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ABSTRACT

Transformers provide a novel approach for unifying large-scale biobank data
spread across different modalities and omic domains. We introduce M-BioBERTa,
a modular architecture for multimodal data that offers a robust mechanism for
managing missing information. We evaluate the model using genetic, demo-
graphic, laboratory, diagnostic and drug prescription data from the UK Biobank,
focusing on multimorbidity and polypharmacy related to major depressive disor-
der. We investigate the harmonized and modular representations in M-BioBERTa
for patient stratification. Furthermore, leveraging the learned representations to
forecast future disease and drug burdens outperforms traditional machine learning
approaches applied directly to the raw data.

1 INTRODUCTION

Integration of heterogeneous information has always been a vital focus in life sciences (Bertone &
Gerstein, 2001). Especially the integration of omic data sets to explore common molecular fac-
tors behind multimorbidities (Rosenthal et al., 2023; Langenberg et al., 2023) using probabilistic
graphical models (Moreau et al., 2003), statistical relational learning (Weiss et al., 2012), kernel
methods (Lanckriet et al., 2004), and network propagation (Zhu et al., 2012; Cowen et al., 2017).
The growing availability of electronic patient records (EHR), quantified self data, patient registries,
and biobanks provides an unprecedented amount of heterogeneous data to learn latent patient rep-
resentations, stratify patients and subtype diseases (Swan, 2013; Bycroft et al., 2018; Jensen et al.,
2014; Siggaard et al., 2020; Landi et al., 2020; Yang et al., 2023; Placido et al., 2023), although
the integration of time series data, such as the irregularly sampled drug prescription data (Allam
et al., 2021; Chen, 2020; Xie et al., 2022) and multimodal data fusion with systematically missing
modalities is still an open problem (Acosta et al., 2022; Steyaert et al., 2023; Moor et al., 2023).

Transformers have proven to be powerful candidates for multimodal data fusion and time series data
analysis (Baltrušaitis et al., 2018; Xu et al., 2023; Nerella et al., 2023; Ahmed et al., 2023; Wen
et al., 2022). We focus on three open issues in the multimodal application of transformers:

1. autonomous treatment of modalities,
2. mixed numeric-nominal data types,
3. non-uniformly sampled longitudinal data.

This article introduces a modular transformer model, M-BioBERTa, to integrate genetic, demo-
graphic, metabolomic, diagnostic, and drug prescription data with varying levels of availability in
the UK Biobank (Bycroft et al., 2018). We demonstrate the representation learning ability of M-
BioBERTa in patient stratification and prediction tasks related to the molecular background, multi-
morbidity, and the polypharmacy of major depressive disorder (Koné Pefoyo et al., 2015; Guthrie
et al., 2015; Langenberg et al., 2023; Flint, 2023). Fig. 1 provides an overview of the data sets, the
M-BioBERTa model architecture, and the evaluation workflow of our study. Following convention
in the field, we use multimodal and cross-domain interchangeably.

2 EARLIER WORKS

The multimorbidity analysis of large-scale biobanks allows the identification of novel patient strati-
fications and shared molecular background of clusters of patients in the latent space of patient repre-
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Figure 1: Overview of data, methods, and architecture. (A) Training: The model modular is
not only architectural, but also manifest in the training phase. The encoder handling the different
modalities of additional data, is pre-trained on datasets filtered on that modality. Then, the pre-
trained encoders are used to train the unified model on the disease sequences. All models are trained
to predict masked parts of their inputs. (B) Embedding: We introduce 2 new layers to facilitate
the embedding of date information and tabular data. (C) Architecture: The RoBERTa decoder
is augmented with new Unified Cross-Attention Layers, that processes input sequences from all
modalities and merges them via an attention-based fusion mechanism. (D) Fine-tuning: To evaluate
the effectiveness of the unified representation, we utilize 10% of our data to contrast the model’s
performance against conventional ML techniques.

sentations (Jensen et al., 2014; Prasad et al., 2022). Latent representations based on the metabolomic
data from the UK Biobank have also been shown to increase performance in downstream predictive
tasks (Buergel et al., 2022). In addition to non-longitudinal data, drug prescription time series data
is an additional substantial resource, but its use is frequently hindered by heterogeneous coding, lim-
ited availability, and its longitudinal nature (Wu et al., 2019; Schwarz et al., 2022; Kiiskinen et al.,
2023; Stroganov et al., 2022; Darke et al., 2022).

Transformers were rapidly adopted for multimodal and temporal biomedical data (Nerella et al.,
2023). The BEHRT model could predict 301 conditions for future visits trained on the elec-
tronic health records of 1.6 million individuals (Li et al., 2020). Meng et al. (2021) proposed the
Bidirectional Representation Learning model with a Transformer architecture on Multimodal EHR
(BRLTM) to predict major depressive disorder (MDD) by integrating diagnoses, treatments, med-
ications, demographic information, and clinical notes. The Med-BERT model demonstrated the
advantages of structured inputs using ICD-9 and ICD-10 codes, transfer learning and fine-tuning
over varying sample sizes between 100 to 50k (Rasmy et al., 2021). The Hi-BEHRT model con-
tains a hierarchical extension to cope with long patient trajectories and increase transfer learning
effects (Li et al., 2022). Yin et al. (2023) suggested structured multimodal learning to boost patient
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stratification. The ExBEHRT model further extends the feature space through laboratory tests, in-
tegrates temporal side-information, and demonstrates the applicability of the model representations
to identify subtypes of the disease and identify risk groups (Rupp et al., 2023). The Hybrid Value-
Aware Transformer (HVAT) model facilitates joint learning from non-longitudinal and quantitative
longitudinal data (Shao et al., 2023). Placido et al. (2023) compared the performance of deep learn-
ing methods using 6 million patients from the Danish National Patient Registry (DNPR) to predict
the risk of pancreatic cancer from disease trajectories, in which transformers achieved the best AU-
ROC values. Zhou et al. (2023) expanded the scope of multimodal learning to clinical images, texts,
quantitative laboratory tests and structured information. For a critical evaluation of the applicability
of transformers in time series prediction, see (Zeng et al., 2023), especially for the prediction of
MDD (Zou et al., 2023). A standard EHR benchmark data set is the MIMIC data (Johnson et al.,
2023); for an evaluation of large language models (LLMs) on the UK Biobank, see e.g., (Belyaeva
et al., 2023). Finally, the Attention-based cRoss-MOdal fUsion with contRast (ARMOUR) archi-
tecture is designed to cope with systematically missing modalities (Liu et al., 2023), which shows
similarities to our proposed model.

3 M-BIOBERTA

In this section, we present M-BioBERTa, our novel architecture designed to handle large-scale
biobank data. Unlike traditional models, M-BioBERTa uses several encoders to process different
types of data modalities. This method allows our model to understand complex and systematically
missing data more effectively and efficiently. First, we describe the basic structure of M-BioBERTa.
This structure is key to our model’s ability to handle different types of data efficiently. Next, we ex-
plain how our model uses multiple encoders. Each encoder adds its own piece to the overall picture,
making our model more powerful in combining different types of modalities. An important part of
M-BioBERTa is its decoder, which we discuss in detail later. The decoder uses an attention-based
method to integrate information from the various encoders. This fusion is vital for our model to
work well as it brings together all the different pieces of information in a meaningful way.

3.1 TRANSFORMERS

The Transformer architecture represents a paradigm shift in sequence-to-sequence modeling, es-
chewing the recurrent layers common in prior models (Vaswani et al., 2017). Its foundation is
primarily built on two mechanisms: self-attention and feed-forward neural networks.

Input Embedding and Positional Encoding. The model accepts an input sequence X , which is
embedded in a continuous space using learned embeddings. A positional encoding supplements this
to ensure that sequence-order information is retained.

Self-Attention. The self-attention mechanism, SA, allows the model to weigh the importance of
different tokens in the sequence relative to each other. It is computed as:

Attention(Q,K, V ) = softmax
(

QKT

√
dmodel

)
V (1)

Multi-Head Attention. Instead of a single set of attention weights, the Transformer uses multiple
heads, MHA, to capture various aspects of the input information.

Feed-Forward Neural Networks. Each attention output is then passed through a feed-forward
neural network FFNN, independently at each position.

The Cross-Attention Mechanism. In the cross-attention framework, the decoder attends to the en-
coder’s output sequence. The process involves three main entities: the Query (Q) from the decoder,
and the Key (K) and Value (V ) from the encoder. The computation of the mechanism is the same
as in Equation 1.

3.2 TEMPORAL EMBEDDINGS

Within the landscape of medical data, longitudinal studies present unique challenges and opportuni-
ties, mainly due to the inherent temporal aspect of patient health trajectories. Continuous monitoring
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and recording of patient health metrics, interventions, and results can reveal significant patterns in
disease progression, therapeutic response, and external event-driven effects. In this section, we ex-
plain how we incorporate essential temporal information into the embedding layers of our model,
allowing it to capture the complex temporal features of the medical field.

Temporal Embeddings. An architectural component tailored to transmute temporal information
into continuous vector representations. Rather than using more complex structures or algorithms,
this module adopts a traditional vocabulary-based embedding approach, translating temporal units
into embeddings.

• Year Embeddings. Responsible for encapsulating longitudinal patterns and trajectories
within medical data. Recognizing the importance of conditions and diseases that could
develop or transform over several years, these embeddings are invaluable for prognostic
tasks, such as forecasting disease trajectories or deciphering long-term treatment effects.

• Month and Day Embeddings. These facilitate the model’s sensitivity to short-term tem-
poral variations, such as cyclic medical phenomena or seasonal conditions. They ensure
the model remains attuned to extensive and minute temporal changes.

The embedding creates a combined temporal representation by adding together the embeddings for
each time unit: year, month, and day. This method ensures that each part of the time information
adds its own unique information to the overall temporal representation. These temporal embed-
dings are added to the other embeddings within the model, integrating time-specific insights into the
overall model architecture.

3.3 MIXED TABULAR EMBEDDINGS

This approach creates embeddings by combining token inputs, numerical values, token categories,
positional and visit data. The tokenized part of the data utilizes an embedding layer, whereas the
continuous data use a linear layer for the transformation. We employ a masking tensor to differenti-
ate between the different types.

1. Word Embeddings:
Given the input tensor of token IDs, I , and a masking tensor M for continuous measure-
ments:

Te = Ew((I⊙ ∼ M)int)

Where Ew represents the word embeddings matrix, and Te is the resulting token embed-
dings. ⊙ denotes element-wise multiplication, and ∼ M is the logical negation of M .

2. Measurement Embeddings:
Continuous measurements in the input tensor I are converted to embeddings:

Me = Em(I ⊙M)

Where Em is the linear layer that converts continuous measurements to embeddings of
similar dimensionality, and Me is the resulting measurement embeddings.

3. Combining Token and Measurement Embeddings:
The final embeddings from the token and measurement sources are obtained as:

Ie = (∼ M ⊙ Te) + (M ⊙Me)

The comprehensive embedding for each token is the sum of its respective token or measure-
ment embedding, positional embedding, token type embedding, and visit type embedding;
the token type- TTe and visit embeddings Ve are achieved with embedding layers as in
standard architectures:

E = Ie + Pe + TTe + Ve

Subsequent normalization and dropout operations are applied to E for regularization.

The Mixed Tabular Embeddings provides a flexible framework for embedding heterogeneous data
types commonly found in tabular datasets. This module captures a diverse range of information
in its embeddings by considering tokens, continuous measurements, positional information, token
types, and visit types.
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3.4 UNIFIED CROSS-ATTENTION DECODER

The Unified Cross-Attention Decoder (UCAD) is designed to effectively integrate a variety of medi-
cal data types, such as patient history, drug interactions, genomic information, and laboratory results.
Its core function is to create a cohesive understanding from these diverse data sources.

• Dedicated Cross-Attention Units. UCAD employs specialized cross-attention mecha-
nisms, each focusing on a different type of medical data. These units are adept at identify-
ing and aligning relationships between different data sources, ensuring that each modality
contributes meaningfully to the overall understanding.

• Attention-Based Fusion This approach uses attention mechanisms to assess and weigh the
relative importance of each data modality. By dynamically adjusting how different types
of data are integrated, UCAD ensures that the most contextually relevant information is
prioritized in the analysis.

Attention-Based Fusion. For a given input tensor X with shape [num sequences, batch size,
seq len, hidden dim], and an attention weight vector w of dimension [hidden dim, 1]:

1. Attention Scores. The scores are calculated by multiplying X with the weight vector w:

s = X · w

yielding a tensor s reshaped to [num sequences, batch size, seq len].
2. Attention Probabilities. Probabilities p are obtained by applying the softmax operation

over the num sequences dimension:

p = softmax(s)

3. Weighted Sum. The final representation O is a weighted summation of the input sequences
based on their attention probabilities:

O =

num sequences∑
i=1

pi ⊙Xi

where ⊙ denotes element-wise multiplication, aggregated across the num sequences di-
mension.

The Attention-Based Fusion (ABF) approach assigns weights to each sequence in X based on its
content and the attention weight vector. This enables the combination of the sequences into a single
representation, which captures the most important information from the set of sequences.

4 EXPERIMENTS

4.1 DATA

We used data from the UK Biobank (UKB), including basic descriptors and lifestyle factors (termed
’personal’), onsets of diseases (’diseases’), NMR metabolomic profile (’metabolomics’), an MDD-
related genetic profile (’genetics’), and drug prescription time series data (’medications’). Table 4.1
shows the number of variables and samples for each block, and the supplementary data contains the
list of the variables for each block. We used 1127 three-character coded ICD-10 disease categories.
We extracted 700 measured SNPs for genes with confirmed relation to MDD by the DisGeNET
platform (Piñero et al., 2020). We used all available NMR metabolic markers. We collected drug
prescription data from the primary care records of approximately 165,000 participants in the UK
Biobank. The data was sourced from the SystmOne practice management system, provided by TPP,
which serves as the largest homogeneous data provider within the Biobank. Within this cohort,
prescription data spans from 1990 to 2016 and is coded based on the British National Formulary
(BNF) system. Each prescription entry includes the date, the BNF drug code and, when available,
the drug name and quantity. We converted these BNF drug codes to the Anatomical Therapeutic
Chemical (ATC) Classification System for our analytical purposes. This resulted in 176 ATC Level
3 classes used in the present study.
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Data Block No. of Variables No. of Samples

Personal 178 502 504
Diseases (ICD-10) 1127 502 504
Genetics (SNPs) 700 488 377
Metabolomics (NMR) 249 121 724
Medications (ATC) 176 158 154

Table 1: Overview of Data Used from the UK Biobank. The samples of the different modalities
are missing systematically.

4.2 MODELS

In our study, we compared different versions of M-BioBERTa, using the standard RoBERTa encoder
as the transformer baseline. The following describes each version:

1. RoBERTa Encoder (RoBERTa): Used as a baseline model, the RoBERTa Encoder is
trained exclusively on disease data, utilizing all available samples.

2. M-BioBERTa: This model incorporates all types of data, personal, diseases,
metabolomics, genetics and medications, using every available sample.

3. Modality-Specific Encoder: These modules are tailored to specific data types and are
trained only on the non-missing samples from their respective modalities.

4. Pre-trained M-BioBERTa (pM-BioBERTa): This variant begins with pre-trained
Modality-Specific Encoder modules and is further trained on the entire dataset.

5. Frozen Pretrained M-BioBERTa (fpM-BioBERTa): In this model, the weights of the
pre-trained modules are frozen, maintaining a balance between the initial training phase
and subsequent refinements.

Our aim was to evaluate the performance of these models in processing and analyzing biobank data,
focusing on how effectively each variant manages and interprets information from diverse data types.
For further investigation into how key components effect performance, please refer to the Ablations
section in Appendix A.4.

Model ICD Code Accuracy ICD Block Accuracy ICD Chapter Accuracy
RoBERTa 20.06% 25.47% 36.15%
M-BioBERTa 23.17% 28.53% 39.72%
pM-BioBERTa 24.88% 30.36% 41.72%
fpM-BioBERTa 25.42% 30.77% 42.25%

Table 2: Model Performance Comparison Based on ICD Accuracy. These metrics were used, to
measure how well the model was able to perform that Masked Sequence Modelling tasks.

To evaluate the predictive performance (downstream tasks), we compare M-BioBERTa against stan-
dard machine learning models, such as linear regression (LiR), logistic regression (LR), multilayer
perception (MLP), decision tree (DT), random forest (RF), and extreme gradient boosting (XGB).
These models were trained on a tabulated version of the dataset A.6.

4.3 EVALUATIONS

The main goal of our evaluation was to investigate the subtypes of Major Depressive Disorder
(MDD). We focus on two key aspects: multimorbidity (MM) and polypharmacy (PP). Multimor-
bidity refers to the presence of multiple diseases simultaneously, while polypharmacy deals with
the concurrent use of multiple medications. We use the MM and PP scores to measure the burden
of diseases and drugs, respectively. In our qualitative analysis of latent spaces, we looked at the
first occurring class of diseases, the most frequent class of diseases, the multimorbidity scores, and
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the polypharmacy scores. The modular design of M-BioBERTa allowed us to visualize the latent
representations for each component.

Additionally, we evaluated how well our models could predict future medical conditions and MM/PP
scores. We used data up to 2010 for training and predicted outcomes in the next 1 or 5 years. Given
the low occurrence rates of some conditions, we chose the Area Under the Precision-Recall Curve
(AUPRC) as our primary evaluation metric. For tasks related to predicting numerical values, we
used the Mean Squared Error (MSE) metric.

We also experimented with various data-filtering approaches to enhance homogeneity. One such
method involved segregating the data set based on birth year, grouping individuals into uniform co-
horts. For example, we considered creating cohorts based on specific time spans, such as decades,
to see if this would lead to more homogeneous groups. However, our experiments revealed a signif-
icant trade-off. Although filtering based on birth year and creating uniform cohorts did bring some
level of homogeneity to the data, it also substantially reduced the dataset size.

Data Partitioning for Model Training:

• The UK Biobank (UKB) dataset was divided into separate parts for pre-training and fine-
tuning, ensuring that the model was tested on new, unseen data.

• For the fine-tuning phase, we set aside specific portions of the data set for training and
evaluation, maintaining a diverse and representative distribution of the data.

5 RESULTS

5.1 LATENT REPRESENTATION

The initial phase of pre-training the M-BioBERTa employed Masked Language Modeling (MLM,
see A.3). Through this process, the model learns to generate embeddings in its latent space that
are rich in contextual information and semantic associations, serving as an ideal foundation for
downstream tasks. Given the multi-encoder architecture of M-BioBERTa, our model presents a
unique setting. In addition to the fused latent space, a specific latent space corresponds to each
encoder.

Figure 2: The unified latent representation, colored by multimorbidity (left) and polypharmacy
(right). The figures show a 2D UMAP projection of the 312 dimensional latent space of the unified
model. The structure in the coloring shows, that the model is able to place similar samples close
together in the latent space. We provide a wider selection of latent space plots in the appendix B.
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Figure 3: Latent Representations of Pre-trained Models. Each plot’s latent space is color-coded
based on the comorbidities associated with Major Depressive Disorder and showcases the samples
used for training that specific modality. The disease groups are denoted by ICD10 codes. Note: The
encoder pre-trained on genomics data is not depicted here and can be found in the appendix (see B).

5.2 FINE-TUNE

Regression Datasets Classification Datasets
Metric Mean Std Dataset Pos Samples Pos Percentage
Disease Burden 0.429 1.05 F30-F39 787 1.62
Unique Drug Burden 0.668 1.79 E10-E14 1237 2.55
Drug Burden 2.44 7.55 I10-I15 4244 8.76

Table 3: Statistics of Datasets for fine-tuning. These sample were not used for pre-training the
M-BioBERTa. All fine-tune datasets contain 48452 samples.

Binary Classification. We structured our data with specific temporal boundaries to ensure balanced
representation and prevent temporal information leakage. We included data up to December 31,
2009, and our subsequent predictions spanned January 1, 2010, through December 31, 2014. A
5-year prediction period was selected to accumulate a statistically significant number of positive
instances, ensuring a robust evaluation of binary classification tasks as in Table 5.2.
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F30-F39 E10-E14 I10-I15
Model AUROC AUPRC AUROC AUPRC AUROC AUPRC
DT 0.653 0.027 0.798 0.127 0.667 0.140
LR 0.658 0.028 0.801 0.147 0.657 0.138
MLP 0.666 0.044 0.782 0.114 0.681 0.145
RF 0.630 0.042 0.791 0.101 0.670 0.148
XGB 0.655 0.038 0.859 0.162 0.687 0.152
RoBERTa 0.713 0.276 0.756 0.394 0.660 0.303
fpM-BioBERTa 0.742 0.269 0.807 0.472 0.720 0.369

Table 4: Performance metrics for classification tasks. The models predict whether a patient will
receive a disease from a group of diseases within 5 years of the data cut-off date. For tables showing
all metrics, see AppendixA.7.

Regression. The same concept was applied to the regression data. However, the predictions were
restricted to a narrower scope for regression tasks, specifically from 1 January 2010 to 31 December
2010. This one-year window was deemed optimal for discerning the model’s ability to project
continuous outcomes over a relatively shorter time.

Disease Burden Drug Burden Unique Drug Burden

Model MSE MAPE MSE MAPE MSE MAPE
DT 1.10 96.1 52.5 99.3 3.21 98.0
LiR 1.11 98.5 53.7 109.6 3.32 102.3
MLP 1.08 89.4 52.4 105.0 3.22 96.7
RF 1.08 95.8 52.1 99.0 3.2 98.5
XGB 1.08 95.6 52 100.0 3.2 98.5
RoBERTa 1.01 89.6 46.6 96.2 2.18 80.2
fpM-BioBERTa 1.01 80.7 23.8 51.8 1.15 44.6

Table 5: Performance metrics for regression tasks. The models are predict the number of diseases
(Disease Burden), prescriptions (Drug Burden) and unique prescriptions (Unique Drug Burden) a
patient will receive within 1 year of the data cut-off date. The Mean Absolute Percentage Error
(MAPE) columns are given as percentages. For tables showing all metrics, refer to AppendixA.7.

6 CONCLUSION

Biobanks offer an unprecedented repertoire of multimodal data, including both non-longitudinal
and longitudinal data; however, modalities are frequently systematically missing, such as the
metabolomics and medications data in the UK Biobank. We proposed a novel modular transformer
architecture, M-BioBERTa, with novel mechanisms and training protocols to cope with the block
structure of the data. In addition, M-BioBERTa provides a simultaneous view of latent representa-
tions for the modalities and their balanced joint representation as well. We applied the approach to
explore the stratification of depression and disease, medication, multimorbidity, and polypharmacy
maps, demonstrating its applicability at scale using the UK Biobank. We also evaluated the ap-
proach in the quantitative prediction of disease and drug burden, which indicated clinically relevant
improvements in predictive performance. We believe that the multimodal data fusion capabilities of
M-BioBERTa hold promise not only for the subtyping of depression and its associated multimorbidi-
ties, but also for a broader range of health issues. By integrating diverse data types, M-BioBERTa
can facilitate a deeper and more nuanced understanding of various health conditions. This enhanced
understanding is essential to identify different health risk groups in different disorders, which could
lead to better strategies for prevention and healthcare. Such applications of M-BioBERTa could be
instrumental in personalizing treatment approaches and in the early identification of risk factors for
a variety of diseases, thereby facilitating timely and targeted interventions.
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A APPENDIX

A.1 TRAINING AND MODEL PARAMETERS

We used a uniform set of training parameters in all models to ensure consistency and comparability
of the results. Any model parameters not explicitly listed in the tables below adhere to the default
settings specified for RoBERTa. All models were trained using a Tesla V100 GPU and the training
duration for each model was approximately one hour per epoch.

Argument Value
epochs 6
learning rate 0.0003
weight decay 0.0
adam beta1 0.9
adam beta2 0.999
warmup steps 4000
scheduler linear decay

Table 6: Training Arguments

Parameter M-BioBERTa RoBERTa Encoder
encoder hidden layers 2 -
num hidden layers 4 4
hidden size 312 312
intermediate size 1200 1200
trainable parameters 13,177,787 27,284,171
number of parameters 69,007,835 27,284,171

Table 7: Model Arguments for RoBERTa Encoder and M-BioBERTa

A.2 DATA TOKENIZATION

Our tokenization process was applied across multiple data modalities to ensure consistent represen-
tation.

For diseases and prescriptions, we used specific coding systems. Diseases were represented using
3-character ICD10 codes, resulting in 1,127 distinct tokens. Prescriptions were tokenized using
4-character codes from ATC level 3, leading to 176 tokens.

The encoding strategy assigns two distinct tokens to each SNP, corresponding to the heterozygous
genotypes and the homozygous minor allele genotypes (assuming biallelic SNPs). Importantly, in
the case of the homozygous major allele genotype, no token is appended to the sequence. This
approach yields a total of 1,400 SNP tokens.

Tokenization of metabolic and personal data involved converting these data into float sequences
suitable for MixedTab embedding layers. Given the nature of float tokens, which do not inherently
indicate their measurement, we introduced an additional token before each measurement token to
specify its type. When combined with the tokens from the personal modality’s categorical measure-
ments, the disease tokens, and the prescription tokens, this resulted in 3,155 tokens for the tokenizer
vocab.

To address the temporal component, dates were divided and tokenized into years, months, and days.
Although months and days were straightforward, the year tokens only cover a range from 1934 to
2020. In particular, all the models used in this study shared the same vocabulary for uniformity.

To further demonstrate the tokenization process, we provide an example tokenization of a fictional
patient. All values used in the example are for purely demonstration purposes. Consider a patient
with the following information:
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• List of Diseases: [F30, 2000-01-01]

• List of Prescriptions: [M01AE02, 2012-03-13, ], [M01AX05, 2019-06-29]

• Available Personal Information: [Sex Male], [Weight 56.3kg]

• Available Metabolomics Information: [Iron 171.3 mg/dl]

• Available SNPs: [rs2252755 G homozygous major allele], [rs2147377 A heterozygous]

The initial tokenization step outputs the following sequences, with all categorical information turned
into tokens and standardized continuous values.

• Disease Tokens: <F30>

• Disease Year Tokens: <2000>

• Disease Month Tokens: <01>

• Disease Day Tokens: <01>

• Prescription Tokens: <M01A><M01A>

• Prescription Year Tokens: <2012><2019>

• Prescription Month Tokens: <03><06>

• Prescription Day Tokens: <13><29>

• Personal Tokens (Mixed float and tokens sequence): <Sex><Male><Weight>-0.13

• Metabolomics Tokens (Mixed float and tokens sequence): <Iron>1.3

• SNP tokens: <HETEROZYGOUS rs2147377 A>

In the final step, special tokens (”beginning of sequence”: <bos>and ”end of sequence” <eos>) are
added, and the tokens are switched to their token ids. The tokenizer has four separate vocabularies
(token to id maps), year, month, day, and ”information”.:

• Disease Token IDs: [1, 301, 2]

• Disease Year Token IDs: [0, 67, 0]

• Disease Month Token IDs: [0, 1, 0]

• Disease Day Token IDs: [0, 1, 0]

• Prescription Token IDs: [1, 1257, 1257, 2]

• Prescription Year Token IDs: [0, 79, 86, 0]

• Prescription Month Token IDs: [0, 3, 7, 0]

• Prescription Day Token IDs: [0, 13, 29, 0]

• Personal Token IDs (Mixed float and tokens sequence): [1, 1325, 1359, 1335, -0.13, 2]

• Metabolomics Token IDs (Mixed float and tokens sequence): [1, 1556, 1.3, 2]

• SNP token IDs: [1, 2355, 2]

A.3 THE MLM OBJECTIVE

In the Masked Language Model (MLM) pretraining phase, the model processes token sequences in
which 15% of the non-special tokens are substituted with either a special <mask>token or another
random token. The model then predicts logits for each token, with the categorical cross-entropy loss
of the masked tokens serving as the loss function.

MLM is employed in two distinct phases of our methodology: first, in the pre-training of the modal-
ity encoders, and second, in the joint training of the entire architecture. During each encoder’s
pre-training, they are fed sequences with masked tokens and are trained using the MLM loss. In the
joint training phase of the M-BioBerta architecture, only disease sequences are masked. Here, the
encoders receive complete modality-specific sequences, and the MLM loss is computed exclusively
at the decoder’s output.
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A.4 ABLATION STUDY

We first evaluate the effect of the proposed temporal embedding on the performance of the RoBERTa
model in the coding of medical diagnoses, particularly in the prediction of International Classifica-
tion of Diseases (ICD) codes. The modified model, RoBERTa + temporal, demonstrates improved
accuracy over the baseline RoBERTa model across three metrics: code accuracy, block accuracy,
and chapter accuracy. This improvement underscores the importance of temporal data in improving
the predictive capabilities of natural language processing models within the medical domain. For
detailed results, refer to the performance metrics outlined in Table A.4.

Model ICD Code Accuracy ICD Block Accuracy ICD Chapter Accuracy
RoBERTa 20.06% 25.47% 36.15%
RoBERTa + temporal 23.93% 29.31% 40.97%

Table 8: How the temporal information affects model performance.

We delve into the ablation study of the RoBERTa model enhanced with temporal embeddings
(RoBERTa(t)), evaluating its performance in the context of Masked Sequence Modeling tasks re-
lated to medical diagnosis coding. The focus is on the addition of different single modality en-
coders: Prescriptions, Metabolomics, Personal, and Genetics. These modalities are integrated into
the RoBERTa(t) model to assess their individual impact on the prediction of International Classifi-
cation of Diseases (ICD) codes.

The results, as detailed in Table A.4, reveal varied impacts of these modalities on the performance of
the model. The integration of Prescriptions data leads to a slight improvement in the three metrics:
ICD Code Accuracy, ICD Block Accuracy and ICD Chapter Accuracy compared to the baseline
RoBERTa(t) model. Similarly, the addition of Personal data results in the most notable improvement
across all metrics.

In contrast, the integration of Metabolomics and Genetics data does not improve, in fact, marginally
deteriorates the performance on most metrics compared to the baseline RoBERTa(t) model. These
findings suggest that while certain data modalities like Prescriptions and Personal information can
enhance the model’s predictive accuracy, others like Metabolomics and Genetics may not contribute
as effectively to the task of ICD code prediction in this specific modeling context.

Model ICD Code Accuracy ICD Block Accuracy ICD Chapter Accuracy
RoBERTa (temporal) 23.93% 29.31% 40.97%

RoBERTa(t) + Prescriptions 24.58% 29.88% 41.25%
RoBERTa(t) + Metabolomics 23.77% 29.11% 40.66%
RoBERTa(t) + Personal 24.93% 30.34% 41.51%
RoBERTa(t) + Genetics 23.87% 29.10% 40.24%

Table 9: RoBERTa+temporal decoders, with a single modality encoder. These metrics were
used, to measure how well the model was able to perform that Masked Sequence Modelling tasks.

As detailed in Table A.4, investigates the effect of removing each of four specific modalities: Pre-
scriptions, Metabolomics, Personal, and Genetics. This approach helps to understand the contribu-
tion of each modality to the model’s overall performance.

The results show that the removal of Metabolomics and Genetics modalities leads to a notable in-
crease in ICD Code Accuracy, ICD Block Accuracy, and ICD Chapter Accuracy, surpassing the per-
formance of the complete fpM-BioBERTa model. This suggests that these modalities in the current
settings might introduce noise or irrelevant information, thereby hindering the model’s predictive
accuracy.

On the contrary, removing prescriptions and personal data results in a slight decrease in performance
across all metrics compared to the full fpM-BioBERTa model. This indicates that these modalities
contribute positively to the model’s ability to predict ICD codes.
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Model ICD Code Accuracy ICD Block Accuracy ICD Chapter Accuracy
fpM-BioBERTa - Prescriptions 24.57% 30.07% 41.29%
fpM-BioBERTa - Metabolomics 25.51% 30.93% 42.30%
fpM-BioBERTa - Personal 24.78% 29.94% 41.27%
fpM-BioBERTa - genetics 25.76% 31.1% 42.47%

fpM-BioBERTa 25.42% 30.77% 42.25%

Table 10: fpM-BioBERTa models, with a single modality removed.

A.5 EFFECT OF MODEL SIZE

In this section, we explore the effect of model size on the performance of the fpM-BioBERTa model.
This study contrasts three versions of the model, differentiated by their number of layers: fpM-
BioBERTa-small (2 layers), fpM-BioBERTa-base (4 layers) and fpM-BioBERTa-large (8 layers),
with the aim of understanding how increasing model complexity impacts accuracy in ICD code
prediction tasks.

As detailed in Table A.5, the results show a trend in which increasing the number of layers leads
to marginal improvements in ICD Code Accuracy and ICD Block Accuracy. The fpM-BioBERTa-
base model outperforms the small variant in both of these metrics. However, this upward trend
does not continue linearly with the large model, as the fpM-BioBERTa-large model, although it has
double the layers of the base model, shows only a slight increase in ICD Code Accuracy and no
improvement in ICD Block Accuracy.

It should be noted that the accuracy of the ICD chapter does not consistently improve with increasing
model size. The fpM-BioBERTa small model performs comparably to its larger counterparts in this
metric, indicating that the additional complexity of larger models does not significantly enhance
performance for chapter-level predictions.

This analysis suggests a nuanced relationship between model size and performance in multimodal
biobank data processing tasks, particularly in Masked Sequence Modeling for ICD code prediction.
It is important to consider that the benefits of larger models might be more noticeable with access to
more data. The availability of larger datasets could potentially amplify the advantages of increased
model complexity, leading to clearer distinctions in performance metrics across different model
sizes.

Model Layers ICD Code Accuracy ICD Block Accuracy ICD Chapter Accuracy
fpM-BioBERTa-small 2 25.04% 30.24% 41.55%
fpM-BioBERTa-base 4 25.42% 30.77% 42.25%
fpM-BioBERTa-large 8 25.6% 30.77% 41.98%

Table 11: Model Performance Comparison Based on ICD Accuracy. These metrics were used,
to measure how well the model was able to perform that Masked Sequence Modelling tasks.

A.6 FEATURE VECTOR CONSTRUCTION FOR REFERENCE MODELS

We prepared a special data set for the analysis with various machine learning methods by construct-
ing a feature vector for each patient. This vector includes:

• ICD10 and ATC Codes: Each code in our data set is represented as a binary variable,
indicating its presence or absence in a patient’s record.

• SNPs: SNP use the same categorical encoding as for tokens.

• Metabolomic and Personal Data: Categorical data are converted into one-hot encoded
format, while numerical data are standardized.

Imputation of Missing Data:
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• Categorical Variables: Missing values in categorical data are imputed with -1, to differ-
entiate them from other categories.

• Continuous Variables: For continuous variables, the missing values are imputed with the
mean of the available data.

A.7 FULL TEST METRIC TABLES FOR FINE-TUNE

Model Accuracy Precision Recall F1 Score AUROC AUPRC
DT 0.963 0.019 0.025 0.022 0.653 0.027
LR 0.910 0.027 0.127 0.044 0.658 0.028
MLP 0.968 0.085 0.101 0.092 0.666 0.044
RF 0.838 0.038 0.367 0.069 0.630 0.041
XGB 0.047 0.016 0.962 0.032 0.655 0.038
RoBERTa 0.968 0.018 0.023 0.018 0.713 0.276
fpM-BioBERTa 0.875 0.038 0.136 0.057 0.742 0.269

Table 12: F30-F39 Mood Related Disorders

Model Accuracy Precision Recall F1 Score AUROC AUPRC
DT 0.738 0.071 0.766 0.130 0.798 0.127
LR 0.924 0.140 0.379 0.204 0.801 0.147
MLP 0.502 0.042 0.839 0.079 0.782 0.114
RF 0.820 0.085 0.613 0.149 0.792 0.101
XGB 0.948 0.183 0.298 0.227 0.859 0.162
RoBERTA 0.867 0.092 0.282 0.129 0.756 0.394
fpM-BioBERTa 0.916 0.142 0.291 0.176 0.807 0.472

Table 13: E10-E14 Diabetes mellitus

Model Accuracy Precision Recall F1 Score AUROC AUPRC
DT 0.567 0.131 0.701 0.221 0.667 0.140
LR 0.666 0.137 0.529 0.217 0.657 0.138
MLP 0.408 0.116 0.871 0.205 0.681 0.145
RF 0.659 0.138 0.551 0.221 0.670 0.148
XGB 0.261 0.103 0.960 0.186 0.687 0.152
RoBERTa 0.672 0.145 0.540 0.216 0.660 0.303
fpM-BioBERTa 0.747 0.183 0.546 0.260 0.720 0.369

Table 14: I10-I15 Hypertensive diseases
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Model MSE RMSE MAE MAPE
DT 1.10 1.05 0.651 96.1
LiR 1.11 1.06 0.657 98.5
MLP 1.08 1.04 0.624 89.4
rf reg 1.08 1.04 0.649 95.8
XGB 1.08 1.04 0.646 95.6
RoBERTa 1.01 0.916 0.591 89.6
pM-BioBERTa 1.01 0.91 0.561 80.7

Table 15: Disease Burden

Model MSE RMSE MAE MAPE
DT 52.5 7.24 3.85 99.3
LiR 53.7 7.33 4.04 109.6
MLP 52.4 7.24 3.98 105
rf reg 52.1 7.22 3.85 99
XGB 52 7.21 3.87 100
RoBERTa 46.6 6.33 3.23 96.2
fpM-BioBERTa 23.8 4.28 1.8 51.8

Table 16: Drug Burden

Model MSE RMSE MAE MAPE
DT 3.21 1.79 1.04 98.0
LiR 3.32 1.82 1.07 102.3
MLP 3.22 1.8 1.04 96.7
rf reg 3.2 1.79 1.05 98.5
XGB 3.2 1.79 1.04 98.5
RoBERTa 2.18 1.41 0.793 80.2
fpM-BioBERTa 1.15 0.989 0.467 44.6

Table 17: Unique Drug Burden
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B ADDITIONAL LATENT PLOTS

Figure 4: Color coded by the first disease a patient had.
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Figure 5: Color coded by the most ICD Chapter from which a patient has the most diseases.
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Figure 6: Color coded by the birth year of each patient.
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Figure 7: Color coded by the patients smoking habits.
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Figure 8: The representation of the genetics encoder, color coded by the comorbidities of Major
Depressive Disorder. Though the plot shows little structure in this context, we find that it is able to
model the provided genetic information well.
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