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ABSTRACT

Perceptual similarity metrics have progressively become more correlated with hu-
man judgments on perceptual similarity; however, despite recent advances, the
addition of an imperceptible distortion can still compromise these metrics. To the
best of our knowledge, no study to date has systematically examined the robust-
ness of these metrics to imperceptible adversarial perturbations. Following the
two-alternative forced choice experimental design with two distorted images, and
one reference image, we perturb the distorted image closer to the reference via an
adversarial attack until the metric flips its judgment. We first show that all metrics
are susceptible to perturbations generated via common adversarial attacks such as
FGSM, PGD, and the One-pixel attack. Next, we attack the widely adopted LPIPS
metric using FlowAdv, our flow-based spatial attack, in a white-box setting to
craft adversarial examples that can effectively transfer to other similarity metrics
in a black-box setting. In addition, we combine the spatial attack FlowAdv with
PGD (l∞-bounded) attack, to increase transferability and use these adversarial
examples to benchmark the robustness of both traditional and recently developed
metrics. Our benchmark provides a good starting point for discussion and further
research on the robustness of metrics to imperceptible adversarial perturbations.

1 INTRODUCTION
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Figure 1: I1 is more similar to Iref than I0 ac-
cording to all perceptual similarity metrics and
humans. We attack I1 by adding imperceptible
adversarial perturbations (δ) such that the metric
(f ) flips its earlier assigned rank, i.e., in the above
sample, I0 becomes more similar to Iref .

Comparison of images using a similarity mea-
sure is crucial for defining the quality of an
image for many applications in image and
video processing. Recently, perceptual simi-
larity metrics have become vital for optimiz-
ing and evaluating deep neural networks used
in low-level computer vision tasks (Dosovitskiy
& Brox, 2016; Zhu et al., 2016; Johnson et al.,
2016; Ledig et al., 2016; Sajjadi et al., 2017;
Kettunen et al., 2019a; Zhang et al., 2020; Son
et al., 2020; Niklaus & Liu, 2020; Karras et al.,
2020). Learned perceptual image patch similar-
ity (LPIPS) metric by Zhang et al. (2018b) is
one such widely adopted perceptual similarity
metric. Apart from these image enhancement
and generation tasks, similarity metrics are also
used in optimizing, constraining, and evaluat-
ing adversarial attacks (Szegedy et al., 2014;
Goodfellow et al., 2015; Carlini & Wagner,
2017; Kurakin et al., 2017; Hosseini & Pooven-
dran, 2018; Dong et al., 2018; Shamsabadi
et al., 2020; Laidlaw & Feizi, 2019). More re-
cently, Laidlaw et al. (2020) employed LPIPS
to optimize adversarial examples, introducing adversarial attacks based on a neural perceptual threat
model, and subsequently a defense method that could generalize well against unforeseen adversar-
ial attacks. However, it remains unanswered whether LPIPS itself is robust towards imperceptible
adversarial perturbations. The question then arises, “How robust are perceptual similarity metrics
against imperceptible adversarial perturbations?”
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We begin by examining whether it is possible to find imperceptible adversarial perturbations that
can overturn perceptual similarity judgments. It is well known that machine learning models are
easy to fool with adversarial perturbations imperceptible to the human eye (Szegedy et al., 2014).
Interestingly, similar imperceptible perturbations can bring about a sizeable change in the measured
distance of a distorted image from its reference. As shown in Figure 1, we examine this change in
measured distances using a two-alternative forced choice (2AFC) test example, where the partici-
pants were asked, “which of the two distorted images (I0 and I1) is more similar to the reference
image (Iref )?” Then, we apply an imperceptible perturbation to the distorted image that has the
lower perceptual distance (i.e., more similar to Iref ) to see if the similarity judgment for the sample
overturns. In such a scenario, human opinion remains the same while perceptual similarity metrics
often overturn their judgment.

There are two approaches to examining the robustness of perceptual similarity metrics: (1) addition
of small amounts of hand-crafted geometric distortions, and (2) analysis of more advanced adversar-
ial perturbations. For the former, seminal contributions have been made (Ma et al., 2018; Ding et al.,
2020; Bhardwaj et al., 2020; Gu et al., 2020). However, in contrast to previous work, we focus on
performing the latter as it has not received considerable attention. In our work, we demonstrate that
threats to similarity metrics can be easily created using common gradient-based iterative white-box
attacks such as fast gradient sign method (FGSM) (Goodfellow et al., 2015), and projected gradient
descent (PGD) (Madry et al., 2018), and black-box attacks such as the One-pixel attack (Su et al.,
2019) that uses differential evolution (Storn & Price, 1997) to optimize a single-pixel perturbation
on the adversarial image. These attacks do not deform the structure but rather manipulate pixel
values in the image. However, in recent research, questions regarding the robustness of perceptual
similarity metrics towards geometric distortions are of central interest (as discussed above). Hence,
we develop an additional spatial adversarial attack, which geometrically deforms the image. We call
it FlowAdv as it utilizes optical flow for crafting perturbations in the spatial domain. We use this
attack to generate adversarial samples for comparing the robustness of various metrics.

Previous studies have shown that adversarial examples generated using the parameters of a source
model are transferable to a target model (Liu et al., 2017; Xie et al., 2018; 2019). In our work, we
use LPIPS(AlexNet) as the source model and attack it via FlowAdv. We extend the successfully
attacked examples onto a target perceptual similarity metric. It is a black-box setting as it does not
require access to the target perceptual metric’s parameters. Many approaches have been studied to
improve the transferability of attacks (Szegedy et al., 2014; Papernot et al., 2016; Liu et al., 2017;
Wu & Zhu, 2020). In our work, we combine FlowAdv (spatial attack) with PGD (l∞-bounded
attack) that strengthens the severity of the adversarial examples.

Our paper is organized as follows. In Section 2, we review past literature and highlight recent de-
velopments. In Section 3, we describe the adversarial attacks used in this paper and explain how
we extend them for tricking perceptual similarity metrics into overturning their judgment. While
classical adversarial attacks like FGSM, PGD, and the One-pixel attack are effective, they do not
geometrically distort the image. Therefore, in addition, we propose our spatial attack FlowAdv to
create transferable adversarial examples and describe it in Section 3. We further combine FlowAdv
(spatial attack) with PGD (l∞-bounded attack) to craft stronger, transferable adversarial perturba-
tions. In Section 4, we explain our experimental setup and report our results on (1) validating that
similarity judgments by perceptual similarity metrics can flip on the addition of imperceptible per-
turbations, and (2) comparing the robustness of various metrics to adversarial perturbations.

2 RELATED WORK

Earlier metrics such as SSIM (Wang et al., 2004) and FSIMc (Zhang et al., 2011) were designed
to approximate the human visual systems’ ability to perceive and distinguish images, specifically
using statistical features of local regions in the images. Whereas, recent metrics (Bhardwaj et al.,
2020; Ding et al., 2020; Kettunen et al., 2019b; Ma et al., 2018; Prashnani et al., 2018; Zhang et al.,
2018b) are deep neural network based approaches that learn from human judgments on perceptual
similarity. LPIPS (Zhang et al., 2018b) is one such widely used metric. It leverages the activations of
a feature extraction network at each convolutional layer to compute differences between two images
which are then passed on to linear layers to finally predict the perceptual similarity score.
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In recent years, apart from making the perceptual similarity metrics correlate well with human opin-
ion, there has been growing interest in examining the robustness of these metrics towards geometric
distortions. Ma et al. (2018) benchmarked the sensitivity of various metrics against misalignment,
scaling artifacts, blurring, and JPEG compression. They then trained a CNN with augmented images
to create the geometric transformation invariant metric (GTI-CNN). In a similar study, Ding et al.
(2020) suggested computing global measures instead of pixel-wise differences and then blurred the
feature embeddings by replacing the max pooling layers with l2-pooling layers. It made their met-
ric, deep image structure and texture similarity (DISTS), robust towards local and global distortions.
Bhardwaj et al. (2020) developed the perceptual information metric (PIM). PIM has a pyramid ar-
chitecture with convolutional layers that generate multi-scale representations, which get processed
by dense layers to predict mean vectors for each spatial location and scale. The final score esti-
mation is performed using symmetrized Kullback–Leibler divergence using Monte Carlo sampling.
PIM is well-correlated with human opinions and is robust against small image shifts, even though
it is just trained on consecutive frames of a video, without any human judgments on perceptual
similarity. Czolbe et al. (2020) used Watson’s perceptual model (Watson, 1993) and replaced dis-
crete cosine transform with discrete fourier transform (DFT) to develop a perceptual similarity loss
function robust against small shifts. Kettunen et al. (2019b) compute the average LPIPS score over
an ensemble of randomly transformed images. Their self-ensembling metric E-LPIPS is robust to
the Expectations over Transformations attacks (Athalye et al., 2018; Carlini & Wagner, 2017). So
far, the majority of prior research has focused on geometric distortions, while no study has been re-
ported with more advanced adversarial perturbations. We seek to address this critical open question,
whether perceptual similarity metrics are robust against imperceptible adversarial perturbations.
In our paper, we show that the metrics often overturn their similarity judgment after the addition of
adversarial perturbations, unlike humans, to whom the perturbations are unnoticeable.

There exists a considerable body of literature on adversarial attacks (Szegedy et al., 2014; Goodfel-
low et al., 2015; Carlini & Wagner, 2017; Hosseini & Poovendran, 2018; Madry et al., 2018; Xiao
et al., 2018; Brendel et al., 2018; Song et al., 2018; Zhang et al., 2018a; Laidlaw & Feizi, 2019;
Su et al., 2019; Wong et al., 2019; Bhattad et al., 2019; Zeng et al., 2019; Dolatabadi et al., 2020;
Tramèr et al., 2020; Laidlaw et al., 2020; Croce et al., 2020), but none of the previous investigations
have ever considered attacking perceptual similarity metrics. This paper focuses on investigating the
adversarial robustness of similarity metrics.

Recent work underlines the importance of perceptual distance as a bound for adversarial at-
tacks (Laidlaw et al., 2020; Wang et al., 2021). Laidlaw et al. (2020) developed a neural perceptual
threat model (NPTM) that employs the perceptual similarity metric LPIPS(AlexNet) as a bound for
generating adversarial examples. Laidlaw et al. (2020) provided evidence that lp-bounded and spa-
tial attacks are near subsets of the NPTM. Further, in one of their studies, they found that LPIPS
correlates well with human opinion when evaluating adversarial examples. However, it has not yet
been established whether LPIPS and other perceptual similarity metrics are adversarially robust. We
investigate this in our work, and the findings in our study indicate that all metrics, including LPIPS,
are not robust to various kinds of adversarial perturbations.

Optical flow can be used for crafting adversarial samples that utilize the structure of the image
being attacked. AdvFlow by Dolatabadi et al. (2020) is one such attack which uses normalizing
flows (Rezende & Mohamed, 2015) and natural evolution strategies (Wierstra et al., 2008). Spatially
transformed adversarial example optimization method, commonly known as stAdv attack (Xiao
et al., 2018) is more closely related to our spatial attack method, FlowAdv. The stAdv attack op-
timizes a flow vector, increasing the probability of misclassification using Carlini & Wagner loss,
while simultaneously minimizing displacement in pixels (Carlini & Wagner, 2017). We propose a
variation of the stAdv attack, that generates a displacement vector via a CNN using the image being
attacked. Then, with backward warping, we create an adversarial image. Engstrom et al. (2019)
create small translations or rotations using a spatial transformer (Jaderberg et al., 2015) to evaluate
the spatial robustness of image classifiers. They further combine their spatial attack with an l∞-
bounded attack to increase misclassification rates. Many approaches have been studied to improve
the transferability of attacks (Liu et al., 2017; Papernot et al., 2016; Szegedy et al., 2014; Wu & Zhu,
2020). Liu et al. (2017) apply the attacks simultaneously to create an ensemble of attacks. Xie et al.
(2019) used random transformations to increase the diversity of the adversarial samples that aids in
the transferability of the attack. Our approach to improve transferability is more similar to Engstrom
et al. (2019), where we combine FlowAdv, our spatial attack, with PGD, an l∞-bounded attack.
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3 METHOD

Dataset. LPIPS is trained on the Berkeley-Adobe perceptual patch similarity (BAPPS) dataset. Each
sample in this dataset contains a set of 3 images: 2 distorted (I0 and I1), and 1 reference (Iref ). For
perceptual image quality assessment, the similarity scores were generated using a two-alternative
forced choice test, where, the participants were asked “Which of the two I0 or I1 is more similar to
Iref?”. For the validation set, 5 responses per sample were collected. The final human judgment was
based on the average of the responses. The types of distortions in this dataset are traditional, CNN-
based, and distortions by real algorithms such as superresolution, frame interpolation, deblurring,
and colorization. Human opinions are divided in some of the samples in the validation set, i.e., all
responses in a sample may not have voted for the same distorted image. For our experiment, to
ensure that the two distorted images in the sample have enough disparity between them, we only
select those samples where humans unanimously voted for one of the distorted images (see example
in Figure 1). In total, there are 12,227 such samples that we used for our experiments.

Attack Methods. As observed in Figure 1, the addition of adversarial perturbations can lead to
a rank flip. We make use of existing attack methods such as FGSM (Goodfellow et al., 2015),
PGD (Madry et al., 2018), and One-pixel attack (Su et al., 2019), and our adversarial flow attack
(FlowAdv) to generate such adversarial samples. The existing attack methods we use were originally
devised to dupe image classification models, therefore, we introduce minor modifications in their
procedures to attack perceptual similarity metrics. We select one of the distorted images, I0 or I1,
that is more similar to Iref to attack. The distorted image being attacked is Iprey, and the other image
is Iother; accordingly, for the sample in Figure 1, I1 is Iprey and I0 is Iother. Hence, considering si
as the similarity score 1 between Ii and Iref , we decide Iprey and Iother as follows:

(Iprey, Iother) =

{
(I0, I1), if (s0<s1).
(I1, I0), otherwise.

(1)

Before the attack, the original rank is sother > sprey , but after the attack Iprey turns into Iadv , and
when the rank flips sadv > sother. In image classification, a misclassification is used to measure the
attack’s success, while for perceptual similarity metrics, an attack is successful when the rank flips.

Fast Gradient Sign Method. FGSM is a popular white-box attack introduced by Goodfellow
et al. (2015). This attack method projects the input image I onto the boundary of an ε sized
l∞-ball, and therefore, restricts the perturbations to the locality of I . We follow this method to
generate imperceptible perturbations by constraining ε to be small for our experiments. This at-
tack starts by first computing the gradient with respect to the loss function of the image clas-
sifier being attacked. The signed value of this gradient multiplied by ε generates the pertur-
bation, and thus, Iadv := I + ε · sign(∇IJ(θ, I, target)), where θ are the model parameters.

𝐿𝑃𝐼𝑃𝑆: 0.1439
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=

𝜖 = 0.024
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+

𝐿𝑃𝐼𝑃𝑆: 0.0445

Figure 2: FGSM attack.

We adopt this method to attack perceptual
similarity metrics. We formulate a new
loss function for an untargeted attack as:

J(θ, Iprey, Iother, Iref )

=

(
sother

sother + sprey
− 1

)2 (2)

We maximize this loss, i.e., move in the
opposite direction of the optimization by
adding the perturbation to the image. The
human score of all the samples in our selected dataset is either 0 or 1, unanimous vote. Hence,
we can easily employ the loss function in Equation 2, because if the metric predicts the rank cor-
rectly then (sother/(sother + sprey)) would be ≈ 1. Afterwards, if the attack is successful then
(sother/(sother + sadv)) becomes less than 0.5, causing the rank to flip. We define Algorithm 3
(refer Appendix A.2) for the FGSM attack. First, Iprey is selected based on the original rank. The
model parameters remain constant, and we compute the gradients with respect to the input image
Iprey . To increase perturbations in normalized images, we increase the ε in steps of 0.0001 starting
from 0.0001. When ε is large enough, the rank flips. It would mean that the attack was success-
ful (see figure 2 for example). If the final value of ε is small then the perturbation is imperceptible,
making it hard to discern any difference between the original input image and its adversarial sample.

1smaller si means Ii is more similar to Iref
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Figure 3: PGD attack.

Projected Gradient Descent. PGD attack
by Madry et al. (2018) takes a similar ap-
proach to FGSM, but instead of a single
large step like in FGSM, it takes multiple
small steps for generating perturbation δ.
Hence, the projection of I stays either in-
side or on the boundary of the ε-ball. Each
time δ > ε the projection operator under
l∞ constraint (Pc), restricts the pixel val-
ues to a predefined range [−ε,+ε].

Algorithm 1: PGD attack on Similarity Metrics
Input: I0, I1, Iref , metric f , step size α = 0.001,
max iterations k = 40, perturbation limit ε = 0.1
Output: attack success True on rank flip

1 s0 = f(Iref , I0)
2 s1 = f(Iref , I1)
3 // If I0 is more similar to Iref then rank is 0 else 1
4 rank = int(s0 > s1) // smaller si ≡ more similar
5 if rank = 1 then Iprey = I1; sother = s0;
6 else Iprey = I0; sother = s1;
7 k = 0
8 δ = zeros like(Iprey) // perturbation
9 while k ≤ 40 do

10 Iadv = clip(Iprey + δ,min = −1,max = 1)
11 sadv = f(Iref , Iadv)
12 if sadv > sother then
13 return True // Attack successful

14 J =
(
(sother/(sother + sadv))− 1

)2 // Loss
15 signed grad = sign

(
∇IadvJ

)
16 I ′adv = Iadv + α ∗ signed grad
17 δ = clip(I ′adv−Iprey,min = −ε,max = +ε)
18 k = k + 1

19 return False // Attack unsuccessful

We describe the algorithm for PGD attack in
Algorithm 1. Using the same loss as Equa-
tion 2, this multistep attack is defined as:

It+1
adv = Pc

(
Itadv+

α · sign(∇Itadv
J(θ, Itadv, Iother, Iref )

)
(3)

Alternatively, the attack can be stated as:

It+1
adv = Pc

(
FGSM(Itadv)

)
(4)

As expressed in equation 3, the signed gra-
dient is multiplied with step size α, and this
adversarial perturbation is added to Itadv .
The final perturbation δ is the difference be-
tween Itadv and Iprey (Line 18 Algorithm 1),
and in our method, δ is bounded by l∞ norm.
Hence, this attack is an l∞-bounded attack.

One-Pixel Attack. The previous two ap-
proaches are white-box attacks. We now use
a black-box attack, the One-pixel attack by
Su et al. (2019) that perturbs only a single
pixel using differential evolution (Storn &
Price, 1997). The differential evolution optimization starts with an initial population X for a subset
of pixels. Each vector x in X contains a pixel’s index and its 3 perturbation values for the channels
r, g, and b. In each iteration, mutation and recombination evolve the population towards an optimal
x∗ that flips rank. 𝐼!"#1 𝑝𝑖𝑥𝑒𝑙

=

𝐼$

+
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Figure 4: One-pixel attack.

The objective of the One-pixel attack is
to find the optimal adversarial perturbation
vector x∗ as summarized below:

maximize
x∗

f(Iprey + x, Iref )

subject to x ⊂ X and ||x||0 ≤ d
(5)

where d is 1 for the One-pixel attack. The
attack terminates when the condition for rank flip is satisfied, i.e., sadv > sother. We refer the reader
to Appendix A.3 for more details on the steps involved in finding x∗ via differential evolution, and
the algorithm used for the One-pixel attack on similarity metrics.

3.1 SPATIAL ATTACK: FLOWADV

We introduce a new spatial attack FlowAdv. The goal of this attack is to deform the image geometri-
cally by displacing pixels. FlowAdv generates adversarial perturbations in the spatial domain rather
than directly manipulating pixel intensity values. We consider FlowAdv as a variation of the stAdv
attack (Xiao et al., 2018) which optimizes a flow map directly, whereas FlowAdv uses the input
image to predict the flow. Previous works have studied the problem of optical flow estimation from
a single image for motion prediction (Pintea et al., 2014; Walker et al., 2015; Yang & Soatto, 2018;
Gao et al., 2018; Holynski et al., 2021). We estimate the flow from a static image for a different
purpose, i.e., we create an invisible spatial distortion using the flow biased by the input image.
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Figure 5: FlowAdv attack.

In our attack method, we pre-
dict the flow vector ((u, v)
for x and y direction) by
passing Iprey through a CNN
(fθ) having 5 layers with
256 channels each, followed
by 1x1 convolutional layers.
The flow is then applied to
Iprey via backward-warping
to generate the adversarial image Iadv .

Algorithm 2: FlowAdv attack on LPIPS
Input: I0, I1, Iref , LPIPS f , max itr(50),
max restarts (2), attack model fA
Output: attack success True on rank flip

1 s0 = f(Iref , I0)
2 s1 = f(Iref , I1)
3 // If I0 is more similar to Iref then rank is 0 else 1
4 rank = int(s0 > s1) // smaller si ≡ more similar
5 if rank = 1 then Iprey = I1; sother = s0;
6 else Iprey = I0; sother = s1;
7 while k ≤ max restarts do
8 fA = init() // initialize the attack model
9 i = 1

10 while i ≤ max itr do
11 fA.optimize parameters(L)
12 (u, v) = fA(Iprey) // adversarial flow
13 Iadv = backwarp((u, v), Iprey)
14 Lrank,Lperturb =

calc loss(Iref , Iother, Iprey, Iadv, f)
15 L = Lrank + Lperturb

16 sadv = f(Iref , Iadv)
17 if sadv > sother and Lperturb < 0.05 then
18 return True // Attack successful

19 i = i+ 1

20 k = k + 1

21 return False // Attack unsuccessful

For each sample, we start with ran-
dom weights and then optimize using
Adam (Kingma & Ba, 2015) for the follow-
ing loss function:

L = Lperturb + Lrank (6)

Lperturb = α ∗ L1 + β ∗ LCharbonnier (7)
L1 = ||Iprey − Iadv||1 (8)

LCharbonnier = ρ(Iprey − Iadv) (9)

Lrank =

(
sother

sother + sadv

)2

(10)

where, ρ(x) =
√
x2 + 1e-6 (Lai et al.,

2017), α = 0.0001, and β = 0.5. As we
minimizeLrank, sadv will increase, and thus
rank will be flipped. Simultaneously, we
also minimize the l1 distance between Iprey
and Iadv , enforcing the perturbations to be
constrained within an l1 ball. For a success-
ful attack, we apply an additional constraint
that L1 < 0.05, thus ensuring that the opti-
mal Iadv that satisfies the rank flip condition
makes as little change to the attacked image
Iprey as possible.

4 EXPERIMENTS AND RESULTS

Table 1: Accuracy on the subset selected for our ex-
periments correlates with the 2AFC score computed
on the complete BAPPS validation dataset.

Network
2AFC (%) Accuracy (%)

complete BAPPS subset of BAPPS
(36344 samples) (12227 samples)

L2 63.2 79.7
SSIM Wang et al. (2004) 63.1 80.8
WaDIQaM-FR (Bosse et al., 2018) 66.5 83.3
LPIPS(Alex) Zhang et al. (2018b) 69.8 92.4
LPIPS(VGG) (Zhang et al., 2018b) 68.1 89.8
DISTS (Ding et al., 2020) 68.9 91.3

We adopt the BAPPS validation
dataset (Zhang et al., 2018b) for our ex-
periments. Following Zhang et al. (2018b)
we scale the image patches from size
256 × 256 to 64 × 64. As mentioned in
Section 3, we believe that the predicted rank
by a metric will be easy to flip on samples
close to the decision boundary; therefore, we
take a subset of the samples in the dataset
which have a clear winner, i.e., all human
responses indicated that one was distinctly
better than the other. Now, in our dataset, we have 12,227 samples. We report the accuracy of
metrics on the subset of selected samples and compare it with their 2AFC scores on the complete
BAPPS validation dataset (refer Appendix A.1 for 2AFC calculation). As shown in Table 1, all
these metrics consistently correlated better with the human opinions on the subset of BAPPS than
on the full dataset, which is expected as we removed the difficult cases.

We organize our experiments into two sections: (1) demonstrating that perceptual similarity metrics
are sensitive to imperceptible adversarial perturbations (Section 4.1), and (2) measuring the robust-
ness of various similarity metrics against our transferable attack (Section 4.2). In Section 4.1 we pri-
marily show that similarity metrics are susceptible to both white-box and black-box attacks. Based
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Table 2: FGSM, PGD, and One-pixel attack results. Larger ε allows more perturbations, and lower
RMSE relates to higher imperceptibility.

Network

Same Rank
by Human
& Metric

Total
Samples

FGSM (ε < 0.05) PGD One-pixel

# Samples
Flipped

Mean
ε

RMSE # Samples
Flipped

% pixels with ε RMSE # Samples
Flippedµ σ >0.001 >0.01 >0.05 µ σ

L2 X 9750 3759 / 38.5% 0.023 2.9 1.7 2348 / 24.1% 84.4 56.1 0.0 1.9 1.0 4225 / 43.4%
7 2477 1550 / 62.6% 0.017 2.2 1.6 1202 / 48.5% 82.0 42.7 0.0 1.5 1.0 1412 / 57.0%

SSIM X 9883 6922 / 70.0% 0.018 2.5 1.7 5297 / 53.6% 94.6 53.6 0.0 1.8 1.0 1787 / 18.1%
(Wang et al., 2004) 7 2344 2013 / 85.9% 0.011 1.6 1.3 1843 / 78.6% 87.3 32.0 0.0 1.3 0.8 1005 / 42.9%

WadIQaM-FR X 10191 8841 / 86.8% 0.006 1.0 1.0 10176 / 99.8% 69.2 4.3 0.0 0.7 0.3 3130 / 30.7%
(Bosse et al., 2018) 7 2036 2012 / 98.8% 0.001 0.6 0.3 2035 / 99.9% 41.2 0.1 0.0 0.5 0.1 1598 / 78.5%

LPIPS(Alex) X 11303 7247 / 64.1% 0.018 2.4 1.7 8806 / 77.9% 86.8 28.7 0.0 1.3 0.6 9255 / 81.9%
(Zhang et al., 2018b) 7 924 912 / 98.7% 0.004 0.9 0.7 917 / 99.2% 59.5 3.2 0.0 0.8 0.3 921 / 99.7%

LPIPS(VGG) X 10976 8434 / 76.8% 0.012 1.7 1.5 9689 / 88.3% 81.6 15.6 0.0 1.0 0.5 7212 / 65.7%
(Zhang et al., 2018b) 7 1251 1244 / 99.4% 0.003 0.8 0.5 1246 / 99.6% 52.3 1.6 0.0 0.7 0.2 1219 / 97.4%

DISTS X 11158 3043 / 27.3% 0.025 3.3 1.8 2306 / 20.7% 97.0 75.4 0.0 2.6 1.3 7416 / 66.5%
(Ding et al., 2020) 7 1069 795 / 74.4% 0.016 2.2 1.7 723 / 67.6% 91.9 50.0 0.0 2.0 1.3 1033 / 96.6%

on this premise, we hypothesize that all metrics are vulnerable to transferable attacks. To prove
this, we attack the widely adopted LPIPS using our spatial attack FlowAdv, to create adversarial
examples. We use the generated adversarial examples to benchmark the adversarial robustness of
various traditional and recently proposed perceptual similarity metrics in Section 4.2. Furthermore,
we add a few iterations of the PGD attack, hence combining our spatial attack with l∞-bounded
perturbations, to enhance transferability to other perceptual similarity metrics.

4.1 ADVERSARIAL PERTURBATIONS CAN OVERTURN PERCEPTUAL SIMILARITY JUDGMENT

Attack evaluation. Through the following study, we gather evidence that metrics are susceptible
to adversarial attacks. We first determine whether it is possible to create imperceptible adversarial
perturbations that can overturn the perceptual similarity judgment, i.e., flip the rank of the images
in the sample. We try to achieve this by simply attacking with widely used white-box attacks like
FGSM, and PGD, and a black-box attack like the One-pixel attack. As reported in Table 2, all three
attacks FGSM, PGD, and One-pixel, were successful in flipping the rank assigned by both traditional
and learned metrics in several samples. We observed for the PGD attack that none of the samples
needed a perturbation2 of more than 0.05 at the pixel-level. Therefore, for reporting the results of the
FGSM attack, we use the threshold ε < 0.05. We present the results separately for samples where
the predicted rank by the metric matches the rank provided by humans. Now, focusing only on the
samples where the metric matches with the ranking by humans, we found L2 and DISTS to be the
most robust against FGSM and PGD with only 30% of the samples flipped approximately. While
LPIPS and WadIQaM-FR were the least robust, with approximately 80% of the samples flipped.
The same conclusion can also be reached by observing ε (or perturbations) required to attack these
metrics. Next, despite being a black-box attack, the One-pixel attack is successful in conveniently
flipping rank. LPIPS(AlexNet) has the least robustness to the One-pixel attack with 82% of the
samples flipped, and this lack of adversarial robustness is consistent across all three attacks. SSIM
and WadIQaM-FR are more robust to this attack, with only 18% and 31% samples flipped.

We present the results separately for samples where the predicted rank by the metric corresponds
with the rank provided by humans. Not surprisingly, it is easier to flip rank for the samples where
the metric does not match with human opinion. As reported in Table 2, a much higher number of
those samples flip where the rank by metric and humans did not match. These samples have a lower
ε, which means that lesser perturbations were required to flip rank. We posit that the early rank
flipping for these samples is attributed to the fact that the distorted images in the sample, i.e., Iother
and Iprey are closer to the decision boundary for the rank flip. We confirm this by calculating the
absolute difference between the distances of Iother and Iprey from Iref (see Appendix A.4 Table 4).

Imperceptibility. We discuss the imperceptibility of the adversarial perturbations by comparing the
root mean square error (RMSE3) between the original and the perturbed image. As expected, the
PGD attack is stronger than FGSM as it is capable of flipping a significant number of samples with
lesser adversarial perturbations. As reported in Table 2, for the PGD attack, a good portion of the

2All ε (or perturbation) values in this paper were computed from normalized images in the range [-1,1].
3Throughout this paper, RMSE was calculated on images with pixel values ranging [0,255].
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Table 3: Transferable adversarial attacks on perceptual similarity metrics. The adversarial exam-
ples were generated by attacking LPIPS(AlexNet) via FlowAdv. In total, there are 1061 samples.
Next, we attacked LPIPS(AlexNet) using PGD(20). Then, we combined FlowAdv+PGD(20) by
perturbing the FlowAdv generated images with PGD(20). Accurate samples are the ones for which
the predicted rank by metric is equal to the rank assigned by humans. The transferability increases
when the attacks are combined. On the right, the visualization compares traditional metrics (L2,
SSIM, and FSIMc) versus traditional metrics (WaDIQaM-FR, GTI-CNN, LPIPS, DISTS, E-LPIPS,
Watson-DFT, and PIM).

Network
# Accurate
Samples

# Accurate Samples Flipped

PGD(20) FlowAdv FlowAdv
+PGD(20)

L2 790 / 74% 82 / 10% 207 / 26% 253 / 32 %
SSIM (Wang et al., 2004) 795 / 75% 197 / 25% 217 / 27% 331 / 42%
FSIMc (Zhang et al., 2011) 738 / 70% 128 / 17% 271 / 37% 308 / 42%
WaDIQaM-FR (Bosse et al., 2018) 791 / 75% 84 / 11% 134 / 17% 207 / 26%
GTI-CNN (Ma et al., 2018) 730 / 69% 162 / 22% 310 / 42% 323 / 44%
LPIPS(Squz.) (Zhang et al., 2018b) 939 / 89% 287 / 31% 201 / 21% 452 / 48%
LPIPS(VGG) (Zhang et al., 2018b) 851 / 80% 319 / 37% 164 / 19% 428 / 50%
DISTS (Ding et al., 2020) 884 / 83% 244 / 28% 189 / 21% 379 / 43%
E-LPIPS (Kettunen et al., 2019b) 890 / 84% 275 / 31% 382 / 43% 475 / 53%
Watson-DFT (Czolbe et al., 2020) 821 / 77% 247 / 30% 216 / 26% 363 / 44%
PIM-1 Bhardwaj et al. (2020) 909 / 86% 310 / 34% 501 / 55% 483 / 53%
PIM-5 Bhardwaj et al. (2020) 906 / 85% 325 / 36% 498 / 55% 511 / 56%

0 200 400 600 800 1000
# Samples

PGD(20)

FlowAdv

FlowAdv+
PGD(20)

17.5%

29.2%

29.9%

33.6%

38.4%

46.9%

Learned metrics
Traditional metrics
# Accurate Samples
# Accurate Samples Flipped

adversarial image (Iadv) has ε < 0.01, while for FGSM, the amount of pixel perturbation all over
the image is a constant ε value which moreover is higher for a successful attack. Consequently,
on average, the Iadv generated via PGD has lower RMSE and a higher PSNR (see Appendix A.5
Table 5) with the original image Iprey, compared to the Iadv generated via FGSM. We also perform
a visual sanity check and find the perturbations satisfactorily imperceptible. Only a single pixel is
perturbed in the Iadv generated via the One-pixel attack, which we consider suitably imperceptible.

4.2 TRANSFERABLE ADVERSARIAL ATTACKS ON PERCEPTUAL SIMILARITY METRICS

In a real-world scenario, the attacker may not have access to the metric’s architecture, hyper-
parameters, data, or outputs. In such a scenario, a practical solution for the attacker is to transfer
adversarial examples crafted on a source metric to a target perceptual similarity metric. Previous
studies have suggested reliable approaches for creating such black-box transferable adversarial ex-
amples for image classifiers (Tramèr et al., 2017; Zhou et al., 2018; Inkawhich et al., 2019; Huang
et al., 2019; Li et al., 2020; Hong et al., 2021). This paper focuses on perceptual similarity metrics
and how they compare against such transferable adversarial examples. Specifically, we transfer the
FlowAdv attack in Section 3.1 on LPIPS(AlexNet) to other metrics. We chose LPIPS(AlexNet) as
it is widely adopted. Furthermore, we combine the FlowAdv attack with PGD to increase the trans-
ferability of the adversarial examples to other metrics. In this experiment, we only consider samples
for which the metrics and the human opinions agree on their rankings.

FlowAdv. As shown in Figure 5, our spatial attack, FlowAdv, has the capability of attacking high-
level image features. As a white-box attack on LPIPS(AlexNet), out of the total 12,227 samples,
FlowAdv was able to flip judgment on 5703 samples with a mean RMSE of 0.064. Because we
need high imperceptibility, we remove samples with RMSE > 0.05 and are left with 1924 samples.
We then perform a visual sanity check and remove some more with ambiguity, keeping only strictly
imperceptible samples. In the end, we have 1061 samples, with a mean RMSE of 0.034, which
we transfer to other metrics as a black-box attack. As reported in Table 3, all metrics are prone
to the attack. Surprisingly, WaDIQaM-FR (Bosse et al., 2018) has the most robustness, while the
recently proposed PIM (Bhardwaj et al., 2020) metric that was found robust to small imperceptible
shifts is highly susceptible to this attack. Although, PIM is 10% more accurate than WaDIQaM-FR.
Finally, we saw that, on average, the learned metrics are more correlated with human opinions, but
traditional metrics exhibit more robustness to the imperceptible transferable FlowAdv adversarial
perturbations.

PGD(20). We now attack the original 1061 selected samples with the l∞-bounded attack, PGD.
As shown in Section 4.1, perturbations generated via PGD have low perceptibility; hence, we cre-
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𝐼!"# 𝐼$%&"! 𝐼'()𝐼*!"+

𝐿𝑃𝐼𝑃𝑆(𝐴𝑙𝑒𝑥𝑁𝑒𝑡) 0.137 0.109 0.351

𝑙! 0.008 0.005 0.009

𝑆𝑆𝐼𝑀 0.033 0.024 0.058

𝐹𝑆𝐼𝑀𝑐 0.000 0.000 0.001

𝑊𝑎𝐷𝐼𝑄𝑎𝑀-𝐹𝑅 1.335 1.188 1.223

𝐿𝑃𝐼𝑃𝑆(𝑆𝑞𝑢𝑒𝑒𝑧𝑒) 0.157 0.135 0.159

𝐿𝑃𝐼𝑃𝑆(𝑉𝐺𝐺) 0.205 0.179 0.242

𝐷𝐼𝑆𝑇𝑆 0.085 0.086 0.133

𝐸-𝐿𝑃𝐼𝑃𝑆 0.011 0.009 0.015

𝑊𝑎𝑡𝑠𝑜𝑛-𝐷𝐹𝑇 1218 1190 1913

𝑃𝐼𝑀-1 1.139 2.130 2.744

𝑃𝐼𝑀−5 13.170 25.230 31.419

0.039 0.024 0.258

0.003 0.001 0.003

0.107 0.054 0.099

0.001 0.002 0.003

1.163 1.116 1.085

0.055 0.056 0.092

0.137 0.130 0.161

0.123 0.097 0.134

0.009 0.007 0.013

2037 971 1543

1.926 1.183 2.982

14.906 13.517 29.668

𝐼!"# 𝐼$%&"! 𝐼'()𝐼*!"+ 𝐼!"# 𝐼$%&"! 𝐼'()𝐼*!"+

0.118 0.045 0.584

0.003 0.002 0.003

0.116 0.074 0.135

0.003 0.002 0.004

1.166 1.163 1.166

0.109 0.032 0.118

0.176 0.087 0.221

0.141 0.082 0.142

0.008 0.003 0.010

1525 1154 1578

2.409 0.417 4.096

23.225 4.804 39.530

Figure 6: Adversarial examples (Iadv) generated via FlowAdv+PGD(20) to attack LPIPS(AlexNet)
transfer successfully to most perceptual similarity metrics. A successful attack is marked in red. For
the above samples, the RMSE between Iprey and Iadv is 0.050, 0.037, and 0.038 (left to right).

ate adversarial samples using the PGD attack. In FlowAdv, we stopped the attack when the rank
predicted by LPIPS(AlexNet) flipped. While in PGD, for comparison’s sake, we fix the number
of attack iterations to 20 for each sample to guarantee the transferability of perturbations. We call
this transferable attack PGD(20), and the mean RMSE of the adversarial images generated is only
0.014. The metrics SSIM and WaDIQaM-FR are the most robust to the transferable PGD(20) attack,
as reported in Table 3.

Combining FlowAdv and PGD(20). FlowAdv and PGD are orthogonal approaches as PGD (l∞-
bounded attack) manipulates the intensity of individual pixels while FlowAdv (spatial attack) ma-
nipulates the location of the pixels. We now combine the two by attacking the samples generated via
FlowAdv with PGD(20). The mean RMSE of the generated adversarial images is 0.038, just 0.004
higher than images generated via FlowAdv. As reported in Table 3, the increase in severity of the
adversarial perturbations in FlowAdv+PGD(20) leads to increased transferability. This result also is
consistent with previous findings by (Engstrom et al., 2019) where they combined PGD on top of
their spatial attack and found that it leads to an additive increment in the misclassification rate.

Summary. In this paper, we successfully demonstrate that a wide variety of perceptual similarity
metrics are susceptible to adversarial attacks. We show that adversarial perturbations crafted for
LPIPS(AlexNet) generated via FlowAdv, can be transferred to other metrics. Furthermore, com-
bining FlowAdv (spatial attack) with PGD (l∞-bounded attack) increases their transferability. We
showcase a few examples in Figure 6. Our investigations also show that although more accurate,
learned metrics may not be more robust than traditional ones. In summary, our findings point to-
wards the need to develop robust perceptual similarity metrics.

5 CONCLUSION

In this paper, we studied the robustness of various traditional and learned perceptual similarity met-
rics to imperceptible perturbations. We devised a methodology to craft such perturbations via adver-
sarial attacks. Our findings suggest that, when comparing two images with respect to a reference,
the addition of imperceptible distortions can overturn a metric’s similarity judgment. The results
of our study indicate that even learned perceptual metrics that match with human similarity judg-
ments are susceptible to such imperceptible adversarial perturbations. We introduced a spatial attack,
FlowAdv, that was transferable to other metrics. We show that when combined with the PGD attack,
the transferability of the adversarial examples can be further increased. We will make our code and
data publicly available to encourage further studies on the current topic with more comprehensive
benchmarks. Perceptual similarity metrics are designed to simulate the human visual system, and
for this reason, these metrics are increasingly used in the assessment of image and video quality in
real-world scenarios. Since invisible distortions can negatively impact the performance of similar-
ity metrics, future studies for the design and development of newer metrics should also focus on
validating robustness.
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A APPENDIX

A.1 TWO-ALTERNATIVE FORCED CHOICE (2AFC) SCORE

Here we explain how the 2AFC score is calculated. Zhang et al. (2018b) used the 2AFC score to
decide which metric is more correlated with human judgment on image similarity. We follow Zhang
et al. (2018b) for the 2AFC score calculation in Table 1. Considering I0 and I1 as the two images
being compared with each other with respect to a reference Iref , the authors collected 5 human
responses for each such sample in the BAPPS validation dataset. Now, if p humans voted for I0, and
1− p human voted for I1, a metric’s 2AFC score for that sample would be computed as follows:

(s0 < s1)× (1− p) + (s1 < s0)× p+ (s1 == s0)× 0.5 (11)
where the similarity score si = f(Ii, Iref ), and a smaller value for si indicates more similarity.
Hence, if 4 humans voted for I0 and 1 human voted for I1, and the metric predicts that I0 is more
similar to Iref , then the metric would get a score of 80%. The final 2AFC score is an average over
all samples.

A.2 FGSM ATTACK ON SIMILARITY METRICS

We explain the FGSM in Algorithm 3.

Algorithm 3: FGSM attack on Similarity Metrics
Input: I1, I2, Iref , metric f , max ε (0.05)
Output: Least ε value which led to rank flip

1 s0 = f(Iref , I0)
2 s1 = f(Iref , I1)
3 // If I0 is more similar to Iref then rank is 0 else 1
4 rank = int(s0 > s1) // smaller si ≡ more similar
5 if rank = 1 then
6 Iprey = I1;
7 sother = s0;

8 else
9 Iprey = I0;

10 sother = s1;

11 sprey = f(Iref , Iprey)
12 J =

(
(sother/(sother + sprey))− 1

)2 // Loss
13 signed grad = sign

(
∇IpreyJ

)
14 ε = 0.0001
15 while ε ≤ max ε do
16 Iadv = Iprey + ε · signed grad
17 Iadv = clip(Iadv,min = −1,max = 1) // range [-1,1]
18 sadv = f(Iref , Iadv)
19 if sadv > sother then
20 return True // Attack successful

21 ε = ε+ 0.0001

22 return 1 // Largest value of ε

A.3 ONE-PIXEL ATTACK ON SIMILARITY METRIC

Population Donor Trial
RecombineMutate

Create population based on Fitness

Figure 7: Stages in Differential Evolution.

The steps involved in the differential evolution algorithm are shown in Figure 7 and described as
follows:
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1. The initial population X contains vectors Xi (for simplicity we refer it as “x” in the main
text) having pixel’s index (x position, y position), and perturbation values for the 3 chan-
nels r, g, and b.

2. For mutation the donor vector (Di) is generated using three random vectors Xr1 , Xr2 , and
Xr3 as follows:

Di = Xr1 + factor ∗ (Xr2 −Xr3) (12)
where factor is a scaling-factor and r1, r2, and r3 are random indices such that r1 6= r2 6=
r3 6= i. Therefore, the minimum population size for differential evolution is 4.

3. For the recombination step, we apply a crossover by updating index j of the vector Xi to
create the trial vector Ti. It is described as follows:

Tij =

{
Dij , if r < pc or j = δ

Xij , if r > pc and j 6= δ.
(13)

whereDij is the index j of donor vectorDi, r is a random value from [0,1], pc is cross-over
probability, and δ is a randomly selected index ensuring that at least one index is from the
donor vector.

4. The fitness of the trial vectors T is decided by computing the scores of the sample as men-
tioned in PerturbImage function in Algorithm 4. The trial vector Ti replaces the original
vector Xi if its score is better. This way, the population is re-generated, and the process
starts all over again.

The attack terminates when one of the trial vectors Ti (or Iadv) satisfies the condition for rank flip,
i.e. sadv > sother.

Algorithm 4: One-pixel attack on LPIPS
Input: I0, I1, Iref , trained LPIPS model f
Output: x position, y position, r, g, b of the perturbation

1 Function PerturbImage(Iprey , Iref , sother , T):
2 population size = len(T ) // Trial vector T
3 Iadv = repeat(Iprey , population size) // repeat Iprey to create a batch
4 factor = 0.1
5 for i← 1 to population size do
6 // Apply perturbation to each Iiadv
7 x position, y position, r, g, b = Ti

8 Iadv[i, 0, x position, y position] = (r/255 - 0.5)/factor
9 Iadv[i, 1, x position, y position] = (g/255 - 0.5)/factor

10 Iadv[i, 2, x position, y position] = (b/255 - 0.5)/factor
11 siadv = f(Iref , Iadv) // compute scores of the perturbed images
12 si = 1− (siadv/(s

i
adv + siother)) // Trial vector fitness score

13 // If score si of Ti is better than the score of Xi

14 // then Ti replaces Xi during differential evolution

15 return s // scores

1 s0 = f(Iref , I0)
2 s1 = f(Iref , I1)
3 // If I0 is more similar to Iref then rank is 0 else 1
4 rank = int(s0 > s1) // smaller si ≡ more similar
5 if rank = 1 then
6 Iprey = I1
7 sother = s0
8 else
9 Iprey = I0

10 sother = s1
11 successfull vector Xi = differential evolution(func=PerturbImage,args=(Iprey , Iref , sother))
12 // The differential evolution algorithm optimizes population X
13 // to find optimal X∗i (see Figure 7 and steps in Appendix A.3)
14 x position, y position, r, g, b = successfull vector Xi

15 return x position, y position, r, g, b
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A.4 SAMPLES WHERE RANK PREDICTED BY METRIC 6= RANK ASSIGNED BY HUMANS

In Table 2 we observed that it was easier to flip rank when the rank predicted by metric is not the
same as rank assigned by humans. We believe that such samples lie closer to the decision boundary.
To test this we calculate the absolute difference between sother and sprey, i.e., the perceptual dis-
tances of Iother and Iprey from Iref . As reported in Table 4, the abs(s0 − s1) for these samples is
much lesser than samples where rank predicted by metric = rank assigned by humans. This results
indicates that samples where rank predicted by metric 6= rank assigned by humans, lie closer to the
decision boundary causing them to flip earlier.

Table 4: Comparing samples where the rank by metric was the same as assigned by humans versus
samples where it was not.

Network
Same Rank
by Human
& Metric

abs(s0 − s1)

L2 X 0.036
7 0.025

SSIM X 0.114
(Wang et al., 2004) 7 0.054

WadIQaM-FR X 0.231
(Bosse et al., 2018) 7 0.064

LPIPS(Alex) X 0.169
(Zhang et al., 2018b) 7 0.024

LPIPS(VGG) X 0.174
(Zhang et al., 2018b) 7 0.037

DISTS X 0.103
(Ding et al., 2020) 7 0.022

A.5 IMPERCEPTIBLITY OF ADVERSARIAL PERTURBATIONS: FGSM VERSUS PGD

Table 5: Comparing PSNR of adversarial images generated via FGSM versus PGD. For adversarial
images generated via FGSM, ε is < 0.05. Higher PSNR of PGD examples shows that adversarial
perturbations are less perceptible. Furthermore, we also confirmed this through visual comparison.

Network
Same Rank
by Human
& Metric

FGSM PGD

PSNR PSNR
µ σ µ σ

L2 X 40.81 6.49 44.15 5.49
7 43.75 7.00 46.08 5.70

SSIM X 42.51 6.55 44.60 5.31
(Wang et al., 2004) 7 46.39 6.09 47.19 5.16

WadIQaM-FR X 50.81 5.60 52.19 3.47
(Bosse et al., 2018) 7 53.92 3.25 54.35 2.73

LPIPS(Alex) X 42.80 6.70 46.82 4.09
(Zhang et al., 2018b) 7 49.98 4.19 50.80 3.14

LPIPS(VGG) X 45.96 6.38 48.68 3.72
(Zhang et al., 2018b) 7 50.56 3.27 51.09 2.46

DISTS X 39.50 6.22 41.19 5.75
(Ding et al., 2020) 7 43.64 6.95 44.41 6.39

16


	Introduction
	Related Work
	Method
	Spatial Attack: FlowAdv

	Experiments and Results
	Adversarial Perturbations can Overturn Perceptual Similarity Judgment
	Transferable adversarial attacks on perceptual similarity metrics

	Conclusion
	Appendix
	Two-alternative Forced Choice (2AFC) Score
	FGSM attack on Similarity Metrics
	One-pixel attack on Similarity Metric
	Samples where rank predicted by metric = rank assigned by humans
	Imperceptiblity of Adversarial Perturbations: FGSM versus PGD


