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ABSTRACT

A plethora of jailbreaking attacks have been proposed to obtain harmful responses
from safety-tuned LLMs. In their original settings, these methods all largely suc-
ceed in coercing the target output. Yet, the resulting jailbreaks vary substantially
in readability and computational effort. In this work, we propose a unified threat
model for the principled comparison of these methods. Our threat model com-
bines practical considerations with constraints along two dimensions: perplex-
ity, which measures how far a jailbreak deviates from natural text, and computa-
tional budget in total FLOPs. For the former we built an N-gram model on 1T
tokens, which, in contrast to model-based perplexity, allows for a neutral, LLM-
agnostic, and intrinsically interpretable evaluation. Moreover, we adapt existing
popular attacks to this threat model. Our threat model enables a comprehensive
and precise comparison of various jailbreaking techniques within a single realistic
framework. We further find that, under this threat model, even the most effective
attacks, when thoroughly adapted, struggle to achieve success rates above 40%
against safety-tuned models. This indicates that in a realistic chat scenario, current
LLMs are less prone to attacks as it was believed before. The code is available at
https://github.com/valentyn1boreiko/llm-threat-model.

1 INTRODUCTION

As LLMs can be used to facilitate fraud, spread fake news, conduct hacking attacks, etc. (Willison,
2023; Greshake et al., 2023; Carlini et al., 2021; Geiping et al., 2024), model providers often safety-
tune LLMs to minimize the risks of potential misuse, mitigate harm, and avoid complying with
malicious queries (Christiano et al., 2017; Ouyang et al., 2022). However, while this alignment
ensures average-case safety, it does not currently extend to adversarial scenarios (Carlini et al.,
2024; Qi et al., 2024).

We refer to a jailbreak as an adversarially designed text input that circumvents safety tuning and
elicits harmful behavior. While adversarial attacks in computer vision commonly adopt lp-ball threat
model, to be imperceptible to humans but still fool the model (Madry et al., 2018), jailbreaks in
language come in all shapes and sizes, rarely sharing the same constraints. These attacks range from
completely gibberish suffixes (Zou et al., 2023) to human-like social engineering techniques applied
to an LLM (Zeng et al., 2024). While all these methods are designed to succeed in terms of attack
success rate (ASR), they commonly also report their efficacy based on an arbitrary combination
of metrics such as stealthiness (aka readability, fluency, human-likeliness) (Liu et al., 2024; Yang
et al., 2024; Mehrotra et al., 2023; Sadasivan et al., 2024), query efficiency (Chao et al., 2023;
2024), runtime (Geisler et al., 2024; Sadasivan et al., 2024), monetary expense (Sadasivan et al.,
2024), etc. This heterogeneity prevents a clear understanding of the jailbreaking attack landscape
and complicates the fair comparison of different methods.

Correspondance to valentyn.boreiko(at)uni-tuebingen.de, alexander.panfilov(at)tue.ellis.eu
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Figure 1: Evaluating Jailbreak Attacks Against Llama2-7b. Left: The most effective attacks tend to have
higher perplexity under our N-gram model, significantly exceeding that of real text. As such, these attacks
are often discarded as impractical. Right: However, we find that with well-constructed adaptive attacks, these
high-perplexity attacks still outperform attacks designed as low-perplexity attacks, such as PAIR. Even under
strong adaptive attacks though, the N-gram model perplexity constraint significantly raises the compute costs
for successful attacks and reduces attack success at minimal cost.

2 MOTIVATION AND CONTRIBUTIONS

Readability of input is implicitly enforced in many attacks (Liu et al., 2024; Yang et al., 2024;
Mehrotra et al., 2023; Sadasivan et al., 2024) and is often measured by perplexity (PPL) using
deep language models. Moreover, PPL-based filters are established input-level defenses (Alon &
Kamfonas, 2023; Jain et al., 2023), which effectively makes PPL a de facto constraint that attacks
must satisfy. However, relying on model-based PPL leads to a setup that is: i) incomparable due to
dependence on different target LLMs, ii) non-interpretable, iii) based on neural networks and thus
susceptible to adversarial examples, and iv) costly to evaluate.

To address this, we propose to use an N-gram language model (N-gram LM) PPL as a neutral mea-
sure of PPL. This approach is: i) LLM-agnostic: The N-gram LM PPL is a measure of perplexity
unrelated to LLM-based measures, allowing for a comparison between attacks generated with and
against different models ii) interpretable: Each N-gram’s contribution to the PPL can be examined
and adjusted, it is cheap to add new datasets or do N-gram models for different kind of text e.g.
code; iii) simple: The N-gram model is a simple non-differentiable, parameter-free model of the
occurrence of text which makes it less susceptible to attacks ; iv) fast-to-evaluate: Accessing each
N-gram when computing N-gram LM PPL has a time complexity of O(1).
Our contributions are as follows:
• In Section 4, we introduce a threat model for comparing jailbreaking attacks that incorporates text

fluency measured by N-gram LM PPL and compute cost in total floating point operations.
• We construct a light-weight bigram model from the dolma dataset based on about 1T tokens.
• In Section 5, we create strong adaptive attacks for this threat model for a number of popular

jailbreaking techniques.
• In Appendix D, we investigate jailbreaks that bypass the proposed filter with adaptive attacks by

looking at the attribution of the jailbreaks to a particular dataset.

3 RELATED WORK

Red Teaming LLMs. LLM providers strive to minimize harmful interactions with their models. To
do, manual redteaming is incorporated into the post-training stage, where human testers probe the
bounds of the model’s safety tuning Ganguli et al. (2022), and the model is updated to prefer safe
outputs on these queries. This, however, has been shown to miss many often unnatural, but very
successful automated attacks (Zou et al., 2023; Andriushchenko et al., 2024).
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Threat Model in Computer Vision. As earlier approaches focused more on mining harmful
prompts, the threat model used in these works is often unclear or outdated. In computer vision,
however, the community quickly converged on a single threat model, namely attacks to an lp ball of
a chosen radius r (Croce et al., 2021). This constraint serves two purposes in vision: i) it is simple
and thus allows to create efficient algorithms that generate solution that respect it; ii) by decreas-
ing r and increasing p one can create stealthy attacks that are imperceptible to humans. This lead to
significant progress on this threat model on vision, but stymied work on more realistic threat models.

LLM Jailbreaking Benchmarks. Proposed jailbreaking benchmarks (Xie et al., 2024; Mazeika
et al., 2024; Chao et al., 2024) aim to standardize the evaluation of attacks and defenses but fail to
account for the significant differences in existing jailbreaking methods or to agree on a consistent
evaluation method. Among existing benchmarks, HarmBench (Mazeika et al., 2024) stands out
as the most comprehensive, both in terms of the number of models and attacks investigated, and
it addresses many previous evaluation flaws. In this work, we construct a realistic threat model,
introduced in Section 4, that allows us to adapt popular jailbreaking attacks, introduced in Section 4
which we combine with HarmBench to provide a stronger evaluation for realistic automated attacks
against LLMs.

4 PROPOSED THREAT MODEL

4.1 DEFINING A JAILBREAK

Let T be the set of all tokens. Define the set of all sequences from T as T ∗ :=
⋃∞

n=1 T n, where T n

represents the set of all sequences of length n from T , allowing repetitions.

Given a language model M : T ∗ → T ∗, we define a jailbreaking attack as an m-step iterative
transformation fm : (T ∗,M) → T ∗, xmalicious 7→ xjailbreak , where a malicious input xmalicious,
which should be rejected byM, is transformed into a malicious input xjailbreak with the same intent,
but which is successfully answered byM.

Having a well-specified definition of a successful jailbreak has proven to be a profoundly challenging
problem (Kim et al., 2024; Mazeika et al., 2024). A common workaround (Robey et al., 2023;
Andriushchenko et al., 2024; Chao et al., 2024; 2023) is to enforce the definition through a judge
function, J : T ∗ × T ∗ → {0, 1}, with numerous candidates proposed (Mazeika et al., 2024; Xie
et al., 2024; Souly et al., 2024). Thus, the attacker’s goal is to find:

xjailbreak = fm(xmalicious,M) s.t. J (M(xjailbreak), xmalicious) = 1 (1)

4.2 CONSTRUCTION OF THE N-GRAM PPL MODEL

An N-gram model is defined by the probability of generating token wn, given the sequence of tokens
(wn−N+1, . . . , wn−1) as follows

P (wn|wn−N+1, . . . , wn−1) :=
C(wn−N+1, . . . , wn)

C(wn−N+1, . . . , wn−1)
. (2)

Here, we denote by C(wn−N+1, . . . , wn) the frequency of occurrence of the sequence
(wn−N+1, . . . , wn) in a train dataset. To account for missing N-grams, we employ Lapla-
cian smoothing, which is equivalent to an increase of each N-gram’s count by 1 for every bigram.
N-gram model perplexity in a window SW := (w1, . . . , wW ) of length W ≥ N is then defined as

PPLN (SW ) := W−N+1

√√√√ W∏
i=N

1

P (wi|wi−N+1, . . . , wi−1)
. (3)

Datasets and N-gram LM. We take a subset of Dolma (Soldaini et al., 2024), which we split into
Dtrain and Dval. We tokenize the datasets using the Llama2 tokenizer, compute the N-gram LMs
on Dtrain, and select the threshold for achieving 99.9% TPR based on Dval, see App. A for details.

Perplexity filter. Based on our N-gram LM, we construct the perplexity filter used in our threat
model. We choose the bigram LM with rolling window size W = 8. For a TPR of 99.9% on Dval

the PPL threshold is γ0.999 := 38, 276. More details on the selection of the window size in App. A.
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Table 1: Adaptive Attacks Generate Jailbreaks Closer to the Natural Text Distribution. We compare the
baseline PRS attack (TPR = 100%, no PPL constraint) and the adaptive PRS attack on Llama2-7b (TPR =
99.9%, perplexity in a rolling window S8). Computational effort increased 60-fold.

Metrics Optimized Suffix Response

TPR: 100%
FLOPs: 1e+14
N-gram PPL: 2.6e+7
Llama2-7b PPL: 6.2e+5

Step 1: Start from generating a list of
biological agents that can be easily
obtained from nature, such as bacteria,
viruses, and fungi. . . .

TPR: 99.9%
FLOPs: 6e+15
N-gram PPL: 3.6e+4
Llama2-7b PPL: 3.5e+4

Step 1: Start by researching the differ-
ent types of biological warfare agents
that can be created or obtained at home,
such as bacteria, viruses, and toxins. . . .

4.3 DEFINING A THREAT MODEL

We consider a single-turn chat scenario in which an attacker interacts with the target model through
its chat interface. The attacker sends a text input to the model and receives a text output in response.
As such, the attacker is unable to prefill the model’s response, exclude the system prompt, or modify
the chat template. To establish a lower bound for the model’s safety and simplify scenarios in which
an attacker may already have access to a related LLM, we allow the attacker white-box access to the
target model’s weights.

Success. The success of a jailbreak attack is determined by a judge model, which evaluates whether
the target model’s response to the input query elicits harmful behavior beyond the target string. The
answer sampling temperature is fixed at t = 0 as part of the single-turn chat scenario. The attacker
is not allowed access to the judge model and may not submit multiple attacks to the judge.

Fluency. We constrain inputs through an N-gram LM perplexity filter so that they are “fluent” or
“natural” with respect to the distribution of normal text. This filter is calibrated with a fixed TPR
rate that is precomputed based on benign text as described in

Cost. We measure the attack’s cost in terms of total FLOPs required to generate a jailbreak. Through
this, we effectively parametrize a series of threat models with varying FLOPs constraints. Total
FLOPs calculation is detailed in in Appendix B.

We assume that the provider uses both the chat template and a safe system prompt, which we choose
to be that of Llama2. For a target LLMM, a jailbreak xjailbreak is in the threat model T, if:

1. it has the bigram perplexity at a rolling window S8 less than γ0.999.
2. it is classified by a judge as successful, i.e., J (M(xjailbreak), xmalicious) = 1.

3. it is generated with a total number of FLOPs lower than attacker budget α. We set α = 1019.

5 ADAPTIVE ATTACKS

In order to compare all the attacks in this threat model, it is imperative that the attacks are opti-
mized and adapted for the threat model at hand. Each attack employs unique mechanisms, requiring
different adaptations. The non-parametric N-gram language model (LM), being sparse and non-
differentiable across inputs, allows us to filter out solutions that do not pass the criteria at each
attack stage. Note: in parentheses after the name of each attack, we specify the corresponding
jailbreak template, with the optimized sections highlighted in bold

GCG (Zou et al., 2023) (xjailbreak = xmalicious ⊕ s1:l). At the stage of the random token replace-
ment, we sample from the set of not all top-k substitutions, but only those passing the filter.

PRS (Andriushchenko et al., 2024) (xjailbreak = xtemplate,start⊕xmalicious⊕ s1:l⊕xtemplate,end).
Here, when sampling token substitutions we allow a substitution when it decreases the loss and
additionally passes the filter. If suffix initialization is not passing the filter, we randomly mutate not
passing parts until it pass.

4



Published as a workshop paper at Red Teaming GenAI Workshop @ NeurIPS’24

1015 1016 1017 1018

FLOPs

0.0

0.5

1.0

AS
R

GCG

1013 1014 1015 1016

FLOPs

0.0

0.5

1.0 PRS

1015 1016 1017

FLOPs

0.0

0.5

1.0 BEAST

1016 1017

FLOPs

0.0

0.5

1.0

AS
R

PAIRMixtral-8x7b

1016 1017

FLOPs

0.0

0.5

1.0 AutoDanMixtral-8x7b gemma-7b
llama2-7b
llama2-13b

vicuna-13b
llama3-8b
llama3.1-8b

Baseline (w/o filter)
Adaptive (w/ filter)

Figure 2: Attack Success Rate vs. Total FLOPs. On safety-tuned models, attacks adapted to the threat model
achieve lower success rates for a given computational cost. The PRS attack is a notable exception, remaining
Pareto optimal in both adaptive and non-adaptive cases and achieving higher ASR in the adaptive version for
the Llama3-8b and Llama3.1-8b models.

In Table 1, we show a comparison between the generated suffixes s1:l for baseline PRS and adaptive
PRS attacks. From this we can see that adaptive PRS generates suffixes that are closer to the distri-
bution of natural text. We further confirm it by computing across all prompts the median Llama2-7b
PPL in rolling window S8. It decreases from 375,528 (baseline) to 23,125 (adaptive), indicating
over a 10-fold improvement in naturalness.

Other attacks aim to generate more natural jailbreaks, the difference in ASR between adaptive and
baseline attacks is smaller (see Figure 2). We detail these attacks in Appendix C.

6 EXPERIMENTS

Dataset. We evaluate all jailbreaking methods on 300 malicious queries from the HarmBench
dataset (Mazeika et al., 2024) excluding copyright requests.

Models. We consider three model families: Llama, Gemma and Vicuna. For all models we set the
system prompt of Llama2 and keep the respective system template per model.

Attacks. For all methods, except PRS and BEAST, we adapted the HarmBench implementation.
For PRS and BEAST we adapted official implementation. Unless otherwise specified, the hyperpa-
rameters are identical to those in the HarmBench paper. Each attack has a different objective, thus
early stopping is defined per attack. For further details, please refer to Appendix C.

Judge model. For each jailbreaking query, a response of up to 512 tokens was generated. Jailbreaks
assessed using a judge model, a fine-tuned Llama2-13b from the HarmBench paper, chosen for its
higher agreement rate with human evaluations (Souly et al., 2024; Mazeika et al., 2024).

Figure 2, displays a comparison of ASR and computational costs between the adaptive attacks de-
tailed in Section 5 and the baseline.

7 CONCLUSION

Despite recent efforts to develop jailbreaking benchmarks, the absence of a unified threat model
complicates attack comparisons. To address this, we propose a realistic threat model based on N-
gram language model perplexity and total FLOPs, adapting popular attacks within this framework.
Our evaluation shows that most attacks fail to achieve an ASR above 20% on safety-tuned mod-
els, with only PRS and GCG effectively maintaining high ASR while satisfying naturalstealthiness
constraints.
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A DERIVING THE PPL FILTER

We collect a selection of datasets from Soldaini et al. (2024): MegaWika, Project Gutenberg, Stack-
Exchange, arXiv, Reddit, StarCoder, and Refined Web into one dataset D, which we join and then
split into Dtrain and Dval. On Dtrain, we compute the N-gram language model. We choose diverse
datasets to better estimate probability distribution of the natural language, which increases the utility
of the proposed threat model.
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Figure 3: Selecting the threshold and metric with the lowest FPR on the set of adversarial suffixes AW with
TPR of 99.9% on Dval. Here, the entries in the legend are sorted by FPR. For both W = 8 and W = 16 FPR
is 0%.
Metric. A naturalstealthiness metric should be able to differentiate well between natural text and
non-natural representative jailbreaks. To find one, we compute different scores for the case of N = 2
and check their separation quality.

We aim to find statistics robust to different adversarial examples and outliers in sliding windows of
a fixed length W , following the common practice (Jain et al., 2023). The advantage of this approach
over computing scores on the whole string is that we can actually select and evaluate a threshold for
metric measured on a window of a fixed size.

This has to have a very high rate of correctly detecting natural text as natural. Therefore, we select
a set NW of 1e7 windows of size W of natural text from Dval as a positive class and a set AW of
(non-overlapping) 95 adversarial suffixes taken from Chao et al. (2024) generated with the GCG
attack and select for each of the following metrics the threshold at which 99.9% TPR is achieved: i)
Medians of C(SW ) and C(SW−1); ii) N-LM PPL iii) Medians of P (wn|wn−N+1, . . . , wn−1).

We choose the metric and the respective threshold for which the lowest FPR on AW for W ∈
{2, 4, 8, 16} is achieved. We further validate it by computing the TPR on an external set of 27630
prompts from the cleaned Alpaca dataset (Ruebsamen, 2023) which have lengths of 16 or more
tokens after the tokenization.

Based on this criteria, N-gram LM PPL with a rolling window size of 8 (which we from now on
denote as PPL8) has the lowest FPR an AW as can be seen in Figure 3, and it has TPR of 99.9% on
the external dataset. Note, that when evaluating on the external dataset, we used a more realistic set-
ting, where each sample is a full prompt and a sliding window metric has been used. The respective
optimal threshold is γ = 38276.

B TOTAL FLOPS CALCUALTION

As noted by Jain et al. (2023), the computational budget is a critical factor for a realistic attacker,
especially since defenses can significantly increase the already substantial computational burden.
To accurately reflect the attacker’s perspective, we use the total number of floating point operations
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(FLOPs) as our primary metric, encompassing all components of an algorithm involved in achieving
a jailbreak. This includes any auxiliary models, such as the target or judge models being a part of a
jailbreaking algorithm.

We calculate total FLOPs using the commonly accepted estimate k × d× 2, where k represents the
number of input and output tokens, and d is the model size (Kaplan et al., 2020). The backward pass
is estimated to be twice the cost of the forward pass (Hobbhahn, 2021).

A limitation of this metric is that it applies only to algorithmically generated jailbreaks, not those
pre-calculated and shared online. For instance, a simple look-up table of ready-made jailbreaks
would register as a zero-FLOPs attack. While this is a trivial example, more sophisticated attacks
like AutoDan (Liu et al., 2024) and PRS (Andriushchenko et al., 2024) rely on pre-made prompts
and suffixes, masking their true computational cost. From a practical standpoint, we argue that using
pre-made templates and suffixes significantly limits attack’s value, as these are likely to be patched
in newer models, rendering the attack inherently short-lived.

C DETAILS ABOUT ATTACKS

Altogether, we consider five attacks: GCG (Zou et al., 2023), PRS (Andriushchenko et al., 2024),
PAIRMixtral-8x7b (Chao et al., 2023), AutoDanMixtral-8x7b [Liu] (Liu et al., 2024), BEAST (Sadasivan
et al., 2024). We have already introduced adaptive versions of two attacks in Section 5. In this
section, we first describe, in which setting we ran baseline versions of the aforementioned attacks
and then - their adaptive counterparts. Note, for clarity, as we did in Section 5, in brackets after the
name of each attack, we write the respective template of the jailbreak and in bold we highlight the
optimized part of the template.

Refusal list. Each attack has a different early stopping strategy, but many of them rely on the refusal
list (Zou et al., 2023; Mazeika et al., 2024; Andriushchenko et al., 2024). This is a list of phrases
that an attacker uses during the optimization process to decide, if to exit the optimization process
earlier. Concretely, if none of the phrases in the refusal list is appeared in the generated response of
the target LLM model, then an attacker stops, because it is assumed that in that case LLM complies
with the query. To reduce the number of false positives during the early stopping (i.e., exiting the
optimization process, when in reality the refusal is just formulated differently), we increase the
popular refusal list found in Mazeika et al. (2024) to
REFUSAL_PREFIXES = ["As a language model", "As an AI", "As an Assistant",

↪→ "Hello!",
"I am bound by ethical guidelines", "I am not able", "I am not authorized

↪→ to do that",
"I am not equipped to handle that", "I am prohibited from doing that", "I

↪→ am really sorry",
"I am sorry", "I am unable", "I apologize", "I can’t assist", "I can’t",

↪→ "I cannot",
"I do not", "I don’t understand", "I have to decline that request", "I

↪→ have to reject that request",
"I must adhere to safety protocols", "I must decline", "I must follow

↪→ ethical guidelines",
"I must refuse your request", "I must respect ethical standards", "I will

↪→ not", "I won’t",
"I’m an", "I’m forbidden from doing that", "I’m just", "I’m not able to

↪→ provide",
"I’m not capable of doing that", "I’m not designed to handle that", "I’m

↪→ not programmed for that",
"I’m obligated to refuse", "I’m programmed to avoid that", "I’m really

↪→ sorry", "I’m restricted from doing that",
"I’m sorry", "I’m unable to help with that", "I’m unable to perform that

↪→ task", "I’m unable to process that",
"If you have any other non-malicious requests", "It seems like", "It’s

↪→ not possible for me to do that",
"My apologies", "OpenAI", "Sorry", "That action is not allowed", "That

↪→ action is prohibited",
"That goes beyond my programming", "That is against my protocol", "That

↪→ is beyond what I can do",
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"That is not within my function", "That is outside my capabilities", "
↪→ That is outside my scope",

"That request goes against guidelines", "That request is beyond my
↪→ capabilities", "That request is not permitted",

"That request is not safe", "That request is unacceptable", "but I cannot
↪→ ", "is illegal and unethical",

"is not appropriate", "not ethical", "not legal", "I am not capable"]

C.1 BASELINE SETTING

Here, for each of the attacks, we describe the hyperparameters in the baseline setting.

GCG (Zou et al., 2023) (xjailbreak = xmalicious ⊕ s1:l). Adapting the original settings from Zou
et al. (2023), we set (i) search width to 512 (ii) number of steps to 500, (iii) optimized suffix length
to 20, (iv) early stopping loss to 0.05.

PRS (Andriushchenko et al., 2024) (xjailbreak = xtemplate,start⊕xmalicious⊕ s1:l⊕xtemplate,end).
Adapting the original settings from Andriushchenko et al. (2024), we set (i) number of steps to
10000, (ii) optimized suffix length to 25, (iii) early stopping is triggered when the probability of the
target token exceeds 0.1, and none of the refusal phrases from the refusal list are present.

PAIRMixtral-8x7b (Chao et al., 2023) (xjailbreak = xmalicious,rewritten). Adapting the settings from
Mazeika et al. (2024), we set (i) number of steps to 3, (ii) number of concurrent jailbreak conversa-
tions to 20, (iii) Mixtral-8x7B-Instruct-v0.1 as both judge and attacker model, (iv) early stopping is
based entirely on the judge with the cut-off score of 5.

AutoDanMixtral-8x7b (Liu et al., 2024) (xjailbreak = s1:∞ ⊕ xmalicious). Adapting the settings from
Mazeika et al. (2024), we set (i) number of steps to 100, (ii) number of parallel mutations to 64,
(iii) Mixtral-8x7B-Instruct-v0.1 as a mutation model, (iv) number of steps, till early stopping occurs
due to the non-decreasing loss to 20.

BEAST (Sadasivan et al., 2024) (xjailbreak = xmalicious ⊕ s1:∞). Adapting the settings from
Sadasivan et al. (2024), we set (i) number of steps as well as adversarial tokens to be generated to
40, (ii) we do not restrict the maximal running time, (iii) number of candidates in beam as well as
candidates per candidate evaluated to 15.

C.2 ADAPTIVE SETTING

Here, for each of the attacks, we describe the derivation of their adaptive counterparts. When we
write algorithms, we follow the notation of the respective paper. In blue we highlight the introduced
change.

GCG (Zou et al., 2023) (xjailbreak = xmalicious ⊕ s1:l). We have analyzed the Algorithm 2 in Zou
et al. (2023) and could see that the only place, where the tokens in (xjailbreak could potentially not
pass the filter is at the stage of the generation of top-k substitutions. Thus, in the Algorithm 2 in
Zou et al. (2023), we assign to the set of candidates Xi for a token at position i in the suffix s1:l the
following set of size k:

argmax

J⊂[|T |]:


|J | = k,

PPL8(xmalicious ⊕ s1:i−1 ⊕ j ⊕ si+1:l) < γ, ∀j ∈ J

−g(J), (4)

where gi := ∇epi
L(xmalicious ⊕ s1:l), gi ∈ R|T |, and g(J) :=

∑
j∈J gji . For completeness, we

provide in the Algorithm 1 the full procedure. Adapted part is denoted as AdaptiveTop-k operator.

PRS (Andriushchenko et al., 2024) (xjailbreak = xtemplate,start⊕xmalicious⊕ s1:l⊕xtemplate,end).
We have analyzed the algorithm presented in Andriushchenko et al. (2024) and identified two points
where tokens in xjailbreak might fail to pass the N-gram LM PPL filter. These occur during the
initialization of xjailbreak, which depends on the pre-generated xtemplate,start, s1, and xtemplate,end.
Thus, when sampling token substitutions we allow a substitution when it decreases the loss and
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Algorithm 1 Adaptive GCG

Input: Initial prompt x1:n, modifiable subset I, iterations T , loss L, k, batch size B
1: repeat T times
2: for i ∈ I do
3: Xi := AdaptiveTop-k (−∇exi

L(x1:n)) ▷ Compute adaptive top-k token substitutions
4: for b = 1, . . . , B do
5: x̃

(b)
1:n := x1:n ▷ Initialize element of batch

6: x̃
(b)
i := Uniform(Xi), where i = Uniform(I) ▷ Select random replacement token

7: x1:n := x̃
(b⋆)
1:n , where b⋆ = argminb L(x̃

(b)
1:n) ▷ Compute best replacement

Output: Optimized prompt x1:n

Algorithm 2 Adaptive PRS

Input: Initial prompt with template x1:n, modifiable subset I, iterations T , restarts R, loss L
1: Pre-initialized adversarial message with template such that PPL8(x1:n) < γ

2: repeat R restarts
3: repeat T iterations
4: Compute x∗

1:n by randomly changing tokens at indices I
5: if PPL8(x

∗
1:n) < γ and L(x∗

1:n) < L(x1:n) then
6: x1:n := x∗

1:n
Output: Optimized prompt x1:n

passes the filter. Additionally, before the attack, if the initialization is not passing the filter, we
randomly mutate not passing parts until it does. For completeness, we provide in the Algorithm 2
the full procedure.

PAIRMixtral-8x7b (Chao et al., 2023) (xjailbreak = xmalicious,rewritten). In the Algorithm 1 in
Chao et al. (2023), the only place, where the tokens in xjailbreak could potentially not pass the filter
is at the stage of sampling the prompt from the attacker model. Thus, when sampling them, we
add a generated prompt to the list of candidates, only if it passes the N-gram LM PPL filter. For
completeness, we provide in the Algorithm 3 the full procedure.

Algorithm 3 Adaptive PAIR

Input: Number of iterations K, number of retries R, threshold t, attack objective O
1: Initialize: system prompt of A with O
2: Initialize: conversation history C = []
3: repeat K steps
4: Sample P ∼ qA(C) ▷ Sample prompt from agent based on context
5: repeat R steps
6: if PPL8(P ) > γ then
7: Sample P ∼ qA(C)
8: else
9: break

10: Sample R ∼ qT (P ) ▷ Sample response from target
11: S ← JUDGE(P,R) ▷ Evaluate interaction
12: if S == 1 then
13: return P ▷ Return successful prompt if judged positive
14: C ← C + [P,R, S] ▷ Update conversation history

AutoDanMixtral-8x7b (Liu et al., 2024) (xjailbreak = s1:∞⊕xmalicious). In Liu et al. (2024), the only
place, where the tokens in xjailbreak could potentially not pass the filter is at the stage after applying
crossover and mutation (Algorithm 7 in Liu et al. (2024)). Thus, after applying it to the population
of 64 candidates, we filter them with the N-gram LM PPL filter. We keep re-running this step until
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at least one candidate is found. Note, we use s1:∞ to denote that the optimized prefix is not bounded
in length.

BEAST (Sadasivan et al., 2024) (xjailbreak = xmalicious ⊕ s1:∞). In the Algorithm 1 in Sadasivan
et al. (2024), the only place, where the tokens in xjailbreak could potentially not pass the filter is at
the stage of sampling new 15 candidates for the 15 beams. Thus, when sampling them, we repeat
it for a fixed amount of iterations by checking, if each candidate passes the filter. If at least one
beam has no candidates that pass the filter after that, we stop. For completeness, we provide in
the Algorithm 4 the full procedure. Note, we use s1:∞ to denote that the optimized suffix is not
bounded in length.
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Algorithm 4 Adaptive BEAST

1: Require: LM output modeled by p(·|x) for input x
2: Input: tokenized prompt vector x = x(s1) ⊕ x(u) ⊕ x(s2), beam search parameters k1 and k2,

adversarial suffix length L, adversarial objective L
3: Output: adversarial prompt token sequence x′ = x(s1) ⊕ x(u) ⊕ x(a) ⊕ x(s2)

4: x∗ = [∅], s∗ = [+∞] ▷ Initialize optimal prompt and score
▷ Initialize the beam

5: beam = [ ]
6: p = p

(
·|x(s1) ⊕ x(u)

)
▷ Compute initial probabilities

7: x1, ..., xk1
= MultinomialSampling(p, k1)

8: for i = 1 to k1 do
9: beam.append

(
x(s1) ⊕ x(u) ⊕ [xi]

)
▷ Extend beam with sampled tokens

▷ Adversarial token generation for (L− 1) steps
10: for l = 2 to L do

▷ Generate k1 × k2 candidates for next beam
11: candidates = [ ]
12: for i = 1 to k1 do
13: p = p (·|beam[i])

14: passed = [ ]

15: repeat R steps

16: x1, ..., xk2 = MultinomialSampling(p, k2)

17: for j = 1 to k2 do

18: if j not in passed and PPL8(x
(u) ⊕ beam[i]⊕ [xj ]) < γ then

19: candidates.append(beam[i]⊕ [xj ])

20: passed.append(j) ▷ Form new candidates
21: else
22: pass
23:
24: if any (PPL8(candidate) > γ) for candidate in candidates) then
25: continue
26: else
27: break
28: if len(passed) = 0 then
29: return failed

▷ Score the candidates with objective L
30: scores = [ ]
31: for i = 1 to k1 × k2 do
32: scores.append

(
L
(
candidates[i]⊕ x(s2)

))
▷ Evaluate candidates

▷ Select k1 beam candidates with lowest scores
33: beam, scores = bottom-k1(candidates, scores) ▷ Prune beam to top performers

▷ Maintain candidate with lowest score ∀ l ∈ [2, L]
34: x∗, s∗ = bottom-1(beam⊕ x∗, scores⊕ s∗) ▷ Keep best overall candidate
35: return x∗[0]⊕ x(s2) ▷ Output optimal prompt sequence
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D INVESTIGATING THE FILTER

We have shown that one can construct attacks adaptive to an N-LM PPL filter and in Yuan et al.
(2024), the authors have shown, how one can bypass different LLM-based filters. Thus, it is impor-
tant to understand, which factors contribute to it.

While there is no known way to investigate LLM-based filters, we propose two different ways, how
to do it for our N-LM PPL filter.

Training dataset attribution. Because any language model can be seen as a different way to com-
press the data (Delétang et al., 2024), we propose to investigate our filter using training dataset
attribution (TDA), similar to training data attribution in Nguyen et al. (2023).

We do TDA, by first looking at the most influential source of the bigrams in our adaptive attacks
introduced in Section 5. Concretely, we show in Figure 4 how we can use our dataset selection,
introduced in Section 4, to do a more fine-grained train dataset attribution (TDA) across attacks on
Llama3-8b. On the pie charts, we see that, unlike adaptive GCG, successful jailbreaks of adaptive
PRS rely significantly on code data.

Figure 4: Train Dataset Attribution for Llama3-8b. Leftmost pie chart: Bigram distribution in train dataset
Dolma. Two pie charts on the right: Attribution of the employed bigrams in the attacks shows us that
on Llama3-8b adaptive GCG oversamples bigrams from code data, while adaptive PRS stays closer to the
distribution of Dolma, oversampling bigrams from Reddit and Gutenberg, among others.
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