and ImageNet-1K. All input images are resized to 256 × 256 to match
the input resolution of Stable Diffusion. For CIFAR-10 and CIFAR-100, we utilize their full clean
training sets (50,000 images) to optimize the class-agnostic prompt embeddings. For the large-scale
ImageNet-1K, to demonstrate data efficiency and scalability, we optimize the prompt using only
a randomly sampled subset of 48,000 training images. We evaluate purification performance on a
held-out subset of 512 adversarial test images sampled from the standard test split for each dataset.
We use miniSD-diffusers (Lambda Labs, 2022) as a frozen stable diffusion generative backbone for
purification. By default we adopt a class-agnostic prompt, parameterized as a set of M learnable
context tokens that are shared across all images and classes. For ablation studies, we also evaluate
hand-crafted class-agnostic prompts (e.g., “a photo of”), which provide weaker guidance compared
to our learned prompt but highlight the effectiveness of explicitly optimizing context tokens. The
classifiers are WideResNet70-16, WideResNet-28-10, and ResNet-50 for CIFAR-10, CIFAR-100,
and ImageNet, respectively. All classifiers are pretrained on clean datasets.

Implementation Details. We initialize miniSD-diffuser and freeze all network parameters except
for the learnable prompt embeddings. During prompt learning, we optimize learnable tokens of
dimension d = 768 using the Adam optimizer where the learning rate is 2 × 10−4. For CIFAR
datasets, we set the prompt length M = 16 and use a batch size of 64, training for 10 epochs. For
ImageNet, we increase the prompt capacity to M = 64 and use a batch size of 8, training for 1 epoch.
We incorporate an expectation of the noise ϵ and timestep t while training, ensuring consistency with
the diffusion objective. Note that adversarial attacks are imposed to input images. The learned prompt
p⋆ is not attacked or optimized during the attacking and purification process. During purification,
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Table 1: Clean and robust accuracy (%) on CIFAR-10. Robust results under AutoAttack are reported
for ℓ∞ (ϵ = 8/255) and ℓ2 (ϵ = 0.5). The last column reports ℓ∞ PGD-20 with 10 random restarts
(step size α = ϵ/4). For DiffPure, t1 = 0.125 and t2 = 0.1 denote the time scales used. Our
method (MultiDAP) uses a class-agnostic prompt and only 5 purification steps. We also report an
ablation using the fixed template prompt “a photo of a”, which is widely used in CLIP-based zero-shot
classification. Bold denotes the best, underline the second best, and shading the third best.

Method Architecture Clean Acc AA (ℓ∞) AA (ℓ2) PGD-20
AT-DDPM-ℓ∞ WRN28-10 88.87 63.28 64.65 55.31
AT-DDPM-ℓ2 WRN28-10 93.16 49.41 81.05 51.47
AT-EDM-ℓ∞ WRN28-10 93.36 70.90 69.73 72.96
AT-EDM-ℓ2 WRN28-10 95.90 53.32 84.77 55.34
DiffPure (t1) UNet+WRN70-16 87.50 40.62 75.59 47.89
DiffPure (t2) UNet+WRN70-16 90.97 44.53 72.65 51.89
LM UNet+WRN70-16 87.89 71.68 75.00 65.22
CLIPure-Diff CLIP-ViT-L/14 93.75 55.74 80.02 58.24
CLIPure-Cos CLIP-ViT-L/14 84.38 64.21 65.94 66.41
MultiDAP (“a photo of a ·”) UNet+WRN70-16 93.80 70.29 74.53 65.00
MultiDAP (prompt learning) UNet+WRN70-16 94.12 72.38 76.05 68.21

we inject adversarial examples into the forward diffusion process with a single randomly sampled
timestep t ∼ Unif([T1, T2]) and Gaussian noise ϵ ∼ N (0, I), where we set T1 = 400 and T2 = 600.
We then run gradient descent on x0 using the Regularized DDPM loss (Eq. (3)), which provides an
efficient surrogate for likelihood maximization. The step size η is set to 0.2 for CIFAR datasets and
0.5 for ImageNet, and we clip pixel values into [0, 1] after each update. Unless otherwise specified,
we adopt the class-agnostic prompt p⋆ learned in Sec. 3.2 as the conditioning signal.

Adversarial Attacks. We evaluate robustness against two widely used adversarial attacks for
diffusion-based adversarial purification. The first is PGD-20 (Madry, 2017), a multi-step iterative
ℓ∞-bounded attack with random restarts. The second is AutoAttack (Croce and Hein, 2020), a
parameter-free ensemble of diverse attacks. Because of the stochasticity in MultiDAP, we use
rand version of AutoAttacks. Following Chen et al. (2024a)’s settings, we have n iter = 100 for
AutoAttack. Unless otherwise specified, the maximum perturbation budget is set to ϵ = 8/255 for
ℓ∞ threat models and ϵ = 0.5 for ℓ2 threat models.

Baselines. We compare our method with two representative purification-based defenses. The
first is DiffPure (Nie et al., 2022), which performs iterative reverse diffusion to remove adversarial
perturbations. The second is Likelihood Maximization (LM) (Chen et al., 2024b) which formulates
purification as direct maximization of the unimodal diffusion model likelihood. The third is CLIPure
Zhang et al. (2025), a CLIP-based zero-shot purification method with two variants: CLIPure-Diff,
which estimates image likelihood via the generative latent process, and CLIPure-Cos, which measures
likelihood using the cosine similarity between image embeddings and a blank template. These
methods provide strong and conceptually related baselines for evaluating the effectiveness of our
proposed MultiDAP. Other baseline methods are adversarial training methods which rely on unimodal
diffusion models to generate adversarial examples or argument data.

4.2 ROBUSTNESS AGAINST ADVERSARIAL ATTACKS

Table 1 summarizes the robustness results of our method on CIFAR-10 compared with DiffPure
and Likelihood Maximization under PGD-20 and AutoAttack. Our proposed MultiDAP achieves
substantially better performance than Likelihood Maximization across both ℓ∞ and ℓ2 threat models,
highlighting the benefit of leveraging a learned prompt prior. Compared with DiffPure, MultiDAP
attains slightly higher robust accuracy, but requires only 5 purification steps, whereas DiffPure
typically involves dozens of Langevin iterations. This efficiency gap makes MultiDAP significantly
more practical in scenarios where the inference speed is critical, while still preserving competitive
robustness. We leave the results for CIFAR-100 in Appendix A.4.
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Table 2: Clean and robust accuracy (%) on ImageNet-1K. Robust results under AutoAttack are
reported for ℓ∞ (ϵ = 4/255) on 512 randomly selected test samples. Our method (MultiDAP) uses a
class-agnostic prompt and 20 purification steps. We also report an ablation using the fixed template
prompt “a photo of a”. Bold denotes the best, underline the second best, and shading the third best.

Method Architecture Clean Acc AA
AT (Engstrom et al., 2019) ResNet-50 62.56 31.06
Fast AT (Wong et al., 2020) ResNet-50 55.62 26.95
Strong PGD AT (Salman et al., 2020) ResNet-50 64.02 37.89
AT (Bai et al., 2021) ResNet-50 67.38 35.51
DiffPure (t = 0.15) UNet+ResNet-50 67.79 40.93
LM UNet+ResNet-50 66.51 38.27
MultiDAP (“a photo of a ·”) UNet+ResNet-50 63.78 38.24
MultiDAP (prompt learning) UNet+ResNet-50 63.80 41.12

Table 3: Computational cost comparison under the same perturbation budget using AutoAttack.
FLOPs and inference time are measured per image on an NVIDIA A100. “FLOPs (G)” represents
the total number of floating-point operations required for full pipeline. “Time (ms)” reports the
end-to-end inference latency measured at batch size 1. “Prompt (s)” indicates prompt-learning cost.
The FLOPs difference of Diffpure between CIFAR-10 and CIFAR-100 arises from its use of different
backbone classifiers (WideResNet-70-16 for CIFAR-10 and WideResNet-28-10 for CIFAR-100).

CIFAR-10 CIFAR-100

Method FLOPs (G) Time (ms) Prompt (s) FLOPs (G) Time (ms) Prompt (s)

Diffpure 212.4 1567.40 – 34.87 1520.38 –
CLIPure 51.9 410.50 – 12.16 402.74 –
LM 43.9 385.26 – 7.25 376.31 –
MultiDAP 38.8 371.48 5800 5.25 361.95 43200

Table 2 demonstrates the scalability of our method on the large-scale ImageNet-1K dataset. Consistent
with the results on CIFAR benchmarks, MultiDAP achieves state-of-the-art robustness while main-
taining high efficiency with only 20 purification steps. Our prompt-learning variant attains 41.12%
robust accuracy under AutoAttack, significantly outperforming strong adversarial training baselines
such as Strong-AT (Salman et al., 2020) (37.89%) and matching the heavy-computation DiffPure
(Nie et al., 2022) (40.93%). This confirms that leveraging rich cross-modal semantic information is a
key factor for effective purification on high-resolution, diverse natural images.

While prompt engineering relies on manually crafted textual templates (e.g., “a photo of a ·”), our
approach learns task-adaptive prompt embeddings that encode richer semantic priors. This learned
representation provides stronger and more flexible conditioning, enabling the diffusion model to better
suppress adversarial noise and reconstruct class-consistent images even under severe perturbations.
Compared to hand-designed prompts, prompt learning thus offers a systematic and scalable way to
inject semantic guidance into the purification process.

Prompt learning on CIFAR in MultiDAP is lightweight: only 16× 768 learnable tokens (< 0.02%
of Stable Diffusion’s parameters) introduced and converges within 2 hours on 1 A100 GPU for
CIFAR-10. As in Table 3, MultiDAP is the most computationally efficient method across both
CIFAR-10 and CIFAR-100. It achieves the lowest FLOPs and fastest inference latency, i.e., 38.8 G
FLOPs and 371.48 ms on CIFAR-10; 5.25 G FLOPs and 361.95 ms on CIFAR-100, while maintaining
competitive robustness. Although MultiDAP includes a one-time offline prompt-learning stage, its
test-time cost remains substantially lower than DiffPure and CLIPure, highlighting its practicality for
real-world deployment.

From a theoretical perspective, the robustness of MultiDAP can be explained by the stochastic nature
of purification combined with the learned semantic prior. Instead of explicitly computing the expec-
tation over all timesteps and noises, which would be computationally prohibitive, we approximate
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Table 4: Ablation studies on CIFAR-10 under AutoAttack (ℓ∞-norm ϵ = 8/255, n iter = 100). Left:
effect of purification steps N with fixed [T1, T2] = (400, 600) and η = 0.2. Right: effect of timestep
range [T1, T2] with fixed N = 5 and η = 0.2.

N η Clean Acc Robust Acc
1 0.2 95.01 62.31
2 0.2 94.57 65.24
5 0.2 94.12 72.38
10 0.2 91.31 71.88
20 0.2 92.88 65.12
30 0.2 88.75 58.44
50 0.2 85.94 53.75

[T1, T2] N η Clean Acc Robust Acc
[100, 200] 5 0.2 96.12 58.44
[200, 400] 5 0.2 95.31 65.32
[400, 600] 5 0.2 94.12 72.38
[600, 800] 5 0.2 92.25 66.41
[800, 999] 5 0.2 90.14 60.27

it with a single random (t, ϵ) per iteration. This stochastic approximation, when combined with
semantic guidance from prompts, provides both efficiency and regularization, preventing overfitting
to specific perturbations. In practice, this explains why only 5–10 purification steps are sufficient to
achieve competitive robustness, which is consistent with our ablation results showing that excessive
steps may even degrade performance (see Table 4).

4.3 ABLATION STUDIES

Number of Purification Steps. We first study the effect of the number of purification steps N
while keeping the timestep range fixed at [400, 600] and step size η = 0.2. As shown in Table 4 (left),
increasing N from 1 to 5 steadily improves robustness, with the best performance observed at N = 5.
Using 10 steps achieves comparable accuracy, but going beyond 10 steps (e.g., 20, 30, 50) leads to
diminishing or even negative returns. In particular, excessive purification may overfit the injected
noise, causing a degradation in both clean and robust accuracy. This observation highlights that a
small number of purification steps (around 5–10) is sufficient for effective adversarial denoising,
striking a good balance between robustness and efficiency.

Choice of Timestep Range. We next analyze the effect of varying the timestep interval [T1, T2]
during purification, while fixing the purification steps N = 5 and step size η = 0.2. As shown in
Table 4(right), choosing too small a range (e.g., [100, 200]) fails to inject sufficient noise, causing the
purification process to underperform in terms of robustness. Conversely, excessively large ranges
(e.g., [800, 999]) introduce too much noise, which harms clean accuracy due to over-smoothed
reconstructions. The best performance is observed in the mid-range (e.g., [400, 600]), which strikes a
balance between removing adversarial perturbations and preserving semantic fidelity. This finding
highlights that an appropriate noise level is crucial for effective adversarial denoising.

We provide additional ablation studies on the the prompt length M and regularization strength λ in
the Appendix A.1 and Appendix A.2, respectively.

5 CONCLUSIONS AND DISCUSSIONS

We proposed Multimodal Diffusion for Adversarial Purification (MultiDAP), a novel adversarial
defense that leverages text-to-image diffusion models guided by learnable prompts. Experiments
on CIFAR-10 demonstrate that MultiDAP achieves competitive robustness against strong white-box
attacks, outperforming likelihood maximization baselines while being significantly more efficient
than DiffPure. Our ablation studies further highlight the importance of prompt learning and careful
timestep design, showing that semantic priors play a crucial role in improving purification quality.

Limitations and Future Work. Despite promising results, MultiDAP currently depends on Stable
Diffusion backbones, which are computationally heavier than standard feed-forward models. Future
work may explore lightweight diffusion architectures or truncated sampling to further improve
efficiency. Moreover, extending MultiDAP to large-scale datasets (e.g., ImageNet) and domain-
shifted benchmarks would provide stronger evidence of generalization. Another exciting direction
is to incorporate richer or multi-modal prompts (e.g., textual descriptions beyond class names) to
enhance semantic guidance during purification.
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Table 5: Ablation studies on CIFAR-10 under AutoAttack (ℓ∞-norm ϵ = 8/255). Left: effect
of prompt length M with fixed regularization strength λ = 0.9 and η = 0.2. Right: effect of
regularization strength λ with fixed prompt length M = 16 and η = 0.2.

Prompt length Clean Acc AA (ℓ∞)
4 90.87 71.19
8 92.31 72.26
12 91.56 72.25
16 93.36 72.38
32 93.75 72.04

Regulization strength Clean Acc AA (ℓ∞)
0.0 90.91 70.17
0.3 92.56 71.25
0.6 93.72 72.34
0.9 93.75 72.38
1.2 94.38 71.01
1.5 95.10 69.55

USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs served as supplementary instruments for textual improvement and code standardization through-
out this research. Their application was limited to enhancing readability, correcting grammatical
inconsistencies, and maintaining uniform presentation standards for pseudocode blocks and LaTeX
expressions. The core intellectual contributions—including research conception, methodological
frameworks, analytical reasoning, and experimental findings—remain entirely human-generated.

A ADDITIONAL EXPERIMENTS

A.1 ABLATION STUDY ON PROMPT LENGTH

To further understand the effect of prompt capacity, we conduct an ablation study by varying the
prompt length M while fixing the regularization strength λ = 0.9 and step size η = 0.2. The results
are shown in Table 5 (left). We observe that both clean accuracy and robustness generally improve
as M increases from 4 to 16, suggesting that a moderate number of context tokens is beneficial for
encoding richer semantic priors that guide the purification dynamics. The best robustness (72.38%
AutoAttack under ℓ∞) is achieved at M = 16. Increasing the prompt length further to 32 does not
provide additional gains and even slightly reduces robustness, likely because overly long prompts
introduce redundancy that makes optimization more difficult. These findings indicate that a compact
yet expressive prompt length is sufficient for effective semantic conditioning.

A.2 ABLATION STUDY ON REGULARIZATION STRENGTH

We further investigate the impact of the regularization strength λ while fixing the prompt length M =
16 and η = 0.2. The results in Table 5 (right) show that robustness improves steadily as λ increases
from 0.0 to 1.5, with the best performance (72.38% AutoAttack under ℓ∞) obtained at λ = 0.9.
This trend suggests that regularizing the prompt embeddings is important for preventing overfitting
to individual noise realizations, thereby stabilizing the purification process. However, very large
regularization values (e.g., λ = 1.5) begin to degrade robustness, indicating that excessive constraint
may limit the representational flexibility. Overall, these results demonstrate that an intermediate
regularization level provides the best trade-off between stability and semantic expressiveness.

A.3 EMPIRICAL ESTIMATION OF LIPSCHITZ CONSTANT AND GRADIENT VARIANCE

To verify the practical assumptions required by Theorem 2, we conduct an empirical evaluation of the
local Lipschitz constant L and gradient variance σ of the purification objective g(x) = ∇xLpur(x),
where Lpur is the DDPM-based denoising loss used in our purification step. Both measurements
strictly follow the forward process in our method, including VAE encoding, DDPM noise injection,
and UNet denoising.

First, we estimate the local Lipschitz constant via a finite-difference approximation: L(x) ≈
∥g(x+δ)−g(x)∥2

∥δ∥2
, where δ is a small random perturbation (∥δ∥2 ≈ 10−3). We repeat this proce-

dure for multiple random perturbations and multiple images. To estimate σ, we sample gradients
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under random diffusion timesteps t ∼ U [tst, ted] and random noise ϵ ∼ N (0, I): σ2 = Vart,ϵ [g(x)].
All gradients are computed in pixel space to match the theoretical setting.

Across CIFAR–10 samples, we obtain the empirical statistics shown in Table 6. These values are
small, stable, and tightly bounded, confirming that the assumptions in Theorem 2 hold in practice. In
particular, the purification gradient exhibits Lipschitz-smooth behavior and extremely low stochastic
variance. This explains why a small number of purification steps (five iterations) is numerically stable
and effective in our method.

Metric Mean Max / Std
Lipschitz constant L 0.1724 0.3000
Gradient std. σ 1.05× 10−4 —

Table 6: Empirical estimates of the Lipschitz constant and gradient variance of the purification loss.
Small and stable values indicate smooth gradient behavior and validate the assumptions in Theorem 2.

A.4 CIFAR-100

Table 7 reports results on the more challenging CIFAR-100 dataset. Consistent with the CIFAR-10
findings, MultiDAP achieves strong robustness while using only 5 purification steps. Our prompt-
learning variant obtains 38.15% AutoAttack robustness, outperforming all diffusion-based baselines,
including DiffPure (Nie et al., 2022) and Diffusion+Contrastive (Bai et al., 2024). Notably, even
the fixed template prompt (“a photo of a”) already provides competitive performance (35.70% AA),
demonstrating that semantic conditioning—whether learned or hand-designed—substantially benefits
the purification dynamics. These results indicate that MultiDAP generalizes effectively to datasets
with larger label spaces and more fine-grained visual variability.

B COMPLETE PROOFS

B.1 PROOF OF THEOREM 1

Proof of Theorem 1. For DDPM (or latent DDPM), the negative ELBO can be written (Ho et al.,
2020; Nichol and Dhariwal, 2021) as

− log p
θ
(z0 | p) = C(θ)+

T∑
t=1

E
[
KL

(
q(zt−1 | zt, z0) ∥ pθ(zt−1 | zt, p)

)]︸ ︷︷ ︸
=: Rt(p)

+E
[
KL

(
q(zT ) ∥ p(zT )

)]︸ ︷︷ ︸
independent of p

,

(4)
where C(θ) is independent of p and onlyRt(p) depends on the prompt.

Using the standard mean parameterization,

µθ(xt, t, p) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t, p)
)
, Σθ(xt, t) = σ2

t I,

one can show thatRt(p) is equivalent to a weighted noise-prediction MSE:

Rt(p) = wt Ex0,t,ϵ

[∥∥ϵ− ϵθ(xt, t, p)
∥∥2
2

]
+ const, wt =

β2
t

2σ2
tαt(1− ᾱt)

> 0.

Substituting into Eq. (4) yields

LVLB(p) =: − log p
θ
(x0 | p) = C ′(θ) +

T∑
t=1

wt Ex0,t,ϵ

[∥∥ϵ− ϵθ(xt, t, p)
∥∥2
2

]
,

which differs from Lprompt(p) only by positive weights and a constant. Therefore,

argmin
p
Lprompt(p) = argmin

p
LVLB(p).

Let p⋆ be the minimizer; then LVLB(p
⋆) ≤ LVLB(p) for all p, equivalently log p

θ
(x0 | p⋆) ≥

log p
θ
(x0 | p).
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Table 7: Clean and robust accuracy (%) on CIFAR-100. Robust results under AutoAttack are reported
for ℓ∞ (ϵ = 8/255). Our method (MultiDAP) uses a class-agnostic prompt and 5 purification steps.
We also report an ablation using the fixed template prompt “a photo of a”. Bold denotes the best,
underline the second best, and shading the third best.

Method Architecture Clean Acc AA
AT-CutMix (Rebuffi et al., 2021) WRN28-10 62.97 29.80
AT-DDPM (Rebuffi et al., 2021) WRN28-10 59.18 30.81
AT-DDPM + CutMix (Rebuffi et al., 2021) WRN28-10 62.41 32.06
AT-DDPM (Pang et al., 2022) WRN28-10 62.08 31.40
AT-DDPM (Wang et al., 2023b) WRN28-10 72.58 38.83
DiffPure (t = 0.1) (Nie et al., 2022) UNet+WRN28-10 62.50 8.60
Diffusion + Contrastive (t = 0.1) (Bai et al., 2024) UNet+WRN28-10 57.82 24.22
LM (Chen et al., 2024a) UNet+WRN28-10 66.45 33.83
MultiDAP (“a photo of a ·”) UNet+WRN28-10 73.29 35.70
MultiDAP (prompt learning) UNet+WRN28-10 72.52 38.15

B.2 PROOF OF LEMMA 1

Proof of Lemma 1. We first recall the purification objective:

Lpur(x0; p
⋆) = Et,ϵ

[
ℓ(x0; t, ϵ)

]
+ λR(x0, x

adv),

where t ∼ Unif ({1, . . . , T}) and ϵ ∼ N (0, I).

By linearity of expectation and interchangeability of expectation and gradient under standard regular-
ity conditions:

∇x0
Lpur(x0; p

⋆) = ∇x0
Et,ϵ

[
ℓ(x0; t, ϵ)

]
+ λ∇x0

R(x0, x
adv).

On the other hand, the stochastic gradient g(x0; t, ϵ) is defined as

g(x0; t, ϵ) = ∇x0ℓ(x0; t, ϵ) + λ∇x0R(x0, x
adv).

Taking expectation over (t, ϵ) gives:

Et,ϵ[g(x0; t, ϵ)] = Et,ϵ[∇x0ℓ(x0; t, ϵ)] + λ∇x0R(x0, x
adv),

which equals∇x0
Lpur(x0; p

⋆). Thus the estimator is unbiased.

By Assumption (A2), we assume that the variance of the stochastic gradient is bounded:

Et,ϵ

[
∥g(x0; t, ϵ)−∇x0

Lpur(x0; p
⋆)∥22

]
≤ σ2.

This holds because ℓ(x0; t, ϵ) is quadratic in ϵ and ϵ ∼ N (0, I) has bounded second moment, while
R is convex and LR–smooth (Assumption A3). Therefore the stochastic gradient inherits bounded
variance.

Together, we conclude that g(x0; t, ϵ) is an unbiased stochastic gradient estimator of∇x0Lpur(x0; p
⋆)

with bounded variance, completing the proof.

B.3 PROOF OF THEOREM 2

Proof of Theorem 2. Recall the purification objective

Lpur(x0; p
⋆) = Et,ϵ

[
ℓ(x0; t, ϵ)

]
+ λR(x0, x

adv), ℓ(x0; t, ϵ) =
∥∥ϵ− ϵθ(zt, t, p

⋆)
∥∥2
2
,

and the projected update on the pixel cube C = [0, 1]d:

x
(k+1)
0 = ΠC

(
x
(k)
0 − η g(x

(k)
0 ; tk, ϵk)

)
, g(x0; t, ϵ) = ∇x0

ℓ(x0; t, ϵ) + λ∇x0
R(x0, x

adv).
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Since Lpur is L-smooth on C (Assumption A1), the standard smoothness inequality gives

Lpur(x
(k+1)
0 ; p⋆) ≤ Lpur(x

(k)
0 ; p⋆) +

〈
∇Lpur(x

(k)
0 ; p⋆), x

(k+1)
0 − x

(k)
0

〉
+

L

2

∥∥x(k+1)
0 − x

(k)
0

∥∥2
2
. (5)

The projection onto a closed convex set is nonexpansive and satisfies ∥x(k+1)
0 − x

(k)
0 ∥2 ≤

η ∥g(x(k)
0 ; tk, ϵk)∥2. Hence, from Eq. (5),

Lpur(x
(k+1)
0 ; p⋆) ≤ Lpur(x

(k)
0 ; p⋆)− η

〈
∇Lpur(x

(k)
0 ; p⋆), g(x

(k)
0 ; tk, ϵk)

〉
+

Lη2

2

∥∥g(x(k)
0 ; tk, ϵk)

∥∥2
2
.

Conditioning on x
(k)
0 and using Lemma 1,

Etk,ϵk

[
g(x

(k)
0 ; tk, ϵk)

∣∣x(k)
0

]
= ∇Lpur(x

(k)
0 ; p⋆),

Etk,ϵk

[
∥g(x(k)

0 ; tk, ϵk)∥22
∣∣x(k)

0

]
≤ ∥∇Lpur(x

(k)
0 ; p⋆)∥22 + σ2.

Using the standard variance decomposition bound E∥g∥22 ≤ 2∥∇Lpur∥22 + 2σ2 (or equivalently
absorbing constants into σ2) and taking full expectation yields

E
[
Lpur(x

(k+1)
0 ; p⋆)

]
≤ E

[
Lpur(x

(k)
0 ; p⋆)

]
− η E

[
∥∇Lpur(x

(k)
0 ; p⋆)∥22

]
+

Lη2

2
E
[
∥g(x(k)

0 ; tk, ϵk)∥22
]

≤ E
[
Lpur(x

(k)
0 ; p⋆)

]
−
(
η − Lη2

2

)
E
[
∥∇Lpur(x

(k)
0 ; p⋆)∥22

]
+

Lη2

2
σ2.

If η ≤ 1/(2L), then η − Lη2

2 ≥ η/2. Hence we obtain the claimed one–step descent:

E
[
Lpur(x

(k+1)
0 ; p⋆)

]
≤ E

[
Lpur(x

(k)
0 ; p⋆)

]
− η

2
E
[
∥∇Lpur(x

(k)
0 ; p⋆)∥22

]
+

η2L

2
σ2.

Summing the inequality over k = 0, . . . ,K − 1 and using the lower bound Lpur(x0; p
⋆) ≥ Linf :=

infx∈[0,1]d Lpur(x; p
⋆), we get

1

K

K−1∑
k=0

E
[
∥∇Lpur(x

(k)
0 ; p⋆)∥22

]
≤

2
(
Lpur(x

(0)
0 ; p⋆)− Linf

)
ηK

+ ηLσ2.

Since Lpur = LDDPM + λR and R is convex and smooth (Assumption A3), the same derivation
applies when focusing on the data-fidelity part. In particular, using ∥∇LDDPM(x)∥22 ≤ ∥∇Lpur(x)∥22
(up to a constant absorbed into σ2) yields

1

K

K−1∑
k=0

E
[∥∥∇LDDPM(x

(k)
0 ; p⋆)

∥∥2
2

]
≤

2
(
LDDPM(x

(0)
0 ; p⋆)− Linf

)
ηK

+ ηLσ2,

which is the stated bound.
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