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Abstract

Recent works have highlighted optimization difficulties faced by gradient descent
in training the first and last layers of transformer-based language models, which are
overcome by optimizers such as Adam. These works suggest that the difficulty is
linked to the heavy-tailed distribution of words in text data, where the frequency of
the kth most frequent word πk is proportional to 1/k, following Zipf’s law. To better
understand the impact of the data distribution on training performance, we study
a linear bigram model for next-token prediction when the tokens follow a power
law πk ∝ 1/kα parameterized by the exponent α > 0. We derive optimization
scaling laws for deterministic gradient descent and sign descent as a proxy for Adam
as a function of the exponent α. Existing theoretical investigations in scaling laws
assume that the eigenvalues of the data decay as a power law with exponent α > 1.
This assumption effectively makes the problem “finite dimensional” as most of the
loss comes from a few of the largest eigencomponents. In comparison, we show
that the problem is more difficult when the data have heavier tails. The case α = 1
as found in language is “worst-case” for gradient descent, in that the number
of iterations required to reach a small relative error scales almost linearly with
dimension. While the performance of sign descent also depends on the dimension,
for Zipf-distributed data the number of iterations scales only with the square-root
of the dimension, leading to a large improvement for large vocabularies.

1 Introduction
Recent works have shown that one of the primary benefits of Adam (Kingma and Ba, 2015) in
training transformed-based language models (Vaswani et al., 2017) lies in how it handles the first
and last layers (Zhang et al., 2025; Zhao et al., 2025). For language models, the input and output
dimensions correspond to distinct words in the vocabulary, where the kth most frequent word has
frequency πk ∝ 1/k following Zipf’s law (Piantadosi, 2014). Kunstner et al. (2024) provide evidence
that this heavy-tailed distribution leads to optimization difficulties for gradient descent that Adam is
able to overcome. They argue that Zipf’s law is “worst-case” in that it combines a large imbalance in
frequencies, while decaying slowly enough that most samples come from the tail.

Our objective is to formalize this empirical observation, and to describe the impact of the heavy-
tailedness of the data distribution on the convergence of gradient descent (GD) and sign descent (SD)
as a proxy for Adam (Tieleman and Hinton, 2012; Bernstein et al., 2018; Balles et al., 2020; Chen
et al., 2023). We consider a linear bigram model for next-token prediction trained with the square
loss, where the token frequencies πk follow a power law πk ∝ 1/kα with exponent α > 0. While
this problem could be solved directly rather than with iterative methods, it is a good starting point for
the theoretical investigation of optimization dynamics. Despite its apparent simplicity, this model
already reproduces the observation that GD performs poorly on Zipf-distributed data (see Fig. 1). The
behavior of gradient and sign descent are also not well described by current results, see Section 1.2.

Our approach is inspired by the line of work on theoretical scaling laws, also known as asymptotic
convergence as the dimensionality grows (e.g., Caponnetto and De Vito, 2007; Advani et al., 2020;
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Figure 1: Gradient descent (GD) scales badly with vocabulary size when the data is Zipfian.
Relative error on a linear bigram problem with squared loss trained with GD with vocabulary size d
when the word frequencies follow πk ∝ 1/kα. For α ≤ 1 (left, middle) the performance degrades
with vocabulary size and is worst for Zipf-distributed data (α = 1). When the frequencies have lighter
tails (α = 2, right) GD works well for all vocabulary sizes. Our objective is to explain this behavior.

Berthier et al., 2020; Bahri et al., 2021; Cui et al., 2021; Maloney et al., 2022; Paquette et al., 2024).
Instead of analyzing the generalization error of online gradient descent as the dimension of the model
and sample size grow, we study the convergence rate of GD as the dimension grows. Spectral assump-
tions on the eigenvalues of the Hessian following a power-law are common in the literature, which in
our case correspond to assumptions on word frequencies. But these works focus on power-laws that
are not “too” heavy-tailed, 1/kα with α > 1, which lead to sublinear rates independent of dimension.
In contrast, we focus on the case α ≤ 1 where it becomes impossible to make progress unless the
number of iterations grows with the dimension of the problem. Our contributions are as follows.

1. We propose a simplified model of the word frequencies that leads to tractable dynamics for GD
and SD, that captures the difference in their training performance experimentally (Fig. 2).

2. We derive scaling laws for GD and SD in this model as a function of α > 0, covering power-laws
that decrease as slow or slower than Zipf’s law (α ≤ 1). This setting is often ignored in existing
analyses and leads to qualitatively different results, with scaling laws that are not power-laws
and require the number of iterations t to grow with d.

3. For GD on Zipf-distributed data (α = 1) the number of iterations required to reach a small
relative error scales almost linearly with dimension, t ∼ d. This setting is “worst-case” in that the
case α < 1 results in a better scaling of t ∼ dα, while α > 1 does not require t to scale with d.

4. In comparison, SD under Zipf-distributed data only requires t ∼
√
d, provably confirming its

benefits over GD on a language task, but not in all settings as SD exhibits worse scaling if α > 1.

1.1 Overview of the results
We consider a simplified language modeling tasks, given a vocabulary of d words, we train a linear
bigram model with square loss to predict the next word y ∈ [d] given the current word x ∈ [d],
represented as one-hot vectors x,y ∈ {0, 1}d. The dynamics of the problem depends on the word
frequencies πk and conditional frequencies πk | j , which we assume follow a power law 1/kα,
formalized in Section 2. The scaling we analyze is how the loss changes as the dimension d and
number of iterations t increases, depending on α. For GD on α > 1, we recover the result that the
loss after t steps, Ld(t), follows the power law Ld(t) ∼ c1t

−p + c2 as d → ∞ for some power p and
constants c1, c2. Equivalently, we could write the relative optimality gap as

rd(t) :=
Ld(t)− Ld

∗

Ld(0)− Ld
∗ ∼ t−p,

where ∼ denotes asymptotic equivalence, rd(t) ∼ t−p means limd→∞ rd(t)/t
−p = 1. This rate is

independent of d, but specific to GD with α > 1. Our results show that in other settings, the number
of iteration t needs to scale with d to achieve an ε-relative optimality gap, rd(t) ∼ ε. The following
is a simplification of our main results, made formal in Theorems 3.1 and 4.5.

Informal theorem. To reach an ε-relative optimality gap, the number of iterations t should scale as

t ≍


dα if α < 1,

d1−ϵ if α = 1,

1 if α > 1,

for GD, and t ≍


1 if α < 1/2,√
d1−ε if α = 1/2,√
d if α > 1/2,

for SD,

where t ≍ f (equivalently, t = Θ(f)) hides constants and factors that depend on ϵ but not on d.
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Figure 2: Our scaling predicts the behavior of gradient descent and sign descent on real data.
Left: the convergence of gradient descent (GD) and sign descent (SD) is close to our asymptotic
prediction ( , ) on a bigram model with 32k tokens on OpenWebText, although not exactly due
to the finite dimension and our simplified model of the frequencies in Assumption 2.3. Middle/Right:
as d grows, the number of iterations required to reach ε relative error matches our predictions, showing
that SD scales better with dimension for small ε. We show results on real data (dots) against the
scaling of c1d1−ε for GD and c2d

1/2 for SD (dashes) where c1, c2 are fit to the data.

For language and Zipf-distributed data (α = 1), our scaling predicts that the number of iterations
required to reach ε relative error scales almost linearly with d for GD if ε is small while it scales
as d1/2 for SD. For common vocabulary sizes of d = 104 tokens, this leads to a 100-times speedup.
Zipf-distributed data is also “worst-case” for GD, as other values of α lead to better scaling in d.

We recover the power-law scaling for GD when α > 1, but obtain different functional forms for other
settings (Theorems 3.1 and 4.5). For α = 1, the relative optimality gap behaves as

rd(t) ≈ 1− log(2t)

log(d)
in the sense that rd(

1
2d

1−ϵ) ∼ ϵ.

We confirm these predictions experimentally using real data on OpenWebText, shown in Fig. 2.

1.2 Related work
Convergence of Adam and sign descent. The benefit of Adam has been argued to stem from
its similarity to sign descent, in that the updates are uniform across coordinates (Bernstein et al.,
2018; Balles et al., 2020; Chen et al., 2023). This “scale-freeness” can reduce the dependence on
the condition number (Zhuang et al., 2022), but this does not imply SD outperforms GD as known
convergence rates for sign-like methods instead depend on the dimension d (e.g., Safaryan and
Richtárik, 2021; Das et al., 2024; Liu et al., 2025). In the bigram problem with Zipf-distributed
data, the dimension grows faster than the condition number, leading to worse guarantees for SD. We
compare our asymptotic analysis to existing rates in Appendix B.

SDE approximations of sign methods. Scaling laws have been derived for online sign-like algorithms
through stochastic differential equations (Ma et al., 2021; Malladi et al., 2022; Xiao et al., 2024;
Compagnoni et al., 2025). The focus of these works is on the scaling of the step-size with batch size
and the asymptotic stationary distribution of the algorithm which controls the generalization error.
As noise is not necessary to reproduce the performance gap between GD and Adam (Kunstner et al.,
2023), we instead focus on the impact of heavy-tailed data on the deterministic dynamics.

Scaling laws and asymptotic results. Empirical scaling laws have been developed to extrapolate
the performance of deep networks at scale and how to balance compute across model and data
sizes (Rosenfeld et al., 2020; Kaplan et al., 2020; Hoffmann et al., 2022). Many works have contributed
to the theoretical understanding of this scaling behavior through high dimensional analyses and
random matrix theory (Advani et al., 2020; Bahri et al., 2021; Maloney et al., 2022; Bordelon et al.,
2024a; Lin et al., 2024; Paquette et al., 2024), classical source/capacity conditions from learning
theory (Caponnetto and De Vito, 2007; Berthier et al., 2020; Cui et al., 2021), also used in an
optimization context (Velikanov and Yarotsky, 2024). However, those works study problems where
the spectrum decays fast, and does not cover case α ≤ 1. This regime, covering Zipf’s law, might
be more relevant when considering scaling the vocabulary size, as in the work of Gowda and May
(2020) and Tao et al. (2024). While they hypothesize that larger vocabularies might lead to worse
performance due to overfitting, as larger vocabularies implies fewer examples per word in addition to
more compute per step, we show that larger vocabulary size might also need more steps to get the
training error down. Closest to our work is perhaps the blog post of Bulatov (2023), which argues that
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the loss under GD should approximately behave as − log(t/d) on a problem matching our setting
with α = 1. Our work provides a formal justification for this scaling.

2 Problem setup
In this section, we present the problem setting, a linear bigram model with square loss, the modeling
assumptions used to make the problem tractable and the approach we use to derive our results.

Problem 2.1 (Linear bigram model). Let xi,yi ∈ {0, 1}d for i = 1, . . . , n be one-hot encodings
from d classes (or tokens), with their concatenation X,Y ∈ {0, 1}n×d, fit with a linear model,

Ld(W) =
1

2n
∥XW −Y∥2F where W ∈ Rd×d, and ∥X∥2F = Tr(X⊤X).

We define πk and πk | j as the frequencies and conditional frequency statistics of the data,

πk :=
1

n

n∑
i=1

1xi=k, πk | j :=

∑
n
i=11yi=k1xi=j∑

n
i=11xi=j

, (with the convention 0/0 = 0) ∀j, k ∈ [d].

The analysis of GD on quadratics typically uses an eigenvalue decomposition. Consider a d-
dimensional quadratic f(x) = 1

2 (x−x∗)⊤A(x−x∗) with minimizer x∗ where the eigenvalues/vectors
pairs of A are (λi,vi) ∈ R× Rd for i = 1, . . . , d. The dynamics of GD with step-size η, xt+1 =
xt − ηA(xt − x∗), decompose in terms of the distance along eigenvectors, δi(t) = ⟨vi,xt − x∗⟩, as

f(xt) =
1

2
(x0 − x∗)⊤(I− ηA)tA(I− ηA)t(x0 − x∗) =

1

2

d∑
i=1

λi(1− ηλi)
2tδi(0)

2.

For the d2-dimensional bigram model (2.1), the dynamics depend on the frequencies πk and πk | j .

Proposition 2.2. The dynamics of gradient descent on Problem 2.1 initialized at W=0 are described
by the eigenvalues and distances to solution λij , δij(0) for i, j = 1, . . . , d, using Ld(t) = Ld(Wt),

Ld(t)− Ld
∗
=

1

2

d∑
i=1

d∑
j=1

λij(1− ηλij)
2tδij(0)

2 =
1

2

d∑
i=1

πi(1− ηπi)
2t

d∑
j=1

π2
j | i, (1)

where Ld
∗ = minLd, as the eigenvalues and distances to solution are λij = πi and δij(0)

2 = π2
j | i.

Proof sketch. The Hessian of Ld is diagonal, with diagonal blocks X⊤X/n = Diag([π1, . . . , πd])
repeated d times. The eigenvectors are the standard basis with eigenvalues λij = πi. The solution is
at W∗ = (X⊤X)−1X⊤Y, where w∗

ij = πj | i as [X⊤Y/n]ij = πj | iπi, giving δij(0)
2 = π2

j | i.

2.1 Modeling assumptions
Getting an interpretable form of the rate in Eq. (1) requires assumptions on the values of λi and δi.
Assuming µ ≤ λi ≤ L leads to the typical smooth (strongly-)convex rates (e.g., Nesterov, 2018),

Ld(t)− Ld
∗ ≤ L

t

d∑
i=1

δi(0)
2, Ld(t)− Ld

∗ ≤
(
1− µ

L

)t

(Ld(0)− Ld
∗
).

While valid, these worst-case bounds are too coarse to capture the richness of the behavior of GD
and becomes vacuous if µ → 0 or

∑
d
i=1δi(w0)

2 → ∞ as d → ∞. To obtain fine-grained results, we
assume that the frequencies πk and conditional frequencies πk | j follow power laws.

Assumption 2.3 (Heavy-tailed data). We assume that the frequencies and conditional frequencies
follow a frequency-rank power law with exponent α > 0. That is, assuming the frequencies are
sorted (πk ≥ πk+1) and defining the sorting permutations ρj such that πρj(k) | j ≥ πρj(k+1) | j ,

πk ∝ 1

kα
and πρj(k) | j ∝

1

kα
, for all j, k,

where by πk ∝ 1/kα we mean that the frequencies are normalized, πk = 1/zkα for z =
∑

d
k=11/k

α.

This assumption may appear strong, as it would be satisfied for example if the words were sampled i.i.d.
with frequencies π1, . . . , πd as πk | j = πk. But it does not require that all conditional distributions

4



1 10 103 104
Rank of word k

10−5

10−3

10−1

Fr
eq

ue
nc

y

Word frequencies
πk

data
∝ 1/k

1 10 103 104
Rank of next word k

Conditional frequencies
πρj(k)|j

median
∝ 1/k

5-95%
10-90%
25-75%

Figure 3: Token frequencies and conditional frequencies approximately follow Zipf’s law. The
approximation of Assumption 2.3 ( ) is a reasonable approximation of the frequencies (left) and
conditional frequencies (right) on text data, computed on OpenWebText for a vocabulary of 104
words. Right: median and quantiles of the next-word frequencies after sorting, πρj(k) | j for j ∈ [d].

be the same. The distribution of the next word after j can depend on j. This assumption merely
asks that, once sorted, the next-word frequencies follow a power law with the same exponent. Some
distributions might deviate from this trend if a token can only logically be followed by specific tokens,
or if the word being conditioned on is rare and our dataset is relatively small.1 While we do not
expect the assumption to be exactly satisfied in practice, it appears to be a reasonable high-level
approximation of real-world data, as shown in Fig. 3 in comparison to the empirical distributions on
OpenWebText, and leads to accurate predictions as shown in Fig. 2.

Relation to other spectral conditions. Even though Problem 2.1 is d2-dimensional, the dynamics
of GD are equivalent to those run on a d-dimensional problem as Proposition 2.2 can be rewritten
as Ld(t) − Ld

∗ = 1
2

∑
d
i=1πi(1 − ηπi)

2t∆2
i for ∆2

i =
∑

d
j=1δij(0)

2. Many works have considered
decay conditions on the eigenvalues and distances to the solution, πk ∝ k−a and ∆2

k ∝ k−b, similar
to the source/capacity conditions (Caponnetto and De Vito, 2007). However, their focus is typically on
a fast decay, a+b > 1, which leads dimension-independent power-laws (see e.g., Paquette et al., 2024,
and references therein). While Assumption 2.3 is a special case corresponding to (a, b) = (α, 0), we
study the case α ≤ 1 to understand the behavior of optimizers on heavy-tailed data.

2.2 Strategy for the analysis
Our goal is to derive scaling laws for the loss of Problem 2.1 in d dimensions after t steps, Ld(t),
as d → ∞. Such scaling laws can be interpreted as approximating the convergence rate for large d, or
serve as a guide on how to scale the hyperparameters of the optimizer as we increase the vocabulary
size. Formally, we compute the asymptotic limit of the rate r(t) at which the relative loss decreases,

Ld(t)− Ld
∗ d∼ r(t)

(
Ld(0)− Ld

∗)
, where d∼ is notation for lim

d→∞
Ld(t)− Ld

∗

Ld(0)− Ld
∗ = r(t),

Works on scaling laws typically model the absolute value of the loss. This approach degenerates when
the loss at initialization vanishes or diverges as d → ∞ which happens when α ≤ 1. Considering the
relative decrease circumvents the issue, as also noted by Bulatov (2023) and Tao et al. (2024).

Another potential degeneracy is the scaling of time. If the problem becomes more difficult as d grows,
it might be impossible to make progress in finite time. To take a concrete example, suppose that Ld

∗ = 0
and Ld(t) = rd(t)Ld(0) with rd(t) = (1 − 1/d)t. If we take the limit as d → ∞ for a fixed t, we
obtain limd→∞(1−1/d)t = 1. The rate no longer depends on t, and we cannot make progress unless t
grows with d. If we instead introduce a rescaled time variable τ and scale td(τ) = τd, we recover a
linear rate in the rescaled time τ as (1− 1/d)τd d∼ e−τ . A similar issue arises in random matrix theory,
where the dimensions of the matrix are taken to grow jointly with a fixed ratio to avoid degenerate
solutions (Potters and Bouchaud, 2020). It can be verified that td(τ) = τd is the “right” scaling,
as the limit rd(td(τ)) degenerates otherwise. Using f(x) ≪ g(x) for limx→∞ f(x)/g(x) = 0, we
have rd(td(τ))

d∼ 1 if td(τ) ≪ d and rd(td(τ))
d∼ 0 if td(τ) ≫ d; we either make no progress or

solve the problem instantly. Our results are derived by taking the finite dimensional rate rd(t) with a
scaling td such that the asymptotic rate r(τ) is well-defined in terms of the rescaled time τ ,

r(τ) := lim
d→∞

rd(td(τ)) = lim
d→∞

Ld(td(τ))− Ld
∗

Ld(0)− Ld
∗ . (2)

1Even with i.i.d. data following πk ∝ 1/k, accurately estimating the conditional frequency takes many
samples. With a vocabulary size of d = 104, we expect to see the pair (x = d, y = d) once every 108 tokens.
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Figure 4: Scaling of gradient descent on power-law data with exponent α (Theorem 3.1). The
dynamics of gradient descent on the linear bigram model with data satisfying Assumption 2.3
converge to our scaling law ( , Theorem 3.1) as d grows. Achieving a relative error ε requires
scaling the iteration budget T with dα for α < 1, T with d1−ε for α = 1, and no scaling for α > 1.

3 Scaling laws for gradient descent
We study the relative error of GD with the step-size η = 1/π1, the inverse of the largest eigenvalue,

rd(t) =
Ld(t)− Ld

∗

Ld(0)− Ld
∗ =

d∑
i=1

πi

(
1− πi

π1

)2t

. (3)

Before diving into the main result, we provide some intuition on those dynamics. The performance of
GD depends on the speed of convergence for each word, (1− πk/π1), and the proportion of the error
coming to that word, πk. The parameter α controls both. If we increase α, the frequencies πk ∝ 1/kα

decay faster. Low-frequency words converge more slowly, (1− πk/π1) = (1− 1/kα), but contribute
less to the error, πk = 1/zkα where the normalization term is z =

∑
d
k=11/k

α.

For α > 1, the error is dominated by high-frequency words, which converge quickly. The error
attributed to the first K words,

∑
K
k=1πk, is a constant approximation of the total. Increasing the

vocabulary size d does not make the problem much harder as low-frequency words contribute little.
For α < 1, the error associated with the first K words vanishes if K is fixed and d grows, indicating
that most of the error comes from low-frequency words. However, their convergence speed improves
as α decreases, with the extreme case of uniform frequencies at α = 0, making the problem easier.
The case α = 1 of Zipfian data exhibits the worst of both settings. The decay is slow enough that the
contribution of low-frequency words is significant, but fast enough that their convergence is slow.

The following theorem formalizes these intuitions.

Theorem 3.1 (Scaling for gradient descent). On the bigram problem (Prob. 2.1) with distributions
following a power law with exponent α > 0 (Assumption 2.3), gradient descent with a step-size 1/π1,
with time scaling td(τ) has the following asymptotic convergence rate (Eq. (2)).

If α < 1, td(τ) =
1
2τd

α, r(τ) =
1− α

α
E 1

α
(τ) τ∼ 1− α

α

e−τ

τ + 1
,

if α = 1, td(τ) =
1
2d

τ , r(τ) = 1− τ where τ ∈ [0, 1],

if α > 1, td(τ) = τ, r(τ) τ∼
B
(
1− 1

α , 1 + 2t
)

αζ(α)
τ∼ C

1

τ1−
1
α

,

where Γ is the Gamma function, E is the generalized exponential integral, B is the Beta function,
and ζ is the zeta function (DLMF, §5.2, §5.12 §8.19 §25.2), and C = Γ

(
1− 1

α

)
/αζ(α).

Proof. We sketch the proof for α = 1 and leave the remaining cases to Appendix C. Under Eq. (1)
and Assumption 2.3 the dynamics of the normalized loss rd(t) (Eq. (3)) reduce to

rd(t) =
1

Hd,α

d∑
k=1

k−α
(
1− k−α

)2t
,

where Hd,α =
∑d

k=1 k
−α. To simplify the analysis, we use the integral form of the sum as we can

use Laplace’s method to estimate its behavior for large d, see Appendix C for a formal justification;

For α = 1, rd(t) ≈ Id(t) :=
1

Hd,1

∫ d

1

k−1
(
1− k−1

)2t
dk =

log(d)

Hd,1

∫ 1

0

(
1− d−z

)2t
dz,
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Figure 5: Illustration of our modeling assumption for sign descent (Assumption 4.1). Left: instead
of modeling the oscillations of sign descent, we treat the oscillatory phase as constant. Middle: The
effect on the total error. Right: Because SD eventually oscillates, the step-size needs to depend on the
iteration budget T to achieve best performance after T steps (the envelope ).

after the change of variable k = dz or z = log(k)/ log(d). As the normalizer Hd,1
d∼ log(d), we only

need to consider the limit of the integral. Taking d → ∞ with t fixed, the integral converges to 1 and
we make no progress, regardless of t. To make progress, t needs to scale as 2t = dτ for τ ∈ [0, 1],

Id(d
τ ) =

log(d)

Hd,α

∫ 1

0

(
1− dτ−z

dτ

)dτ

dz.

For a fixed τ and as d → ∞, the integrand converges to 0 if z < τ and 1 if z > τ . As it is bounded
by a constant, we can exchange limits and integrals by the dominated convergence theorem to obtain

lim
d→∞

∫ 1

0

(
1− dτ−z

dτ

)dτ

dz =

∫ τ

0

0dz +

∫ 1

τ

1dz = 1− τ.

The results highlight different regimes depending on α. The number of iterations needs to scale with
dimension if the data decays as slow as or slower than Zipf’s law (α ≤ 1) whereas it is not necessary
for lighter-tailed data (α > 1). We show in Fig. 4 that the dynamics on data satisfying Assumption 2.3
converge to the asymptotic rates of Theorem 3.1 and are accurate even for common vocabulary sizes.

4 Scaling laws for sign descent

The dynamics of SD differ qualitatively from those of GD as they take a uniform update in all
directions, regardless of the magnitude of the derivatives. As we will see, this makes it better suited
for the linear bigram model with Zipf-distributed data, but comes with additional challenges. For SD,
we need to address two issues. First, the sign descent update is not linear; we need an alternative to
the closed form solution of GD in Eq. (1). Second, SD does not converge with a fixed step-size; we
need to scale step-size as a function of the iteration budget and dimension.

If run with a constant step-size, the update of sign descent with a step-size of η is

Wt+1 = Wt − η sign(∇L(Wt)).

As the Hessian of Problem 2.1 is diagonal, the update applies independently to each parameter.
Letting δij(t) be the distance along the (i, j)th parameter at step t,

δij(t+ 1) = δij(t)− η sign(δij(t)).

The difficulty in the analysis comes from the fact that |δij(t)| does not converge to 0. Instead, |δij(t)|
will oscillate between some c ∈ (0, η) and c− η, unless t = |δij(t)|/η is an integer and the distance
to the solution reaches exactly 0. Keeping track of these oscillations is cumbersome, as each of the
d2 parameters will oscillate between different constants. To simplify the analysis, we assume that
the distances decrease while |δij(0)| ≥ tη then go to η/2 to model the oscillatory regime, essentially
“averaging” the oscillations, as illustrated in Fig. 5.

Assumption 4.1. We assume that sign descent with step-size η follows the dynamics

|δij(t)| :=
{

|δij(0)| − tη if |δij(0)| − tη ≥ 0,
η/2 otherwise.
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Figure 6: Convergence of the best step-size for sign descent to the scaling in Definition 4.4.
The optimal step-size for T steps of sign descent converge to our scaling ( ) given in Defini-
tion 4.4 (for τ > 1 in the case of α = 1). Computed by grid search on the linear bigram model with
data satisfy Assumption 2.3.

Those dynamics do not capture the fact that a direction might reach exactly 0, after which sign descent
would not oscillate, but this can only happen for a few directions if |δij(0)| ∝ 1/jα, and their impact
is small with large d. With this assumption, we have the following dynamics.

Proposition 4.2. If the conditional distribution follows a power law with exponent α as in Assump-
tion 2.3, the dynamics of sign descent with step-size η in Assumption 4.1 lead to the loss

Ld(t, η)− Ld
∗ :=

d∑
i=1

d∑
j=1

λijδij(t)
2 =

k∗∑
k=1

(δk(0)− tη)
2
+

d∑
k=k∗+1

(η
2

)2

where δk(0) = πk,

and k∗ is the number of directions in the decreasing regime, k∗ = maxk k : πk > tη

Proof. By Proposition 2.2, λij = πi does not depend on j. By Assumption 2.3, there is a per-
mutation ρi such that δiρi(j)(0) = πj . As a result, the dynamics of δiρi(j)(t) do not depend on i.
Writing δj(t) as a shortcut for δi,ρi(j)(t) for any i and using that

∑
d
i=1πi = 1,

d∑
i=1

d∑
j=1

λijδij(t)
2 =

d∑
i=1

πi

d∑
j=1

δij(t)
2 =

d∑
i=1

πi

d∑
j=1

δj(t)
2 =

d∑
j=1

δj(t)
2.

We then split the sum depending on whether |δk(t)| is decreasing or oscillating.

The dynamics of SD in Proposition 4.2, differ qualitatively from those of GD in Eq. (1). The progress
in each direction is not scaled by πi, because the update is uniform across directions. This is what
will enable SD to make faster progress on low-frequency words. However, we now have another
challenge in that we need to choose the step-size η to trade-off between the oscillations of magnitude
(η/2)2 on low-frequency words and still making progress on high-frequency words that are not yet in
the oscillatory regime. This is easy when α is small and the frequencies are close to uniform, giving a
small spread for the initial distances δk(0), but becomes more difficult as α increases. From this, we
expect SD to perform better than GD for small α, and worse for large α, but we need to understand
how to set the step-size to understand where the transition happens.

4.1 Scaling of the step-size
As SD with a fixed step-size eventually enters an oscillatory regime, the loss we converge to as t
grows depends on η. To describe the performance achievable after tuning η for a given budget T ,
we need to estimate how η scales with T and d. This effect is illustrated in Fig. 5 (right). We use
capital T to emphasize that we are modeling the loss at the end of a training run of T steps with
a fixed step-size which depends on T . Getting the exact form of η∗ = argminη Ld(T, η) is out of
reach, but we establish bounds on the optimal step-size.

Proposition 4.3. The step-size η∗ that Ld(T, η) in Proposition 4.2 given T and d, satisfies

δd(0)

T
≤ η∗ ≤ δ1(0)

T
.

Proof. If η ≤ δd(0)/T , all directions are still in the decreasing regime of Assumption 4.1 at time T .
As long as Tη < δd(0), increasing the step-size leads to more progress. Similarly, if Tη ≥ δ1(0), all
directions are in the oscillatory regime, and reducing the step-size reduces the oscillations.
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Figure 7: Scaling of sign descent on power-law data with exponent α (Theorem 4.5). The dynamics
of sign descent on the linear bigram model with data satisfying Assumption 2.3 converge to our
scaling law ( ) as d grows, as described in Theorem 4.5. Achieving a relative error ε requires no
scaling for α < 1/2, scaling t with d(1−ε)/2 for α = 1/2, and t with d1/2 for α > 1/2.

As our initial distances follow a power law, δk(0) = πk = 1
zkα where z =

∑
d
k=1k

−α, Proposition 4.3
suggests an alternative parameterization of the step-size as

η(ϕ) =
1

zTϕα
with 1 ≤ ϕ ≤ d,

where ϕ controls how many directions are still decreasing. We now define the following scaling of ϕ.

Definition 4.4. We define the following scalings as a function of the dimension d and rescaled time τ

if α < 1/2, Td(τ) = τ, ϕd(τ) =

{
d if c1 + 4c2τ

2 ≤ 1,
d
(
c1 + 4c2τ

2
)−1 otherwise,

if α = 1/2, Td(τ) =
1
2d

τ/2, ϕd(τ) = d1−τ , where τ ∈ [0, 1],

if α > 1/2, Td(τ) =
1
2τ

√
d, ϕd(τ) =

{
1 + 1/τ2 if τ2 < (2α − 1)−1 and α < 1,
(1 + 1/τ2)1/α otherwise,

where c1 = 1− 1
2α , c2 = α

1−α .

While those scalings need not be optimal, they match the empirical behavior of the best step-
size computed by grid-search, as shown in Fig. 6. For α > 1/2, the step-size is only accurate
for τ2 ≥ 1/(2α − 1) or τ ≥ 1 for α = 1. We justify those estimates in Appendix D.

4.2 Asymptotic behavior

Using the scalings for T and ϕ in Definition 4.4, we define the asymptotic rate of sign descent as

r(τ) = lim
d→∞

Ld(Td(τ), ϕd(τ))− Ld
∗

Ld(0)− Ld
∗ . (4)

Theorem 4.5 (Scaling for sign descent). Given scalings for T and ϕ in Definition 4.4, the asymptotic
convergence rate of sign descent (Eq. (4)) is, with c1 = 1− 1

2α , c2 = α
1−α ,

if α < 1/2, Td(τ) = τ, r(τ) =

{
2αc2 if τ2 ≤ 1−c1

4c2
(c1+c24τ

2)2α

4τ2 otherwise
τ∼ c2α2
(2τ)2−4α

,

if α = 1/2, Td(τ) =
1
2d

1
2 τ , r(τ) = 1− τ, where τ ∈ [0, 1],

if α > 1/2, Td(τ) =
1
2τ

√
d, r(τ) τ∼ 1

1 + ζ(2α)τ2
.

We leave the proofs in Appendix D. The results also show different forms of scaling depending on α,
with a threshold at α = 1/2 instead of 1. The scaling in dimension is flipped compared to GD. SD
needs t to scale with d when α is large, which is the regime where GD can make progress with finite
t. For the case of Zipf-distributed data (α = 1), SD only needs a scaling in d1/2 compared to the d1−ε

scaling of GD, showing that it achieves better performance for ε < 1/2. We show in Fig. 7 that the
asymptotic rates of Theorem 3.1 are accurate even for finite d.
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Figure 8: The difference in scaling with dimension also occurs with the cross-entropy loss.
Relative error on a linear bigram problem with cross-entropy loss with vocabulary size d when the
word frequencies follow Zipf’s law, πk ∝ 1/k. For GD (left), the performance depends heavily on
the dimension. Its performance is similar to the scaling of 1− τ for t = dτ found for the square loss
while τ < 1, and worse for τ > 1 (middle). The performance of SD appears independent of d (right).

5 Conclusion
We have presented scaling laws for gradient descent (GD) and sign descent (SD) on the linear bigram
model as a function of the power law exponent α of the word frequencies. Rather than hide the
dimension dependence in problem specific constants, we consider the scaling of running time and
dimension as the problem grows in size to get precise estimates of the scaling. Our results highlight
the benefit of SD and the need to address ill-conditioning to improve the performance of GD.

Our results show that the power-law scaling is specific to the regime α > 1. This regime may
accurately describe cases where the training dynamics converge to a well-defined limit, such as when
increasing width or depth (Yang et al., 2021; Bordelon et al., 2024b; Noci et al., 2024), it misses a
large dimension dependence as we scale the vocabulary size. The scaling we obtain for α ≤ 1 have a
different functional form and highlight the dependency on dimension. For GD on Zipf-distributed
data, the scaling of d1−ε shows a non-trivial interplay between the desired error ε and the dimension.
Our results suggest that increasing the vocabulary size might require a larger training budget, not
only because each iteration is more costly due to the larger embedding matrices, but also because
more iterations are needed to reach the same error. Algorithms that target this dimension dependence,
for example by estimating word frequencies (Li et al., 2022), would be an interesting next step.

Our approach however has limitations. We do not cover the online case, for which the analysis should
be extendable using existing tools. The addition of momentum for sign descent would be more
complex but particularly interesting to dampen oscillations, and getting finite-dimensional results by
tracking a correction term for finite d would be enlightening, as the convergence to the asymptotic
regime can sometimes be slow, especially in the case α = 1. A more difficult extension would be to
consider models leading to non-linear dynamics, such as bilinear models (Mikolov et al., 2013) or the
cross-entropy loss. But it is not clear how to obtain closed-form solutions or sufficiently accurate
approximations even for GD in the deterministic setting. We can however probe the behavior of GD
and SD experimentally, and present preliminary results with the cross-entropy loss.

Empirical behavior with cross-entropy loss. We experiment with a variant of the linear bigram
model trained with cross-entropy loss on synthetic data satisfying Assumption 2.3 for α = 1. We
show in Fig. 8 the result of training models with increasing vocabulary, with the step-size set by
grid-search for both GD and SD to minimize the loss at the given horizon. The results suggest that
the gap in scaling between GD and SD is even larger than with the quadratic loss; GD appears to
require t ∼ d, as in the quadratic case, while the performance of SD appears independent of d.
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Supplementary Material
The supplementary material is organized as follows.

• Appendix A gives experimental details and information on how to reproduce the figures.

• Appendix B compares our results to standard convergence rates in the literature.

• Appendix C gives the main results for gradient descent Theorem 3.1.

• Appendix D gives the main results for sign descent Theorem 4.5.

A Experimental details
This section goes over the technical details of the experiments needed to reproduce the figures.

A.1 Computational complexity
We use d to denote the size of the vocabulary, but the number of parameters W is d2 as we have to
learn the conditional probability table πk | j . As the number of iterations t has to scale with dimension,
the problem scales in d3, which becomes prohibitive fast. To circumvent this issue, we use the fact
that the training dynamics of gradient descent and sign descent on data following Assumption 4.1 can
be simulated in O(d). The error after t iterations can then be computed in closed-form if initialized
at 0, making it possible to compute the loss after t steps without computing the intermediate steps.

Proposition A.1 (Reduction of the dynamics for gradient descent). Under Assumption 2.3, the
dynamics of gradient descent with step-size 1/π1 can be computed in O(d) as

rd(t) :=
Ld(t)− L∗

d

Ld(0)− L∗
d

=
1∑d

k=1 k
−α

d∑
k=1

1

kα

(
1− 1

kα

)2t

.

Proof. We use the dynamics using the eigendecomposition notation presented in Section 2,

rd(t) = Ld(t)− L∗
d =

d∑
i=1

d∑
j=1

λijδij(t)
2, and δij(t) == (1− λij)

tδij(0).

Using Assumption 2.3 gives that λij is independent of j and δij is independent of i as

λij = πi =
1

ziα
δij(0) = πρi(j),i =

1

zjα
where z =

d∑
k=1

1

kα
.

Plugging in those together and using that the step-size is η = π1 = 1/z gives

Ld(t)− L∗
d

Ld(0)− L∗
d

=

∑d
i=1

∑d
j=1

1
ziα

(
1− 1

iα

)2t
δij(0)

2∑d
i=1

∑d
j=1

1
ziα δij(0)

2
,

=

∑d
i=1

1
iα

(
1− 1

iα

)2t ∑d
j=1 δij(0)

2∑d
i=1

1
iα

∑d
j=1 λijδij(0)2

=

∑d
i=1

1
iα

(
1− 1

iα

)2t∑d
i=1

1
iα

.

Proposition A.2 (Reduction of the dynamics for sign descent). Under Assumption 2.3, the sim-
plified dynamics of sign descent (Assumption 4.1) with step-size η(T, ϕ) = 1/zTϕα following the
reparameterization of Proposition 4.3 where z =

∑
d
k=1k

−α can be computed in O(d) as

rd(T, ϕ) :=
Ld(T, η(T, ϕ))− L∗

d

Ld(0)− L∗
d

=
1∑d

k=1 k
2α

d∑
k=1

({ 1
kα − 1

ϕα if |δij(T − 1)| − η ≥ 0,
1

2ϕα otherwise,

)2

,

Proof. Using the same derivation as above for Proposition A.1 but using the update dynamics assumed
in Assumption 4.1. Note that those dynamics imply that δij(T ) is independent of i. Writing ∆j =
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δij(T ) for any i and using that
∑d

i=1 πi = 1, we have

Ld(T )− L∗
d

Ld(0)− L∗
d

=

∑d
i=1

∑d
j=1 λijδij(T )

2∑d
i=1

∑d
j=1 λijδij(0)2

=

∑d
i=1

∑d
j=1 πi∆j(T )

2∑d
i=1

∑d
j=1 πi∆j(0)2

=

∑d
j=1 ∆j(T )

2∑d
j=1 ∆j(0)2

.

Expanding ∆j(T ) using Assumption 4.1 gives the result.

For the real data experiments in Fig. 2, computing the dynamics cannot be reduced to O(d). We
still use the fact that the dynamics can be computed in closed-form to avoid running t steps of
gradient/sign descent. For sign descent, we do not use the simpler model of Assumption 2.3 but the
full dynamics by computing the point reached after t steps, including oscillations.

Proposition A.3. Under the dynamics of sign descent with step-size η,

δij(t+ 1) = δij(t)− η sign(δij(t)),

the distance after t steps is given by

δij(t) =

{
δij(0)− ηt if t ≤ Tswitch,
cij if t− Tswitch is odd,
cij − η if t− Tswitch is even,

where
Tswitch = ⌊δij(0)/η⌋,

cij = δij(0)− Tswitchη.

A.2 Additional details about the figures
Fig. 1 shows the dynamics of gradient descent on Problem 2.1 on data satisfying Assumption 2.3.

Fig. 2 shows the dynamics on real data on the OpenWebText dataset (Gokaslan et al., 2019). Using
the SentencePiece (Kudo and Richardson, 2018) implementation of BPE Sennrich et al., 2016, we
train tokenizers with vocabulary sizes of 1 000, 3 612, 10 000 and 31 622 tokens on the first 2 000 000
entries of the dataset with a maximum sentence length of 16 768. We compute the frequencies and
conditional frequency tables for each vocabulary size using the entire dataset. We use the closed form
formulas for the loss after t steps using O(d2) computation detailed in the previous section to avoid
having to run gradient and sign descent on those large models.

Gradient descent uses the empirically-derived step-size of 1/π1. For sign descent, for a given time
horizon T , we optimize over the step-size numerically. Because the loss after T steps as a function
of the step-size is unimodal, we use the default bounded bracketing method in scipy (Virtanen
et al., 2020, minimize_scalar) starting with the interval [ηmin/d, dηmax] where ηmin, ηmax are the
bounds derived in Proposition 4.3. The optimal step-size can vary drastically if it is computed on
even or odd iterations as the loss oscillates. To avoid this issue, we only show even iterations.

Fig. 3 shows the frequencies computed as for Fig. 2 for the largest vocabulary size, d = 31 622.

The rightmost plot of Fig. 5 shows the simplified dynamics of sign descent.

Fig. 4, Fig. 6 and Fig. 7 show the convergence of the loss in d dimension computed using the
equations in Appendix A.1. For sign descent, the best step-size is obtained by grid search. We know
the optimal step-size satisfies ϕ ∈ [1, d] (Proposition 4.3), so let ϕ = dx where x comes from a
logarithmically spaced grid-search on x from −10 to 0, taking every 1/32th powers;

ϕ ∈ {dx : x ∈ {10−10, 10−10+ 1
32 , 10−10+ 2

32 , . . . , 100}}.

Fig. 8 shows the dynamics of GD and SD on the linear bigram problem trained with the cross-entropy
loss. For both GD and SD, the step-size is selected by grid-search with a similar 1/32th power
logarithmic grid as above, to minize the loss after t steps. As for the plots of SD, Fig. 8 does not not
show a single run but the envelope of the performance achievable with a constant step-size for T
steps. We have not found a way to simplify the computational complexity of the experiments using
the cross-entropy loss. Each run requires running GD or SD for t steps on the full d× d matrix. As t
needs to scale with d, computing a run of GD or SD takes O(d3) time, which limits the vocabulary
sizes we can consider.
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B Comparison with worst-case rates
In this section, we compare our rates against results obtained using classical analyses to highlight
the benefit of the asymptotic analysis in capturing the dependence on dimension. Our goal is not
to imply those bounds are poor; each of the work cited below studied a specific problem and
the assumptions were selected to highlight the impact of the condition number, non-convexity,
variance, or other issue. However, due to their worst-case generality, existing results do not capture
the dimension dependence on the problem of the linear bigram problem (Problem 2.1) with Zipf-
distributed frequencies (Assumption 2.3) and predict worse behavior than actually observed.

In this section, we focus on Zipf-distributed data (α = 1) as it is the most relevant to text data. To
simplify notation, we assume that the conditional frequencies directly follow a power-law πk | i ∝ 1/k,
instead of assuming that there exists a reordering ρi such that πρi(k) | i ∝ 1/k as in Assumption 2.3.
This reordering does not affect the dynamics of the loss and can be ignored without loss of generality.

B.1 Standard smooth, (strongly-)convex rates.
Classical results in smooth, convex optimization are derived under the assumption that the objective
function Ld is L-smooth and µ-strongly convex with µ ≥ 0. We write the function rates in matrix
form for the loss Ld defined in Problem 2.1, but this could equivalently be transformed to a vector
form using and ∥x−x∗∥22 = ∥W−W∗∥2 if x = vec(W) and x∗ = vec(W∗) where vec stacks the
columns of W as a single vector. For a twice-differentiable function, this is equivalent to assuming
that the eigenvalues of the Hessian are bounded by µ ≤ λij ≤ L for all i, j ∈ [d] at every possible
input. We compare against simple forms available in this setting (Nesterov (2018, Cor. 2.1.2), Boyd
and Vandenberghe (2004, Eq. 9.18)). While it is possible to slightly improve the constants in these
bounds, these constants do not meaningfully affect the asymptotic behavior as d grows.

Ld(t)− L∗
d ≤ 2L∥W0 −W∗∥2F

t
, Ld(t)− L∗

d ≤
(
1− µ

L

)t

(Ld(0)− L∗
d).

To better compare these rates with our results, we normalize them by Ld(0)− L∗
d,

Ld(t)− L∗
d

Ld(0)− L∗
d

≤ L∥W0 −W∗∥2F
t(Ld(0)− L∗

d)
=: rsubd (t),

Ld(t)− L∗
d

Ld(0)− L∗
d

≤
(
1− µ

L

)t

=: rlind (t).

Proposition B.1 (Values of the constants). On Problem 2.1 with frequencies following a power-law
with α = 1 (Assumption 2.3) initialized at W0 = 0, the smooth convex sublinear rate rsubd (t) and
the smooth strongly-convex linear rate rlind (t) are asymptotically equivalent to

rsubd (t) d∼ 2
d

log(d)

1

t
, rlind (t) d∼

(
1− 1

d

)t

.

Proof. The proof follow from substituting the constants with the values

µ =
1

dz
, L =

1

z
, ∥W0 −W∗∥2F = d(Ld(W0)− L∗

d).

where z =
∑d

k=1 1/k
d∼ log(d). The eigenvalues are λij = πi = 1/zi after normalization, giving

L = 1/z and µ = 1/zd. Using that δij(0) = 1/zj gives the loss and distance at initialization,

Ld(W0)− L∗
d =

d∑
i=1

d∑
j=1

λijδij(0)
2 =

d∑
i=1

πi

d∑
j=1

π2
j | i =

d∑
j=1

(
1

zj

)2

,

∥W0 −W∗∥2 =

d∑
i=1

d∑
j=1

δij(0)
2 = d

d∑
j=1

(
1

zj

)2

= d(Ld(W0)− L∗
d).

Both rates struggle to predict the progress in “early” iterations, when t is much smaller than d. The
sublinear rate requires a scaling t ∝ d/log(d) while the linear rate predicts t ∝ d. Neither captures the
progress that can be made by running t = d1/2 iterations, which reaches an error of ε = 1/2. Instead,
both rates predict no progress. We visualize the given rates in Fig. 9 after rescaling the number of
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Figure 9: Standard convergence rates do not capture the scaling in dimension. Comparison of the
standard linear and sublinear rates obtained for GD on the linear bigram model with Zipf-distributed
data (α = 1) with our asymptotic rate. The sublinear rate predicts a relative error greater than 1 until
t ≈ d, and the linear rate only reach the error 1/e at t = d. Our rate captures the fact that GD makes
progress even with t < d.

steps to our normalized time τ = log(t)/ log(d). The linear and sublinear rates are not converging
to r(τ) = 1− τ . Instead, they exhibit a sharper and sharper transition between not predicting any
progress for τ < 1 (r(τ) ≈ 1 or r(τ) > 1) and that the problem is solved if τ > 1.

B.2 Rates for sign descent
Analyses on sign-like methods in the literature typically target more complex algorithms such as
RMSProp (Tieleman and Hinton, 2012) or AdaGrad (Duchi et al., 2011) for Das et al. (2024) and Liu
et al. (2025), or consider more general problems including non-convex functions for Bernstein et al.
(2018) and Safaryan and Richtárik (2021). We are not aware of existing analyses that specifically target
sign descent on diagonal quadratic problems such as Problem 2.1. This makes a direct comparison
difficult. It might be that the rates described in those papers for the chosen problem setting or
algorithm are tight. However, our message is that the resulting rates are too pessimistic even for
a problem as simple as Problem 2.1 and suggest runtimes for sign descent that are off by a factor
depending on the dimension.

The main difficulty in studying sign descent and sign-like methods more generally is the strong
dependence on the coordinate system used. For Problem 2.1 the dynamics perfectly separate along
coordinates which makes it possible to derive a closed form for the dynamics. Other works typically
rely on assumptions on the Hessian that quantify how close to diagonal it is. For example, bound the
Hessian with a diagonal matrix L, H ⪯ L in Loewner ordering, and obtain rates that depend on the
trace of L (e.g., Bernstein et al., 2018; Liu et al., 2025). For Problem 2.1, the Hessian is diagonal and
made of d diagonal copies of X⊤X/n = Diag([π1, ..., πd]), thus Tr(L) = Tr(∇2Ld(W)) = d.

Anisotropic smoothness and AdaGrad. Using this assumption, Liu et al. (2020, Theorem 4.1)
show the following convergence rate for AdaGrad. To simplify their results and show the rate in its
best light, we assume there is no noise in the gradient (∥σ∥1 = 0 in their notation), that AdaGrad
is run with the parameter ϵ = 0, that the algorithm is run with projections onto the constrained
set W = {W : ∥W∥∞ ≤ π1} and that we initialize at W = 0.

Ld(t)− L∗
d ≤ Tr(L)π1

T
.

Normalizing the loss and simplifying the constants using the same approach as in Proposition B.1
gives the following asymptotic upper bound

Ld(t)− L∗
d

Ld(0)− L∗
d

≤ rAdagrad
d (t) :=

Tr(L)π1

T (Ld(0)− L∗
d)

d∼ d log(d)

T

6

π2
.

Although we might expect Adagrad to outperform sign descent as it uses decreasing step-sizes to
avoid the oscillations, this rate estimate that the number of iterations should scale with d log(d)
instead of the scaling of d1/2 we find for sign descent.
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Preconditioning effect of Adam. Das et al. (2024) study RMSProp, or Adam without momen-
tum (β1 = 0) but with momentum on the moving average of the squared gradient. They use
high-probability arguments to handle the dynamics of the preconditioner and random initializa-
tion. Their rate shows that Adam can perform better on diagonal quadratics if the condition num-
ber scales worse than linearly with the dimensionality, by replacing the condition number κ with
κAdam = min{dW + 1, κ} where dW is the dimensionality of W. Assuming that their bound holds
with probability 1 with W0 = 0 and ignoring logarithmic factors in d and ϵ, their rate for diagonal
quadratics is (Das et al., 2024, Thm. 2)

Ld(t)− L∗
d ≤ ϵ2

2
, after t ≥ Õ(κAdam).

Unfortunately, on Problem 2.1 the dimensionality is dW = d2 while the condition number scales as
κ = d with Zipfian eigenvalues (α = 1) so the proposed approach does not improve over gradient
descent. Normalizing the loss and using the same approach as in Proposition B.1 gives

Ld(t)− L∗
d

Ld(0)− L∗
d

≤ ϵ2

2
, after t ≥ Õ(d).

This scaling predicts the same performance for Adam and gradient descent (up to log factors
depending on d and ϵ that we ignored) whereas our analysis shows a scaling of d1/2 for sign descent.

Non-convex results. Results in the non-convex setting (Bernstein et al., 2018; Balles et al., 2020;
Safaryan and Richtárik, 2021; Liu et al., 2025) give convergence results to stationarity instead of
convergence in optimality gap, measured using the 1-norm of the gradient instead of the Euclidean
norm. Because ∥v∥21 ≤ ∥v∥22d for a d-dimensional vector v, the time required to get the 1-norm
small might be much worse than the time required to find a stationary point in Euclidean norm or to
minimize the function value. To illustrate this point, we show that it is possible to have arbitrarily
small relative error on Problem 2.1 and arbitrarily large gradients in 1-norm in high dimension.

Proposition B.2. On Problem 2.1 with Zipf-distributed data (Assumption 2.3 with α = 1), SD with
simplified dynamics (Assumption 4.1) with td(τ) = τd1/2/2 and ϕd(τ) = (1 + 1/τ2)−1 satisfies

Ld(Wtd(τ))− L∗
d

Ld(W0)− L∗
d

d∼ 1

1 + ζ(2α)τ2
,

∥∥vec(∇Ld(Wtd(τ)))
∥∥
1

∥vec(∇Ld(W0))∥1
d∼ C

d1/2

log(d)τ

(
1

τ
+

1

τ3

)
Proof. Computations similar to Proposition 4.2 show that the 1-norm of the gradient is

∥vec(∇Ld(Wt))∥1 =

k∗∑
k=1

(πk − tη) +

d∑
k=k∗+1

η

2

where k∗ is the number of directions that are still in the decreasing regime after T steps with step-
size η. As ∥vec(∇Ld(W0))∥1 =

∑
d
k=1πk = 1, this expression is also the normalized 1-norm of the

gradient. Using the parameterization η = 1/ztϕ, where z =
∑

d
k=11/k, we get the update

rd(t) :=
∥vec(∇Ld(Wt))∥1
∥vec(∇Ld(W0))∥1

=

⌊ϕ⌋∑
k=1

(
1

zk
− 1

zϕ

)
+

d∑
k=⌊ϕ⌋+1

1

2tzϕ

Using the same scaling as in Definition 4.4, ϕd(τ) = (1 + 1/τ2)−1 and 2td(τ) = τd1/2, we get

rd(td(τ)) ∼
H1,⌊ϕd(τ)⌋
log(d)

− ⌊ϕd(τ)⌋
log(d)ϕd(τ)

+
d− ⌊ϕd(τ)⌋ − 1

log(d)ϕd(τ)2td(τ)
∼ d1/2

log(d)

(
1

τ
+

1

τ3

)
.

While getting a small error only requires scaling t with d1/2, getting the magnitude of the gradient in
1-norm smaller than a constant independent of d requires scaling t with d/ log(d).
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C Proofs for gradient descent
This section gives the proof of Theorem 3.1 for the scaling of gradient descent.

C.1 Standard results
We start with standard results that are used in the subsequent proofs. The following classical relation-
ships between sums and integrals of monotone functions will be used to bound the approximation
error induced by analyzing the asymptotics of the integral instead of the sum.

Lemma C.1 (Sum-Integral). For a function f that is monotone on [a, b],

if f is increasing on [a, b],
b−1∑
i=a

f(k) ≤
∫ b

a

f(k) dk ≤
b∑

i=a+1

f(k),

if f is decreasing on [a, b],
b∑

i=a+1

f(k) ≤
∫ b

a

f(k) dk ≤
b−1∑
i=a

f(k).

To apply these sum-integral relationships to the dynamics of gradient descent in Theorem 3.1, we
need to describe when they are increasing or decreasing.

Lemma C.2 (Unimodal sequence). The sequence s(k) = k−α(1− k−α)t is non-negative on k ≥ 1
and unimodal. It monotonically increases until k∗ = (1 + t)1/α, then monotonically decreases.

Proof. As s(k) is non-negative, we can instead look at its logarithm,

log s(k) = log(N)− α log(k) + t log(1− k−α),

∂

∂k
log s(k) = αt

k−α−1

1− k−α
− α

k
=

αt

k(kα − 1)
− α

k
=

α(t− 1)(kα − 1)

k(kα − 1)
.

The denominator is positive on k ≥ 1, and the numerator is positive for small k until the derivative
changes sign at αt− α(kα − 1) = 0, or k∗ = (1 + t)

1/α.

At the partial sum Hd,α =
∑

d
k=1k

−α, appears in the proof of gradient and sign descent, we give its
asymptotic behavior independently.

Lemma C.3 (Normalizer Asymptotics). As d grows, the partial sum Hd,α =
∑d

k=1 k
−α behaves as

Hd,α
d∼ 1

1−αd
1−α if α < 1, Hd,1

d∼ log(d) Hd,α
d∼ ζ(α) if α > 1,

where ζ is the zeta function, defined as the limit of Hd,α, ζ(α) =
∑∞

k=1 k
−α < ∞ for α > 1.

Proof. For α > 1, the sum converges to
∑∞

k=1 k
−α = ζ(α). For α ≤ 1, the sum diverges as d grows.

As the sequence k−α is decreasing in k, we can use the sum-integral bounds (C.1) to get∫ d+1

1

k−αdk ≤
d∑

k=1

k−α ≤ 1 +

∫ d

1

k−αdk.

If α < 1, the integrals evaluate to(
(d+ 1)1−α − 1

)
1− α

≤
d∑

k=1

k−α ≤
(
d1−α − 1

)
+ 1

1− α
,

and both terms are asymptotically equivalent to d1−α/(1− α) as d → ∞. If α = 1, this gives

log(d+ 1) ≤
d∑

k=1

k−α ≤ log(d) + 1.

Both terms are asymptotically equivalent to log(d).
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The main purpose of the sum-integral bounds (C.1) and the Unimodal Lemma (C.2) is to bound on
the error incurred by approximating the sum with the integral form of the loss.

Lemma C.4 (Approximating error). The approximation error between the following sum and integral,

Sd(t) =

d∑
k=1

s(k) Id(t) =

∫ d

1

s(k)dk where s(k) = k−α(1− k−α)2t

can be bounded by the following error term,

|Sd(t)− Id(t)| ≤ δd(t) where δd(t) :=

 1
1+t

(
1− 1

1+2t

)2t

if 1 + 2t ≤ dα,

1
dα

(
1− 1

dα

)t
if 1 + 2t ≥ dα.

(5)

Proof. By the Unimodal Lemma (C.2), the sequence s(k) is increasing until k∗ = (1 + 2emt)1/α

then decreasing, which lets us use the sum-integral bounds (C.1).

For large t. Suppose that t is sufficiently large such that k∗ ≥ d and 1 + 2t ≥ dα, meaning that the
sequence s(k) is increasing on [1, d]. Then,∫ d

1

s(k) dk + s(1) ≤
d∑

1=1

s(k) ≤
∫ d

1

s(k) dk + s(d). (6)

Using that s(1) = 0 gives |Id(t)− Sd(t)| ≤ s(d) when t is large.

For small t. If t is small and k∗ < d the sequence flips from increasing to decreasing on [1, d]. We
still use the same idea, but bound the increasing and the decreasing subsequences separately.

Upper bound. As the sequences s(k) in increasing on [1, k∗] and decreasing on [k∗, d],

⌊k∗⌋−1∑
k=1

s(k) ≤
∫ ⌊k∗⌋

1

s(k) dk,

d∑
k=⌊k∗⌋+2

s(k) ≤
∫ d

⌊k∗⌋+1

s(k) dk.

Summing both bounds and adding the remaining terms s(⌊k∗⌋), s(⌊k∗⌋+ 1),
d∑

k=1

s(k) ≤
∫ ⌊k∗⌋

1

s(k) dk +

∫ d

⌊k∗⌋+1

s(k) dk + s(⌊k∗⌋) + s(⌊k∗⌋+ 1) ≤
∫ d

1

s(k) dk + s(k∗),

where the last inequality uses the following simplifications,

min{s(⌊k∗⌋), s(⌊k∗⌋+ 1)} =

∫ ⌊k∗⌋+1

⌊k∗⌋
min{s(⌊k∗⌋), s(⌊k∗⌋+ 1)}dk ≤

∫ ⌊k∗⌋+1

⌊k∗⌋
s(k)dk,

max{s(⌊k∗⌋), s(⌊k∗⌋+ 1)} ≤ s(k∗).

Lower bound. Now using the lower bound,∫ ⌊k∗⌋

1

s(k) dk ≤
⌊k∗⌋∑
k=2

s(k),

∫ d

⌊k∗⌋+1

s(k) dk ≤
d−1∑

k=⌊k∗⌋+1

s(k).

Summing both bounds, we can complete the integral by adding and subtracting
∫ ⌊k∗⌋+1

⌊k∗⌋ s(k) dk and
adding the remaining terms s(1) and s(d) to obtain

⌊k∗⌋∑
k=1

s(k) ≥
∫ d

1

s(k) dk −
∫ ⌊k∗⌋+1

⌊k∗⌋
s(k) dk + s(1) + s(d) ≥

∫ d

1

s(k) dk − s(k∗) + s(d),

where the last inequality uses that s(1) = 0, s(k) ≤ s(k∗).

Combining the results for the small t regime gives

Id(t) + s(k∗) ≥ Sd(t) ≥ Id(t)− s(k∗) + s(d), so |Id(t)− Sd(t)| ≤ s(k∗).

The final bound in Eq. (5) expands s(x) = x−α(1− x−α)2t and replaces k∗ by (1 + 2t)
1
α .
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C.2 Scaling laws for gradient descent
We are now ready to move to the proof of Theorem 3.1, for which we recall the theorem statement.

Proof sketch. We first give a sketch of the proof, which will be formalized in the next lemmas. Based
on the reduced dynamics for gradient descent in Proposition A.1, we know that

rd(t) =
Ld(t)− L∗

d

Ld(0)− L∗
d

=

∑d
k=1 k

−α(1− k−α)2t

Hd,α
,

where Hd,α =
∑d

k=1 k
−α. Let Sd and Id be the sum and integral variants of the denominator,

Sd(t) =

d∑
k=1

k−α(1− k−α)2t Id(t) =

∫ d

1

k−α(1− k−α)2tdk. (7)

First, we establish in Lemma C.5 that the integral form converges to the rate r(τ) in Theorem 3.1,

lim
d→∞

Id(td(τ))

Hd,α
= r(τ).

Next, we show in Lemma C.6 that the error incurred by approximating the sum Sd by the integral Id
is negligible, in the sense that |Id(t)− Sd(t)| ≤ δd(t) and

lim
d→∞

δd(td(τ))

Id(td(τ))
= 0 if α ≤ 1, and lim

τ→∞
lim
d→∞

δd(t)

Id(t)
= 0 if α > 1.

This gives the results that

r(τ) = lim
d→∞

Id(td(τ))

Hd,α
if α ≤ 1, and r(t) τ∼ lim

d→∞
Id(t)

Hd,α
if α > 1.

with the values of r(τ) given in Theorem 3.1.
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Lemma C.5 (Asymptotics of the integrals). Let Id(t) be the integral form given in Eq. (7) and td(τ)
be the scaling given in Theorem 3.1. The following limits hold.

If α < 1, td(τ) =
1
2τd

α, lim
d→∞

Id(td(τ))

Hd,α
=

1− α

α
E 1

α
(τ) τ∼ 1− α

α

e−τ

τ + 1
,

if α = 1, td(τ) =
1
2d

τ , lim
d→∞

Id(td(τ))

Hd,α
= 1− τ where τ ∈ [0, 1],

if α > 1, td(τ) = τ, lim
d→∞

Id(td(τ))

Hd,α
=

B
(
1− 1

α , 1 + 2t
)

αζ(α)
τ∼ C

1

τ1−
1
α

Ld(0),

Proof. For α > 1. We use the change of variable z = k−α to get

Id(t) =
1

α

∫ 1

d−α

z−
1
α (1− z)2tdz

As d → ∞, the integral converges to definition of the Beta function

lim
d→∞

αId(t) =

∫ 1

0

z−
1
α (1− z)2t dz =: B

(
1− 1

α
, 1 + 2t

)
.

As limd→α Hd,α = ζ(α) < ∞ (Lemma C.3),

lim
d→∞

Id(t)

Hd,α
=

B
(
1− 1

α , 1 + 2t
)

αζ(α)
.

As it is not easy to intuit the rate from the Beta function, we give an additional asymptotic equivalence
for large t. Using Stirling’s formula, the Beta function behaves as

B

(
1− 1

α
, 1 + 2t

)
t∼ Γ

(
1− 1

α

)
1

(2t)1−
1
α

.

For α < 1 we use the change of variable z = 2tk−α to get

Id(t) =
1

α
(2t)

1
α−1

∫ 2t

2td−α

z−
1
α

(
1− z

2t

)2t

dz.

To have a well-defined integral, we need to introduce the scaling 2td(τ) = τdα,

Id(τd
α) =

1

α
d1−ατ

1
α−1

∫ τdα

τ

z−
1
α

(
1− z

τdα

)τdα

dz.

The factor of d1−α will cancel out with the normalizer as Hd,α = Θ(d1−α) (Lemma C.3). The
remaining integral should simplify for large d, as (1− z/τdα)τd

α ≈ e−z , and converge to

lim
d→∞

τ
1
α−1

∫ τdα

τ

z−
1
α

(
1− z

τdα

)τdα

dz = τ
1
α−1

∫ ∞

τ

z−
1
α e−zdz = E 1

α
(τ),

where Ep is the generalized exponential integral. To swap the limit and integral, we can verify that
the dominated convergence theorem applies. The integral can be written as∫ τdα

τ

z−
1
α

(
1− z

τdα

)τdα

=

∫ ∞

τ

a(z, d)dz where a(z, d) := 1{z≤τdα}z
− 1

α

(
1− z

τdα

)τdα

.

The integrand a(z, d) converges pointwise to f(z) = z−
1
α e−z and is dominated by f which is

integrable as
∫∞
τ

f(z) = τ1−
1
αE 1

α
(τ). Combined with the fact that Hd,α

d∼ d1−α/(1− α), we get

lim
d→∞

Id(τd
α)

Hd,α
=

1− α

α
E 1

α
(τ).

To simplify for large τ and obtain E1/α(τ)
τ∼ e−τ

/τ , we use the fact that the generalized exponential
integral Ep(z) in decreasing in p, meaning that E⌊1/α⌋(τ) > E1/α(τ) > E⌈1/α⌉(τ), and that for
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integer values of p we have e−τ
/τ+n ≤ En(τ) ≤ e−τ

/τ+n−1 (DLMF, §8.19(ix)). Both bounds are
asymptotically equivalent to e−τ/(τ + 1).

For α = 1 we use the change of variable k = dz or z = logd(k) to get

Id(t) = log(d)

∫ 1

0

(
1− d−z

)2t
dz.

The normalizer scales as Hd,α
d∼ log(d) (Lemma C.3) so only the integral remains. To make

meaningful progress, we introduce the scaling 2td(τ) = dτ for τ ∈ [0, 1],

Id(d
τ )

log(d)
=

∫ 1

0

(
1− dτ−z

dτ

)dτ

dz.

As d → ∞, the integrand converges to 0 if z ∈ (0, s) and to 1 if z ∈ (s, 1), and is dominated by
f(x) = 1 so by the DCT we can swap the limit and integral to get

lim
d→∞

Id(d
τ )

Hd,α
= lim

d→∞

∫ 1

0

(
1− dτ−z

dτ

)dτ

dz =

∫ τ

0

0dz +

∫ 1

τ

1dz = 1− τ.

Lemma C.6 (Approximation error is negligible). Let δd(t) be the upper bound on the approximation
error derived in the Approximation Error Lemma (C.4). We have that

lim
d→∞

δd(td(τ))

Id(td(τ))
= 0 if α ≤ 1, and lim

τ→∞
lim
d→∞

δd(t)

Id(t)
= 0 if α > 1.

Proof. Recall that the bound approximation error δ in Approximation Error Lemma (C.4) is

|Sd(t)− Id(t)| ≤ δd(t) where δd(t) :=

 1
1+2t

(
1− 1

1+2t

)2t

if 1 + 2t ≤ dα,

1
dα

(
1− 1

dα

)t
if 1 + 2t ≥ dα.

For α > 1, t does not scale with d so we are in the small t regime, 1 + 2t ≤ dα. In this regime,

δd(t) =
1

2t+ 1

(
1− 1

2t+ 1

)2t

≤ 1

2t+ 1
.

The error δd(t) does not vanish with d, but it goes down as O(1/t). As the integral Id(t) is of order
Θ(1/t1−

1
α ), the relative error is of order O(1/t

1
α ), and vanishes for large t.

For α < 1, we scale t with d as 2t = τdα. Whether t is small or large depends on τ . If τ < 1, we
are in the small t regime as 1 + τdα ≤ dα and

δd(τd
α) =

1

τdα + 1

(
1− 1

τdα + 1

)τdα

≤ 1

τdα
.

If τ ≥ 1 we are in the large t regime and

δd(τd
α) =

1

dα

(
1− 1

dα

)τdα

≤ 1

dα
.

In both cases limd→∞ δd(τd
α) → 0 and the relative error also vanishes.

For α = 1 we scale t with d as 2t = dτ for τ ∈ [0, 1]. Taking d → ∞ puts us in the small t
regime, 1 + 2t = 1 + dτ ≤ d. In this regime,

δd(d
τ ) =

1

dτ + 1

(
1− 1

dτ + 1

)dτ

≤ 1

dτ
,

which also vanishes with d.
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D Proofs for sign descent
This section gives the derivation for the scaling of time and the step-size for sign descent given in
Definition 4.4 and the resulting asymptotic convergence rates of Theorem 4.5. Each result start from
the relative loss defined as follows.

Definition D.1 (Normalized loss for sign descent). Let Ld(t, η) be the loss after with step-size η
as defined in Proposition 4.2, and η(T, ϕ) = 1/Hd,αTϕα be the reparameterization of the step-size
derived from Proposition 4.3. The relative loss after T steps of the simplified sign descent dynamics
on Problem 2.1 with power-law frequencies as in Assumption 2.3 is

rd(T, ϕ) :=
Ld(T, η(T, ϕ))− L∗

d

Ld(0)− L∗
d

=
H⌊ϕ⌋,2α − 2H⌊ϕ⌋,αϕ−α + ⌊ϕ⌋ϕ−2α + d−⌊ϕ⌋

4T 2 ϕ−2α

Hd,2α
,

where Hn,p =
∑n

k=1 k
−p.

Proof. Starting from Proposition 4.2 and using the fact that, if ϕ ∈ [1, d], the number of components
in the decreasing phase of the simplified sign descent dynamics is ⌊ϕ⌋, we expand the square and
replacing the sums by Hn,p,

rd(T, ϕ) =

∑⌊ϕ⌋
k=1(k

−α − ϕ−α)
2
+

∑d
k=⌊ϕ⌋+1

(
1

2Tϕα

)2

∑d
k=1 k

−2α
,

=

(∑⌊ϕ⌋
k=1 k

−2α − 2k−αϕ−α + ϕ−2α
)
+ d−⌊ϕ⌋

4T 2 ϕ−2α∑d
k=1 k

−2α
,

=
H⌊ϕ⌋,2α − 2H⌊ϕ⌋,αϕ−α + ⌊ϕ⌋ϕ−2α + d−⌊ϕ⌋

4T 2 ϕ−2α

Hd,2α
.

Our rates are given for a choice of scaling of the step-size ϕd(τ) and time Td(τ), as

r(τ) := lim
d→∞

rd(Td(τ), ϕd(τ)).

D.1 Scaling of sign descent for α = 1/2

Proposition D.2. For the relative loss defined in Definition D.1, if α = 1/2, the scalings

Td(τ) =
1
2d

1
2 τ , ϕd(τ) = d1−τ ,

are obtained by setting ϕd(τ) = dx∗(τ) where x∗(τ) is the solution to

x∗(τ) = arg min
0<x≤1

lim
d→∞

rd(Td(τ), d
x).

These choices result in the scaling r(τ) = 1− τ .

Proof. We start from the normalized loss given ϕ,

rd(T, ϕ) =
H⌊ϕ⌋,1 − 2H⌊ϕ⌋, 12ϕ

− 1
2 + ⌊ϕ⌋ϕ−1 + d

4T 2ϕ
−1 − 1

4T 2 ⌊ϕ⌋ϕ−1

Hd,1
.

Taking 4T 2 = dτ and ϕ = d1−τ , most terms vanish as d → ∞ as Hn, 12
∼ 2

√
n, Hn,1 ∼ log(n), and

2H⌊d1−τ⌋, 12 d
− 1−τ

2

Hd,1
,

⌊
d1−τ

⌋
d−(1−τ)

Hd,1
,

1

Hd,1
,

⌊
d1−τ

⌋
d−1

Hd,1
are all Θ

(
1

log(d)

)
and converge to 0.

The first term is the only one remaining, and gives the scaling

lim
d→∞

rd(T (d, τ), d
x) = lim

d→∞

H⌊d1−τ⌋,1
Hd,1

= lim
d→∞

{
x if 1− τ ≤ x,
∞ otherwise.

The optimum is at x∗(τ) = 1− τ and gives r(τ) = limd→∞ rd(T (d, τ), d
1−τ ) = 1− τ .
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D.2 Scaling of sign descent for α < 1/2

Proposition D.3. For the relative loss defined in Definition D.1, if α < 1/2, the scalings

Td(τ) = τ, ϕd(τ) =

{
d if τ ≤

√
1−c1
4c2

,

d
(
c1 + c24τ

2
)−1

otherwise,

where c1 = 1− 1
2α and c2 = α

α−1 , are obtained by setting ϕd(τ) = dx∗(τ) where

x∗(τ) = arg min
0<x≤1

lim
d→∞

rd(Td(τ), dx).

These choices result in the scaling

r(τ) =

{
2αc2 if τ ≤

√
1−c1
4c2

(c1+c24τ
2)2α

4τ2 otherwise
τ∼ c2α2

1

(2τ)2−4α
.

Proof. Substituting ϕ = dx, taking the limit as d → ∞, and using that Hd,p ∼ d1−p

1−p for p < 1,
define fτ (x) as the limit of rd(τ, dx) as d grows,

fτ (x) = lim
d→∞

rd(τ, dx) = lim
d→∞

H⌊dx⌋,2α − 2H⌊dx⌋,α(dx)−α + ⌊dx⌋(dx)−2α + d−⌊dx⌋
4τ2 (dx)−2α

Hd,2α
,

=
1

1−2αx
1−2α − 2 1

1−αx
1−2α + x1−2α + 1

4τ2x
−2α − 1

4τ2x
1−2α

1
1−2α

.

We will show that our choice of step-size corresponds to taking r(τ) = min0<x≤1 fτ (x). Gathering
terms, fτ (x) is proportional to the following polynomial

fτ (x) ∝ x1−2α

(
1 +

1

1− 2α
− 2

1

1− α
− 1

4τ2

)
+

1

4τ2
x−2α,

which has a unique stationary point at

xstat(τ) =
2α

4τ2
1

(1− 2α)
(
1 + 1

1−2α − 2 1
1−α − 1

4τ2

) =

(
1− 1

2α
+

α

1− α
4τ2

)−1

.

If xstat(τ) ̸∈ (0, 1], we know the function f is decreasing on [0, 1] as limx→0 fτ (x) = ∞, fτ (1) is
finite, and there is no stationary point in (0, 1]), r(τ) = fτ (1). If the stationary point is in (0, 1], it is
the minimum as fτ must be decreasing from 0 to xstat(τ). This gives

x∗ = arg min
0<x≤1

fτ (x) =

{
xstat(τ) if 0 < xstat(τ) ≤ 1,
1 otherwise.

and 0 < xstat(τ) ≤ 1 is equivalent to τ ≥ 1
2

√
1−α
2α2 . If τ ≥ 1

2

√
1−α
2α2 and x∗(τ) = 1, we get

fτ (x∗(τ)) = 1− 2
1− 2α

1− α
+ (1− 2α) = 2

α2

1− α
.

If τ < 1
2

√
1−α
2α2 and x∗(τ) =

(
1− 1

2α + α
1−α4τ

2
)−1

we get

fτ (x∗(τ)) = (1− 2α)

(
x1−2α

(
1 +

1

1− 2α
− 2

1

1− α
− 1

4τ2

)
+

1

4τ2
x−2α

)
,

=

(
1− 1

2α + α
1−α4τ

2
)2α

4τ2
,

which can be simplified for large τ as fτ (x∗(τ))
τ∼
(

α
1−α

)2α
1

(2τ)2−4α .
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D.3 Scaling of sign descent for α > 1/2

For α > 1/2, the expression for the loss does not simply as d → ∞. The conditional frequencies
decay fast, meaning that most of the loss comes from the few high-frequency words. As a result, we
cannot define the scaling of the step-size as the minimization problem for the optimal scaling in the
limit d → ∞. Instead, we use the fact that the (normalized) loss can not converge to 0 unless all
components enter the oscillatory regime, at which point we can compute an optimal step-size.

Proposition D.4. For the relative loss defined in Definition D.1, if α > 1/2 and 4T 2 ≥ d−1
2α−1 , the

optimal-step size is given by

ϕ∗(d, T ) = argmin
ϕ

rd(T, ϕ) =

(
1 +

d− 1

4T 2

)1/α

.

This gives the following scaling for τ2 > 1/(2α−1)

Td(τ) = τ 1
2

√
d, ϕ(τ) =

(
1 +

1

τ2

)1/α

, r(τ) =
1

ζ(2α)

1

1 + τ2
.

Proof. If ϕ ≥ 2, the normalized loss is lower-bounded by the error on the first two components,

rd(T, η(T, ϕ)) =

∑⌊ϕ⌋
k=1(k

−α − ϕ−α)
2
+

∑d
k=⌊ϕ⌋+1

(
1

2Tϕα

)2

Hd,2α
.

This is lower-bounded by a constant C > 0 independently of T , and implies that we cannot make
progress by running longer unless ϕ < 2. If only the first component is oscillating, the optimal ϕ is

ϕ∗(d, T ) = argmin
ϕ

rd(T, η(T, ϕ)) = argmin
ϕ

(1− ϕ−α)2 +
d− 1

4T 2
ϕ−2α =

(
1 +

d− 1

4T 2

)1/α

.

To be consistent with only having two components oscillating, this requires ϕ∗(d, T ) ≤ 2, giv-
ing the constraint that this only holds when (1 + d−1

4T 2 )
1/α ≤ 2 or 4T 2 ≥ d−1

2α−1 . Taking the scal-
ing 4Td(τ)

2 = τ2d gives the limit

ϕ(τ) = lim
d→∞

ϕ∗(d, Td(τ)) =

(
1 +

1

τ2

)1/α

if τ2 >
1

2α − 1
,

and the asymptotic loss

lim
d→∞

rd(Td(τ, d), ϕ(τ)) =
(1− ϕ(τ)−α)

2
+ 1

τ2ϕ(τ)
−2α

ζ(2α)
,

=

(
1−

(
1 + 1

τ2

)−1
)2

+ 1
τ2

(
1 + 1

τ2

)−2

ζ(2α)
=

1

1 + τ2
1

ζ(2α)
,

where Hd,2α
d∼ ζ(2α), the Riemann zeta function.

Proposition D.4 and Theorem 4.5 only gives guarantees for the regime τ2 > 1/(2α−1). The extension
of the scalings to the regime τ2 ≤ 1/(2α−1) was decided arbitrarily to fit empirical data. To fit the
empirical the empirical data when both τ and α are small (α ≤ 1), the asymptotic scaling presented
in Theorem 4.5 uses the following step-size scaling

ϕ̃(τ) =

{ (
1 + 1

τ2

)
if τ2 < (2α − 1)−1 and α < 1,(

1 + 1
τ2

)1/α
otherwise,

instead of =

(
1 +

1

τ2

)
.

and the following approximation for the loss,

rd(Td(τ, d), ϕ(τ))
τ,d∼ 1

1 + ζ(2α)τ2
instead of

1

1 + τ2
1

ζ(2α)
.

Both expressions are asymptotically equivalent as d → ∞ and τ → ∞, but the above proposals
(given in Definition 4.4) fit the observed best step-size and loss scalings better.
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should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental details are given in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The experiments in the paper are deterministic.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [No]

Justification: The experiments in the paper are lightweight and did not require the use of
high performance compute resources.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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Justification: The research conducted in the paper conforms witht he NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The focus of the paper is on a mathematical description of the convergence rate
of optimization algorithms. While this theory improves our understanding of optimization
algorithms and could lead to developments that make it easier to develop machine learning
models, we have not identified a societal impact relevant specifically to this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets used are described in Appendix A.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve human subjects and no IRB approval is required.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core contribution of this paper does not rely on LLMs.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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