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ABSTRACT

Reinforcement Learning (RL) has shown promise for large language models, but
its direct application to multimodal LLMs (MLLMs) faces unique challenges. Un-
like text-only LLMs, MLLMs must jointly optimize for visual grounding and lan-
guage reasoning. Our analysis reveals that RL primarily enhances textual rea-
soning, while the crucial visual grounding aspect stalls, creating a bottleneck for
overall model performance. This observation highlights a critical mismatch: the
learning challenge in MLLMs is concentrated in visually-grounded tokens, yet
existing RL algorithms apply uniform optimization pressure across all tokens,
thereby diluting the learning effort. Motivated by this limitation, we propose
Visually-grounded Credit Assignment (VICRA), a simple yet effective approach
that reallocates optimization pressure toward visually-grounded tokens, explic-
itly correcting the token-level imbalance overlooked by prior methods. Exten-
sive experiments across benchmarks, base models, and training data show that
VICRA consistently enhances multimodal reasoning, achieving significant gains
over strong RL baselines. Our work establishes a general framework for more
balanced and effective reinforcement learning in MLLMs.

1 INTRODUCTION

Reinforcement Learning (RL) has recently played an important role in the development of LLMs,
particularly for enhancing complex reasoning. Advanced RL algorithms such as GRPO (Shao et al.,
2024])) and its extensions (Yu et al.l 2025} |Liu et al., [2025b; |Chu et al., [2025)) have powered large
reasoning models like DeepSeek-R1 (Guo et al., 2025)). Inspired by its success in the text domain,
a growing body of research now applies the RL paradigm to MLLMs to improve their multimodal
reasoning capabilities (Huang et al., [2025; Meng et al., 2025} Liu et al., [2025a; |Wang et al., [2025a;
Bai et al.,[2025b)). These approaches collectively highlight a pivotal:

Does applying RL to MLLMs entail unique challenges compared with its application in LLMs?

Unlike LLMs, which process only text, MLLMs must balance optimization for both visual ground-
ing and linguistic objectives. Consequently, the direct application of existing RL algorithms im-
proves text reasoning but significantly undermines visual perception (Zheng et al.l 2025b; |Su et al.|
2025b; Zhang et al.|[2025). We identify the root of this bottleneck as the lack of explicit incentives
for visual signals in the current RL objectives.

Existing efforts address this challenge by injecting additional visual signals, such as cropped im-
ages (Sarch et al.| 2025} Wu et al.| [2025; | Xu et al.,2025)) or visual tokens (Chen et al., 2025c;|Chung
et al., 2025), improving rollout quality (Liu et al., 2025a; Wang et al., [2025a)), or designing vision-
based rewards, including captioning-based perceptual rewards (Yang et al., [2025; L1 et al.| 2025)
and attention-based rewards (Jian et al., |2025). While these approaches offer some improvements,
they are limited to data-level or reward-level adjustments. Critically, they inherit the core optimiza-
tion algorithm directly from purely textual domains and, as a result, fail to address the fundamental
imbalance between language and vision optimization.

To address this fundamental issue, we first conduct a preliminary analysis to understand how this
imbalance manifests. Our initial step is to determine which parts of the model’s response are gen-
uinely grounded in the visual input. Inspired by (Chen et al.,[2025d), we define a visually-grounded
score by computing the difference in token probabilities under the policy model with and without
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Figure 1: A response example from Qwen2.5-VL-7B-Instruct (Left), with tokens color-coded by
visually-grounded score (darker = higher). (Right) Word cloud derived from the responses of
Qwen2.5-VL-7B-Instruct on MathVista, where word size reflects visually-grounded score.

the image. This yields an importance distribution over the token space, effectively pinpointing the
visual dependency of each token. As shown in Figure[I] our analysis introduces a key insight: tokens
that are difficult for the MLLM to predict from text alone are strong candidates for being visually-
grounded. Conversely, tokens with high predictability based on linguistic context are likely visually
irrelevant. These visually grounded tokens are therefore not just descriptive details but the linchpin
for forming a correct and visually-aware answer.

To diagnose the optimization dynamics, we track the token-level entropy of visually-grounded ver-
sus other tokens during RL training (Chen et al., [2025b; (Cui et al., 2025; Wang et al., [2025b). Our
findings expose a clear optimization imbalance. Text-related tokens demonstrate successful learn-
ing, following the classic exploration-exploitation trajectory where entropy rises and then falls as
the policy converges. In stark contrast, the entropy of visually-grounded tokens remains stubbornly
high, indicating they are stuck in an exploration phase and fail to learn a confident policy. This
reveals a fundamental limitation: RL primarily enhances textual reasoning while the crucial visual
grounding aspect stalls, creating a bottleneck for overall model performance. This observation high-
lights a critical mismatch: the learning challenge in MLLMs is concentrated in visually-grounded
tokens, yet existing RL algorithms like GRPO are designed to apply uniform optimization pressure
across the entire sequence, inevitably diluting the learning effort.

Motivated by this limitation, we propose Visually-grounded Credit Assignment (VICRA). The
core idea is to reallocate optimization pressure toward tokens identified as visually-grounded. By
selectively amplifying their learning signals, VICRA ensures that perceptual grounding is improved
without undermining text reasoning. In doing so, it explicitly tackles the token-level imbalance
overlooked by current RL approaches and unlocks better multimodal reasoning.

Despite its simplicity, VICRA consistently improves multimodal mathematical reasoning across
a wide range of benchmarks. On Qwen2.5-VL-7B-Instruct, it achieves average gains of +2.25
(GRPO) and +2.22 (DAPO), reaching a score of 47.05. The improvements are especially pro-
nounced on MathVision (+6.25) and LogicVista (+5.36). Furthermore, VICRA generalizes effec-
tively to other base models (Qwen2.5-VL-3B, Llama-3.2-11B-Vision-Instruct) and training data
(MMK12), consistently outperforming both the base models and the standard GRPO baseline. To-
gether, these results position VICRA as a general and robust framework for advancing reinforcement
learning in multimodal reasoning.

Our contributions are summarized as follows:

* We identify a key limitation of applying RL to MLLMs: the imbalance between language and
vision optimization. RL primarily enhances textual reasoning, while the crucial visual grounding
aspect stalls, creating a bottleneck for overall model performance.

* To address the visually-grounded bottleneck, we propose Visually-grounded Credit Assignment
(VICRA), which reallocates optimization pressure toward visually-grounded tokens. This ap-
proach explicitly tackles the token-level imbalance overlooked by existing RL methods, thereby
unlocking improved multimodal reasoning.

* Through extensive experiments, we demonstrate that VICRA consistently improves multimodal
reasoning across datasets and base models, surpassing strong RL baselines.
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2 RELATED WORKS

Multimodal Reasoning. Reinforcement Learning (RL), the key to enhancing LLMs for complex
reasoning (Shao et al) |2024; |Guo et al.| 2025)), has inspired advances in multimodal reasoning.
Vision-R1 (Huang et al., 2025) leverages a cold-start multimodal CoT dataset and progressively
loosens the context length restrictions to increase the length of the reasoning process in the subse-
quent RL stage. NoisyRollout (Liu et al., 2025a)) mixes clean and moderately distorted images to
enhance policy exploration and improve robustness. VL-Rethinker (Wang et al., |2025a) employs
Selective Sample Replay (SSR) to mitigate the vanishing-advantage problem and introduces Forced
Rethinking during rollouts to enhance slow thinking and self-reflection. Visionary-R1 (Xia et al.,
2025) employs captioning-based rewards, guiding the model to generate detailed textual descriptions
of visual inputs before performing reasoning. Vision-SR1 (Li et al., [2025) decomposes perception
and reasoning, generating and validating self-contained visual perceptions to derive a captioning-
based reward. PAPO (Wang et al., 2025d)) integrates Implicit Perception Loss in the form of a KL
divergence term and double entropy losses into RL. DeepEyes (Zheng et al., [2025b), Pixel Rea-
soner (Su et al.|[2025a), and OpenThinkIMG (Su et al., 2025b) encourage MLLMs to engage in vi-
sual operations, such as zooming in, to enable O3-like (OpenAl, [2025)) interleaved vision-language
reasoning. These studies primarily focus on improving the data, rollout, and reward components of
the original GRPO framework. Our work more fundamentally reallocates optimization pressure to
address the imbalance between language and vision optimization.

Credit Assignment. Credit assignment problem (Sutton et al.,|1998;|Arumugam et al.,|2021;|{Zhou
et al.,2020) is a fundamental challenge in reinforcement learning, concerned with identifying which
past actions are responsible for observed outcomes. In the context of RL fine-tuning in LLMs,
it becomes particularly difficult, as one must accurately attribute often sparse and delayed reward
signals to specific token-level decisions within long sequences. [Zeng et al.| (2025) introduces a
fine-grained turn-level advantage estimation strategy to enable more precise credit assignment in
multi-turn agent interactions. HIRCA (Wang et al., 2025b) concentrates optimization efforts on
high-impact planning tokens to accelerate the exploration and reinforcement of effective high-level
reasoning. Our work addresses optimization imbalances in reinforcement learning for MLLMs,
drawing inspiration from credit assignment.

3 METHOD

3.1 PRELIMINARY: REINFORCEMENT LEARNING WITH VERIFIABLE REWARD

Group Relative Policy Optimization (GRPO) (Shao et al.} 2024) is an RL algorithm that foregoes
the critic model and estimates the baseline from group scores instead. It was originally developed
to improve mathematical reasoning in LLMs but can also be effectively adapted to enhance visual
reasoning in MLLMs. For each question ¢ and visual input I, GRPO samples a group of outputs
{01, 02, ,0c} from the old policy my,,, and then optimizes the policy model 7y by maximizing
the following objective:

jGRPO(("’) = E[(I Q) ~ P(Q) {01}1G=1 ~ T4 (OII q)]

1 & 1 los] mo(0it|1,q,0i<t) mo(0it|1,q,0i<t)
E Z Z{mm[ L 2 0 LSt Ai7t7clil)( b 1212 < 71 — &, 1 + 6>Ai?f} - ﬂDKL[Trg H 71',-Cf] },
i=1 t=1

o] < 7000 (0i,t | 1, ¢, 05, <t) 00 (04t | 1, q, 0, <t)

ey

where € and § are hyper-parameters, and A, ; is the advantage, computed using a group of rewards
{r1,r2,...,rq} corresponding to the outputs within each group:

Ass = r; —mean({ry,re, - ,rg}) )

std({r1,r2, - ,7c})
In the paradigm of Reinforcement learning from verifiable reward (RLVR) (Guo et al., 2025), a
rule-based verifier is used to assign a scalar reward score to each generated response. The reward r
is defined as a combination of a format reward and an accuracy reward:

T = A Tormat + Taccuracy 5 3)

where rima evaluates whether the response correctly places its reasoning process between the
<think>and </think> tags, and ruccuracy €valuates whether the response is factually correct.
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Figure 2: We track the training dynamics of Qwen2.5-VL-7B-Instruct (left) and Qwen2.5-VL-3B-
Instruct (right) on the ViRL39k (top) and MMKI12 (bottom) datasets. Across both models and
datasets, visually-grounded tokens consistently maintain higher entropy than other tokens, forming
a clear separation. The entropy of visually-grounded tokens remains consistently high throughout
training, whereas other tokens follow a clear exploration—exploitation trajectory, with entropy rising
initially and then declining.

3.2 VISUALLY-GROUNDED TOKENS IN MULTIMODAL REASONING

To understand the inherent imbalance between language and vision optimization, we first introduce
a visually-grounded score to differentiate visually-grounded tokens from other tokens. We then
examine the optimization dynamics of these two token types by tracking their token-level entropy
throughout RL training.

Visually-grounded Score. Given an input pair (I, ) consisting of an image and text query, we
compute the token probabilities under the policy my with and without the image to derive the
visually-grounded score w; ; for each token o; ;:

wiy = m9(04,¢ | 1,q,0i,<t) —m(0it | G, 05,<t)- €]
Tokens with higher visually-grounded scores are those that the MLLM finds difficult to predict
without the image, indicating that they are more likely to be visually-grounded. As the example
in the left panel of Figure [I] shows, the tokens with higher visually-grounded scores are mostly
highly visually-grounded, such as visual attributes like size, color, texture, and shape, for example,
“large gray matte cylinder”. These tokens generally exhibit a high visually-grounded score only
upon their first occurrence, while subsequent occurrences do not, since they are already present in
the context and thus have prior information. The right part of Figure [I] presents a statistical word
cloud of Qwen2.5-VL-7B-Instruct on MathVista (word size reflects the visually-grounded score).
It can be observed that most tokens with high scores are visually grounded. Further analysis of
visually-grounded tokens can be found in Appendix [B]

Training Dynamics. Based on the visually-grounded score, we can partition all response tokens
into visually-grounded and other tokens (using a threshold of 0.2). To investigate the optimiza-
tion dynamics of visually-grounded versus other tokens, we track their token-level entropy during
MLLM training, a common approach for understanding complex learning dynamics in RL fine-
tuning of LLMs (Chen et al., [2025b} [Cui et al., [2025; [Wang et al.l 2025b). Token-level entropy
measures the model’s uncertainty in predicting a single token, with higher entropy indicating greater
uncertainty in the predicted probability distribution. Formally, given the softmax probabilities p, it

is defined as Hy = — Z;/:lp(y | z¢),logp(y | z¢).

Figure [2 illustrates the training dynamics of Qwen2.5-VL-7B-Instruct and Qwen2.5-VL-3B-
Instruct (Bai et al., 2025a) on the ViRL39k (Wang et al., 2025a) and MMKI12 (Meng et al.l [2025)
datasets. Our findings expose a clear optimization imbalance. The entropy of other tokens first
rises and then falls as the policy converges, following the classic exploration-exploitation trajec-
tory. Notably, the phase in which the entropy of other tokens rises most sharply coincides with the



Under review as a conference paper at ICLR 2026

—_——

Discard
Image

Visually-grounded Score
Policy | Forward ™
Model "\ /

VICRA

gian

o

Figure 3: Illustration of the VICRA objective, which extends GRPO by allocating credit according
to the visually-grounded score. VICRA reallocates optimization pressure toward visually grounded
tokens, encouraging the model to generate visually grounded responses.

phase where validation accuracy improves most rapidly, suggesting a potential correlation between
increased exploration and the rapid enhancement of the model’s capability. In stark contrast, the
entropy of visually-grounded tokens remains stubbornly high, indicating they are stuck in an explo-
ration phase and fail to learn a confident policy. This reveals a fundamental limitation: RL primarily
enhances textual reasoning while the crucial visual grounding aspect stalls, creating a bottleneck for
overall model performance.

3.3 VICRA: VISUALLY-GROUNDED CREDIT ASSIGNMENT

Our empirical analysis highlights a critical mismatch: the learning challenge in MLLMs is concen-
trated in visually-grounded tokens, yet existing RL algorithms like GRPO are designed to apply
uniform optimization pressure across the entire sequence, inevitably diluting the learning effort.
Such methods fail to concentrate learning where it matters most — on the visually-grounded bottle-
neck. To address this issue, we propose VICRA, which reallocates optimization pressure toward
visually-grounded tokens to unlock improved multimodal reasoning.

Formulation. We introduce Visually-grounded Credit Assignment (VICRA), an algorithm that
extends the GRPO framework by allocating credit according to the visually-grounded score defined
in Eq. {4 The overall framework is illustrated in Figure [3} VICRA incorporates this score w; ; into
the advantage A; ; to prioritize visually-grounded tokens:

AVERA = A4 (wiy), )]
where ¢ (w; ;) is a sum-preserving transformation to the weights:

[od ]

ql)(’wi,t) =1 + wz t — | | Zwlj (6)

The resulting RL objective and its policy gradient (omlttlng the clip operation) are formulated as:

j(e) = E([,q)N'D,Oiwﬂ'gold I:AXItCRA] ) vj( ) [AVICRA VIOg 779(0i,t|17 q, Oi,<t)] (7)

VICRA can be easily integrated into existing RL training frameworks by applying ¢ (w;) to shape
the advantage before computing the policy loss(see Appendix [C]for details).

Connection to Visually-grounded Optimization. By converting the amplified advantage into
a stronger policy gradient, VICRA directly steers the model’s optimization toward the visually-
grounded tokens in the reasoning process. The core mechanism of VICRA promotes more effective
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exploration by reshaping the target distribution used in policy updates. A standard policy gradi-
ent (Williams| |1992)) update nudges the policy 7y, toward an implicit target distribution 7*, defined
by the advantage function as follows:
7 (0it|1, ¢, 04,<t) X o, (03t 1, ¢, 05, <t) exp(Ai )

Typically, update pressure is applied isotropically, treating all token types equally. This overlooks
the imbalance between visually-grounded and other tokens in multimodal reasoning. VICRA ad-
dresses this by reshaping the advantage to AVI°RA; ¢, creating a new target distribution 73 ;o4
that is anisotropically stretched toward visually-grounded dimensions of the action space. This tar-
geted adjustment strengthens visually-grounded reasoning and mitigates the bottleneck in mulmodal
reasoning.

old

By assigning greater probability mass to visually-grounded tokens, especially those along high-
reward trajectories via exp(A;+), VICRA establishes a self-reinforcing cycle: the policy explores
visually-grounded trajectories more thoroughly, discovers effective reasoning patterns faster, and
strongly reinforces strategies that yield high rewards. This anisotropic update efficiently consolidates
the model’s visually-grounded capabilities, translating exploration into sustained performance gains.

The core motivation and the formulation of our visually-grounded score do indeed bear a strong re-
semblance to contrastive decoding methods|Leng et al.|(2024)). We discuss the relationship between
VICRA'’s training-time credit assignment and contrastive decoding methods in Appendix

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Benchmarks. We conduct experiments on six multimodal reasoning benchmarks following the
OpenCompass (Contributors, 2023) Multi-Modal Reasoning Leaderboard. Visual-mathematical
reasoning is assessed on MathVerse (Zhang et al.| 2024b), MathVision (Wang et al., [2024), Dy-
naMath (Zou et al} |2024), and WeMath (Qiao et al., [2024), while broader multimodal reasoning is
assessed on MathVista (Lu et al., 2023) and LogicVista (Xiao et al., [ 2024). We omitted some of
the subset indices of the benchmark: MathVistaicstmini, MathVisiongestmini, MathVerseyision_ only-
DynaMath is evaluated using Worst-case Accuracy, while WeMath is evaluated using Strict Score.

Baselines. The performance of VICRA is evaluated against several categories of models, with
detailed results summarized in Table The baselines considered include: (1) leading closed-
source models, such as OpenAI-GPT-40 (Hurst et al., |2024), Claude-3.7-Sonnet (Anthropic, |2024)),
Gemini-2.0-Flash (Gemini Team et al.,[2023)); (2) a variety of open-source general-purpose MLLMs,
including Llama-3.2-11B-Vision-Instruct, LLaVA-OneVision (Li et al., [2024), InternVL3-8B (Zhu
et al.,[2025), InternVL2.5-38B (Chen et al., [2024), and Qwen2.5-VL-7B (Bai et al.,[2025a); and (3)
specialized open-source reasoning MLLMs, such as MMR1-Math-v0 (Leng et al.| 2025)), ThinkLite-
7B-VL (Wang et al.| 2025c), VLAA-Thinker-7B (Chen et al., 2025a), PAPO (Wang et al., 2025d),
NoisyRollout (Liu et al.;, 2025al) and VL-Rethinker-7B (Wang et al., [2025a)).

Implementation Details. Our models are trained on ViRL39K (Wang et al., |2025a) for 2 epochs
using a learning rate of le-6. No existing chain-of-thought data is used, and reinforcement learn-
ing is applied directly without prior supervised fine-tuning. We perform direct RL training on the
Qwen2.5-VL-7B-Instruct (Bai et al., 2025a)), comparing the widely adopted GRPO baseline with
clip-higher and DAPO (Yu et al., [2025) baselines with our proposed variants. Our algorithm was
implemented using the EasyR1 (Zheng et al.,|2025a; Sheng et al.,[2025) framework. For general RL-
related hyperparameters, we adopt the default settings from EasyR1. Further details are provided in
Appendix @ All results are assessed with LMMs-Eval (Zhang et al., 2024a) under consistent eval-
uation protocols, except where otherwise noted. We employ greedy decoding for model inference
and use GPT-4o as the judge model to parse generated responses.

4.2 RESULTS

Main Results. As shown in Table[I] our model consistently achieves superior performance across
multiple multimodal mathematical reasoning benchmarks. Compared with the vanilla Qwen2.5-VL-
7B base model, both GRPO and DAPO substantially improve reasoning accuracy, but integrating
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Table 1: Comparison of VICRA comparision with representative Closed-Source, OpenSource
General, and Open-Source Reasoning MLLMs across the Math-Benchmark (higher is better).
The best scores are bold; the second best are underlined (among open-source models). T scores are
taken from the respective models’ official reports. ¥ reported by OpenCompass.

Model MathVista MathVision MathVerse DynaMath WeMath LogicVista Avg
Close-Source Models
OpenAI-GPT-40-1120 60.00* 31.20¢ 40.60* 34.50* 45.80* 52.80%  44.20%
Claude-3.7-Sonnet 66.80% 41.90% 46.70% 39.70% 49.30% 58.20f  50.43%
Gemini-2.0-Flash 70.40% 43.60% 47.80% 42.10% 47.40% 52.30% 53.70%
Open-Source General Models
Llama-3.2-11B-Vision-Instruct 50.20 5.26 19.16 3.39 8.29 33.93 20.04
Llava-OV-7B 58.60% 18.30% 19.30% 9.00% 20.90% 33.30F  26.60%
InternVL-3-8B 71.60f 29.301 39.80f 25.50f 37.10f 4410t 4123t
InternVL2.5-38B 72.40f 31.501 35.70% 19.20f 42.70f 49701 41.90f
Qwen2.5-VL-7B 69.90 26.32 39.59 19.36 35.90 47.10 39.69
Open-Source Reasoning Models
MMR 1-Math-v0 71.001 30.20f 45.101 - - 50.80f -
VLAA-Thinker-7B 68.007 26.401 48.20f 22.401 41.50f 48507 4250t
ThinkLite-7B-VL 73.30 27.96 44.42 18.96 39.81 48.44 42.15
PAPO-G-7B 73.70 25.99 4378 23.55 44.00 46.65 42.95
PAPO-D-7B 75.10 30.26 4327 26.15 40.10 46.43 43.55
NoisyRollout-7B 74.00 29.93 46.32 24.15 44.76 4821 44.56
VL-Rethinker-7B 74.00 36.84 47.84 25.15 41.43 45.98 4521
Our Models
Owen2.5-VL-7B 69.90 26.32 39.59 19.36 35.90 47.10 39.69
+ GRPO 72.10 30.92 43.40 23.75 42.95 47.99 43.52
+ GRPO w/ VICRA 73.00 32.57 46.45 25.95 45.90 50.89 45.79
+DAPO 75.00 27.30 48.48 26.95 43.71 47.54 44.83
+ DAPO w/ VICRA 75.30 33.55 48.10 28.14 44.29 52.90 47.05

VICRA yields further performance gains. Specifically, GRPO w/ VICRA surpasses the vanilla
GRPO baseline by an average of +2.25 points, with particularly notable improvements on Math-
Verse (+3.05) and WeMath (+2.95). Similarly, DAPO w/ VICRA achieves the best overall results,
reaching an average score of 47.05. This corresponds to a +2.22 improvement over DAPO alone,
with significant gains on MathVision (+6.25) and LogicVista (+5.36).

Beyond outperforming its base counterparts, VICRA also establishes clear advantages over exist-
ing open-source reasoning models. For instance, DAPO w/ VICRA exceeds the previous best,
VL-Rethinker-7B (45.21), by +1.84 average points. Importantly, our approach not only improves
overall averages but also demonstrates balanced performance across diverse benchmarks. Taken to-
gether, these results validate the effectiveness of VICRA as a general enhancement mechanism for
multimodal reasoning under reinforcement learning, enabling robust improvements regardless of the
underlying optimization framework (GRPO or DAPO).

Performance on Other Base Models. We also conducted experiments on the Qwen2.5-VL-3B
and Llama-3.2-11B-Vision-Instruct, as shown in Table[2] where VICRA consistently outperformed
the GRPO baseline, further demonstrating its effectiveness across different base models. Specif-
ically, for the lightweight Qwen2.5-VL-3B, our method improved the average performance from
30.80 (base) and 36.12 (GRPO) to 37.59, with notable gains on challenging benchmarks such as
MathVision (+3.95 over the GRPO) and DynaMath (+2.79 over the GRPO). Similarly, on Llama-
3.2-11B-Vision-Instruct, although the base performance was relatively low, VICRA was able to
bring consistent improvements, yielding a higher average score of 25.45 compared to 20.04 (base)
and 22.88 (GRPO), with notable gains on WeMath (+7.15 over the GRPO).

Performance on Other Dataset. We further evaluated the performance of VICRA when trained
on MMK12, as shown in Table[2} Here, VICRA again achieved the best results, boosting the average
accuracy from 39.69 (base) and 43.04 (GRPO) to 44.32, and obtaining the highest numbers across
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Table 2: Comparison of VICRA and GRPO on Qwen2.5-VL-3B-Instruct and Llama3.2-11B-Vision-
Instruct, along with training results of Qwen2.5-VL-7B-Instruct using VICRA and GRPO on the
MMK12 dataset.

Model MathVista MathVision MathVerse DynaMath WeMath LogicVista Avg
Other Base Model
Qwen2.5-VL-3B 63.20 19.41 32.11 12.57 20.67 36.83 30.80
+ GRPO 66.80 24.34 32.61 15.97 33.05 43.97 36.12
+ GRPO w/ VICRA 66.50 28.29 34.14 18.76 32.29 45.54 37.59
Llama-3.2-11B-Vision-Instruct 50.20 5.26 19.16 3.39 8.29 33.93 20.04
+ GRPO 44.90 19.41 19.04 7.39 13.52 33.04 22.88
+ GRPO w/ VICRA 47.20 19.41 20.30 10.98 20.67 34.15 25.45
Other Dataset
Qwen2.5-VL-7B 69.90 26.32 39.59 19.36 35.90 47.10 39.69
+ GRPO MMK12 72.20 28.95 4391 24.35 40.38 48.44 43.04
+ GRPO w/ VICRA MMK12 73.30 32.57 45.56 24.95 41.52 47.99 44.32

most benchmarks. These results indicate that our approach is robust to variations in backbone model
size, architecture, and training data, consistently delivering performance gains over both base models
and the GRPO baseline.

Performance on General Benchmarks. We further report the performance improvements on gen-
eral vision-language benchmarks in Table [3] including HallusionBench 2024), Tal-
lyQA [Acharya et al.| (2019), MME (Fu et al., [2024), VQAv2 |Goyal et al| (2017), SciQA [Lu et al.
(2022), and TextVQA [Singh et al| (2019), POPE |Li et al.| (2023), R-Bench[Wu et al| (2024).

Table 3: Avg@8 performance on general vision—language benchmarks at temperature 1.0, along
with the evaluation variance and statistical significance. The generally accepted threshold for statis-
tical significance in a t-test is a p-value of less than 0.05 (p-value < 0.05).

Model Hallubench  TallyQA MME VQAv2 SciQA TextVQA . POPE R-Bench
GRPO 69.65 £034 7859 008 86.09 £0.14 7284 +070 9294 +022 7599 +025 8547 +o40 81.89 +033
GRPO w/ VICRA  70.73 +035 79.12 + 007 87.36 +0.03 74.67 +o0.12 93.20 018 76.71 030 86.82 +0.27 83.04 +0.20
p-value 0.004 0.003 0.001 0.01 0.02 0.001 0.001 0.001

Statistical significance indicates that VICRA’s performance improvement is significant (p-value
< 0.05); however, the gains are relatively marginal compared with reasoning benchmarks. We
conducted further analyses and experiments to investigate the underlying causes. As shown in the
Table] responses from reasoning-oriented models in reasoning tasks are typically longer than those
in perception tasks, resulting in a lower proportion of visually grounded tokens. Since the orig-
inal GRPO applies uniform optimization pressure across all tokens, the optimization of visually
grounded tokens is further diluted in reasoning tasks, making them even harder to optimize. From
an entropy perspective, the entropy gap between visually grounded tokens and other tokens is much
larger in reasoning tasks than in perception tasks, indicating that the optimization challenge is more
severe in reasoning tasks. VICRA is specifically designed to address this issue, which explains its
more pronounced improvements on reasoning tasks.

Table 4: Statistical values of the GRPO baseline model on reasoning benchmarks vs. perception
benchmarks. VG token % indicates the proportion of visually grounded tokens; A Hyg - omer de-
notes the entropy gap between visually grounded and other tokens; Rea. indicates Reasoning; Perc.
indicates Perception.

Item / Benchmark Mathvista Mathvision Mathverse Avg (Rea.) Hallubench TallyQA MME Avg (Perc.)

Response len 236 524 376 379 147 99 110 119
VG token % 10.35 243 5.96 6.25 11.91 18.70 15.56 15.39
AHVG - other 0.35 0.60 0.48 0.48 0.20 0.26 0.15 0.21
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4.3 ABLATION STUDY ON KEY DESIGN

The analysis in Section[3.2]shows that visually-grounded tokens exhibit high-entropy characteristics,
so we compared Entropy Advantage (Cheng et al.| [2025)), which augments the advantage function
with an entropy-based term. K L., (Wang et al., 2025d) implemented with and without the image
in the policy can serve as an alternative to VICRA, encouraging the model to incorporate perception
during reasoning. Table [5] presents a comparison of VICRA with them. The results are shown in
Table[6] and their entropy is tracked in Figure ]

Table 5: Comparison of gradient behavior among VICRA, Entropy Advantage, and K L,,.,. Sim-
plified expressions are shown, omitting GRPO’s min/clip operations and batch normalization.
Jarpo(A) denotes the GRPO objective computed using the advantages A.

Training Objective Advantage
Entropy-Based Adv. Shaping J = Jarpo(A]}PY) Ay + min (a - HJetach, %)
KLprep J = Jarro +VDxkr (mo(ti | I, q,t<i)l|mo(ti | gst<i))  Aig
VICRA J = Jarpo(4)TORA) At - P(wig)

Table 6: Comparison of models trained with GRPO using VICRA against entropy-based advantage
shaping and K Ly,.cp.

Model MathVista MathVision MathVerse DynaMath WeMath LogicVista Avg
Qwen2.5-VL-7B 69.90 26.32 39.59 19.36 35.90 47.10 39.69
+ GRPO 72.10 30.92 43.40 23.75 42.95 47.99 43.52
+ GRPO w/ Entropy Adv. 74.10 26.32 45.69 24.35 42.95 50.89 44.05
+ GRPO W/ K L) 74.10 27.96 44.04 26.15 44.48 46.21 43.80
+ GRPO w/ VICRA 73.00 32.57 46.45 25.95 45.90 50.89 45.79

Our findings suggest that the optimization of visually-grounded tokens becomes a bottleneck in
MLLM reasoning, motivating VICRA’s design to reallocate optimization pressure toward visually-
grounded tokens. As shown in Figure |4, compared with the original GRPO, VICRA leads to a
decreasing trend in subsequent steps, indicating improved exploitation of visually-grounded tokens.
The entropy of other tokens exhibits only minor variation overall, but tends to decline more rapidly
in the later stages of training. We hypothesize that this acceleration arises because the effective
utilization of visually-grounded tokens also enhances the exploitation of other tokens. However,
the change in the entropy of visually-grounded tokens remains limited, particularly compared with
other tokens, indicating that pure RL still depends heavily on the base model, while VICRA is able
to approach this upper bound more closely.

Visually-grounded Token Entropy Other Token Entropy Validation Accuracy
0.675 — GRPO 0.50 — GRPO 075
Entropy Adv. Entropy Adv.
0.650 — KL_prcp 0.45 — KL_prcp ,.0.70
—— VICRA —— VICRA g
0.625 5
- >.0.40 3 065
oY o g
£0.600 £ c 0.60
& So3s S
0.575 S o055
030 F —— GRPO
0.550 v . - > 050 Entropy Adv.
—— KL_prcp
0.525 0.25 0.45 —— VICRA

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Step Step Step

Figure 4: VICRA vs. GRPO, Entropy Advantage and K L,,,..;,, on Qwen2.5-VL-7B-Instruct. VICRA
reduces image-token entropy in later stages, improving exploitation and accelerating the decline of
other tokens. Entropy Advantage offers only limited gains with little diversity. The K L., further
shows that image-token entropy remains stable while other tokens exhibit a weaker downward trend.

Table [5] shows that Entropy Advantage achieves a slight improvement over the original GRPO but
still lags behind VICRA. As illustrated in Figure |4 both the visually-grounded token entropy and
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the other-token entropy are markedly lower than those of competing methods. This indicates that
the method reduces entropy too quickly and too sharply—particularly for other tokens—Ileading
to entropy collapse. Such a collapse traps the model in local optima, diminishes output diversity,
and produces unbalanced performance. While the method performs well on certain benchmarks,
such as MathVista and LogicVista, it underperforms on others, including MathVision, WeMath, and
the validation set, where its accuracy curve even falls below that of the base model or the GRPO
baseline. These results suggest that, in RL training of MLLMs, maintaining higher-entropy tokens
does not necessarily guarantee stable or well-balanced performance gains.

Similarly, the K L., between policies with and without the image shows a performance pattern
comparable to Entropy Advantage: strong on some benchmarks (MathVista, DynaMath) but weak
on others (MathVision, LogicVista), even underperforming the base model. Examining the entropy
reveals that, from the early stages of training, both visually-grounded and other tokens, especially
the entropy of other tokens in the later stages of training, are lower compared to GRPO.

Furthermore, we also abalation two additional factors in Appendix [H] and Appendix [[} using KL
divergence in place of the default probability-difference score as the visually grounded score, and
applying alternative distortion strategies.

5 CONCLUSION

This work identifies a fundamental limitation in applying reinforcement learning to multimodal
LLMs: existing RL algorithms disproportionately optimize textual reasoning while neglecting
visually-grounded tokens, creating a critical bottleneck for overall performance. To address this,
we propose Visually-grounded Credit Assignment (VICRA), a simple yet effective mechanism that
reallocates optimization pressure toward visually-grounded tokens. By explicitly tackling the token-
level imbalance, VICRA enhances perceptual grounding without compromising text reasoning. Ex-
tensive experiments across diverse benchmarks and base models demonstrate that VICRA consis-
tently improves multimodal reasoning, establishing it as a general and robust framework for ad-
vancing RL in MLLMs. Moreover, VICRA introduces a modest additional forward-pass cost (see
Appendix [I), which remains a direction for future work to further optimize.
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A USAGE OF LLMs

In accordance with the conference policy on the use of large language models (LLMs), we disclose
that LLMs were employed solely for writing-related purposes. Specifically, they assisted in:

* Enhancing grammar and fluency;
* Refining sentence structure and readability;

* Suggesting alternative phrasings to improve clarity and conciseness.

No aspect of the research design, theoretical development, or experiments involved LLMs. All
scientific contributions, ideas, and conclusions were independently conceived and validated by the
authors.

B ANALYSIS OF VISUALLY-GROUNDED SCORES

Visually-grounded Score Distribution. The left panel of Figure 5] presents the Empirical Cumu-
lative Distribution Function (ECDF) of visually-grounded scores. Most tokens cluster around very
low scores, just above zero, while only a small fraction achieve relatively high values. Notably, the
overall distribution remains largely unchanged before and after RL training.

Visually-grounded tokens vs. high-entropy to-
kens. Recent work has introduced the notion = = beforeRL
of high-entropy tokens, sometimes referred to as ~ °°
fork tokens, highlighting their role as proxies for 0s
decision points in the reasoning process of LLMs. &
Our analysis shows that visually-grounded tokens
exhibit higher entropy compared to other tokens. .
We aim to investigate the relationship between
visually-grounded tokens and high-entropy to- — ° ‘lliygomdeaswe N SRR
kens in MLLMs. As illustrated in the right panel  Figure 5: (Left) ECDF of visually-grounded
of Figure [5} an asymmetry exists between them. gcore before and after RL. (Right) Visually-

Visually-grounded tokens and high-entropy to-  grounded Tokens vs. High-Entropy Tokens.
kens overlap but are not the same.

Proportion

C VICRA IMPLEMENTATION

VICRA (PyTorch Implementation)

# Compute advantages
adv = compute_advantages(...)

# Apply VICRA

response_len = responsemask.sum(dim=-1, keepdim=True)
w = visually_grounded_probs * response_mask

w_sum = w.sum(dim=-1, keepdim=True) .clamp.min (le-8)
pi =1+ (w - w.sum / response_len)

advantages = advantages * pi

# Use the shaped advantages to compute the policy loss
loss = compute_policy_loss(adv, ...)

16
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D PROMPT TEMPLATE

Prompt Template

SYSTEM: You are a helpful assistant

USER: {question} You FIRST think about the reasoning process as
an internal monologue and then provide the final answer. The
reasoning process MUST BE enclosed within <think> </think>
tags. The final answer MUST BE put in \boxed{}.

E SUPPLEMENTARY IMPLEMENTATION DETAILS

This section provides the detailed hyperparameter configurations for our experiments that were omit-
ted from Sectionfd] In Table[7] we summarize our experimental settings across different model sizes
and datasets, with specific focus on image distortion parameters and noise annealing schedules.

Table 7: Summary of hyperparameter configurations.

Parameter Configuration

General Settings (All Experiments)

Model Base Qwen2.5-VL-7B/3B-Instruct
Freeze Vision Encoder False

Global Batch Size 128

Rollout Batch Size 512

Rollout Temperature 1.0

Rollout Number 5

Learning Rate le—6
Optimizer AdamW
Policy Loss Aggregation token-mean
CPU Memory 4TB

GPU 16 * H20-96GB
Qwen2.5-VL-7B/3B-Instruct on ViRL39K (39K samples)
Training Episodes 2

Total Optimization Steps (fmax) 150
Qwen2.5-VL-7B-Instruct on MMK12 (6.4K samples)
Training Episodes 12

Total Optimization Steps (fmax) 144

Model Base Llama-3.2-11B-Vision-Instruct
Freeze Vision Encoder False

Global Batch Size 128

Rollout Batch Size 512

Rollout Temperature 1.0

Rollout Number 5

Learning Rate le —6
Optimizer AdamW
Policy Loss Aggregation token-mean
CPU Memory 8TB

GPU 32 * H20-96GB
Llama-3.2-11B-Vision-Instruct on ViRL39K (39K samples)
Training Episodes 1

Total Optimization Steps (tmax) 75
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F CASE STUDY

@ Question: What would be most affected if the clams all died?

, Source: MathVista, id:939

et { - 2 ’%m@‘ Choices: (A) squid (B) lantern fish  (C) octopus (D)
= E LT A sea horse
’ I Ground truth: (C) octopus

GRPO:

<think>

To determine which organism would be most affected if the clams all
died, we need to look at the food web and identify which organism
directly depends on clams for food. In the food web, the clams are
connected to the squid. Therefore, if the clams were to die, the
squid would be the most directly affected organism.

The correct answer is:
</think>

Wrong

GRPO w/ VICRA:

<think>

To determine which organism would be most affected if the clams all
died, we need to look at the food web and identify which organisms
directly depend on clams for food. In the food web, clams are shown
to be preyed upon by the octopus. Therefore, the octopus would be
most affected if the clams all died, as it would lose a significant
food source.

</think>

Correct

18
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Question: Subtract all tiny brown cylinders. Subtract all tiny
brown objects. How many objects are left?

Source: MathVista, id:180

Ground truth: 6

GRPO:

<think>

First, I need to identify all the objects in the image:
large green sphere.

large gold cube.

small gold cube.

small gold sphere.

small green cylinder.

small blue cylinder.

small yellow cylinder.

do U W N
i

Next, I need to subtract all tiny brown cylinders. There are no
brown cylinders in the image, so no objects are removed in this

step

Then, I need to subtract all tiny brown objects. There are two

tiny brown objects: the small gold sphere and the small gold cube.

After removing these two objects, the remaining objects are:
large green sphere.

large gold cube.

small green cylinder.

small blue cylinder.

small yellow cylinder.

g wN R
g i 4

Counting these remaining objects, there are 5 objects left.
</think>

Wrong

GRPO w/ VICRA:

<think>
1. First, I need to identify all tiny brown objects in the image.
There are two tiny brown objects: a small brown metallic sphere and

a small brown metallic cube.

2. Next, I need to subtract these tiny brown objects from the total
number of objects in the image.

3. Counting all objects in the image, there are 8 objects in total.
4. Subtracting the 2 tiny brown objects from the total, 8 - 2 = 6
objects remain.

The final answer is [].

</think>

[] Correct
N
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G CONNECTION TO CONTRASTIVE DECODING

The core motivation and the formulation of our visually-grounded score (Sy, Equation 4), which
contrasts the token probability with visual input, p(y|z, v), against the language-only prior, p(y|x),
bear a strong resemblance to recent contrastive decoding strategies used to mitigate object and tex-
tual hallucinations in Multimodal Large Language Models (MLLMs).

Specifically, our mechanism aligns with the principle behind methods like Visual Contrastive De-
coding (VCD). These methods formulate a modified, grounded logit log p(y) during inference by
subtracting a 'negative’ logit (e.g., derived from a perturbed image or a language-only prior) from
the standard multimodal logit. This logit difference effectively filters out tokens largely predicted by
the model’s strong language prior and statistical biases, leaving a more visually-grounded prediction.

However, a crucial distinction exists in the application time:

* Contrastive Decoding methods are training-free, decoding-time strategies that modify the
next token output distribution on the fly to steer generation.

* VICRA utilizes this contrastive principle as a training-time credit assignment signal for
rollouts sampled from the original distribution within a Reinforcement Learning (RL)
framework.

By defining the RL reward based on the contrastive score, VICRA aims for internalized visual
grounding. Instead of merely applying a filter during inference, we *train* the model’s parameters
to natively prioritize the difference between p(y|I, q) and p(y|q), thereby reducing the reliance on
the ungrounded language prior at the source. This shifts the mitigation strategy from an external,
post-hoc intervention to an inherent, learned policy.

Furthermore, we also examined two additional factors: using KL divergence in place of the de-
fault probability-difference score as the visually grounded score, and applying alternative distortion
strategies. The results indicate that VICRA remains effective under these variations, although the
default setting yields the best performance. Further details are provided in Appendix [H] and Ap-

pendix[l|
H ABLATION STUDY ON VISUALLY-GROUND SCORE

Table 8: Ablation study on the method for visually-ground score calculation.

Model MathVista MathVision MathVerse DynaMath WeMath LogicVista Avg
Probability Difference (Default) 73.00 32.57 46.45 25.95 45.90 50.89 45.79
KL Divergence 74.20 30.59 45.94 26.95 42.10 47.71 44.59

To examine how different formulations of the visually-ground score affect model performance, we
conduct an ablation study over two strategies: Probability Difference (Default), KL Divergence.

* Probability Difference quantifies the change in the model’s output probability when visual
inputs are masked or corrupted. A larger drop indicates stronger visual dependence, thus
serving as an intuitive and effective measure of visual grounding.

Wiy = 70050 | 1,q,0i <) —70(0it | G, 04, <¢)- ®)

» KL Divergence instead computes the distributional divergence between predictions with
and without images, providing a finer-grained but less directly interpretable signal of visual
contribution.

wir = Dgr (mo(ti | 1,q,t<i)|mo(ti | ¢,t<i)) ©))
As summarized in Table [8] Probability Difference achieves the best average performance, outper-

forming KL Divergence on most benchmarks. While KL Divergence shows slight gains on Dyna-
Math, its overall sensitivity to distributional noise leads to less stable results.
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Table 9: Ablation study on the distorted strategy.

Model MathVista MathVision MathVerse DynaMath WeMath LogicVista Avg

Discard (Default) 73.00 32.57 46.45 25.95 45.90 50.89 45.79
Random Patch Blackening 73.90 29.93 4543 25.15 41.52 48.88 44.14
Complete Blackening 74.30 30.26 46.19 24.95 43.05 46.43 44.20
Gaussian Noise 72.70 29.28 46.32 26.35 45.90 47.32 44.64
Gaussian Blur 74.00 29.61 45.94 24.75 44.19 48.44 44.49

I ABLATION STUDY ON DISTORTED STRATEGY

We compare five distorted strategies to explore how different forms of visual masking influence
model performance in multimodal reasoning tasks.

* Discard (Default). The image is directly removed from the input sequence, leaving only
the textual input and response for model processing.

* Random Patch Blackening. Randomly selected patches within the masked region are
replaced with black squares, introducing localized occlusions. The mask ratio is set to 0.6.

* Complete Blackening. The entire masked region is replaced with a uniform black area,
preserving the spatial layout while removing all semantic information.

e Gaussian Noise. Gaussian noise is added to the input image to simulate random visual
corruption. The noise mean is set to 0, and the standard deviation is set to 200.

* Gaussian Blur. The input image is blurred using a Gaussian kernel, preserving coarse
structures while suppressing fine details. The blur radius is set to 5.0.

As shown in Table[J] the Discard strategy achieves the highest average performance, demonstrating
that directly removing masked tokens helps the model concentrate on informative regions and pre-
vents interference from corrupted inputs. In contrast, corruption-based strategies such as Random
Patch Blackening, Complete Blackening, Gaussian Noise, and Gaussian Blur all lead to moderate
performance drops. Among them, Complete Blackening and Gaussian Noise show relatively stable
results, but none surpass the simple discard approach. These findings suggest that retaining visually
corrupted patches tends to introduce noise or bias into the visual encoder, whereas discarding them
entirely provides cleaner and more consistent signals for reasoning. Therefore, we adopt the Discard
strategy as the default masking method in all experiments.

J COMPUTATIONAL COST ANALYSIS

The main computational overhead arises from the additional forward pass on rollout sequences with
distorted visual inputs. In Table[I0} we report the average wall-clock time per training step and the
additional forward latency when comparing GRPO with GRPO w/ VICRA. As shown in Table [T0]
this introduces roughly 15%—17% additional forward latency. Experiments for both Qwen2.5-VL-
3B-Instruct and Qwen2.5-VL-7B-Instruct are conducted on 8 NVIDIA A800 GPUs.

Table 10: Average time per training step and the additional forward latency in VICRA.

Model Method Per Step (s)  Additional Forward Latency (s)
3B GRPO 263.2

GRPO w/ VICRA 302.7 39.5 (+15%)
7B GRPO 371.8

GRPO w/ VICRA 434.8 63.0 (+17%)
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