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ABSTRACT

Imitation learning (IL) aims at achieving optimal actions by learning from demon-
strated behaviors without knowing the reward function and transition kernels.
Conducting IL with a large population of agents is challenging as agents’ interac-
tions grow exponentially with respect to the population size. Mean field theory
provides an efficient tool to study multi-agent problems by aggregating information
on the population level. While the approximation is tractable, it is non-trivial to
restore mean field Nash equilibria (MFNE) from demonstrations. Importantly,
there are many real-world problems that cannot be explained by the classic MFNE
concept; this includes the traffic network equilibrium induced from the public
routing recommendations and the pricing equilibrium of goods generated on the
E-commerce platform. In both examples, correlation devices are introduced to
the equilibrium due to the intervention from the platform. To accommodate this,
we propose a novel solution concept named adaptive mean field correlated equi-
librium (AMFCE) that generalizes MFNE. On the theory side, we first prove the
existence of AMFCE, and establish a novel framework based on IL and AMFCE
with entropy regularization (MaxEnt-AMFCE) to recover the AMFCE policy from
real-world demonstrations. Signatures from the rough path theory are then applied
to characterize the mean-field evolution. A significant benefit of our framework
is that it can recover both the equilibrium policy and the correlation device from
data. We test our framework against the state-of-the-art IL algorithms for MFGs on
several tasks (including a real-world traffic flow prediction problem), results justify
the effectiveness of our proposed method and show its potential to predicting and
explaining large population behavior under correlated signals.

1 INTRODUTION

Imitation learning (IL) (Hussein et al., 2017) has been widely adopted to learn the desired behavior
through expert demonstrations and led to a series of impressive successes (Silver et al., 2016; Shi
et al., 2019; Shang et al., 2019). Existing imitation learning algorithms cannot handle tasks with
a large group of agents due to the curse of dimensionality and the exponential growth of agent
interactions when the number of agents increases. However, many real-world scenarios require the
algorithm to handle a large population. Examples include traffic management and control (Bazzan,
2009), Ad auction (Guo et al., 2019), online business with a large customer base (Ahn et al., 2007)
and social behaviors between game bots and humans (Jeong et al., 2015). For systems with a large
population of homogeneous agents, mean field theory provides a practically efficient and analytically
feasible approach to analyze the otherwise challenging multi-agent games (Guo et al., 2019; Yang
et al., 2018b). In the mean field game (MFG) setting, the states of the entire population can be
sufficiently summarized into an empirical distribution of states thanks to the homogeneity property.
Therefore it suffices to consider a game between a representative agent and an empirical distribution.

Existing (and rather limited) literature on mean-field IL assumes that the expert demonstrations are
sampled from the classic mean field Nash equilibrium (MFNE) (Yang et al., 2018a; Chen et al., 2022).
The limitation of this framework is not general enough to capture many real-world situations where
external and correlated signals influence the behavior of the entire populations. Examples include
the behavior of drivers on the traffic network with routing recommendations from Google Map or
Apple Map. Another possible example is the E-commerce platform recommendation for individual
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sellers on setting up the price for their products. In these two examples, a mediator or a coordinator
recommends decisions but individual agents who seek for greedy decisions could deviate from the
recommendation if she/he finds a better option given the available information. The existence of the
mediator introduces correlations among the behaviors of individual agents. Therefore, a more general
equilibrium concept is needed before we take a step further to learn from expert demonstrations.
Inspired by the concept of correlated equilibrium (CE) for stateless game (Aumann, 1974), there
are recent developments on mean field correlated equilibrium (MFCE) with state dynamics. Campi
and Fischer assume that a mediator recommends the same stochastic policy to the entire population,
resulting in a limited equilibrium set which is the same as the classic MFNE (Campi & Fischer, 2022).
In addition, it is often more practical for the mediator to recommend an action rather than a stochastic
policy to individuals (see the traffic routing and e-commerce examples). Muller et al. assume that the
mediator recommends a time-independent and deterministic policy (sampled from some distribution
over the deterministic policy space) to each individual (Muller et al., 2022). This formulation is also
rather limited in terms of describing the behaviors of many real-world applications and enabling
sufficient flexibility of the population behavior. A more general and practical setting is to establish
a framework where the mediator could sample a stochastic policy based on some time-dependent
signals and recommend action for each individual, which is the exact framework investigated in this
paper. (See Appendix H for a concrete example to show that our equilibrium concept is more general
than the one proposed by Muller et al. (Muller et al., 2022).)

Given the above mentioned limitations of current existing MFCE concepts and mean-field IL ap-
proaches, we propose a new MFCE framework named adaptive mean field correlated equilibrium
(AMFCE) with time-dependent correlated signals and an individual agent can adaptively update
her belief on the unobserved correlated signal. We develop a method to recover AMFCE policy
based on Maximum Entropy Regularization. Our framework has the following important and novel
ingredients:

• Novel MFCE concept with time-dependent correlated signals and adaptive belief
updates from individual agents. In this paper, we propose a new MFCE framework (called
AMFCE) that the mediator recommends an action sampled from a stochastic policy for
each agent at every time step. This is a more general and flexible framework compared to
previous works on the MFCE (Muller et al., 2022; Campi & Fischer, 2022). We prove the
existence of AMFCE solution under mild conditions and prove that MFNE is a subclass of
AMFCE.

• Entropy Regularization to overcome the equilibrium selection difficulty. Most of the IL
algorithms for games face the equilibrium selection issue or identifiability issue as there often
exist multiple equilibria. To bypass this difficulty, we further propose an entropy regularized
AMFCE (MaxEnt-AMFCE) framework which is shown to have a unique solution.

• Using signatures from rough path theory to efficiently represent mean-field evolution.
Mean field information is often inaccessible in practice and it is computationally expensive
to approximate the mean field information by its empirical distribution. To overcome
this difficulty, we adopt signatures from the rough path theory to represent the mean-field
evolution, which can be easily combined with neural network training architectures and the
resulting method is computationally efficient.

With all these ingredients, our correlated mean field imitation learning (CMFIL) framework can
recover not only the policy but also the correlation device, which is the distribution that the correlated
signal is sampled from. To the best of our knowledge, this paper is the first focusing on MFCE
with the correlation device providing time-dependent recommendations and allowing adaptive belief
updates for individual agents.

In addition, we illustrate the performance of our framework by comparing the state-of-the-art imitation
learning algorithms for MFGs on several tasks, including a real-world traffic flow prediction problem.
The experimental results demonstrate that our framework outperforms the baseline in all tasks. As a
by-product, our framework is also suitable for solving MFNE as MFNE is a subclass of AMFCE.
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2 PRELIMINARY: CLASSIC MEAN FIELD NASH EQUILIBRIUM

This section introduces the classic framework of MFG and the concept of MFNE. The classic MFG
models a game between a representative agent and the state distribution of all the other agents.

Denote P(X ) as the set of probability distributions over X and denote T = {0, 1, · · · , T} as a set
of time indexes. At time t, after the representative player chooses her action at according to some
measurable policy πt : S → P(A), she will receive a deterministic reward r(st, at, μt) and her
state will evolve according to current state st ∈ S and P (·|st, at, μt) , where μt ∈ P(S) represents

the population state distribution and S is finite. Intuitively, μt(s) = limN→∞

∑N
i=1 1{sit=s}

N can be

viewed as the limit of the empirical distribution of an homogeneous N -agent game where sit is the
state of agent i at time t and 1{e} is an indicator function (with value 1 if expression e holds and 0
otherwise). Here P : S ×A× P(S) → P(S).
For fixed mean-field information μμμ = {μt}Tt=0, the objective of the representative agent is to solve
the following decision-making problem over all admissible policies πππ = {πt}Tt=0:

maximizeπππ Vk(s,πππ,μμμ) := E

[
T∑

t=k

γtr(st, at, μt)

∣∣∣∣ sk = s

]
subject to st+1 ∼ P (·|st, at, μt), at ∼ πt(st),

(Classic MFG)

The Mean-field Nash Equilibrium (MFNE) is defined as the following.

Definition 1 (MFNE). In (Classic MFG), a player-population profile (πππ�, μμμ�) is called a MFNE
(under initial state μ0) if

1. (Single player side) For any policy πππ, any time index t ∈ T , and any initial state s ∈ S,
Vt (s,πππ

�,μμμ�) ≥ Vt (s,πππ,μμμ
�) .

2. (Population side) {μ∗
t }Tt=0 satisfies μ∗

t (·) =
∑

s∈S,a∈A P (·|s, a, μ∗
t−1)π

∗
t−1(a|s)μ∗

t−1(s)
with initial condition μ∗

0 = μ0.

The single player side condition captures the optimality of πππ�, when the population side is fixed.
The population side condition ensures the “consistency” of the solution: it guarantees that the state
distribution flow of the single player matches the population state sequence μμμ� := {μ�

t }Tt=0.

3 PROBLEM FORMULATION

This section introduces a novel adaptive mean-field correlated equilibrium (AMFCE) framework and
establishes the existence of equilibria solutions under mild conditions. We prove that the solution set
of AMFCE is richer than the well-known MFNE. Furthermore, the maximum entropy principle is
adopted to select the solution with maximum entropy among the solution set of the AMFCE.

3.1 ADAPTIVE MEAN FIELD CORRELATED EQUILIBRIUM (AMFCE)

To incorporate the correlations introduced by the central platforms in the traffic network example and
the E-commerce marketplace example introduced in Section 1, we consider a mediator (or a central
agent) who samples a correlated signal zt ∈ Z at each time t, where Z is a finite signal space. zt may
represent some global conditions such as the weather on day t for the traffic network example and the
supply-demand imbalance in month t for the E-commerce marketplace example. Before discussing
the AMFCE, we first introduce the concepts of behavioral policy and correlation device.

Definition 2. For each time t, the behavioral policy πt : Z × S → Δ(A) maps from the signal and
state spaces to the simplex over the action space. Given the correlated signal z ∈ Z and an action
a ∼ πt(·|s, z) will be independently sampled as a private recommendation for each agent at state s.

Definition 3. The per-step correlation device ρt ∈ Δ(Z) is a publicly known distribution over the
space of correlated signal, from which the mediator will sample the correlated signal at time step t.
Denote ρρρ = {ρt}Tt=0 as correlation device over the entire horizon.
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At every time step t, a correlated signal zt is sampled from the per-step correlation device ρt. Then
a recommendation action at will be sampled independently from the behavior policy πt(·|st, zt),
and sent to each agent at state st. This recommended action at is private and only available to the
agent. Mathematically, denote It = {ρt, at, πt(·, ·, ·), st, zt−1, μt−1} as the information available
to the agent at the beginning of step t. And I0 = {ρ0, a0, π0(·, ·, ·), s0}. Note that the agent only
observes the functional form of πt but can not observe the correlated signal zt nor the recommended
actions for other agents. Based on the information It, the agent will take an action a′t (which may be
different from the mediator’s recommendation), and then the agent at state st will transit to the next
state according to distribution P (·|st, a′t, μt) ∈ P(S) given current mean field μt, which follows:

μt(·) =
∑
a∈A

∑
s∈S

μt−1(s)P (·|s, a, μt−1)πt−1(a|s, zt−1). (1)

This implies that, given μt−1 and πt−1, μt is fully determined by zt−1. After receiving the recom-
mendation action at, the agent can predict the correlated signal by

ρpredt (zt = z|It) =
ρt(z)πt(at|st, z)∑

z′∈Z ρt(z′)πt(at|st, z′)
. (2)

Based on the available information It at time t, the agent can then update the prediction on the mean
field distribution of the next time-step for each possible signal z:

μpred
t+1 (·|It, z) =

∑
a∈A

∑
s∈S

μt(s)P (·|s, a, μt)πt(a|s, z) := Φ(μt, πt, z). (3)

The Q function Qπππ
t (s, a, μ, z;πππ

′) for individual agent is defined as follows:

Qπππ
t (s, a, μ, z;πππ

′) =r(s, a, μ) + γEπππ′

[
T∑

i=t+1

γi−t−1r(si, ai, μi)

∣∣∣∣∣ (st, at, μt, zt) = (s, a, μ, z)

]
,

where Eπππ′ is the expectation taken with respect to zi ∼ ρi(·), ai ∼ πi(·|si, zi), si+1 ∼ P (·|si, ai, μi),
∀i ∈ {t+1, t+2, · · · , T}. We can verify that the Q function satisfies the following Bellman equation:

Qπππ
t (s, a, μ, z;πππ

′) = r(s, a, μ) + γE

[
Qπππ

t+1(s
′, a′,Φ(μ, π′

t, z), z
′;πππ′)∣∣∣∣(st, at, μt, zt) = (s, a, μ, z)

]
,

(4)

where the expectation is taken with respect to z′ ∼ ρt+1(·), s′ ∼ P (·|s, a, μ), a′ ∼ πt+1(·|s, z′).
Similarly, we define the optimal Q-function Q∗

t (s, a, μ, z;πππ
′) as the Q function associated with the

optimal individual policy πππ∗ given population behavior πππ′. It is easy to show that Q∗ satisfies the
following Bellman equation:

Q∗
t (s, a, μ, z;πππ

′) = r(s, a, μ) + γmax
a′∈A

E
[
Q∗

t+1(s
′, a′,Φ(μ, π′

t, z), z
′;πππ′)

∣∣ (st, at, μt, zt) = (s, a, μ, z)
]
,

(5)

where the expectation is taken with respect to z′ ∼ ρt+1(·), s′ ∼ P (· | s, a, μt).

It is worth noting that if the policy of population π′π′π′ is fixed, Q∗
T (s, a, μ, z;πππ

′) ≥ Qπππ
T (s, a, μ, z;πππ

′)
for any πππ. Then by induction, it holds that Q∗

t (s, a, μ, z;πππ
′) ≥ Qπππ

t (s, a, μ, z;πππ
′) for all t ∈ T .

To introduce the concept of AMFCE, we define the set of swap function U := {u : A → A},
namely u a function that modifies an action a to an action u(a). Let Δt(s, μ, u;πππ,ρρρ) =
E
[
Qπππ

t (s, u(a), μ, z;πππ) − Qπππ
t (s, a, μ, z;πππ)

]
, u ∈ U denote the margin of Q function of that agent

takes action u(a) when a recommendation a is provided by the mediator, where the expectation is
taken with respect to z ∼ ρt(·), a ∼ πt(·|s, z).
Definition 4. The profile (πππ�, ρρρ) composed of the time-varying stochastic policy πππ� = {π�

t }Tt=0 and
the correlation device ρρρ is an adaptive mean field correlated equilibrium (AMFCE) if

• (Single agent side) No agent has an incentive to unilaterally deviate from the recommendation
action after predicting the z by (2), i.e.

Δt(s, μ
�
t , u;πππ

�, ρρρ) ≤ 0, ∀u ∈ U , ∀s ∈ S, ∀t ∈ T .
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Equilibrium MFNE AMFCE

Distribution π0
0(a = L|s = ·) π1

0(a = L|s = ·) π2
0(a = L|s = ·) π0(a = L|s = ·, z = 0) π0(a = L|s = ·, z = 1) ρ0(z = 0) ρ0(z = 1)

Value 1 0 1/2 2/3 1/3 1/2 1/2

Table 1: AMFCE and MFNE in the Ocean Ranch. The AMFCE shown in this table is not an MFNE.

• (Population side) {μ∗
t }Tt=0 satisfies μ∗

t (·) =
∑

s∈S,a∈A P (·|s, a, μ∗
t−1)π

∗
t−1(a|s, zt−1)μ

∗
t−1(s)

given the correlated signals {zt}Tt=0 and with initial condition μ∗
0 = μ0.

A toy example named Ocean Ranch is provided below to demonstrate the concept of AMFCE.

Example 1. Suppose there exists a marine ranch with two sectors. The regulator of the marine
ranch adjusts the size of the fish entering the two different sectors by giving recommendations for
fish. The state space of fish is S = {C,L,R}, and the action space is A = {L,R}. Initial mean field
μ0(C) = 1. The reward r(s, a, μ) = 1{s=L}μ(L)+1{s=R}μ(R) and T = {0, 1}. The environment
dynamic is deterministic: P (st+1 = R | st = ·, a = R) = 1, P (st+1 = L | st = ·, a = R) = 0,
P (st+1 = R | st = ·, a = L) = 0, P (st+1 = L | st = ·, a = L) = 1.

We prove that in Example 1, the regulator in an AMFCE gives recommendations as follows (see the
detailed proof in Appendix C). First, a random variable z is sampled from the correlated signal space
Z = {0, 1} with equal probability ρ0(z = 0) = ρ0(z = 1) = 0.5, and the regulator gives the action
recommendation for each fish according to the policy π0(a = L|z = 0) = 2/3, π0(a = R|z = 0) =
1/3, π0(a = L|z = 1) = 1/3, π0(a = R|z = 1) = 2/3. Then fish has no incentive to deviate from
the recommendation, so an AMFCE is achieved. It is worth noting that the above AMFCE solution is
not a classic MFNE, because there are only three MFNEs which are shown in Table 1.

3.2 PROPERTIES OF AMFCE

This section focuses on the properties of AMFCE, including the conditions to guarantee the existence
and its relationship to classic MFNE.

In order to provide the existence of AMFCE solutions, we define the best response operator

BR(πππ;ρρρ) = argmaxπππ′ Eπππ′,ρρρ

[∑T
t=0 γ

tr(st, at, μt)
]
, where the expecation is taken with respect to

zt ∼ ρt(·), st ∼ P (·|st−1, at−1, μt−1), at ∼ π′
t(·|st, zt), μt = Φ(μt−1, πt−1, zt−1). Unless other-

wise stated, the expectation Eπππ,ρρρ is taken with respect to zt ∼ ρt(·), st ∼ P (·|st−1, at−1, μt−1), at ∼
πt(·|st, zt), μt = Φ(μt−1, πt−1, zt−1). Then the existence of the solution will be derived using
Kakutani’s fixed point theorem (Kakutani, 1941) with the operator BR. We next provide a sufficient
condition for the existence of AMFCE.

Theorem 1. If the functions r(s, a, μ) and P (s′|s, a, μ) are bounded and continuous with respect to
μ, there exists an AMFCE solution.

The AMFCE is a more general equilibrium concept than MFNE, which is illustrated in corollary 1.

Corollary 1. If (π,μ) is an MFNE, then it leads to an AMFCE solution (π, ρρρ) with |Z| = 1 and
ρt(z) = 1 for all t ∈ T where z ∈ Z is the single element in the signal space.

The proof is deferred to Appendix D.3. This proposition implies that the MFNE is a subset of
AMFCE. The example in Example 1 shows that AMFCE may not be an MFNE.

3.3 MAXIMUM ENTROPY MEAN FIELD CORRELATED EQUILIBRIUM

Similar to the classic MFG setting, there may be multiple AMFCEs in our setting. Consequently,
AMFCE is facing the equilibrium selection issue. One of the commonly used selection criteria
is maximum entropy. For example, maximum entropy has been introduced to select correlated
equilibrium in the normal form game (Ortiz et al., 2007) and Markov game (Ziebart et al., 2011). We
integrate the maximum entropy principle into the AMFCE as follows.

Definition 5. The maximum entropy AMFCE (MaxEnt-AMFCE) is the one that maximizes the entropy
(π∗, ρρρ∗) = argmax(π,ρρρ)∈ΠAMFCE

H(πππ,ρρρ), with H(πππ,ρρρ) =
∑T

t=0 Eπππ,ρρρ[− log(πt(at|st, zt)ρt(zt))],
ΠAMFCE the set of all AMFCE solutions.
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The MaxEnt-AMFCE can avoid the equilibrium selection problem as it is unique under certain
conditions. Denote Δ(πππ,ρρρ) = maxu,s,t Δt(s, μt, u;πππ,ρρρ), where μt = Φ(μt−1, πt−1, zt−1).

Corollary 2. MaxEnt-AMFCE is a unique equilibrium solution if Δ(πππ,ρρρ) is convex w.r.t. (πππ,ρρρ).

The proof is deferred to Appendix D.4. Directly optimizing the entropy is difficult because the policy
πt and ρ are coupled. So we decouple this term by the following proposition.

Proposition 1. The entropy can be decoupled: H(πππ,ρρρ) =
∑T

t=0[H(ρt) + Eπππ,ρρρH(πt|st, zt)].

H(ρt) is the entropy of the correlation device, and H(πt|st, zt) =
−∑at∈A πt(at|st, zt) log(πt(at|st, zt)) is the entropy of πt(·|st, zt). (See proof in Appendix D.5).

4 IMITATION LEARNING FOR MEAN FIELD GAME

This section proposes a new framework based on imitation learning to recover AMFCE from collected
expert demonstrations. To avoid the equilibrium selection problem, we choose the MaxEnt-AMFCE
solution introduced in Section 3.3.
To emphasize the role of unknown reward function in imitation learning, we use MFRL(r,ρρρ) to
denote the policy of MaxEnt-AMFCE under the reward function r and correlation device ρρρ:

MFRL(r,ρρρ) = argmin
πππ

(πππ,ρρρ)∈ΠAMFCE

α

T∑
t=0

EH(πt|st, zt) (6)

The temperature constant α ≥ 0 is to control the entropy. The constraint on the AMFCE set makes
the optimization problem (6) challenging. To address this, we provide an equivalent formulation in
Proposition 2 and derive a Lagrangian reformulation of (6).

4.1 CORRELATED MEAN FIELD IMITATION LEARNING

We denote J(πππ,ρρρ) = E

[∑T
t=0 γ

tr(st, at, μt)
]
, and R(a0:T ,πππ,ρρρ) as the margin of expected re-

turn between choosing actions a0:T := {at}t∈T and policy πππ under the correlation device ρρρ:

R(a0:T ,πππ,ρρρ) � E

[∑T
t=0 γ

tr(st, at, μt)
∣∣∣a0:T ] − J(πππ,ρρρ), where the expectation is taken with

respect to zt ∼ ρt(·), st ∼ P (·|at−1, st−1, μt−1). And μt = Φ(μt−1, πt−1, zt−1). Then we can get
an equivalent constraint of AMFCE.

Proposition 2. (πππ,ρρρ) is an AMFCE solution if and only if R(a0:T ,πππ,ρρρ) ≤ 0, ∀a0:T ∈ AT .

The proof is deferred to Appendix D.6. Compared to the original formulation (6), it is easier to work
with a dual representation without constraints:

L(πππ,ρρρ, λ, r) �
∑

τk∈DE

λ(τk)

(
E

[ T∑
t=0

γtr(st, at, μt)

]
− J(πππ,ρρρ)

)
− α

T∑
t=0

EH(πt|st, zt) (7)

where DE is a set of action-signal sequence τk = {a0, z0, a1, z1, a2, z2, · · · , aT , zT }. We show that
(7) captures the difference of expected returns between two policies by selecting λ as follows.

Theorem 2. For policy πππ and correlation device ρρρ, let λ∗
πππ(τk) =

∏T
t=0 ρt(zt)π

∗
t (at|st, zt) be the

probability of generating the sequence τk if the individual policy isπππ∗. Then we have L(πππ,ρρρ, λ∗
πππ, r) =

E[
∑T

t=0 γ
tr(st, at, μt)]− J(πππ,ρρρ)− α

∑T
t=0 Eπππ,ρρρH(πt|st, zt), where the expectation is taken with

respect to zt ∼ ρt(·), st ∼ P (·|st−1, at−1, μt−1), at ∼ π∗
t (·|st, zt), μt = Φ(μt−1, πt−1, zt−1).

The proof of Theorem 2 is deferred to Appendix D.7.

In the setting of imitation learning, the reward signal is not accessible. To construct a suitable reward
function rationalizing the expert policy, we need to define a suitable AMFCE inverse reinforcement
learning (AMFCE-IRL) operator which designs a reward to maximize the margin of expected return
between expert policy and the other policies:

AMFCE-IRLψ(π
E , ρρρE) = argmaxr

(
− ψ(r)−max

πππ
L(πππE , ρρρE , λ∗

πππ, r)
)
, (8)
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Algorithm 1: Correlated mean field imitation learning (CMFIL)

Data: Expert trajectories DE = {s0, z0, a0, s1, z1, a1, . . . sT , zT , aT } Initial mean field μ0, The
weight of gradient penalty β

Result: Policy πππθ, correlation device πππφ

Initialization the parameter θ of policy πππθ and the parameter φ of correlation device ρρρφ;
for each iteration do

Obtain trajectories from (π, ρρρ) by the process:

s0 ∼ μ0, at ∼ πθ(·|st, zt), st+1 ∼ P (· | st, μt), zt ∼ ρφt (·);
Approximate μt with the signature μ̂t = S({zi}ti=0) using (11);
for i in {0, 1, 2, . . . } do

Update ω to increase the objective

Eπππ,ρρρE

[ T∑
t=0

γt logDω(st, at, μ̂t)
]
+ EπππE ,ρρρE

[ T∑
t=0

γt log
(
1−Dω(st, at, μ̂t)

)]

end
for t in {0, 1, 2, . . . } do

Update θ by SAC with small step size:

E

[
∇θρ

φ
t (zt)π

θ
t (at|st, zt)Qπππθ

t (st, at, μ̂t, zt;πππ) + α∇θH(πθ
t |st, zt)

]
where the expectation is taken with respect to s0 ∼ μ0, at ∼ πθ(·|st, zt),
st+1 ∼ P (· | st, μt), zt ∼ ρφt (·);

Update φ with (10);
end

end

(πππE , ρρρE) ∈ ΠMaxEnt-AMFCE is the MaxEnt-AMFCE from which expert demonstrations are sampled.
We choose a special regularizer (Ho & Ermon, 2016):

ψGA(r) �
{

E[
∑T

t=0 γ
tg(r(st, at, μt))] if r > 0

+∞ otherwise
, where g(x) =

{
x− log (1− e−x) if x > 0

+∞ otherwise

After getting the reward function r̃ = AMFCR-IRL(πππE , ρρρE), we can characterize the AMFCE
policy MFRL(r̃, ρρρE) with the learned r̃.

Proposition 3. The policy πππ learned on the reward function recovered by AMFCE-IRL can be
characterized as follows:

MFRL◦AMFCE-IRLψ(πππ
E , ρρρE):= argmin

πππ
max

r
J(πππE , ρρρE)− E[

T∑
t=0

γtr(st, at, μt)]− ψGA(r)

where the expectation is taken with respect to zt ∼ ρEt (·), st ∼ P (·|st−1, at−1, μt−1), at ∼
πt(·|st, zt), μt = Φ(μt−1, π

E
t−1, zt−1).

The objective to recover MaxEnt-AMFCE is defined as:

min
πππ

max
ω

Eπππ,ρρρE

[ T∑
t=0

γt logDω(st, at, μt)
]
+ EπππE ,ρρρE

[ T∑
t=0

γt log
(
1−Dω(st, at, μt)

)]
(9)

where Dω is the discriminator network parameterized with ω, with input (st, at, μt) and output a real
number in (0, 1]. The first expectation is taken with respect to zt ∼ ρEt (·), st ∼ P (·|st−1, at−1, μt−1),
at ∼ πt(·|st, zt), μt = Φ(μt−1, π

E
t−1, zt−1).

The proof is deferred to Appendix D.8. From a theoretical point of view, we assume that neural
network Dω has the capacity to approximate the reward function. Under this assumption, the AMFCE
(πππE , ρρρE) could be recovered by optimizing the above objective (9). Note that simply applying GAIL
to solve AMFCE cannot recover ρρρE , so we derive ρρρ using a gradient descent method (with proof in
Appendix D.9):
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Experiment Metric CMFIL MFIRL Logistic Regression Multinomial MaxEnt ICE

Squeeze with
Log Loss(π0(· | z = 0)) 0.643 (0.000) 1.450 (2.857) 4.484 (0.054) 0.686 (0.002) -
Log Loss(π0(· | z = 1)) 0.647 (0.003) 3.245 (1.650) 0.000 (0.000) 2.577 (0.149) -

T = {0, 1, 2} Log Loss(π1(· | z = 0)) 0.020 (0.001) 1.072 (2.229) 7.091 (0.107) 0.282 (0.087) -
Log Loss(π1(· | z = 1)) 0.045 (0.005) 7.871 (4.368) 10.638 (0.163) 0.001 (0.001) -

Squeeze with Log Loss(π(· | z = 0)) 0.648 (0.002) 3.828 (1.582) 1.985 (0.165) 0.991 (0.102) 0.946 (0.073)
T = {0, 1} Log Loss(π(· | z = 1)) 0.638 (0.001) 2.009 (1.191) 2.139 (0.169) 2.947 (0.359) 0.648 (0.011)

RPS Log Loss(π) 1.083 (0.000) 7.127 (0.753) 4.805 (0.131) 5.850 (0.306) 1.537 (0.019)

Flock

Log Loss(π(·|s = ·, z = 0)) 0.002 (0.000) 5.591 (0.869) 0.000 (0.000) 1.383 (0.004) -
Log Loss(π(·|s = ·, z = 1)) 0.016 (0.003) 11.687 (1.158) 7.887 (0.031) 1.127 (0.007) -
Log Loss(π(·|s = ·, z = 2)) 0.045 (0.009) 7.500 (3.955) 18.339 (0.010) 0.951 (0.009) -
Log Loss(π(·|s = ·, z = 4)) 0.026 (0.003) 3.847 (3.967) 35.253 (0.037) 1.264 (0.011) -

Table 2: Results for numerical tasks.

Lewisham Hammersmith Ealing Redbridge Enfield Big Ben
CMFIL 0.742 (0.011) 0.897 (0.002) 1.091 (0.001) 0.052 (0.011) 0.394 (0.003) 1.599 (0.000)
MFIRL 12.346 (0.294) 9.853 (2.892) 11.625 (0.435) 11.720 (0.633) 11.750 (0.603) 7.482 (1.539)

Table 3: The results of predicted traffic flow for Traffic Network.

Proposition 4. If ρρρφ is parameterized with φ, the gradient to optimize φ given state s is

Ez∼ρφ
t (·)

[
∇φ log ρ

φ
t (z)

(
− α log ρφt (z) + αH(πt(a|s, z)) + Ea∼πt(·|s,z)Q

πππ
t (s, a, μ, z;πππ)

)]
.

(10)

Now we propose the imitation learning algorithm for AMFCE (Algorithm 1). It is worth noting that
this algorithm can recover AMFCE that does not have the maximum entropy by setting α = 0.

4.2 REPRESENTATION OF THE MEAN FIELD INFORMATION

As the mean field appears in the input of discriminator Dω(s, a, μ) in (9), it is necessary to find an
efficient way to represent the mean field information.

In the Kolmogorov equation (1), the mean field flow {μt}Tt=0 is deterministic given fixed correlated
signal sequence {zt}Tt=0 and given the initial mean field distribution μ0. Therefore, the mean field
distribution μt can be characterized by zzz0:t = {zi}ti=0. Motivated by this, we use the signatures of
zzz0:t from the rough path theory (Kidger & Lyons, 2021; Min & Hu, 2021) to represent the signal
sequence and hence to characterize the mean field flow with μ̂t = S(zzz0:t). The signatures provide
a graduated summary of the path zzz0:t. Therefore, the input of discriminator Dω in (9) could be
replaced with (st, at, μ̂t). It is worth noting that the signature has been recently applied to the field
of machine learning to extract characteristic features of sequential data in a non-parametric fashion
(Min & Ichiba, 2020; Ni et al., 2020). The use of signatures to encode historical information avoids
heavy computational load which often suffered in tasks like training recurrent neural networks. In
addition, the training stability can be significantly enhanced since the mapping is invariant.

Definition 6. Let x = {x1, . . . , xL} with xi ∈ R
d, for all i and L ≥ 2. Denote f : [0, 1] → R

d to
be the continuous piecewise affine function such that f( i−1

L−1 ) = xi, ∀i ∈ {1, 2, . . . , L}.

S(f)0,1 = (1,M1, · · · ,Mn, . . .) (11)

where Mn =
∫
s<s1<···<sn<t

df
dt (s1)⊗ · · · ⊗ df

dt (sn)dt1 · · · dtn.

The signature of the path x is defined to be S(f)0,1, denoted as S(x).

Signature of sequential data includes infinite terms as shown in the (11), but fortunately, terms Mn

enjoy factorial decay. In practice we select the first n terms of the signature without losing crucial
information of the data (Kidger et al., 2019).

5 EXPERIMENTS

We evaluate the effectiveness of our algorithm in four environments: Sequential Squeeze, RPS,
Flock, and Traffic Flow Prediction. We compare our CMFIL framework with MFIRL (Chen et al.,

8
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(a) Recovered ρ for Squeeze (b) Recovered ρ for Flock

Figure 1: The distribution of correlation device ρ recovered by CMFIL.

2021), as it is so far the only method to solve MFNE without requiring the knowledge on the reward.
Since MFIRL does not consider correlated signals, we regard the correlated signal as an extension
of the global state for their framework. We also compare CMFIL with MaxEnt ICE, smoothed
multinomial distribution over the joint actions and logistic regression (Waugh et al., 2013). As
MaxEnt ICE is designed to recover correlated equilibrium in matrix game, we only compare CMFIL
with MaxEnt ICE on tasks that can be reduced to matrix game, such as RPS and Sequential Squeeze
with T = {0, 1}. We use the log loss, Ea∼π(·|s,z)[− log(π̂(a|s, z))], to mearsure the difference over
recovered policy π̂ and ground truth π. The Appendix F contains more details.

We evaluate CMFIL on several tasks: Sequential Squeeze (Squeeze for short), Rock-Paper-Scissors
(RPS), Flock and a real-world traffic flow prediction task. The first three experiments are numerical
experiments. The traffic flow prediction task is to predict the traffic flow a complex traffic network
based on the real world data. Details are presented in the Appendix E.

Squeeze: Sequential Squeeze is a game with multi-steps. The purpose to implement this game is to
verify the ability to recover expert policy through demonstrations sampled from a multi-step game.
The learning curve is shown in the Fig.3, and the results are shown in Table 2. The example of Ocean
Ranch in Example 1 is a special case of Sequential Squeeze, where the horizon equals to 2.

RPS: This experiment is a traditional mean field game task (Chen et al., 2021; Cui & Koeppl, 2021).
The demonstrations are sampled from MFNE, and the cardinality of the correlated signal set is one.
We use RPS to verify that the algorithm proposed can recover the expert demonstrations sampled
from MFNE, which also supports the results in Corollary 1.

Flock: The experiment is based on the movement of fish (Perrin et al., 2021). In nature, fish
spontaneously aligns velocity according to the overall movement of the fish school, so that the final
fish school forms a stable movement velocity. The video provided shows the convergence process
(https://sites.google.com/view/mean-field-imitation-learning/).

Traffic Flow Prediction: In the Traffic Flow Prediction task, we use the traffic data of London from
Uber Movement. The goal of this experiment is to predict the traffic flow of a traffic network (with
six locations) in real-world. Given the large-scale and high-complexity of this task, we compare
CMFIL and MFIRL under this task to test their scalability.

The results for numerical tasks are shown in Table 2. CMFIL is better than other methods in general.
Supervised learning methods such as logistic regression and smoothed multinomial distribution easily
overfit. They may outperform CMFIL in some metrics but suffer from a higher loss than CMFIL in
general. MFIRL shows larger deviations and higher loss than CMFIL in Table 2 and Table 3. The
reason is that MFIRL can not recover AMFCE, and it can not handle correlated signals properly.
Although we have regarded correlated signal as an extension of state. The reward recovered by
MFIRL is biased because the ground truth reward is independent of the correlated signal. Furthermore,
CMFIL adds a regularizer ψ for the reward function to avoid overfitting, so it also outperforms MFIRL
in RPS in which expert demonstrations are sampled from MFNE. MaxEnt ICE also performs poorly
because it has a limited reward function class by assuming a linear reward structure. Figure 1 shows
that CMFIL can recover the correlation device with a fast convergence speed.

9
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imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
3099–3109, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
d2cdf047a6674cef251d56544a3cf029-Abstract.html.

Lars M. Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans
do actually converge? In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
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