Under review as submission to TMLR

LLM-RankFusion:
Mitigating Intrinsic Inconsistency in LLM-based Ranking

Anonymous authors
Paper under double-blind review

Abstract

Ranking passages by prompting a large language model (LLM) can achieve promising per-
formance in modern information retrieval (IR) systems. A common approach to sort the
ranking list is by prompting LLMs for a pairwise or setwise comparison which often relies on
sorting algorithms. However, sorting-based methods require consistent comparisons to sort
the passages correctly, which we show that LLMs often violate. We identify two kinds of in-
trinsic inconsistency in LLM-based pairwise comparisons: order inconsistency which leads to
conflicting results when switching the passage order, and transitive inconsistency which leads
to non-transitive triads among all preference pairs. Our study of these inconsistencies is rel-
evant for understanding and improving the stability of any ranking scheme based on relative
preferences. In this paper, we propose LLM-RankFusion, an LLM-based ranking framework
that mitigates these inconsistencies and produces a robust ranking list. LLM-RankFusion
mitigates order inconsistency using in-context learning (ICL) to demonstrate order-agnostic
comparisons and calibration to estimate the underlying preference probability between two
passages. We then address transitive inconsistency by aggregating the ranking results from
multiple rankers. In our experiments, we empirically show that LLM-RankFusion can sig-
nificantly reduce inconsistent comparison results, improving the ranking quality by making
the final ranking list more robust.

1 Introduction

Large language models (LLMs) have demonstrated strong zero-shot and few-shot capabilities in many natural
language processing tasks (Achiam et al., [2023; Zeng et al., 2024} Zhao et al.,|2023). This enables the effective
integration of these LLMs in modern information retrieval (IR) systems (Wu et all 2023 [Li et al., |2024]).
Without supervised training on labeled data in a specific task, LLMs can adapt to the task by prompt and
pipeline design. Recent work has tried to apply LLMs in text ranking and shown promising performance
(Qin et al., [2023; |Chao et all [2024} [Sun et al. 2023; Ma et al., 2023)). Text ranking is an important task
in modern recommender systems and search engines, which refines the order of the retrieved passages to
improve the output quality (Liu et all 2009). Traditional supervised text ranking methods rely heavily on
large amounts of human-annotated labels (Bajaj et al., 2016 Bonifacio et all 2021} Thakur et al., |2021}
Nogueira & Cho, 2019)). Typical LLM-based ranking approaches prompt LLMs to generate partial orders,
comparisons, or relevance scores without additional training in advance.

Despite the great potential of LLMs in passage ranking, they can also suffer from significant inconsistency.
Previous work shows LLM-based ranking is sensitive to the order of input passages in the prompt, which
stems from the positional bias of LLMs (Wang et al., 2023 |[Lu et al., |2021; [Tang et al.,|2023al). In a pairwise
comparison between two passages, the results can conflict before and after swapping the passages. We
identify this as order inconsistency. Even if we can fully mitigate the order inconsistency within a single
comparison, there is still a concern about inconsistency among multiple different comparisons. For example,
PRP-Sort (Qin et al., |2023) uses sorting algorithms to efficiently produce a full ranked list from pairwise
comparisons. However, these sorting algorithms typically assume the transitivity of comparisons to correctly
sort the passage, which LLMs often violate. (e.g. dy > da2,ds > d3 = di > d3, where d; represents a passage
and > means "preferred to"). We identify this as transitive inconsistency, which largely overlooked in

Under review as submission to TMLR

®

Ranking List Proposals Output
Passage 1
= Ranker 1 | — [N

Passage 2 -
2
-l

Fesseoe? B Ranker2 | — [T R o

Passage 4 Aggregation E
14
®
=
'S

Initial Passage Order

Passage N ER Ranker T | — -:I:-I-
4 lcL)

ICL Prompt
o E— ICL Prompt + PRP (S, (I, Bl
— LLM Pairwise Given a query "[RITEIZ]", which of the following
—Q Ranker two passages is more relevant to the query? ICL Prompt + PRP(RIVZA%, RIele, PIeleke)
Passage A: " " Passage B: " "
Sorting OutputF AT !)
Algorith Given a query "ell[S546", which of the following Generate
D:I:I:S:D gorithm two passages is more relevant to the query? LLM Token Logits
Passage A: " " Passage B: " "
ENR IcL Output Passage A or Passage B: Passage B § (00C:3, D0C-4) § (00C4,00C)
Comparisons L A A
P Calibration Query Prompt: PRP(RIVEA%, eI, leler) §,(00C4,00C4) g (00C-4, D0C-)
Given a query "I, which of the following Calibrati
two passages is more relevant to the query? LAalibration
L LM Passage A: "BJe]e3%" Passage B: "oJeJol"
Output Passage A or Passage B: Passage P

N J DOC-3, DOC-4

Figure 1: The LLM-RankFusion pipeline. It illustrates the aggregation process to mitigate transitive incon-
sistency. The ranking list proposals are generated by different rankers, with each ranker’s details displayed
in the lower-left corner of the figure. Each ranker incorporates ICL and calibration to address order incon-
sistency.

previous neural ranking works. Due to the transitive inconsistency, we show that the ranker’s performance is
highly sensitive to the initial input order of the retrieved documents. Ranking systems expect to produce a
robust ranking list to present to users, but if different initial orderings can lead to significantly varying ranked
lists, the reliability of the LLM’s rankings can be brought into question. Our analysis of this inconsistency can
be easily extended to setwise and listwise comparisons, as both ranking schemes rely on relative preferences
and are fundamentally pairwise in nature. This broad applicability highlights that identifying and addressing
these inconsistencies in pairwise ranking is relevant for improving the reliability of any ranking scheme based
on relative preferences. We propose the LLM-RankFusion framework as shown in Figure [I] to produce a
consistent ranking list by mitigating the above inconsistencies.

To mitigate order inconsistency, we first use calibration to address the conflict before and after swapping
the passages. It calculates the preference probability based on the logit output, which then produces the
preference without bias in position. To further let LLM realize the preference should be order agnostic, we
propose the in-context learning (ICL) ranking prompt. The ICL prompt uses an example to demonstrate
the swapping of passages doesn’t affect the preference. While we can greatly reduce order inconsistency
by ICL and calibration, the improved pairwise comparison still does not address transitive inconsistency
directly. We use rank aggregation to further resolving the transitive inconsistency. Rank aggregation is a
commonly used post-process method in combining multiple ranking lists and yielding a robust ranking result
(Dwork et al. [2001} [2010; |Schalekamp & Zuylen), [2009). We aggregate the ranking list proposals from
LLM-based pairwise and setwise rankers with different underlying sorting algorithms or different LLMs that
are responsible for making preference decisions.

In experiments, we show that ICL and calibration can reduce the effect of positional bias and increase the
NDCG score significantly. We then show the effectiveness of aggregation in addressing transitive incon-

Under review as submission to TMLR

w/o ICL w/ ICL

logits A logits B Discrepancy | logits A logits B Discrepancy
Flan-T5-XXL -1.37 -0.97 0.10 -1.12 -0.86 0.06
Llama-3-8B 6.44 6.56 0.03 4.46 3.93 -0.13
Llama-3-70B -0.15 2.99 0.46 0.31 0.17 -0.03
Gemma-2-9B 7.44 8.01 0.14 8.66 9.02 0.09
Qwen2.5-32B 9.70 12.20 0.42 12.30 12.50 0.05
Mixtral-8x7B 26.85 19.93 -0.50 28.01 26.19 -0.36
GPT-4 -4.71 -4.54 0.04 -3.74 -5.97 -0.40

Table 1: Analysis of positional bias in pairwise ranking. We report the average logit values for token A (first
position) and token B (second position) across all queries. The Discrepancy quantifies the direction and
magnitude of the intrinsic bias, calculated as o(logitsgz — logits4) — 0.5. A value of 0 indicates neutrality.
Positive values indicate a bias toward the second passage (B), while negative values (e.g., Mixtral) indicate
a bias toward the first passage (4). Comparison between w/o ICL (Zero-shot) and w/ ICL (In-Context
Learning) shows the effect of prompting strategies on this bias.

Model # Circular Triads # Type-1 Triads # Type-2 Triads # Total Inconsistent Triads
Flan-T5-XXL 104.67 4720.67 708.72 5534.07
Llama-3-8B 28.70 5556.67 623.44 6208.81
Llama-3-70B 10.02 4533.98 199.09 4743.09
Gemma-2-9B 34.98 3568.77 560.47 4164.21
Qwen2.5-32B 11.53 4681.58 259.84 4952.95
Mixtral-8x7B 20.70 8970.58 672.49 9663.77
GPT-4 78.65 3694.65 754.91 4528.21

Table 2: The number of inconsistent triads in the tournament graph. A higher number indicates more
inconsistency. Type-1 triads refer to d; = dj,d; = di,dr >~ d;. Type-2 triads refer to d; = dj,d; > di, di >
d;. The total inconsistent triads refer to the sum of all kinds of inconsistent triads. The maximum number
of inconsistent triads for 100 passages is 161684 (Kutakowskil, 2018). This tournament graph is constructed
from the comparisons without ICL and calibration.

sistency by forming a consensus from multiple ranking lists. In summary, the contributions of this paper
are:

e To our knowledge, this work is the first to quantify the cascading effects of transitive inconsistency
on ranking stability, using metrics such as inconsistent triads, hard-list stress tests, and Kendall-Tau
variance.

e We address order inconsistency by ICL and calibration. The improvement is significant in most
LLMs.

o We bridge the area of LLM-based ranking with rank aggregation to mitigate the impact of transitive
inconsistency in pairwise and setwise comparisons.

o We show the promising empirical performance of the aggregation method by studying the aggregation
among different sorting algorithms and LLMs.

2 Related Work

LLM-based ranking approaches have been developed with distinct ranking schemes. Pointwise ap-
proaches (Liang et al.l |2023;|Sachan et al., 2023; |Drozdov et al., 2023)) aim to estimate the relevance between
a query and a single document. Listwise (Sun et al.| [2023; Ma et al., |2023)) ranking methods aim to directly

Under review as submission to TMLR

rank a list of documents by inserting the query and document list into an LLM’s prompt and instructing
it to output the reranked document identifiers, though they rely on the strong capability of LLMs, suffer
from positional bias and are sensitive to document order in the prompt (Zhu et al 2023)). Pairwise ranking
methods (Qin et al., [2023]) provide the query and a pair of documents to the LLM, which is instructed
to generate the identifier of the more relevant document; these pairwise comparisons are then aggregated
using efficient sorting algorithms like Heapsort or Bubblesort to produce the final ranking. The Setwise
approach (Zhuang et al., 2023)) is also proposed to compare a set of documents at a time to further improve
efficiency. Recent works like |Hsieh et al.| (2024) explored permutation self-consistency for listwise ranking
but focused on positional bias without explicitly identifying or analyzing the cascading effects of transitive
inconsistencies.

Rank aggregation has been widely used in many information retrieval tasks (Farah & Vanderpooten, 2007}
Dwork et al.l [2001; [Wang et all 2024]). Previous works (Pradeep et all 2021} (Gienapp et al., [2022) also
use aggregation to form the ranking list from pairwise comparison. We explore several well-established rank
aggregation methods in our work, including positional scoring methods like Borda count (de Borda, (1784),
which assigns scores based on item positions, and Reciprocal Rank Fusion (RRF) (Cormack et al., 2009),
which uses a reciprocal form with an additional constant to enhance stability. We also include Markov Chain-
based methods MC2 and MC4 (Dwork et al.,[2001)) that model items as states and use transition probabilities
to determine the consensus ranking. Additionally, we employ statistical methods like Mean fusion (Burges
et al [2011) and Median (Fagin et al., 2003)) that aggregate rankings based on central tendency measures.
These methods represent different approaches to rank aggregation, from simple position-based scoring to
probabilistic modeling, allowing us to comprehensively evaluate their effectiveness in combining LLM-based
rankings.

Recent works have modeled LLMs as ranking oracles or comparison oracles. For instance, | Tang et al.[(2023b))
optimizes generation dynamically by querying the oracle in an online, bandit-like fashion. In contrast, other
approaches like ComPO (Chen et all [2025) adapt comparison-oracle formulations to static datasets to
improve alignment stability.

3 Inconsistency of LLM-based ranking

3.1 Inconsistency of Pairwise Comparisons

In this work, we identify and distinguish two types of inconsistencies that LLM-based rankers exhibit:

1. Order Inconsistency: The LLM’s judgment on a pair of passages changes depending on the order
they are presented in the prompt, which is also known as positional bias (Lu et al., 2021)).

2. Transitive Inconsistency: The LLM makes a series of three or more judgments that logically
contradict each other, over a set of three or more passages, i.e., d; = da,do > ds,d3 > d;.

Under the pairwise ranking approach, each LLM query produces a pairwise comparison results on d;, d;,
the result can be d; > d; or d; >~ d;, where d represents a passage and > means "preferred to". While we
focus on pairwise comparisons in this work, our analysis of these two types of inconsistency can be easily
extended to setwise or listwise ranking schemes. This is because both setwise and listwise comparisons still
rely on relative preferences between individual passages, and are therefore fundamentally pairwise in nature.
For example, the result of a setwise comparison d; = d;,d) can be represented as two implicit pairwise
comparisons, d; > d; and d; > dj. Therefore, our inconsistency analysis cannot only be applied to setwise
and listwise ranking, but any ranking scheme that involves relative comparisons between passages.

3.2 Inconsistency Measurement

We measure the inconsistency in comparisons of a variety of LLMs using the TREC-DL2019 test set. We
construct the pairwise preference among all passages using PRP-Allpair (Qin et al., 2023). The order
inconsistency are shown in Table[I] In a pairwise ranking scheme, we ask the LLM to output A to select the

Under review as submission to TMLR

Bubblesort Heapsort
BM25 Hard List BM25 Hard List

Flan-T5-XXL 67.87 57.91 70.65 69.88
Llama-3-8B 65.38 41.51 68.46 65.88
Llama-3-70B 72.43 64.95 73.71 71.22
Gemma-2-9B 71.31 57.52 71.58 70.79
Qwen2.5-32B 72.42 65.04 73.75 73.39
Mixtral-8x7B 65.06 39.86 69.14 66.02
GPT-4 72.04 67.72 73.48 72.94

Table 3: NDCG@10 of ranking from different initial orders. The hard list is the inverse order of the ranking
result obtained from BM25. Note that Heapsort results are largely unaffected, suggesting that this specific
hard list is for Bubblesort only.

first passage or B to select the second passage. We query both the permutations of passages and collect the
logits of token A and token B. For an LLM with no positional bias, switching the order of a pair of passages
will not affect the preference judgment, which leads to the average logits of A and B being equal. However,
we can observe from Table [I] that the logits of these tokens typically suffer from an obvious discrepancy.
This indicates that the LLM’s choice is often biased towards either A or B, which implies order inconsistency.

We represent pairwise comparisons using a tournament graph - a complete graph where each vertex represents
a passage and edges represent preferences between passages. In this graph, directed edges d; — d; indicate
that passage d; is preferred over d;, while undirected edges indicate ties. Following PRP-Sort (Qin et al.l
2023)), we handle cases of order inconsistency (where swapping passage positions leads to different preferences)
by marking them as ties in the graph. While these ties are treated equally in the graph structure, we note
that the underlying passages may have different ground truth relevance scores.

To measure transitive inconsistency, we first construct the tournament graph by performing all pairwise
comparisons between passages and marking order inconsistent pairs (those that change preference when
swapped) as ties. We then count the number of inconsistent triads in the graph, following the method of
Kulakowski (2018). An inconsistent triad occurs when three passages form a cycle of strict preferences -
for example, when d; is preferred over dsy, do is preferred over ds, but d3 is preferred over di, violating
transitivity. The count of such triads serves as our metric for transitive inconsistency. As shown in Table
we observe that the frequency of inconsistent triads varies across different LLMs, with larger models
generally exhibiting fewer transitive inconsistencies.

3.3 The Impact of Inconsistency

As shown in Tables[I]and 2] LLM-based rankers can exhibit significant amounts of inconsistency across judg-
ments. Applying sorting-based ranking schemes based on non-transitive pairwise comparisons can produce
volatile result rankings that are highly sensitive to the initial order of candidate passages. This can have
particularly adverse effects if that initial ordering is a "hard list" for the chosen sorting method, as demon-
strated in Table[3] A hard list is an initial order of passages where the high-relevance passages require many
comparisons to be moved to the front of the ranking, increasing the likelihood of encountering a transitive
inconsistency that blocks the swapping of the passage. A hard list for one sorting algorithm may not be
as hard of a list for another, which is demonstrated in Table [3| By aggregating the full ranked lists from
multiple sorting algorithms, we can mitigate the worst-case effects of inconsistency while producing more
robust final rankings.

Under review as submission to TMLR

4 Addressing LLM-based Ranking Inconsistency

4.1 Mitigating Order Inconsistency

LLMs suffer from positional bias, which leads to the order inconsistency. This will result in conflicting
comparisons after swapping the passage position. Previous work handled order inconsistency as ties in the
comparison, which ignores the positional bias nature of LLM-based ranking. We propose 2 methods to
mitigate the order inconsistency in the LLM-RankFusion.

4.1.1 In-Context Learning (ICL)

We design the ICL prompt to utilize the few-shot ability (Brown et al., 2020) of LLMs to mitigate order
inconsistency. The prompt provides the LLM with an example pairwise comparison for both order permu-
tations as shown in Figure[I] This demonstration illustrates that the task is to compare the passages based
on their relevance to the query instead of its position in the prompt. As shown in Table [using ICL can
balance the probability of LLM selecting a passage from either position.

4.1.2 Calibration

In pairwise ranking, LLMs often exhibit positional bias, tending to select the first passage regardless of its
actual relevance. While prior work addresses this by checking for consistency across swapped positions (e.g.,
discarding inconsistent results) (Zheng et al., [2023), we propose a probabilistic calibration to estimate a
continuous latent preference.

For every pair of passages, we query the LLM with two permutations: (A = d;, B = d;) and (A = d;, B = d;).
Let Sg”) and SJ(B”) denote the log-probabilities (or logits) of tokens A and B in the first permutation. The
log-odds favoring d; in this position is:

Similarly, for the second permutation where d; is first, let Sgi) and Sgi) be the output values. Since token
A now refers to d;, the log-odds favoring d; is §U%) = ng) - ng).

We assume the positional bias acts as an additive term in the log-odds space. By averaging the preference
estimates from both permutations, this bias term cancels out, allowing us to recover the unbiased preference
(Bradley & Terryl, [1952)). The calibrated score for d; > d; is:

§Gid) — §5@i)

Score(d; > dj;) = 5

(2)

Finally, we map this score to a calibrated probability P;; € [0, 1] using the sigmoid function:

1

Pij = 1+ e—Score(d;=d;)

(3)

We determine d; > d; if P;; > 0.5. Unlike methods that rely on discrete win/loss outcomes, our approach
leverages continuous log-probability scores to resolve preference inconsistencies.

4.2 LLM Ranking Aggregation

In passage ranking, we can generate multiple proposed ranking lists using different ranking settings. These
settings can include different sorting algorithms to build fully ranked lists from pairwise, setwise, or listwise
comparisons, as well as other factors like a specific LLM used for the preference query. Given the inconsistency
discussed in Section [3] we know that any configuration of these settings can result in noisy rank results. We
cannot assume we know a priori which proposed rank setting is the best, so choosing a single setting that
will be affected the least by inconsistency is difficult.

Under review as submission to TMLR

Algorithm 1 LLM Rank Aggregation Pipeline
Require: Query g, Corpus D, Rank settings Ry, Ro, ..., Ry
Ensure: Aggregated rank list L

1: Li,Lo,...,L+ 0 > Initialize empty rank lists
2: forz(—ltok:do

3: L; + RANKING(q, D, R;) > Generate rank list using rank setting R;
4: end for

5. L + RANKAGGREGATION(Ly, Lo, ..., Lg) > Aggregate rank lists
6: return L

To address noisy ranked list proposals, we propose LLM-RankFusion, a rank aggregation pipeline as shown
in Algorithm Rank aggregation can address conflicting results by combining these results into a single,
coherent ranking, limiting the effects of noisy settings.

4.2.1 Aggregation Across Ranking Schemes

We aggregate the ranked list proposals from rankers with different ranking schemes. For pairwise and
setwise ranking, they include two sorting algorithms, Bubblesort and Heapsort. Bubblesort repeatedly steps
through the list, compares adjacent elements, and swaps them if they are in the wrong order; Heapsort uses
a binary heap to sort elements. By combining the ranked lists from algorithms with different properties, the
aggregated result becomes more robust to variations in the input data. If one algorithm performs poorly on
a particular input, the other algorithm may compensate for it, leading to a more consistent overall ranking.

4.2.2 Aggregation Across LLMs

Individual LLMs might also have unique biases in their preferences and, therefore, unique transitive incon-
sistency. This motivates aggregation across ranking lists from multiple LLMs. This can help to reduce the
impact of any individual LLM, which may be inconsistent in handling certain queries. The aggregated result
formed by decisions from multiple LLMs can be more robust and consistent.

Model Baseline ‘ ICL Only Calibration Only ICL + Calibration
Flan-T5-XXL 67.87 | 68.64 (+0.77) 69.73 (+1.86) 71.05 (+3.18)
Llama-3-8B 65.38 | 66.35 (+0.97) 69.58 (+4.20) 71.51 (+6.13)
Llama-3-70B 72.43 | 71.62 (-0.81) 74.12 (41.69) 74.55 (+2.12)
Gemma-2-9B 71.31 | 71.70 (40.39) 72.60 (+1.29) 72.79 (+1.48)
Qwen2.5-32B 72.42 | 71.47 (-0.95) 74.42 (+2.00) 73.91 (+1.49)
Mixtral-8x7B 65.06 | 70.05 (+4.99) 66.75 (+1 ()9) 71.16 (+6.10)
GPT-H4 72.04 | 73.34 (+1.30) 74.56 (+2.52) 74.79 (+2.75)

Table 4: NDCG@10 of PRP-Sorting with Bubblesort, starting from the BM25 initial order on TREC DL
2019. The experiment shows an ablation study of using ICL and calibration to improve ranking performance
by addressing order inconsistency.

5 Experiments

5.1 Experimental Setup

We utilize test sets from TREC, a standard dataset for information retrieval research. Specifically, we use
the top 100 passages retrieved by BM25 (Lin et al.| [2021; [Robertson et al., |2009) for each of the queries
associated with the TREC-DL2019 and 2020 test sets (Craswell et al.l 2020)). Our results are based on the
re-ranking of these 100 passages. The LLM ranking scheme is implemented under the same experimental

Under review as submission to TMLR

DL19 DL20
Setwise 63.25 60.27
Listwise (RankGPT) 69.61 65.49
Pairwise (PRP-Sort) 65.38 60.16

Pairwise+ICL+Calibration (Ours) 71.51 65.10

Table 5: NDCG@10 on TREC DL 2019 and 2020 datasets using Llama-3-8B model. Our proposed method
(Pairwise+ICL~+Calibration) significantly outperforms the standard pairwise baseline and achieves perfor-
mance competitive with, and in some cases superior to, setwise and listwise approaches.

setting of PRP-Sort (Qin et al.l|2023). We use the rank aggregation implementation from |Wang et al.| (2024))

We evaluate our results using Normalized Discounted Cumulative Gain (NDCG), a standard metric used to
evaluate the quality of ranked retrieval results. NDCG accounts for the position of relevant documents in the
ranking, assigning higher importance to documents appearing earlier. Formally, the Discounted Cumulative
Gain at rank k& (DCG@QXk) is defined as:

k
rel;
D S N s
CGak ; log,(i + 1)

where rel; is the graded relevance of the result at position 7. To normalize this score across queries with
different numbers of relevant documents, we compute the Ideal DCG (IDCG@Qk), which is the DCG of the
perfect ranking (sorted by relevance). The final metric is given by:

DCGQk

NDCGQk = IDCGak

In our experiments, we report NDCG@10 (k = 10) to measure the quality of the top-ranked results. We
compare our results against pairwise, setwise, and listwise baselines. (Qin et al.l 2023 [Zhuang et al., [2023;
Sun et al.| |2023]).

The Kendall tau distance is a metric used to measure the dissimilarity between two rankings. For any specific
group of ranked list proposals, the volatility can be measured as the average Kendall-tau distance between
any two ranked lists constructed from different initial orderings. If this average distance is high, it implies
high inconsistency; the final ranking is very sensitive to initial ordering. To evaluate the average Kendall-tau
distance for our aggregation pipeline, we construct n ranking lists from n different initial orders. This step
is only for evaluation purposes and is not necessary in LLM-RankFusion. The KT,,, € [0,1] is defined as

Q| n n

1 1 pq
KTows = g1 2y 2 2 KT, @)

p=1g=p+1

where |Q)] is the number of queries, n is the number of unique initial orderings, and KT?? is the Kendall-tau
distance between two rankings for query i, RY and R, starting from initial orders p and q.

5.2 Addressing Order Inconsistency

We have shown that in-context learning can help to balance the average probability of the two choices given
during pairwise ranking in Table In Table 4] we can see that solely using ICL can help improve the
ranking performance in most LLMs. The calibration addresses order inconsistency by calculating preference
probability based on comparison from both positions. The improvement from solely using the calibration is

Thttps://github.com/nercms-mmap/RankAggregation-Lib

Under review as submission to TMLR

also significant, as shown in Table [d] Furthermore, as demonstrated in Table [5 our approach of combining
pairwise ranking with ICL and calibration outperforms several baseline methods across different datasets.

HeapSort BubbleSort
Input Statistics (10 Rankers)

Average + SD 70.10+1.92 70.84 £1.61
Aggregation Results (Consensus List)

Borda (de Bordal [1784)) 7178 7256
MC4 (pwork et a1} |2001) 72.45 72.71
MC2 (pwork et a1 |2001) 71.02 71.68
Mean (Burges et al.| [2011) 7178 72.56
Median (Fagin et al.} |2003) 72.18 72.29
RRF (cormack et al |2009) 71.96 72.33

Table 6: NDCG@10 comparison on TREC DL 2019 (Llama-3-8B). Input Statistics: Shows the mean and
standard deviation of the 10 individual rankers (using different prompts) before aggregation. Aggregation
Results: Shows the performance of the single, deterministic consensus list produced by each method (hence
no standard deviation).

Individual Models Cross-Model Aggregation

Dataset Ranking Scheme Flan-T5-XXL Llama-3-8B Borda MC4

Pairwise + BubbleSort 71.05 71.51 73.19 73.16

Pairwise + HeapSort 69.76 70.82 72.25 72.38

TREC DL Setwise + BubbleSort 71.07 63.25 64.22 66.26

2019 Setwise + HeapSort 70.46 65.14 67.11 69.14
Cross-Scheme Agg. (Borda) 70.60 71.52 - -
Cross-Scheme Agg. (MC4) 70.61 71.47 - -

Pairwise + BubbleSort 69.96 65.10 71.16 70.55

Pairwise + HeapSort 69.61 64.01 69.67 69.32

TREC DL Setwise + BubbleSort 68.66 60.27 61.85 63.08

2020 Setwise + HeapSort 68.82 60.68 63.85 65.27
Cross-Scheme Agg. (Borda) 69.87 64.90 - -
Cross-Scheme Agg. (MC4) 69.95 65.09 - -

Table 7: NDCG@Q10 of different ranking schemes and model aggregations on TREC DL 2019 and 2020.
Top Rows (Base Schemes): Performance of specific schemes; the rightmost columns show the result of
aggregating the two models (Flan-T5 + Llama-3) for that specific scheme. Bottom Rows (Cross-Scheme
Agg.): Performance of aggregating all four schemes within a single model. All pairwise results use ICL +
Calibration.

5.3 Addressing Inconsistency via Aggregation

We show the performance of aggregation methods in Table via aggregating the ranking list proposal
from 10 different rankers. These 10 different rankers are constructed with different ranking prompts, we
include the detailed discussion in Appendix [AT7] We can see that both aggregation methods achieve an
NDCG@10 higher than the average level of the ranking list proposals. We chose MC4 aggregation for its
relatively high aggregation performance and Borda for its simplicity in implementation and popularity in
various applications.

Table [5.2|demonstrates the effectiveness of both model and ranking scheme aggregation in improving ranking
performance. Model Aggregation consistently outperforms individual models across both datasets, particu-

Under review as submission to TMLR

larly for pairwise ranking. This trend is consistent across different ranking schemes and datasets, showing
robustness through aggregation. Scheme Aggregation shows balanced performance, often achieving scores
close to or exceeding the best individual scheme. This suggests that aggregating across ranking schemes
can provide a more stable and potentially superior ranking, leveraging the strengths of both pairwise and
setwise approaches, as well as different sorting algorithms. These results demonstrate that LLM-RankFusion
can mitigate the impact of the weaknesses on an individual ranking scheme. We can also see the ranking
scheme aggregation can help improve the robustness of ranking under the hard list condition in Table [10]in
the Appendix.

Model TREC DL 2019 TREC DL 2020
HeapSort BubbleSort HeapSort BubbleSort

Flan-T5-XXL 69.76 71.05 69.61 69.96

Llama-3-8B 70.82 71.51 64.01 65.10

Individual Llama-3-70B 73.41 74.55 70.11 70.83
Gemma-2-9B 72.35 72.79 65.66 66.38

Qwen2.5-32B 74.17 73.91 69.58 70.19

Mixtral-8x7B 70.53 71.16 66.73 66.14

Aggregation Borda 75.01 74.65 70.25 71.32
MC4 74.80 74.56 71.12 71.65

Table 8: NDCGQ10 of aggregated ranking list from ranking list proposal of LLM rankers with different
models. It shows that the multi-model aggregation also balances out worse NDCG@10. The bubblesort and
heapsort data associated with each model are referred to after ICL and calibration have been applied.

Model TREC DL 2019 TREC DL 2020
HeapSort BubbleSort HeapSort BubbleSort
Flan-T5-XXL 0.0676 0.1829 0.0694 0.1823
Llama-3-8B 0.0486 0.1228 0.0531 0.1339
Individual Llama-3-70B 0.0536 0.1376 0.0582 0.1528
Gemma-2-9B 0.0600 0.1528 0.0634 0.1629
Qwen2.5-32B 0.0521 0.1277 0.0587 0.1467
Mixtral-8x7B 0.1145 0.2954 0.1248 0.3171
Aggregation Borda 0.0429 0.1876 0.0478 0.2023
MC4 0.0506 0.1806 0.0544 0.1943

Table 9: The impact of initial order on ranking consistency. We report the variance of the Kendall-Tau
(1) correlation coefficient calculated across ranking lists generated from 10 different random initial orders.
Lower values indicate that the method effectively mitigates the instability caused by transitive inconsistency.

We further investigate the aggregation across LLMs, which attempts to produce a final ranking that is less
sensitive to the individual biases of different LLMs. The result is shown in Table[8] as the aggregated ranking
list can always achieve an NDCG@10 score higher than the best ranking list proposal. In addition to the
TREC DL dataset results in Table we also present the BEIR (Thakur et al., 2021) dataset results in Table
[[1]in the Appendix [A7I] This shows promising results of LLM-RankFusion to find a consensus ranking list
that achieves balanced or even superior performance. In a typical passage ranking case, we don’t assume we
know which LLM is better at ranking the specific passage list. Hence, it is particularly useful if we can get
at least medium performance rankings by aggregating multiple proposals.

While inconsistent triads cannot exist in a final linear ranked list by definition, their presence in the under-
lying pairwise comparisons manifests as ranking instability. Specifically, when the preference graph contains
cycles (e.g., A> B,B > C,C > A), the final output of a sorting algorithm becomes highly sensitive to the
initial order of the input passages. To demonstrate that LLM-RankFusion effectively mitigates these incon-
sistencies, we measure the stability of the rankings across 10 different random initial passage orders. We

10

Under review as submission to TMLR

calculate the variance of the Kendall-Tau (7) distance between these runs. As shown in Table @ individual
rankers often exhibit high variance, particularly when using Bubblesort, which is susceptible to local tran-
sitive violations. In contrast, our aggregation methods (Borda and MC4) consistently yield lower variance.
The ranking instability mitigation effect from aggregation can also be seen in the hard list ranking on Table

[0 in the Appendix [AT]

5.4 Computation Cost

The performance of LLM-based passage ranking is mainly determined by the LLM inference performance and
the number of comparisons required to sort a list. The ranking list proposals required by LLM-RankFusion
are independent of each other. Hence, the LLM rankers can run in parallel, which means the end-to-end
ranking latency remains comparable to that of a single LLM ranker. However, we acknowledge that the total
computational cost (in terms of total token usage) increases linearly with the number of rankers used in the
aggregation. This trade-off allows for significantly improved robustness without sacrificing response time in
parallelized serving environments. The calibration step itself introduces negligible computational overhead
because it operates directly on the output logits generated during the standard inference pass. It does not
require additional LLM generation steps beyond the initial pairwise queries. The ICL leads to a longer
prompt, which slightly increases the computation during inference as shown in Table [I7] in the appendix.
The time and space complexity of ranking an individual ranking list proposal is the same as the previous
PRP-Sorting (Qin et al., 2023).

6 Conclusion

In this paper, we focus on addressing order inconsistency and transitive inconsistency we identify in LLM-
based ranking. These inconsistencies can significantly impact the reliability of LLM-based ranking systems.
To mitigate these issues, we proposed the LLM-RankFusion pipeline, which incorporates in-context learning
(ICL) and calibration to address order inconsistency and rank aggregation to tackle transitive inconsistency.
Our experiments demonstrated that ICL and calibration effectively reduce order inconsistency, leading to
improved NDCG scores. Furthermore, we showed that aggregation mitigates transitive inconsistency by
forming a consensus from multiple ranking lists. By exploring the idea of aggregating the decisions of
multiple LLMs in the specific domain of passage ranking, our work highlights the potential of combining the
strengths of different LLMs.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. Ms marco: A human generated machine reading
comprehension dataset. arXiv preprint arXiv:1611.09268, 2016.

Luiz Bonifacio, Vitor Jeronymo, Hugo Queiroz Abonizio, Israel Campiotti, Marzieh Fadaee, Roberto Lotufo,
and Rodrigo Nogueira. mmarco: A multilingual version of the ms marco passage ranking dataset. arXiw
preprint arXiv:2108.13897, 2021.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: 1. the method of paired
comparisons. Biometrika, 39(3/4):324-345, 1952.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877-1901, 2020.

11

Under review as submission to TMLR

Christopher Burges, Krysta Svore, Paul Bennett, Andrzej Pastusiak, and Qiang Wu. Learning to rank using
an ensemble of lambda-gradient models. In Proceedings of the learning to rank Challenge, pp. 25-35.
PMLR, 2011.

Wenshuo Chao, Zhi Zheng, Hengshu Zhu, and Hao Liu. Make large language model a better ranker. arXiv
preprint arXiv:2405.19181, 2024.

Peter Chen, Xi Chen, Wotao Yin, and Tianyi Lin. Compo: Preference alignment via comparison oracles.
arXiv preprint arXiv:2505.05465, 2025.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1-53, 2024.

Gordon V Cormack, Charles LA Clarke, and Stefan Buettcher. Reciprocal rank fusion outperforms condorcet
and individual rank learning methods. In Proceedings of the 32nd international ACM SIGIR conference
on Research and development in information retrieval, pp. 758-759, 2009.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M Voorhees. Overview of the trec
2019 deep learning track. arXiv preprint arXiv:2003.07820, 2020.

de Borda. Mémoire sur les elections par scrutin (memoir on elections by ballot), 1784.

Andrew Drozdov, Honglei Zhuang, Zhuyun Dai, Zhen Qin, Razieh Rahimi, Xuanhui Wang, Dana Alon, Mohit
Iyyer, Andrew McCallum, Donald Metzler, and Kai Hui. Parade: Passage ranking using demonstrations
with large language models, 2023.

Paul Duetting, Vahab Mirrokni, Renato Paes Leme, Haifeng Xu, and Song Zuo. Mechanism design for large
language models. arXiv preprint arXiv:2310.10826, 2023.

Cynthia Dwork, Ravi Kumar, Moni Naor, and D Sivakumar. Rank aggregation revisited, 2001.

Ronald Fagin, Ravi Kumar, and Dandapani Sivakumar. Efficient similarity search and classification via rank
aggregation. In Proceedings of the 2003 ACM SIGMOD international conference on Management of data,
pp. 301-312, 2003.

Mohamed Farah and Daniel Vanderpooten. An outranking approach for rank aggregation in information
retrieval. In Proceedings of the 30th annual international ACM SIGIR conference on Research and devel-
opment in information retrieval, pp. 591-598, 2007.

Lukas Gienapp, Maik Frobe, Matthias Hagen, and Martin Potthast. Sparse pairwise re-ranking with pre-
trained transformers. In Proceedings of the 2022 ACM SIGIR International Conference on Theory of
Information Retrieval, pp. 72-80, 2022.

Reinhard Heckel, Nihar B Shah, Kannan Ramchandran, and Martin J Wainwright. Active ranking from
pairwise comparisons and when parametric assumptions do not help. 2019.

Cheng-Yu Hsieh, Yung-Sung Chuang, Chun-Liang Li, Zifeng Wang, Long Le, Abhishek Kumar, James Glass,
Alexander Ratner, Chen-Yu Lee, Ranjay Krishna, et al. Found in the middle: Calibrating positional atten-
tion bias improves long context utilization. In Findings of the Association for Computational Linguistics:
ACL 2024, pp. 14982-14995, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford,
Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al. Mixtral of
experts. arXiw preprint arXiv:2401.04088, 2024.

Konrad Kulakowski. Inconsistency in the ordinal pairwise comparisons method with and without ties.
European Journal of Operational Research, 270(1):314-327, 2018.

12

Under review as submission to TMLR

Yongqi Li, Xinyu Lin, Wenjie Wang, Fuli Feng, Liang Pang, Wenjie Li, Liqiang Nie, Xiangnan He, and
Tat-Seng Chua. A survey of generative search and recommendation in the era of large language models.
arXiv preprint arXiv:2404.16924, 2024.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana Acosta-Navas, Drew A.
Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang,
Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel
Guha, Niladri Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan Chi, Sang Michael Xie,
Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaud-
hary, William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. Holistic evaluation of
language models, 2023.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
Pyserini: An easy-to-use python toolkit to support replicable ir research with sparse and dense represen-
tations, 2021.

Shili Lin. Rank aggregation methods. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5):
555-570, 2010.

Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and Trends® in Information
Retrieval, 3(3):225-331, 2009.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered prompts
and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint arXiv:2104.08786,
2021.

Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and Jimmy Lin. Zero-shot listwise document reranking with
a large language model. arXiv preprint arXiv:2305.02156, 2023.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. arXiv preprint arXiv:1901.04085,
2019.

R OpenAl. Gpt-4 technical report. arXiv, pp. 2303-08774, 2023.

Ronak Pradeep, Rodrigo Nogueira, and Jimmy Lin. The expando-mono-duo design pattern for text ranking
with pretrained sequence-to-sequence models. arXiw preprint arXiv:2101.05667, 2021.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Jiaming Shen, Tiangi Liu, Jialu Liu, Donald
Metzler, Xuanhui Wang, et al. Large language models are effective text rankers with pairwise ranking
prompting. arXiv preprint arXiv:2306.17563, 2023.

Siddartha Y Ramamohan, Arun Rajkumar, and Shivani Agarwal. Dueling bandits: Beyond condorcet
winners to general tournament solutions. Advances in Neural Information Processing Systems, 29, 2016.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4):333-389, 2009.

Devendra Singh Sachan, Mike Lewis, Mandar Joshi, Armen Aghajanyan, Wen tau Yih, Joelle Pineau, and
Luke Zettlemoyer. Improving passage retrieval with zero-shot question generation, 2023.

Frans Schalekamp and Anke van Zuylen. Rank aggregation: Together we're strong. In 2009 Proceedings of
the Eleventh Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 38-51. STAM, 2009.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaigiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. Is chatgpt good at search? investigating large language models as re-ranking agents, 2023.

13

Under review as submission to TMLR

Raphael Tang, Xinyu Zhang, Xueguang Ma, Jimmy Lin, and Ferhan Ture. Found in the middle: Permutation
self-consistency improves listwise ranking in large language models. arXiv preprint arXiv:2310.07712,
2023a.

Zhiwei Tang, Dmitry Rybin, and Tsung-Hui Chang. Zeroth-order optimization meets human feedback:
Provable learning via ranking oracles. arXiv preprint arXiv:2303.03751, 2023b.

Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia, Jason Wei, Xuezhi Wang, Hyung Won Chung,
Siamak Shakeri, Dara Bahri, Tal Schuster, et al. Ul2: Unifying language learning paradigms. arXiv
preprint arXiv:2205.05131, 2022.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on
gemini research and technology. arXiv preprint arXiv:2403.08295, 2024a.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju,
Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma 2: Improving
open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024b.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Abhishek Srivastava, and Iryna Gurevych. Beir: A heteroge-
nous benchmark for zero-shot evaluation of information retrieval models. arXiv preprint arXiv:2104.08663,
2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and Zhifang
Sui. Large language models are not fair evaluators. arXiv preprint arXiv:2305.17926, 2023.

Siyi Wang, Qi Deng, Shiwei Feng, Hong Zhang, and Chao Liang. A survey on rank aggregation. In Proceedings
of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24), pp. 8281-8289,
2024.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu,
Hengshu Zhu, Qi Liu, et al. A survey on large language models for recommendation. arXiv preprint
arXiv:2305.19860, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.

Yifan Zeng, Yiran Wu, Xiao Zhang, Huazheng Wang, and Qingyun Wu. Autodefense: Multi-agent 1lm
defense against jailbreak attacks. arXiv preprint arXiv:2403.04783, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv preprint
arXiv:2303.18223, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena.
Advances in neural information processing systems, 36:46595-46623, 2023.

Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu, Wenhan Liu, Chenlong Deng, Zhicheng Dou, and
Ji-Rong Wen. Large language models for information retrieval: A survey. arXiv preprint arXiv:2308.07107,
2023.

Shengyao Zhuang, Honglei Zhuang, Bevan Koopman, and Guido Zuccon. A setwise approach for effective
and highly efficient zero-shot ranking with large language models, 2023.

14

Under review as submission to TMLR

Dataset ‘ Ranking Scheme ‘ Flan-T5-XXL Llama-3-8B
Pairwise.BubbleSort 68.66 68.71
Pairwise.HeapSort 71.07 70.94

TREC DL | Setwise.BubbleSort 67.66 40.77

2019 Setwise.HeapSort 69.89 62.15
Listwise (RankGPT) 51.85 64.94

Scheme Aggregation 62.76 56.05
Pairwise.BubbleSort 66.75 61.64
Pairwise.HeapSort 68.97 64.10

TREC DL | Setwise.BubbleSort 63.96 37.59
2019 Setwise.HeapSort 68.32 55.30
Listwise (RankGPT) 52.86 63.48

Scheme Aggregation 61.07 51.20

Table 10: Aggregation across ranking schemes on Hard List using Borda.

Model Sort ‘ trec-covid signallm trec-news webis-touche2020
HeapSort 81.69 29.07 47.00 22.96
Llama-3-8B 5 14 leSort | 81.42 31.27 48.27 25.83
HeapSort 82.05 32.20 51.48 28.02
Llama-3-70B 1} eSort | 81.06 34.15 52.24 30.70
Individual a oop HeapSort 78.76 30.21 48.10 22.87
emmas s BubbleSort | 78.96 32.04 48.85 27.32
HeapSort 84.65 33.06 54.20 30.54
Qwen2.5-32B - 5 bleSort | 84.80 34.20 54.39 32.90
. HeapSort 82.16 29.24 50.84 26.48
Mixtral-8x7B 5 piesort | 83.00 33.06 51.27 31.47
Bord HeapSort 83.68 32.06 51.73 26.55
. orca BubbleSort | 84.01 34.80 53.32 32.35
Aggregation
MCY HeapSort 83.51 33.14 51.83 26.68
BubbleSort | 83.50 34.43 52.66 30.09

Table 11: NDCG@Q10 of aggregated ranking list from ranking list proposal of LLM rankers with different
models on BEIR dataset. It shows that the multi-model aggregation also balances out worse NDCG@10.
The bubblesort and heapsort data associated with each model are referred to after ICL and calibration have
been applied.

A Appendix

A.1 Additional Experiments

In Table [3] we show the hard list can reduce the ranking quality. By applying LLM-RankFusion, we can
mitigate the negative effect of the hard list as shown in Table We show the experiment results on the
BEIR dataset Thakur et al.|(2021) in Table It indicates that LLM-RankFusion can easily generalize to
different datasets.

A.2 Future Work

Future Work can focus on LLM-based rank aggregation approaches that decide the comparison strategy on-
the-fly and directly aggregate from pairwise comparisons without relying on sorting algorithms [Ramamohan

15

Under review as submission to TMLR

DL19 DL20 BEIR trec-covid BEIR trec-news

Setwise 63.25 60.27 75.65 47.72
Listwise (RankGPT) 69.61 65.49 80.90 50.23
Pairwise (PRP-Sort) 65.38 60.16 75.44 47.82
Pairwise+ICL+Calibration (Ours) 71.51 65.10 81.42 48.27

Table 12: NDCG@10 on TREC DL and BEIR trec-covid and trec-news subsets, using Llama-3-8B. Our
proposed method (Pairwise+ICL+Calibration) significantly outperforms the standard pairwise baseline and
achieves performance competitive with, and in some cases superior to, setwise and listwise approaches.

et al.| (2016)); [Heckel et al.| (2019)); |Gienapp et al|(2022). Exploring the potential of aggregating LLM-based
decisions in other tasks and domains beyond passage ranking could lead to a more general understanding of
the effectiveness of combining the intelligence of multiple LLMs for improved performance and consistency
in a wider range of applications [Duetting et al.| (2023)).

A.3 Example Passage Ranking

We show an example passage ranking that contain 15 passages for a query. The details of these 15 passages
are shown in Table [I3]and Table[I4] The ranking results from different settings are shown in Table [I5]

A.4 Implementation details

We use LLMs with a variety of sizes in our experiments: GPT |OpenAll (2023): GPT-4-1106; LLaMA-
3 [Touvron et al.|(2023)): LLaMA-3-70B, LLaMA-3-8B; Qwen2.5 Yang et al.[(2024)): Qwen2.5-32B-Instruct
Mixtral [Jiang et al| (2024): Mixtral-8x7b-v0.1; Gemma2 Team et al. (2024ajb) gemma-2-9b-it; Flan-
T5 |Chung et al.| (2024); Tay et al.|(2022) Flan-T5-XXL. This aims to explore the capacity of different sizes
of LLMs and the trade-off between efficiency and ranking quality.

The LLM inference is implemented based on HuggingFace. The instruction fine-tuned version of the model is
used if available. The temperature of LLM is set to 0, which means argmax will be applied to the candidate
tokens during generation. We use 2 x NVIDIA H100 80GB HBM3 and 4 x Tesla V100-SXM3-32GB GPUs

to run our experiment.

A5 Prompt

We show a comparison prompt example in Table The first two rounds of chat is the in-context Learning
(ICL) prompt. We expect the LLM can learn the order-agnostic property from the demonstration of ICL
prompt.

A.6 Performance

The average number of comparisons required to rank a list is 3574.21 & 501.23 for Bubblesort and 972.77 +
47.69 for Heapsort. We benchmark the comparison rate of different LLM rankers in Table [[7] The prompt
is longer after applying ICL, which decreases the LLM inference performance. We only generate 1 token
for each comparison on those open-source LLMs. Each pairwise comparison involves prompting the LLM in
two different passage permutations. It requires 2 prompts and generate operations to finish a single pairwise
comparison. We using an optimized inference setup (vLLM 0.7.3, KV caching, and 2xH200 GPUs with
prefix-caching enabled).

A.7 Analysis of Prompt Design Sensitivity

To evaluate the robustness of our proposed methods against variations in prompt design, we conducted
additional experiments using GPT-4 to generate 10 different pairwise ranking prompt templates. Each
template maintained the core task of comparing passage relevance while varying factors such as wording,

16

Under review as submission to TMLR

Passage Identifier

Passage Content

Relevance

A

Well, one of Arnold’s biggest insights is what resulted in the invention of the
Searzall, and it’s something we got wrong in our sous vide video. Sous vide, if
you recall, is the process of cooking food in a controlled-temperature water bath,
using a vacuum sealer to protect your meat from the liquid. What you get from
sous vide is your food cooked to exactly the temperature you want to kill bacteria
and make it safe to eat, but not overcooking it.

0

What kind of foods can you cook sous vide? Sous vide is traditionally seen as
an alternative method for cooking meats. However, the technique is extremely
versatile, meaning all manner of ingredients can be cooked such as: Pork, Lamb,
Beef, Chicken, Duck, Turkey, Quail.

What is a Sous Vide Cooker? We said it before and we’ll say it again: a sous vide
machine is a better way to cook. When you use a sous vide at home, you’ll be
cooking with water. It’s not at all what you’re thinking. Your steak and chicken
— any food really — will be placed in BPA-free, sturdy plastic bags and cooked.

Sous-vide cooking involves cooking food in sealed plastic bags immersed in hot
water for long periods of time. Depending on the cut, type, and thickness of the
meat or the type of food in question, cooking sous-vide for several hours is not
out of the ordinary. The key is managing the temperature of the water so it stays
hot enough to cook the food thoroughly and evenly and long enough to kill any
food-borne pathogens that may be in the bag along with the food.

Actually vacuum is a mis-represented concept in sous vide. Fact is, you don’t
need vacuum sealing entirely for sous vide cooking. If you can truly control the
temperature of the water bath then all you need is to provide the food you are
cooking a barrier from the water bath.

Often, however, when you prepare food sous vide you’re packaging the food in plas-
tic. (Often but not always. Eggs come in their own wrappers—their shells—and
we can sous vide foods that set as they cook, like custard, yogurt, and chicken
liver paté, in glass canning jars.)

The term sous vide (pronounced soo-veed) is a French term, meaning under vac-
uum. Sous vide is a culinary technique in which vacuum-sealed food is immersed
in a water bath and cooked at a very precise, consistent temperature.This cook-
ing technique typically involves cooking food for longer periods of time at a lower
temperature.he term sous vide (pronounced soo—veed) is a French term, meaning
under vacuum. The term s ous vide (pronounced soo—veed) is a French term,
meaning under vacuum.

The sous vide technique has been the secret of great chefs worldwide for decades.
The SousVide Supreme is an amazing new all-in-one sous vide water oven designed
to bring the sous vide cooking technique into home kitchens and restaurants at an
affordable price. The sous vide (pronounced soo-veed) technique involves cooking
food in vacuum-sealed pouches submerged in a water bath held at a precisely-
controlled temperature.

Sous vide recipes. Sous vide recipes. From the French for ‘under vacuum’, sous
vide is a method of cooking where ingredients are sealed in an airtight bag and
submerged in a water bath. This method not only ensures a constant cooking
temperature, but allows the food to cook for long periods of time without losing
any of its flavour or moisture.

Table 13: Top 15 relevant passages for query what types of food can you cook sous vide from BM25
(Part 1 of 2). These passages are ranked by BM25 and assigned the Passage Identifier from A to O in
alphabetical order. We refer to this as the BM25 order, which is used as the initial order for LLM-RankFusion.
The Relevance column shows the ground truth pointwise relevance score label. The relevance scores are from
0 to 3, where 0 is the most not relevance, 3 is the most relevance.

17

Under review as submission to TMLR

Passage Identifier

Passage Content

Relevance

J

Slow and low is the name of the game here. Some times cooking food sous vide
means hours, sometimes it means entire days. Food safety is a concern, but doesn’t
generally an issue as long as you stick to the temperature and cooking time spec-
ified for the food you’re cooking.imply put, sous vide cooking is the process of
vacuum-sealing raw food in plastic pouches and cooking it slowly in a temperature-
controlled water bath.

0

Learn more sous vide at http://www.sousvidesupreme.com—WHAT IS SOUS
VIDE? —The sous vide technique has been the secret of great chefs worldwide
for decades. The SousVide Supreme is an amazing new all-in-one sous vide water
oven designed to bring the sous vide cooking technique into home kitchens and
restaurants at an affordable price.

All kinds! Any type of meat—such as beef, pork, lamb, game, or poultry—is
ideal for sous vide. It works especially well with fish and seafood, ensuring that
these delicate foods are not overcooked. Almost any vegetable can also be cooked
sous vide with delicious results, as can eggs and many fruits. You can even use it
to make custard-style ice cream base, béarnaise sauce, créme Anglaise, custards,
cheese, yogurt, and even cakes.

Sous Vide help - why did my salmon dry out at 1207 Updated 1 month ago |
8. Sous Vide Salmon; 3 What temperature do I cook these foods on? Updated
3 months ago | 1. Chicken Breast Cookbooks Steak Beginner Cook Scrambling;
4 Potato encrusted salmon. Updated 1 month ago | 1. Salmon Potatoes Recipe
Fixes; 5 What temperature do you have the grill on when cooking steak?

Here’s our answer: Water used to cook food sous vide is still clean and sanitary
(provided your bag doesn’t break or leak), so you can use it to wash dishes, water
your plants, hydrate your dog, bathe your baby, or fill your swimming pool. You
can also use that water to cook sous vide several times, if you have the space to
keep it.

With the Anova, sous vide cooking is simple. All you need to get started is a pot
or large container to hold water, heavy duty bags, a few clips, and your Anova
Precision Cooker, of course! One of the best parts of sous vide cooking is that you
don’t need to do much to your food before cooking.

Table 14: Top 15 relevant passages for query what types of food can you cook sous vide from BM25
(Part 2 of 2). More details in Table

Ranking Method Ranking List

BM25 A-~=B-C-D-E-F~-G-H>=I1>J>-K>L > = N> O
GPT-4 L-B-D-F>-1-J-C-H+-G>0>=A>=E > = N = K
Llama-3-70B L-B>~F>~1>A >~ ~=D>=J-H>-0>-C>~E>~K>=G>N

LLM-RankFusion L>-B~I>~D>F>~J>~A>~C>~H>G >0 = - E > K >N

Table 15: Comparisons of the rankings from different LLMs and aggregation. The rankings are produced
by LLM-based pairwise ranker using bubblesort. We include ICL and calibration in each individual
LLM-based ranker.

18

Under review as submission to TMLR

User Given a query "anthropological definition of environment", which of the following two passages
is more relevant to the query?

Passage A: "Forensic anthropology is the application of the science of physical anthropology
and human osteology in a legal setting, most often in criminal cases where the victims$ remains
are in the advanced stages of decomposition.nvironmental anthropology is a sub-specialty
within the field of anthropology that takes an active role in examining the relationships be-
tween humans and their environment across space and time."

Passage B: "Graduate Study in Anthropology. The graduate program in biological anthro-
pology at CU Boulder offers training in several areas, including primatology, human biology,
and paleoanthropology. We share an interest in human ecology, the broad integrative area of
anthropology that focuses on the interactions of culture, biology and the environment."
Output Passage A or Passage B:

Assistant | Passage: A

User Given a query "anthropological definition of environment", which of the following two passages
is more relevant to the query?

Passage A: "Graduate Study in Anthropology. The graduate program in biological anthro-
pology at CU Boulder offers training in several areas, including primatology, human biology,
and paleoanthropology. We share an interest in human ecology, the broad integrative area of
anthropology that focuses on the interactions of culture, biology and the environment."
Passage B: "Forensic anthropology is the application of the science of physical anthropology
and human osteology in a legal setting, most often in criminal cases where the victims remains
are in the advanced stages of decomposition.nvironmental anthropology is a sub-specialty
within the field of anthropology that takes an active role in examining the relationships be-
tween humans and their environment across space and time."

Output Passage A or Passage B:

Assistant | Passage: B

User Given a query "what types of food can you cook sous vide", which of the following two pas-
sages is more relevant to the query?

Passage A: "What is a Sous Vide Cooker? We said it before and we’ll say it again: a sous
vide machine is a better way to cook. When you use a sous vide at home, you’ll be cooking
with water. It’s not at all what you’re thinking. Your steak and chicken — any food really —
will be placed in BPA-free, sturdy plastic bags and cooked."

Passage B: "Often, however, when you prepare food sous vide you’re packaging the food in
plastic. (Often but not always. Eggs come in their own wrappers—their shells—and we can
sous vide foods that set as they cook, like custard, yogurt, and chicken liver paté, in glass
canning jars.) "

Output Passage A or Passage B:

Assistant ‘ Passage:

Table 16: An example of prompt for a pairwise comparison with ICL. For open-source LLMs, we can
explicitly set the start of the last assistant’s message to begin with "Passage:". So that the LLM will
generate the next token from "A" or "B".

Model With ICL - Time (s) Without ICL - Time (s) Ratio
Gemma-2-9B 0.0217 0.0161 1.3487
Llama-3-70B 0.0191 0.0176 1.0840
Mistral-8x7B 0.0194 0.0177 1.0974
Qwen2.5-32B 0.0198 0.0129 1.5439

Table 17: Performance benchmarking (avg. time/query). The inference overhead introduced by ICL
with advanced KV-cache optimization is now substantially less than 2x, alleviating computational resource
concerns previously indicated.

19

Under review as submission to TMLR

Model Baseline ICL Only Calibration Only ICL + Calibration
Bubblesort 62.68+3.07 67.31+1.73 69.59+1.89 70.844+1.61
Heapsort 63.824+4.63 69.45+1.92 68.30+2.24 70.104+1.92

Table 18: NDCG@10 scores (mean =+ std) across different prompt designs

formatting, and instruction style. We tested these prompts using Llama-3-8B on the TREC-DL2019 dataset
under different configurations. The results in Table [18| demonstrate two key benefits of our approach:

1. Enhanced Performance: The combination of ICL and calibration substantially improves ranking
quality, with NDCG scores increasing by approximately 8 points compared to the baseline across
both sorting algorithms.

2. Reduced Variance: The baseline exhibits considerable sensitivity to prompt design, as evidenced
by the high standard deviations (3.07-4.63). In contrast, configurations using ICL and calibration
show markedly lower variance (1.61-1.92), indicating more stable performance across different prompt
designs.

20

	Introduction
	Related Work
	Inconsistency of LLM-based ranking
	Inconsistency of Pairwise Comparisons
	Inconsistency Measurement
	The Impact of Inconsistency

	Addressing LLM-based Ranking Inconsistency
	Mitigating Order Inconsistency
	In-Context Learning (ICL)
	Calibration

	LLM Ranking Aggregation
	Aggregation Across Ranking Schemes
	Aggregation Across LLMs

	Experiments
	Experimental Setup
	Addressing Order Inconsistency
	Addressing Inconsistency via Aggregation
	Computation Cost

	Conclusion
	Appendix
	Additional Experiments
	Future Work
	Example Passage Ranking
	Implementation details
	Prompt
	Performance
	Analysis of Prompt Design Sensitivity

