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Abstract

This work studies discrete-time discounted Markov decision processes with contin-
uous state and action spaces and addresses the inverse problem of inferring a cost
function from observed optimal behavior. We first consider the case in which we
have access to the entire expert policy and characterize the set of solutions to the
inverse problem by using occupation measures, linear duality, and complementary
slackness conditions. To avoid trivial solutions and ill-posedness, we introduce a
natural linear normalization constraint. This results in an infinite-dimensional linear
feasibility problem, prompting a thorough analysis of its properties. Next, we use
linear function approximators and adopt a randomized approach, namely the sce-
nario approach and related probabilistic feasibility guarantees, to derive ε-optimal
solutions for the inverse problem. We further discuss the sample complexity for
a desired approximation accuracy. Finally, we deal with the more realistic case
where we only have access to a finite set of expert demonstrations and a generative
model and provide bounds on the error made when working with samples.

1 Introduction

In the standard reinforcement learning (RL) setting [1, 2, 3, 4], a cost signal is given to instruct agents
on completing a desired task. However, oftentimes, it is either too challenging to optimize a given
cost (e.g., due to sparsity), or it is prohibitively hard to manually engineer a cost function that induces
complex and multi-faceted optimal behaviors. At the same time, in many real-world scenarios,
encoding preferences using expert demonstrations is easy and provides an intuitive and human-centric
interface for behavioral specification [5, 6, 7]. Considering the inverse reinforcement (IRL) problem
involves deducing a cost function from observed optimal behavior. IRL is actively researched
with applications in engineering, operations research, and biology [8, 9, 10]. There are two main
motivations behind inverse decision-making. The first one concerns situations where the cost function
is of interest by itself, e.g., for scientific inquiry, modeling of human and animal behavior [11, 12]
or modeling of other cooperative or adversarial agents [13]. The second one concerns the task of
imitation or apprenticeship learning [14] by first recovering the expert’s cost function and then using
it to reproduce and synthesize the optimal behavior. For instance, in engineering, IRL can be used to
explain and imitate the observed expert behavior, e.g., in the highway driving task [14, 15], parking
lot navigation [16], and urban navigation [17]. Other examples can be found in humanoid robotics
and understanding of human locomotion [18]. Despite extensive research efforts, our understanding
of IRL still has significant limitations. One major gap lies in the absence of algorithms designed
for continuous state and action spaces, which are crucial for numerous promising applications like
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autonomous vehicles and robotics that operate in continuous environments. Most existing state-of-
the-art IRL algorithms for the continuous setting often adopt a policy-matching approach instead of
directly solving the IRL problem [19, 20, 21, 22, 23, 24, 25, 26, 27]. However, this approach tends to
provide a less robust representation of agent preferences [26], since the recovered policy is highly
dependent on the environment dynamics. State-of-the-art IRL algorithms are empirically successful
but lack formal guarantees. Theoretical assurances are crucial for practical implementation, especially
in safety-critical systems with potential fatal consequences.

Contributions. This work deals with discrete-time Markov decision processes (MDPs) on con-
tinuous state and action spaces under the total expected discounted cost optimality criterion and
studies the inverse problem of inferring a cost function from observed optimal behavior. Under
the assumption that the control model is Lipschitz continuous, we propose an optimization-based
framework to infer the cost function of an MDP given a generative model and traces of an optimal
policy. Our approach is based on the linear programming (LP) approach to continuous MDPs [28],
complementary slackness optimality conditions, related developments in randomized convex opti-
mization [29, 30, 31] and uniform finite sample bounds from statistical learning theory [32].
To this aim, we first consider the case in which we have access to the entire optimal policy πE and
starting from the LP formulation of the MDP, we characterize the set of solutions to the inverse
problem by using occupation measures, linear duality and complementary slackness conditions. This
results in an infinite-dimensional linear feasibility problem. Although from a theoretical point of
view our approach succeeds in characterizing inverse optimality in its full generality, in practice the
following important challenges need to be addressed. First, the inverse problem is ill-conditioned
and ill-posed, since each task is consistent with many cost functions. Thus a main challenge is
coming up with a meaningful one. To this end, we enforce an additional natural linear normalization
constraint in order to avoid trivial solutions and ill-posedness. Another challenge is the infinite-
dimensionality of the LP formulation, which makes it computationally intractable. To alleviate this
difficulty, we propose an approximation scheme that involves a restriction of the decision variables
from an infinite-dimensional function space to a finite dimensional subspace (tightening), followed
by the approximation of the infinitely-uncountably-many constraints by a finite subset (relaxation).
In particular, we use linear function approximators and adopt a randomized approach, namely the
scenario approach [29, 33], and related probabilistic feasibility guarantees [30], to derive ε-optimal
solutions for the inverse problem, as well as explicit sample complexity bounds for a desired approxi-
mation accuracy. Finally, we deal with the more realistic case where we only have access to a finite
set of expert demonstrations and a generative model and provide bounds on the error made when
working with samples.

Related literature. Our principal aim is to address problems with uncountably infinitely many
states and actions. Existing IRL algorithms treat the unknown cost function as a linear combina-
tion [34, 35, 15, 17, 36, 37] or nonlinear function [38, 39, 40] of features. In particular, there are three
broad categories of formulations. In feature expectation matching [35, 15, 17] one attempts to match
the feature expectation of a policy to the expert, while in maximum margin planning [36, 38, 40] the
goal is to learn mappings from features to cost functions so that the demonstrated policy is better
than any other policy by a margin defined by a loss-function. Moreover, a probabilistic approach is
to interpret the cost function as parametrization of a policy class such that the true cost function maxi-
mizes the likelihood of observing the demonstrations [17, 37, 39, 41]. Most existing IRL methods
that recover a cost function, are either designed exclusively for MDPs with finite state and action
spaces, or rely on an oracle access to an RL solver which is used repeatedly in the inner loop of an
iterative procedure. An exception are the works [42, 43, 44, 22, 25, 45, 26], that perform well in the
experimental settings considered, without providing theoretical guarantees. Relying on oracle access
to an RL solver is a significant computational burden for applying these methods to MDPs with con-
tinuous state and action spaces since solving a continuous MDP is a challenging and computationally
expensive problem on its own. As a result, IRL over uncountable spaces remains largely unexplored.
In this work we aim to contribute to this line of research and propose a method that avoids repeatedly
solving the forward problem and simultaneously provides probabilistic performance guarantees on
the quality of the recovered solution.
Linear duality and complementarity were first proposed in [46] for solving finite-dimensional inverse
LPs. The idea was then extended to inverse conic optimization problems in [47] by using KKT
optimality conditions. The fundamental difference between these works and the present paper is
that they deal with finite-dimensional convex optimization programs where the agent has complete
knowledge of the optimal behavior as a finite-dimensional vector. In our setting we have the additional
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difficulty of the infinite-dimensional and data-driven nature of the problem. In [48] the authors use
occupation measures and complementarity in linear programming to formulate the inverse deter-
ministic continuous-time optimal control problem. Under the assumption of polynomial dynamics
and semi-algebraic state and input constraints, they propose an approximation scheme based on
sum-of-squares semidefinite programming. Contrary to [48], we consider the problem of inverse
discrete-time stochastic optimal control. In such a stochastic environment, assuming polynomial
dynamics clearly is restrictive, excluding any setting with Gaussian noise, e.g., the LQG problem.
Our approach is not limited to the case of polynomial dynamics and semi-algebraic constraints but is
able to tackle the general case, while also providing performance guarantees as in [48].
Our work is closely related to the recent theoretical works on IRL [49, 50, 51, 52, 53, 54, 55, 56].
However, these papers consider either tabular MDPs [49, 50, 52, 53, 54, 55] or MDPs with continuous
states and finite action spaces [51, 56]. In contrast, our contribution delves into the theoretical analysis
of IRL in the intricate landscape of continuous state and action spaces. Notably, our framework, when
applied to finite tabular MDPs and a stationary Markov expert policy πE, simplifies to the inverse
feasibility set considered in [52, 53, 54] (see also Appx A.2). The methodology put forth in those
studies, extends the LP formulation previously explored in [12, 49, 50, 51], which primarily dealt with
deterministic expert policies of the form πE ≡ a1. In our work, by using occupancy measures instead
of policies and employing Lagrangian duality, we are able to characterize inverse feasibility for
general continuous MDPs regardless of the complexity of the expert policy. Moreover, our framework
empowers us to leverage offline expert demonstrations to compute an approximate feasibility set and
recover a cost through a sample-based convex program. This flexibility surpasses previous theoretical
IRL settings, where either πE is assumed to be fully known [49, 51, 52] or active querying of πE is
possible for each state [53, 54]. Finally, our assumption of a Lipschitz MDP model is milder and
more general than the infinite matrix representation considered in [51], thus accommodating a broader
range of MDP models. Overall, we establish a link between our methodology and the existing body
of literature on LP formulations for IRL, while also accounting for continuous states and action
spaces and more general expert policies. Finally, we would like to highlight a key distinction between
our work and recent theoretical IRL papers [52, 53, 54, 55]. Unlike these recent works, our study
goes beyond the examination of the properties of the inverse feasibility set and its estimated variant.
Our contribution extends to tackling the reward ambiguity problem, a well-known limitation of the
IRL paradigm, and provides theoretical results in this direction. Additionally, our work introduces
function approximation techniques that come with robust theoretical guarantees. Finally, we study
how constraint sampling in infinite-dimensional LPs can be exploited to derive a single nearly optimal
solution with probabilistic performance guarantees.

Basic definitions and notations. Let (X, ρ) be a Borel space, i.e., X is a Borel subset of a complete
and separable ρ-metric space, and let B(X) be its Borel σ-algebra. We denote by M(X) the Banach
space of finite signed Borel measures on X equipped with the total variation norm and by P(X)
the convex set of Borel probability measures. Let δx ∈ P(X) be the Dirac measure centered at
x ∈ X . Measurability is always understood in the sense of Borel measurability. An open ball in
(X, ρ) with radius r and center x0 is denoted by Br(x0) = {x ∈ X : ρ(x, x0) < r}. Given a
measurable function u : X → R, its sup-norm is given by ∥u∥∞ ≜ supx∈X |u(x)|. Moreover,

we define the Lipschitz semi-norm by |u|L ≜ supx ̸=x′

{
|u(x)−u(x′)|

ρ(x,x′)

}
and the Lipschitz norm by

∥u∥L ≜ ∥u∥∞ + |u|L. Let Lip(X) be the Banach space of real-valued bounded Lipschitz continuous
functions on X together with the Lipschitz norm ∥·∥L. Then, (M(X),Lip(X)) forms a dual pair of
vector spaces with duality brackets ⟨µ, u⟩ ≜

∫
X u(x)dµ, for all µ ∈ M(X), u ∈ Lip(X). Moreover,

if M(X)+ is the convex cone of finite nonnegative Borel measures on X , then its dual convex
cone is the set Lip(X)+ of nonnegative bounded and Lipschitz continuous functions on X . Under
the additional assumption that X is compact, the Wasserstein norm ∥·∥W on M(X) is dual to the
Lipschitz norm, i.e., ∥µ∥W ≜ sup∥u∥L≤1 ⟨µ, u⟩. If X,Y are Borel spaces, a stochastic kernel on X

given Y is a function P (·|·) : B(X)× Y → [0, 1] such that P (·|y) ∈ P(X), for each fixed y ∈ Y ,
and P (B|·) is a measurable real-valued function on Y , for each fixed B ∈ B(X).

2 Markov decision processes and linear programming formulation

Continuous Markov decision process. Consider a Markov decision process (MDP) given by a
tuple Mc ≜

(
X ,A,P, γ, ν0, c

)
, where X is a Borel space called the state space, A is a Borel space
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called the action space, P is a stochastic kernel on X given X ×A called the transition law, γ ∈ (0, 1)
is the discount factor, ν0 ∈ P(X ) is the initial probability distribution, and c : X ×A → R is the
cost function. The model Mc represents a controlled discrete-time stochastic system with initial state
x0 ∼ ν0(·). At time step t, if the system is in state xt = x ∈ X , and the action at = a ∈ A is taken,
then a corresponding cost c(x, a) is incurred, and the system moves to the next state xt+1 ∼ P(·|x, a).
Once transition into the new state has occurred, a new action is chosen, and the process is repeated.
A stationary Markov policy π is a stochastic kernel on A given X and π(·|x) ∈ P(A) denotes the
probability distribution of the action at taken at time t, while being in state x. We denote the space
of stationary Markov policies by Π0. Given a policy π, we denote by Pπ

ν0
the induced probability

measure1 on the canonical sample space Ω ≜ (X ×A)∞, i.e., Pπ
ν0
[·] = Prob[· | π, x0 ∼ ν0] is the

probability of an event when following π starting from x0 ∼ ν0. The expectation operator with
respect to the trajectories generated by π when x0 ∼ ν0, is denoted by Eπ

ν0
. If ν0 = δx for some

x ∈ X , then we will write for brevity Pπ
x and Eπ

x .
The optimal control problem we are interested in is 2

V ⋆
c (ν0) ≜ min

π∈Π0

V π
c (ν0), (MDPc)

where V π
c (ν0) ≜ Eπ

ν0
[
∑∞

t=0 γ
tc(xt, at)]. A policy π⋆ is called γ-discounted ν0-optimal if

V π⋆

c (ν0) = V ⋆
c (ν0), and the optimal value function V ⋆

c : X → R is given by V ⋆
c (x) ≜ V ⋆

c (δx).
We impose the following assumptions on the MDP model which hold throughout the article. These
are the usual continuity-compactness conditions [59], together with the Lipschitz continuity of the
elements of the MDP; see, e.g., [60]. We recall that the transition law P acts on bounded measurable
functions u : X → R from the left as Pu(x, a) ≜

∫
X u(y)P(dy|x, a), for all (x, a) ∈ X ×A.

Assumption 2.1 (Lipschitz control model).
(A1) X and A are compact subsets of Euclidean spaces;

(A2) the transition law P is weakly continuous, meaning that Pu is continuous on X ×A, for
every continuous function u : X → R. Moreover, P is Lipschitz continuous, i.e., there exists
a constant LP > 0 such that for all (x, a), (y, b) ∈ X × A and all u ∈ Lip(X ), it holds
that |Pu(x, a)− Pu(y, b)| ≤ LP|u|L(∥x− y∥2 + ∥a− b∥2);

(A3) the cost function c is in Lip(X × A) with Lipschitz constant Lc > 0. That is, for all
(x, a), (y, b) ∈ X ×A, |c(x, a)− c(y, b)| ≤ Lc(∥x− y∥2 + ∥a− b∥2);

Note that Assumption2.1 (A2) is fulfilled when the transition law P has a density function f(y, x, a)
that is Lipschitz continuous in y uniformly in (x, a) [60]. This encompasses various probability
distributions, such as the uniform, Gaussian, exponential, Beta, Gamma, and Laplace distribu-
tions, among others. Additionally, it applies to the infinite matrix representation considered in[51].
Consequently, Assumption 2.1 accommodates a broad range of MDP models and allows for the
consideration of smooth and continuous dynamics that reflect the characteristics of several real-world
applications, such as robotics, or autonomous driving. Importantly, Assumption 2.1 ensures that the
value function V ⋆

c is in Lip(X ) and is uniquely characterized by the Bellman optimality equation
V ⋆
c (x) = mina∈A{c(x, a) + γ

∫
X V ⋆

c (y)P(dy|x, a)}, for all x ∈ X [60, Thm. 3.1] and [61].

Occupancy measures. For every policy π, we define the occupancy measure µπ
ν0

∈ M(X ×A)+
by µπ

ν0
(E) ≜

∑∞
t=0 γ

tPπ
ν0

[(xt, at) ∈ E], E ∈ B(X×A). The occupancy measure can be interpreted
as the discounted visitation frequency of the set E when acting according to policy π. The set of
occupancy measures is characterized in terms of linear constraint satisfaction [62, Theorem 6.3.7].
To this end consider the convex set of measures, F ≜ {µ ∈ M(X × A)+ : Tγµ = ν0}, where
Tγ : M(X ×A) → M(X ) is a linear and weakly continuous operator given by

(Tγµ)(B) ≜ µ(B ×A)− γ

∫
X×A

P(B|x, a)µ( d(x, a)),

1Note that Pπ
ν0 is uniquely determined by the transition law P, the initial state distribution ν0 and the policy

π [57, Prop. 7.28].
2For the discounted policy optimization problem considered in this paper it suffices to restrict our search

to stationary Markov policies, [58, Thm. 5.5.3]. However, the expert policy πE can be nonstationary and
history-dependent.

4



Figure 1: Illustration of Theorem 3.1 for ε1 > ε2.

for all B ∈ B(X ). Then, F = {µπ
ν0

: π ∈ Π0}. Moreover,
〈
µπ
ν0
, c
〉
= V π

c (ν0), for every π.

The linear programming approach. A direct consequence is that (MDPc) can be stated equiva-
lently as an infinite-dimensional LP over measures

Jc(ν0) ≜ inf
µ∈M(X×A)+

{⟨µ, c⟩ : Tγµ = ν0}. (Pc)

In particular the infimum in (Pc) is attained and π⋆ is optimal for (MDPc) if and only if µπ⋆

ν0
is optimal

for the primal LP (Pc). The dual LP of (Pc) is given by

J ∗
c (ν0) ≜ sup

u∈Lip(X )

{⟨ν0, u⟩ : c− T ∗
γ u ≥ 0 on X ×A}, (Dc)

where the adjoint linear operator T ∗
γ : Lip(X ) → Lip(X ×A) of Tγ is given by

(T ∗
γ u)(x, a) ≜ u(x)− γ

∫
X
u(y)P(dy|x, a).

Under Assumption 2.1, T ∗
γ is well-defined and the dual LP (Dc) is solvable, i.e., the supremum is

attained, and strong duality holds. That is, Jc(ν0) = J ∗
c (ν0) = V ⋆

c (ν0). In particular, the value
function V ⋆

c is an optimal solution for the dual LP (Dc). More details on the LP formulations for
MDPs can be found in Appendix A.1.

3 Inverse reinforcement learning and characterization of solutions

We first define the inverse reinforcement learning (IRL) problem and the inverse feasibility set.

Definition 3.1 (IRL [12, 52]). An IRL problem is a pair B ≜ (M, πE), where M ≜ (X ,A,P, ν0, γ)
is an MDP without cost function and πE is an observed expert policy. We say that c ∈ Lip(X ×A) is
inverse feasible for B, if πE is a γ-discount ν0-optimal policy for (MDPc) with cost c. The set of all
c ∈ Lip(X ×A) that are inverse feasible is called the inverse feasibility set and is denoted by C(πE).

Next, we use the primal-dual LP approach to MDPs and complementary slackness to characterize
C(πE). To this end, we first define the ε-inverse feasibility set Cε(πE).
Definition 3.2. Let ε ≥ 0. We say that a cost function c is ε-inverse feasible for B = (M, πE) and
denote c ∈ Cε(πE) if and only if, c ∈ Lip(X ×A) and there exists u ∈ Lip(X ) such that{

⟨µπE
ν0
, c− T ∗

γ u⟩ ≤ ε,
c− T ∗

γ u ≥ −ε, on X ×A.
(1)

We are now ready to characterize the solutions to IRL, following arguments from [46, 47, 48].
Theorem 3.1 (Inverse feasibility set characterization). Let πE ∈ Π. Under Assumption 2.1 on the
Markov decision model Mc, the following assertions are equivalent

1. c ∈ C0(πE);

2. c ∈
⋂

ε>0 Cε(πE);
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3. πE is γ-discount ν0-optimal for (MDPc) with cost function c.

As a consequence, C(πE) = C0(πE) =
⋂

ε>0 Cε(πE). Moreover, C(πE) is a convex cone and ∥·∥L-
closed in Lip(X ×A).

As a result, a cost function is inverse feasible for B = (M, πE) if and only if it is ε-inverse feasible for
all ε > 0. The characterization of the inverse feasibility set is due to linear duality and complementary
slackness conditions. In particular, the constraint that holds pointwise in (19) is due to dual feasibility
while the constraint that holds in expectation is due to strong duality, The details are provided in the
proof of Theorem 3.1 in Appendix B.1.

Notably, when X and A are finite, and the expert policy πE is stationary Markov, our formulation
aligns with the finite-dimensional inverse feasibility set introduced in [52, 53, 54]. Furthermore, when
the expert is deterministic of the form πE(x) ≡ a1, for all x, then we recover the linear programs
discussed in [12, 49, 51] (see Appendix A.2).

Using occupancy measures instead of policies, we can assess inverse feasibility for continuous MDPs,
regardless of expert policy complexity. This approach allows us to utilize offline expert demonstrations
for computing an approximate feasibility set and deriving costs via a sample-based convex program
This flexibility surpasses previous theoretical settings, where either πE is assumed to be fully known
and deterministic [49, 51, 52] or active querying of πE is possible for each state [53, 54].

Proposition 3.1 (ε-inverse feasibility set characterization). Under Assumption 2.1, for any ε > 0, it
holds that a cost function c̃ is in Cε(πE) if and only if πE is 2−γ

1−γ ε-optimal for (MDPc̃) with cost c̃.

As ε → 0, the next proposition indicates a close approximation to the inverse problem solution.

Proposition 3.2. Let (εn)n be a sequence such that limn→∞ εn = 0 and let cn ∈ Cεn(πE). Then,
every accumulation point c of the sequence (cn)n is inverse feasible, i.e., c ∈ C(πE).

Finally we show that the ε-inverse feasibility set Cε(πE) satisfies the ε-optimality criterion considered
in [52, 53, 54]; see for example [53, Def. 2].

Proposition 3.3. Let ε > 0. It holds that infc∈C(πE) V
π̃
c (ν0)− V πE

c (ν0) ≤ 2−γ
1−γ ε, for all c̃ ∈ Cε(πE),

where π̃ is an optimal policy for the recovered cost c̃.

This condition ensures that when ε is small we avoid an unnecessarily large approximate feasibility
set since there is a possible true cost in C(πE) with a small error for every possible recovered cost
function in Cε(πE). 3

4 Towards recovering a nearly optimal cost function

Although we characterized the inverse and ε-inverse feasibility sets in Theorem 3.1 and Proposition 3.1
respectively, it is not clear yet how to compute them, as (19) is an infinite-dimensional feasibility LP.
In practice, the following challenges need to be addressed:

(a) The inverse problem is ill-conditioned and ill-posed since each task is consistent with many
cost functions, and thus a central challenge is to end up with a meaningful one. To avoid
trivial solutions, in Section 4.1 we motivate the addition of a linear normalization constraint.

(b) Another challenge appears because the LP formulation is infinite-dimensional, hence com-
putationally intractable. In Section 4.2 we address this problem by proposing a tractable
approximation method with probabilistic performance bounds.

(c) In practice, complete knowledge of πE and P is often unavailable. In Section 4.3, we tackle
this challenge by assuming that we have access to a finite set of traces of the expert policy
and a generative-model oracle. We use empirical counterparts of πE and P and provide error
bounds to quantify our approach’s accuracy with sample data.

The main building blocks of our methodology are depicted in Figure 2.

3The second condition in [53, Def. 2] is trivially satisfied with zero error since C(πE) ⊂ Cε(πE).
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Figure 2: Main building blocks of our methodology

4.1 Normalization constraint

A well-known limitation of IRL is that it suffers from the ambiguity issue, i.e., the problem admits
infinitely many solutions. For example, any constant cost function, including the zero cost, is inverse
feasible. In addition, as it is apparent from the characterization of C(πE) = C0(πE) in Theorem 3.1,
for any u ∈ Lip(X ) and c ∈ C(πE), the cost c + T ∗

γ u is inverse feasible. This phenomenon, also
known as reward shaping [63] refers to the modification or design of a reward function to provide
additional guidance or incentives to an agent during learning. In addition, since C(πE) is a convex
cone and closed for the sup-norm (Theorem 3.1) the set of solutions to IRL is closed to convex
combinations and uniform limits.

All these examples illustrate that the inverse feasibility set C(πE) contains some solutions that arise
from mathematical artifacts. To mitigate this difficulty and avoid trivial solutions, inspired by [48],
we enforce the additional natural normalization constraint

∫
X×A(c− T ∗

γ u)(x, a) d(x, a) = 1. The
following proposition justifies this choice.

Proposition 4.1. If Definition 3.2 of C(πE) = C0(πE) includes the normalization constraint
∫
X×A(c−

T ∗
γ u)dxda = 1, then all constant cost functions are excluded from the inverse feasibility set.

Alternatively, it is possible to employ additional heuristics to narrow down the set of possible
solutions and incorporate prior knowledge, e.g., by restricting the class where the true cost belongs,
constraining the dependence between costs and value functions, and enforcing conic constraints or
shape conditions.

It is worth mentioning that the normalization constraint in our formulation primarily aims to mitigate
the ill-posedness, or ambiguity issue, intrinsic to the IRL problem, rather than to resolve issues of
identifiability. In particular, we state and prove that the normalization constraint rules out a wide
class of trivial solutions, i.e., all constant functions and inverse solutions of the form c = T ∗

γ u, an
outcome devoid of physical meaning and a mathematical artifact. While the identifiability problem
and the ill-posedness problem are related in IRL, they are not the same. Identifiability deals with the
uniqueness of the true cost function and cannot be fully resolved unless, for example, one has access
to multiple expert policies or environments for comparison [64, 65]. On the other hand, ill-posedness
is a broader concept from mathematical and statistical problems and refers to situations where a
problem does not satisfy the conditions for being well-posed, e.g., in our case due to infinitely many
solutions. Note that, unlike recent theoretical IRL works [52, 53, 54] which avoid discussing this
issue altogether, we attempt to address the ambiguity problem and provide theoretical results in this
direction, hoping to lay the foundations for overcoming current limitations.

4.2 The case of known dynamics and expert policy

We first consider the case where the expert policy πE, the induced occupation measure µπE
ν0

and the
transition law P are known. We leverage developments in randomized convex optimization, leading
to an approximation scheme with a priori performance guarantees. As a first step, we introduce a
semi-infinite convex formulation that enforces the normalization constraint, involves a restriction of
the decision variables from an infinite-dimensional function space to a finite-dimensional subspace,
and considers an additional norm constraint that effectively acts as a regularizer. The resulting
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regularized semi-infinite inner approximation, which we call inverse program is given by
infα,β,ε ε
s.t.

〈
µπE
ν0
, c− T ∗

γ u
〉
≤ ε,

c(x, a)− T ∗
γ u(x, a) ≥ −ε, ∀ (x, a) ∈ X ×A,∫

X×A(c− T ∗
γ u)(x, a) d(x, a) = 1,

c ∈ Cnc
, u ∈ Unu

, ε ≥ 0,

(IP)

where Cnc ≜ {
∑nc

j=1 αjcj : α = {αi}nc
i=1 ∈ Rnc , ∥α∥1 ≤ θ} with {ci}nc

i=1 ⊂ Lip(X ×A) being
linearly independent basis functions with Lipschitz constant Lc > 0, Unu

≜ {
∑nu

i=1 βiui : β =
{βi}nu

i=1 ∈ Rnu , ∥β∥1 ≤ θ}, with {ui}nu
i=1 ⊂ Lip(X ) being linearly independent basis functions

with Lipschitz constant Lu > 0, and θ > 0 is an appropriately chosen regularization parameter.
Note that (IP) is derived by relaxing the constraints in the inverse feasibility set C(πE) and paying a
penalty when violated. In particular, let (ε̃, α̃, β̃) be an optimal solution of the semi-infinite program
(IP). Then, c̃ ≜

∑nc

i=1 α̃ici ∈ C ε̃(πE), from where it becomes apparent that the smaller the value of ε̃,
the better the quality of the extracted cost function c̃ (as by Proposition 3.1). One would intuitively
expect that ε̃ depends on the choice of basis functions for the cost (resp. value) function as well as on
the parameters nc (resp. nu) and θ. This dependency is highlighted by the following proposition.
Proposition 4.2 (Basis function dependency). Let πE be an optimal policy for the optimal control
problem MDPc⋆ with cost c⋆ and let u⋆ be the corresponding optimal value function. Under
Assumption 2.1, if u1 ≡ 1 and θ > 1

(1−γ)min{1,d} , then ε̃ ≤ εapprox with

εapprox :=

(
2− γ

1− γ
+Dγ,θ(2 + γ)max{1, LP, d}

)(
min

c∈Cnc

∥c⋆ − c∥L + min
u∈Unu

∥u⋆ − u∥L

)
, (2)

where d = leb(X × A) is the Lebesgue measure of X × A, Dγ,θ ≜ 2θ(Kc,∞+Ku,∞)
(1−γ)2 min{1,d}θ+γ−1 , with

constants Kc,∞ ≜ maxi=1,...,nc
∥ci∥∞ and Ku,∞ ≜ maxj=1,...,nu

∥ui∥∞.

Proposition 4.2 sheds light on how the choice of basis functions and the regularization parameter
θ influence the approximation error. Essentially, the approximation error term εapprox measures the
expressiveness of the linear function approximators. Prior knowledge about the properties of the true
cost allows us to choose appropriate basis functions to make the projection residuals in the theorem
sufficiently small. For example, if the true cost function is known to be smooth, Fourier or polynomial
basis functions can be used. In general, if we choose linearly dense bases in Lip(X ×A) and Lip(X ),
then the projection residuals and so ε̃ tend to 0 as nc and nu and the regularization parameter θ tend
to infinity. In particular note that when c⋆ ∈ Cnc

and u⋆ ∈ Unu
, then the corresponding projection

residuals are 0, and thus ε̃ = 0 as expected. In a practical setting, observing a large value of ε̃ is an
indicator that more basis functions are needed.

Finally, note that the regularizer helps to bound the dual optimizer using a dual norm, thus offering
an explicit approximation error for the proposed solution (see Appendix B.6).

Computationally tractable approximations to the semi-infinite convex program can be obtained
through the scenario approach [29, 66] in which randomization over the set of constraints is con-
sidered. In particular, we treat the parameter (x, a) as an uncertainty parameter living in the space
X ×A. Let P be a Borel probability measure on (X ×A,B(X ×A)), where X ×A is equipped
with the norm ∥(x, a)∥ = ∥x∥2 + ∥a∥2. We assume that P has the following structure.
Assumption 4.1 (Sampling distribution). There exists g : R+ → [0, 1] strictly increasing, such that
P(Br(x, a)) > g(r), for all (x, a) ∈ X ×A and r > 0.

Assumption 4.1 is a sufficient structural assumption concerning the sample distribution P ensuring
that the gap between the robust program (IP) and its sampled counterpart (SIPN) can be controlled. It
implicitly restricts the state and action spaces to be bounded.

Let {(x(ℓ), a(ℓ))}Nℓ=1 be independent and identically distributed (i.i.d.) samples drawn from X ×A
according to P. We are interested in the following random finite-dimensional convex program:

infα,β,ε ε
s.t.

〈
µπE
ν0
, c− T ∗

γ u
〉
≤ ε,

c(x(ℓ), a(ℓ))− T ∗
γ u(x

(ℓ), a(ℓ)) ≥ −ε, ∀ ℓ = 1, . . . N,∫
X×A(c(x, a)− T ∗

γ u(x, a)) d(x, a) = 1,
c ∈ Cnc

, u ∈ Unu
, ε ≥ 0.

(SIPN)
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Notice that (SIPN) naturally represents a randomized program as it depends on the random multi-
sample {(x(i), a(i))}Ni=1. We assume the following measurability assumption holds for our analysis.

Assumption 4.2. The (SIPN) optimizer generates a Borel measurable mapping that associates each
multi-sample {(x(ℓ), a(ℓ))}Nℓ=1 to a uniquely defined optimizer (α̃N , β̃N , ε̃N ).

To ensure uniqueness when multiple solutions exist, use a tie-break rule, such as selecting the
solution with the minimum ∥·∥2 norm. It has been shown [30, Proposition 3.10] that applying such a
tie-break-rule also ensures the measurability in Assumption 4.2.

The appealing feature of (SIPN) is that it is a convex finite-dimensional program and so it can be
solved at low computational cost for small enough N . We study how many samples are needed for
a good solution by examining the generalization properties of the optimizer (α̃N , β̃N , ε̃N ) and the
extracted cost function c̃N =

∑nc

i=1 α̃Nici. For each n ∈ N, ϵ ∈ (0, 1) and δ ∈ (0, 1), we define

N(n, ϵ, δ) = min
{
N ∈ N :

n∑
i=0

(
N

i

)
ϵi(1− ϵ)N−i ≤ δ

}
.

The sample size above asymptotically scales as ∼ {1/ϵ, log(1/δ), n}, see [29]. The following
theorem determines the sample complexity of (SIPN). In particular, for a given reliability parameter
ϵ ∈ (0, 1) and confidence level δ ∈ (0, 1), we establish how many samples are needed to guarantee
with confidence at least 1− δ that c̃N ∈ Cεapprox+ϵ(πE).

Theorem 4.1 (Scenario program guarantees). Let ϵ, δ ∈ (0, 1). Under Assumptions 2.1, 4.1 and 4.2,
if u1 ≡ 1 and θ > 1

(1−γ)leb(X×A) , then by sampling N ≥ N(nc + nu + 1, g( ϵ
LΛ

), δ) constraints,

where LΛ ≜ θ
√
ncLc + θ

√
nu(LuLP + Lu), with probability at least 1− δ, c̃N ∈ Cεapprox+ϵ(πE).

Remark 4.1 (Curse of dimensionality). As shown in [30], the function g(r) is of order rdim(X×A).
As a result, the number of samples grows exponentially as ϵ−dim(X×A). A similar exponential
dependence to the dimension of the state space has been established in [51]. Considering the current
performance of general LP solvers, this approach is attractive for small to medium-sized problems.
As noted in [51], dealing with the general d-dimensional case without exponential scaling in d is
challenging. Therefore, understanding the selection of a suitable distribution for future sample
drawing is crucial.

Remark 4.2 (l1-regularization). To cut down on required samples N , a common method is using
l1-regularization to reduce the effective dimension of the optimization variable. This concept is
formalized in the current setting [67]. Moreover, in the spirit of the compressed sensing literature
[68], l1-regularization will promote sparse solutions and hence lead to “simple" cost functions. In
the context of optimal control l1-regularization term is studied as the so-called “maximum hands-off
control" paradigm [69, 70]. In our case, the utilization of the l1-norm offers two primary advantages.
Firstly, the l1-norm promotes sparsity in solutions, thereby potentially reducing computational
demands. Secondly, this specific type of regularization preserves the linearity of the program.

4.3 Sample-based inverse reinforcement learning

In this section, we explore the realistic scenario where we lack access to the expert policy πE and
the transition law P. The learner only receives a finite set of truncated expert sample trajectories
and cannot interact or query the expert for additional data during training. Despite the unknown
MDP model, we assume access to a generative-model oracle. It provides the next state x′ given a
state-action pair (x, a) sampled from P(·|x, a). This is known as the simulator-defined MDP [71, 72].

Sampling process. Let τ = {τi = (xi
0, a

i
0, . . . , x

i
H , aiH)}mi=1 be i.i.d., truncated sample trajecto-

ries according to πE. For any c ∈ Lip(X ×A), we consider the sample average approximation of the
expectation

〈
µπE
ν0
, c
〉

given by, ̂⟨µπE
ν0 , c⟩(τ) ≜ 1

m

∑H
t=0

∑m
j=1 γ

tc(xj
t , a

j
t ). Similarly, if ξ = {xk

0}nk=1

are i.i.d., samples according to ν0, for any u ∈ LipF (X ), we define the corresponding sample
average estimation of the expectation ⟨ν0, u⟩ by ⟨̂ν0, u⟩(ξ) ≜ 1

n

∑n
k=1 u(x

k
0). Moreover, let ζ =

{(x(l), a(l))}Nl=1 be i.i.d. samples drawn from X ×A according to P ∈ P(X ×A). We also use the

following notation T̂ ∗
γ u(x

(l), a(l), y(l)) ≜ u(x(l))− 1
k

∑k
i=1 u(y

(l)
i ), {y(l)i }ki=1

i.i.d.∼ P(·|x(l), a(l)).
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We are interested in the finite-sample analysis of the following random convex program:
infα,β,ε ε

s.t. ̂⟨µπE
ν0 , c⟩(τ)− ⟨̂ν0, u⟩(ξ) ≤ ε,

c(x(l), a(l))− T̂ ∗
γ u(x

(l), a(l), y(l)) ≥ −ε, ∀ l = 1, . . . N,
α ∈ ∆[nu], β ∈ ∆[nc],
c ∈ Cnc , u ∈ Unu , ε ≥ 0,

(SIPN,m,n,k)

where the function classes Cnc ,Unu are defined as in the previous Section. We make the following
measurability assumption which is analogous to Assumption 4.2.
Assumption 4.3. The (SIPN,m,n,k) optimizer generates a Borel measurable mapping that associates
each multi-sample (y, τ, ξ, ζ) to a uniquely defined optimizer (α̃N,m,n,k, β̃N,m,n,k, ε̃N,m,n,k).

Theorem 4.2. Under Assumptions 2.1, 4.1 and 4.3, if u1 ≡ 1 and θ > 1
(1−γ)leb(X×A) , then for

N ≥ N(nc + nu + 1, g( ϵ
LΛ

), δ/2) constraints, n ≥ 8K2
u,∞θ2nu ln ( 8nu

δ )

ϵ2 , m ≥ 8K2
c,∞θ2nc ln ( 8nc

δ )

(1−γ)2ϵ2

expert samples with horizon H = 1
1−γ log( 2ε ), and k ≥ 8Cnuθ

2 log(4nuN/γ)
ϵ2 calls to the generative

model per constraint, with probability at least 1− δ, c̃N,m,n,k ∈ Cεapprox+ϵ(πE). The constants Kc,∞
and Ku,∞ are given as Kc,∞ ≜ maxi=1,...,nc ∥ci∥∞ and Ku,∞ ≜ maxj=1,...,nu ∥ui∥∞.

Theorem 4.2 provides explicit sample complexity bounds for achieving a desired approximation accu-
racy with our proposed randomized algorithm. For continous MDPs when we use nu basis functions
for the value function and nc basis functions for the cost function we need m = O

(
nc log(nc

δ )

(1−γ)2ε2

)
expert samples and K = O

(
nu log(nuN

δ )

ε2

)
calls to the generative model per constraint and

N = O(expdim(X×A)) sampled constraints and solve the resulted sampled finite LP with nu + nc

variables and N constraints in polynomial time to learn a cost that is ε+ εapprox-inverse feasible with
probability 1− δ.

The corresponding sample complexities include the expert sample complexity m, the number of calls
to the generator per constraint k, and the number of sampled constraints N . The first two complexities
scale gracefully with respect to the problem parameters, whereas the number of sampled constraints
scales exponentially with the dimension of the state and action spaces (see also Remark 4.1). This
makes the algorithm particularly suitable for low-dimensional problems of practical interest, e.g.,
pendulum swing-up control, vehicle cruise control, and quadcopter stabilization. Note that a similar
exponential dependence to the dimension of the state space has been established in Dexter et al. [51],
a theoretical study addressing IRL in continuous state but discrete action spaces.

A promising research direction is to enhance the sample complexity bounds through the utilization of
the underlying problem structure [73]. In addition, it becomes imperative to gain an understanding
regarding the selection of a suitable distribution for drawing samples in the future. Intuitively, it is
reasonable to anticipate that certain regions within the state-action space carry more "informative"
characteristics than others. One conjecture is that sampling constraints based on the expert occupancy
measure could yield a more scalable bound [74]. However, a comprehensive mathematical treatment
of these inquiries will be addressed in future research endeavors.

Redunction to tabular MDPs. For tabular MDPs, offline access to expert for tabular MDPs,

and a generative model we require m = O
(

|X||A|(log( |X||A|
δ )

(1−γ)2ε2

)
expert samples, and K|X||A| =

O
(

X|2|A| log( |X|2|A|
δ )

ε2

)
calls to the generative model, and solve the resulted sampled finite LP with

|XA|+ |X| variables and |X||A|+ 2 constraints in polynomial time, to learn a cost function that is
ε-inverse feasible with probability 1− δ.

Note that as we argued in detail above our setting is different from the one in [52-54] since we have
offline access to the expert and address a different question, i.e. learning a single reward with formal
guarantees in continuous MDPs. In this case, there is no need to solve the resulting linear program.

Numerical Experiment. In Appendix C, we illustrate our method with a simple truncated Linear
Quadratic Regulator (LQR) example to provide better intuition about the method and the proposed
sample complexity bounds.

10



Acknowledgments

This work was supported by the DFG in the Cluster of Excellence EXC 2117
“Centre for the Advanced Study of Collective Behaviour” (Project-ID 390829875).

References
[1] D. P. Bertsekas. Dynamic programming and suboptimal control: a survey from ADP to MPC.

European Journal of Control, 11(4):310–334, 2005. (Cited on page 1.)

[2] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
second edition, 2018. (Cited on page 1.)

[3] Dimitri Bertsekas. Rollout, policy iteration, and distributed reinforcement learning. Athena
Scientific, 2021. (Cited on page 1.)

[4] Sean Meyn. Control Systems and Reinforcement Learning. Cambridge University Press, 2022.
(Cited on page 1.)

[5] D. A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation.
Neural Computation, 3(1):88–97, 1991. (Cited on page 1.)

[6] Stuart Russell. Learning agents for uncertain environments (extended abstract). In Annual
Conference on Computational Learning Theory (COLT), 1998. (Cited on page 1.)

[7] J. Andrew Bagnell. An invitation to imitation. Technical Report CMU-RI-TR-15-08, Carnegie
Mellon University, Pittsburgh, PA, 2015. (Cited on page 1.)

[8] W. Bradley Knox, Alessandro Allievi, Holger Banzhaf, Felix Schmitt, and Peter Stone. Reward
(mis)design for autonomous driving. arXiv:2104.13906, 2021. (Cited on page 1.)

[9] T Osa, J Pajarinen, G Neumann, JA Bagnell, P Abbeel, and J Peters. An algorithmic perspective
on imitation learning. Foundations and Trends in Robotics, 2018. (Cited on page 1.)

[10] Arthur Charpentier, Romuald Elie, and Carl Remlinger. Reinforcement learning in economics
and finance. arXiv:20031004, 2020. (Cited on page 1.)

[11] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey. Human behavior
modeling with maximum entropy inverse optimal control. In AAAI Spring Symposium: Human
Behavior Modeling, 2009. (Cited on page 1.)

[12] A. Y. Ng and S. J. Russell. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning (ICML), 2000. (Cited on pages 1, 3, 5, 6, and 17.)

[13] Darse Billings, Denis Papp, Jonathan Schaeffer, and Duane Szafron. Opponent modeling in
poker. In AAAI/IAAI, 1998. (Cited on page 1.)

[14] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
International Conference on Machine Learning (ICML), 2004. (Cited on page 1.)

[15] Umar Syed and Robert E. Schapire. A game-theoretic approach to apprenticeship learning. In
Proceedings of the 20th International Conference on Neural Information Processing Systems,
NIPS’07, pages 1449–1456, USA, 2007. Curran Associates Inc. (Cited on pages 1 and 2.)

[16] P. Abbeel, D. Dolgov, A. Y. Ng, and S. Thrun. Apprenticeship learning for motion planning
with application to parking lot navigation. In 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1083–1090, Sept 2008. (Cited on page 1.)

[17] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy
inverse reinforcement learning. In Proc. AAAI, pages 1433–1438, 2008. (Cited on pages 1 and 2.)

[18] J.P. Laumond, N. Mansard, and J.B. Lasserre. Geometric and Numerical Foundations of
Movements. Springer Tracts in Advanced Robotics. Springer International Publishing, 2017.
(Cited on page 1.)

11
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A Supplementary material

A.1 The linear programming approach for continuous MDPs

In this section, we present essential facts and derivations concerning the Linear Programming (LP)
approach to continuous Markov Decision Processes (MDPs). These insights and results will serve as
valuable foundations for the subsequent discussions and analysis.

The following theorem summarizes the properties of the optimal value function under the assumption
that the control model is Lipschitz continuous.
Theorem A.1 ([60, Theorem 3.1], [61]). Under Assumption 2.1, the following hold:

1. The value function V ⋆
c is in Lip(X ) with Lipschitz constant LV ⋆

c
≤ Lc +

γ
1−γ ∥c∥∞LP;

2. The value function V ⋆
c satisfies the Bellman optimality equation

V ⋆
c (x) = min

a∈A
{c(x, a) + γ

∫
X
V ⋆
c (y)Q(dy|x, a)}, for all x ∈ X ;

3. There exists a γ-discount ν0-optimal policy which is stationary deterministic.

Next, we characterize the set of occupation measures in terms of linear constraint satisfaction.

Theorem A.2 ([62, Theorem 6.3.7]). Consider the convex set of measures, F ≜ {µ ∈ M(X ×A)+ :
Tγµ = ν0}, where Tγ : M(X ×A) → M(X ) is a linear and weakly continuous operator given by

(Tγµ)(B) ≜ µ(B ×A)− γ

∫
X×A

P(B|x, a)µ( d(x, a)), for all B ∈ B(X ).

Then, F = {µπ
ν0

: π ∈ Π0}. Moreover,
〈
µπ
ν0
, c
〉
= V π

c (ν0), for every π.

A direct consequence of Theorem A.2 is that

V ⋆
c (ν0) = min

π

〈
µπ
ν0
, c
〉
= min

π∈Π0

〈
µπ
ν0
, c
〉
= inf

µ∈F
⟨µ, c⟩ .

Therefore the MDP problem (MDPc) can be stated equivalently as an infinite-dimensional LP over
measures

Jc(ν0) ≜ inf
µ∈M(X×A)+

{⟨µ, c⟩ : Tγµ = ν0}. (Pc)

In particular the infimum in (Pc) is attained and π⋆ is optimal for the OCP (MDPc) if and only if µπ⋆

ν0

is optimal for the primal LP (Pc).

Consider the dual pair of vector spaces (M(X ×A),Lip(X ×A)) and (M(X ),Lip(X )). Then the
adjoint linear operator T ∗

γ : Lip(X ) → Lip(X ×A) of Tγ is given by

(T ∗
γ u)(x, a) ≜ u(x)− γ

∫
X
u(y)P(dy|x, a).

Indeed, T ∗
γ is well-defined by Assumption (A2). Moreover, a direct computation shows that (see [28,

Pg. 139]) 〈
µ, T ∗

γ u
〉
= ⟨Tγµ, u⟩ , for all µ ∈ M(X ×A), u ∈ Lip(X ).

In addition, the dual convex cone of M(X ×A)+ is the set Lip(X ×A)+ of nonnegative bounded
and Lipschitz continuous functions on X ×A. This is because,

M(X ×A)+ ≜ {v ∈ Lip(X ×A) | ⟨µ, v⟩ ≥ 0, ∀ µ ∈ M(X ×A)+}
= {v ∈ Lip(X ×A) | v ≥ 0}.

The dual LP of (Pc) is given by

J ∗
c (ν0) ≜ sup

u∈Lip(X )

{⟨ν0, u⟩ : c− T ∗
γ u ≥ 0 on X ×A}. (Dc)
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Theorem A.3 (Strong duality). Under Assumption 2.1 on the control model Mc, the dual LP (Dc)
is solvable, i.e., the supremum is attained, and strong duality holds. That is, Jc(ν0) = J ∗

c (ν0) =
V ⋆
c (ν0). In particular the value function V ⋆

c is an optimal solution for the dual LP (Dc).

Proof. By virtue of [62, Theorem 6.3.8] we have that
V ⋆
c (ν0) = Jc(ν0) = J ⋆

c (ν0)

and moreover the supremum definiting J ⋆
c (ν0) is attained by the optimal value function V ⋆

c : X → R.
Therefore, the result follows by 1) of Theorem A.1.

A.2 Comparison to the LP formulations for IRL from the literature

In this section, we will demonstrate that our formulation, when applied to finite tabular MDPs and
a stationary Markov expert policy πE, simplifies to the inverse feasibility set considered in recent
studies [52, 53, 54]. The formulation presented in these works extends the LP formulation previously
explored in [12, 49, 50, 51], which specifically addressed deterministic expert policies of the form
πE(s) ≡ a1. By highlighting this connection, we establish a link between our approach and the
existing body of literature on LP formulations for IRL, while also accounting for continuous state
and action spaces and more general expert policies.

Let X and A be finite sets with cardinality |X | and |A|, respectively. Then, Assumption 2.1 is trivially
satisfied and Lip(X ×A) = R|X ||A|.

By Theorem 3.1 we have that a cost function c ∈ R|X ||A| is inverse feasible with respect to πE, i.e.,
c ∈ C(πE), if and only if there exists u ∈ R|X | such that

{ ∑
x,a µ

πE
ν0
(x, a)(c− T ∗

γ u)(x, a) = 0,
(c− T ∗

γ u)(x, a) ≥ 0, for all (x, a) ∈ X ×A.
(3)

If πE ∈ Π0 is a stationary Markov policy, then µπE
ν0
(x, a) =

∑
a′ µπE

ν0
(x, a′)πE(a|x) and∑

a′ µπE
ν0
(x, a′) > 0 [58, Thm. 6.9.1]. Therefore, for any state-action pair (x, a) ∈ X × A, it

holds that µπE
ν0
(x, a) = 0 ⇔ π(a|x) = 0. We then get that (3) is equivalent to

{
(c− T ∗

γ u)(x, a) = 0, if πE(a|x) > 0
(c− T ∗

γ u)(x, a) ≥ 0, if πE(a|x) = 0.
(4)

So we end up that a cost function c ∈ R|X ||A| is inverse feasible if and only if there exists u ∈ R|X |

and Aγ ∈ R|X ||A|
+ such that for all (x, a) ∈ X ×A,

c(x, a)− u(x) + γ
∑
y

P(y|x, a)u(y) = Aγ(x, a)1{πE(a|x)=0}.

So we have recovered [52, Lem. 3.2], which forms the basis for the analysis and algorithms in [52,
53, 54].

Next, note that when πE(x) = a1, for all x ∈ X and c(x, a) = c(x), for all (x, a) ∈ X ×A, then (4)
is equivalent to{

c(x)− u(x) = −γ
∑

y P(y|x, a1)u(y), for all x ∈ X
c(x)− u(x) ≥ −γ

∑
y P(y|x, a)u(y), for all x ∈ X , a ∈ A\{a1}. (5)

Therefore, a cost function c ∈ R|X ||A| is inverse feasible if and only if there exists u ∈ R|X | such
that {

c(x)− u(x) = −γ
∑

y P(y|x, a1)u(y), for all x ∈ X∑
y P(y|x, a1)u(y) ≤

∑
y P(y|x, a)u(y), for all x ∈ X , a ∈ A\{a1}. (6)

By introducing the notation Pa ∈ R|X ||X | with Pa(x, y) = P(y|x, a1) and noting that the first
linear system in (6) admits a unique solution u = (I|X | − γPa1

)−1c, we end up that a cost function
c ∈ R|X ||A| is inverse feasible if and only if

(Pa1 − Pa)(I|X | − γPa1)
−1c ≤ 0, for all a ∈ A\{a1}.

So we have recovered [12, Thm. 3] which forms the basis for the analysis and algorithms in [12, 49,
50].
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B Proofs

B.1 Proof of Theorem 3.1

Proof. The direction 3) ⇒ 1) is a consequence of the strong duality Theorem A.3 and complementary
slackness. Indeed, assume that πE is optimal for (MDPc) with cost c. Then, by Theorem A.2 µπE

ν0
is

optimal to (Pc). By Theorem A.3, the dual (Dc) is solvable and there is no duality gap. Therefore,
there exists a u ∈ Lip(X ) such that

c− T ∗
γ u ≥ 0, on X ×A (feasibility),〈

µπE
ν0
, c
〉

= ⟨ν0, u⟩ (strong duality).

The second equality is equivalent to
〈
µπE
ν0
, c− T ∗

γ u
〉
= 0, since Tγµ

πE
ν0

= ν0. This proves the desired
implication.

The implication 1) ⇒ 2) is straightforward.

To show 2) ⇒ 3), let c ∈
⋂

ε>0 Cε(πE). Then, for each n ∈ N, there exists un ∈ Lip(X ) such
that

〈
µπE
ν0
, c− T ∗

γ un

〉
≤ 1

n and c − T ∗
γ un ≥ − 1

n , on X × A. Set vn = un − 1
n(1−γ) . Then,

{vn}∞n=1 ⊂ Lip(X ) and

lim
n→∞

〈
µπE
ν0
, c− T ∗

γ vn
〉

= 0, (7)

c− T ∗
γ vn ≥ 0, on X ×A, (8)

where we used that
〈
µπE
ν0
, 1
〉
= 1

1−γ and T ∗
γ 1 = 1− γ, on X ×A. Equation (8) states that {vn}∞n=1

is feasible for the dual (Dc). Moreover, µπE
ν0

is feasible for (Pc). Therefore,

⟨ν0, vn⟩ ≤ J ∗
c (ν0) = Jc(ν0) ≤

〈
µπE
ν0
, c
〉
. (9)

By (7) limn→∞ ⟨ν0, vn⟩ = limn→∞
〈
Tγµ

πE
ν0
, vn

〉
= limn→∞

〈
µπE
ν0
, T ∗

γ vn
〉

=
〈
µπE
ν0
, c
〉

. So, by
taking the limits in (9) as n → ∞, we conclude that µπE

ν0
is optimal for (Pc). Then, by Theorem A.2

πE is optimal to (MDPc) with cost c.

Hence, we have shown that C(πE) =
⋂

ε>0 Cε(πE) = C0(πE). One can check easily that C(πE) is a
convex cone. To show that C(πE) is ∥·∥L-closed in Lip(X × A), let {cn}∞n=1 ⊂ C(πE), such that
limn→∞ ∥cn − c∥L = 0, for some c ∈ Lip(X ×A). Let ε > 0. Then, there exists n0 ∈ N such that,

∥cn0
− c∥∞ <

(1− γ)ε

2
. (10)

On the other hand, cn0 ∈ C ε
2 (πE). Combining this with (10), we deduce that c ∈ Cε(πE). Since this is

true for arbitrary ε > 0, we get c ∈
⋂

ε>0 Cε(πE) = C(πE), which proves the desired closedness.

B.2 Proof of Proposition 3.1

Proof. Assume first that c̃ ∈ Cε(πE) for some ε > 0. Then, there exists ũ ∈ Lip(X ) such that〈
µπE
ν0
, c̃− T ∗

γ ũ
〉

≤ ε, (11)

c̃− T ∗
γ ũ ≥ −ε, on X ×A. (12)

Since Tγµ
πE
ν0

= ν0, (11) can be written equivalently as〈
µπE
ν0
, c̃
〉︸ ︷︷ ︸

=V
πE
c̃ (ν0)

−⟨ν0, ũ⟩ ≤ ε. (13)

Let µ̃ be an optimal solution to the primal (Pc̃) with cost function c̃. By integrating (12) with respect
to µ̃ and using that Tγ µ̃ = ν0 and ⟨µ̃, 1⟩ = 1

1−γ , we get

⟨µ̃, c̃⟩︸ ︷︷ ︸
=V ⋆

c̃ (ν0)

−⟨ν0, ũ⟩ ≥
−ε

1− γ
. (14)
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Therefore, by combining (13) and (14), we get

V ⋆
c̃ (ν0) ≤ V πE

c̃ (ν0) ≤ V ⋆
c̃ (ν0) +

2− γ

1− γ
ε.

This proves that πE is 2−γ
1−γ -optimal for (MDPc̃) with cost c̃.

For the inverse inclusion, πE be 2−γ
1−γ -optimal for (MDPc̃), and let û = V ⋆

c̃ ∈ Lip(X ) (Theorem A.1)
be the optimal value function for the forward (MDPc̃). Then, by virtue of Theorem A.3, the following
hold:

c̃− T ∗
γ û ≥ 0, on X ×A, (15)〈

µπE
ν0
, c̃
〉︸ ︷︷ ︸

=V
πE
c̃ (ν0)

− ⟨ν0, û⟩︸ ︷︷ ︸
=V ⋆

c̃ (ν0)

≤ 2− γ

1− γ
ε. (16)

Note that (15) holds due to dual feasibility, while (16) holds because πE is 2−γ
1−γ -optimal for (MDPc̃).

By setting ũ = û + ε
1−γ ∈ Lip(X ), we get by (15) that c̃ − T ∗

γ ũ ≥ −ε, on X × A. Moreover,〈
µπE
ν0
, c̃− T ∗

γ ũ
〉
=

〈
µπE
ν0
, c̃
〉
− ⟨ν0, û⟩ −

〈
ν0,

ε
1−γ

〉
≤ 2−γ

1−γ ε−
ε

1−γ = ε, where the inequality holds

due to (16). Therefore, c̃ ∈ Cε(πE). This concludes the proof.

B.3 Proof of Proposition 3.2

Before stating the proof of Proposition 3.2 we need the following preparation. Without loss of
generality, assume that the true cost belongs to Cconvex ≜ {

∑k
i=1 αici | α ≥ 0,

∑n
i=1 αi = 1},

where {ci}ki=1 ⊂ Lip(X × A) are known features. By linearity the true optimal value function
belongs to {

∑k
i=1 αiui | α ≥ 0,

∑k
i=1 αi = 1}, where ui = V ⋆

ci(πE), for all i = 1, . . . , k. Note
that by Theorem A.1, {ui}ki=1 ⊂ Lip(X ). By using similar arguments to the proof of Theorem 3.1,
we get that a cost function c is inverse feasible, i.e., c ∈ C(πE) if and only if there exists α ∈ Rk such
that 

∑k
i=1 αi⟨µπE

ν0
, ci − T ∗

γ ui⟩ = 0,∑k
i=1 αi(ci − T ∗

γ ui) ≥ 0, on X ×A
α ≥ 0,

∑k
i=1 αi = 1.

(17)

Similar arguments hold for any choice of finite-dimensional space or convex set S ⊂ Lip(X ).

Proof. Let {cn}∞n=1 ⊂ Cεn(πE). For each n ∈ N, there exists αn ∈ Rk, such that
∑k

i=1 αn,i⟨µπE
ν0
, ci − T ∗

γ ui⟩ ≤ εn,∑k
i=1 αn,i(ci − T ∗

γ ui) ≥ −εn, on X ×A
αn ≥ 0,

∑k
i=1 αn,i = 1.

(18)

Since the sequence {αn}n is bounded in Rk, there exists a subsequence {αnl
}∞l=1 such that

liml→∞ αnl
= α, for some α ∈ Rk. Taking the l → ∞ in (18), we get (17) and so

c =
∑k

i=1 αici ∈ C(πE). This concludes the proof.

B.4 Proof of Proposition 3.3

Proof. It is easy to check that for every c̃ ∈ Cε(πE), there exist c ∈ C(πE) such that
〈
µπE
ν0
, c̃− c

〉
≤ ε,

and c− c̃ ≤ ε, on X ×A. For example, if ũ ∈ Lip(X ) such that{
⟨µπE

ν0
, c̃− T ∗

γ ũ⟩ ≤ ε,
c̃− T ∗

γ ũ ≥ −ε, on X ×A,
(19)

then we may choose c = T ∗
γ ũ. Let π̃ be an optimal policy for (MDPc̃). Then,

V π̃
c (ν0)− V πE

c (ν0) =
〈
µπ̃
ν0

− µπE
ν0
, c
〉
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=
〈
µπ̃
ν0
, c− c̃

〉
+
〈
µπ̃
ν0

− µπE
ν0
, c̃
〉︸ ︷︷ ︸

≤0

+
〈
µπE
ν0
, c̃− c

〉
≤

〈
µπ̃
ν0

− µπE
ν0
, c− c̃

〉
≤ 2− γ

1− γ
ε

B.5 Proof of Proposition 4.1

Note that Proposition 4.1 is a minor extension from [48, Prop. 7].

Proof. Let c ∈ C(πE), then there exists a certificate u ∈ Lip(X ) such that c− T ∗
γ u ≥ 0, on X ×A

and ⟨µπE
ν0
, c− T ∗

γ u⟩ = 0. By Theorem 3.1 and its proof, we get that c is inverse feasible and u = V ⋆
c

ν0-almost everywhere (a.e.). Thus, if c ≡ C, for some constant C, then u ≡ C
1−γ , ν0-a.e. We then

have c− T ∗
γ u = 0, ν0-a.e., and so

∫
X×A(c− T ∗

γ u)dxda = 0.

B.6 Proof of Proposition 4.2

For p ∈ [1,∞], we denote by ∥·∥p the p-norm in Rn and by x · y the usual inner product.

Proof. We consider the following tightening of the semi-infinite convex program (IP).

Jnc,u ≜


infα,β,ε ε
s.t.

〈
µπE
ν0
, c− T ∗

γ u
〉
≤ ε,

c− T ∗
γ u ≥ 0, on X ×A,∫

X×A(c(x, a)− T ∗
γ u(x, a)) d(x, a) = 1,

c ∈ Cnc , u ∈ Unu , ε ≥ 0

=


infα,β

〈
µπE
ν0
, c
〉
− ⟨ν0, u⟩

s.t. c− T ∗
γ u ≥ 0, on X ×A,∫

X×A(c(x, a)− T ∗
γ u(x, a)) d(x, a) = 1,

c ∈ Cnc
, u ∈ Unu

,

(20)

where the last equality follows by using that
〈
µπE
ν0
, T ∗

γ u
〉
=

〈
Tγµ

πE
ν0
, u

〉
= ⟨ν0, u⟩ and an epigraphic

transformation.

The assumption that u1 ≡ 1 and θ > 1
(1−γ)leb(X×A) ensures feasibility of the convex program (20)

and by Assumption 2.1 (A1) the feasibility set is compact and thus the optimal value is finite and is
attained. Note that leb(X ×A) denotes the Lebesgue measure of X ×A. Moreover, since (20) is a
tightening of (IP) it holds that ε̃ ≤ Jnc,u .

Consider the infinite-dimensional version of (20),

J ≜


infc,u

〈
µπE
ν0
, c
〉
− ⟨ν0, u⟩

s.t. c− T ∗
γ u ≥ 0, on X ×A,∫

X×A(c(x, a)− T ∗
γ u(x, a)) d(x, a) = 1,

c ∈ Lip(X ×A), u ∈ Lip(X ).

(21)

By the characterization of the inverse feasibility set, we have that J = 0 and (c⋆, u⋆) is an optimal
solution for (21) 4. Note that (21) can be expressed in the standard conic form

J =

{
infx ⟨l0,x⟩
s.t. Ax− b0 ∈ K,

x ∈ X,
(22)

where
4Without loss of generality we may assume that

∫
X×A(c⋆ − T ∗

γ u
⋆)(x, a) d(x, a) since we can always

rescale the optimal cost and value function by the same scale factor.
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• (X,L) is a dual pair of vector spaces and l0 ∈ L;

• (B,Y ) is a dual pair of vector spaces and b0 ∈ B;

• K is a positive cone in B and K∗ is its dual cone in Y , i.e.,

K∗ = {y ∈ Y : ⟨y, b⟩ ≥ 0, ∀b ∈ B};

• A : X → B is linear and continuous with respect to the induced weak topologies.

Indeed, this is the case if we introduce the following:

X ≜ Lip(X ×A)× Lip(X ), L ≜ M(X ×A)×M(X ),

B ≜ Lip(X ×A)×R, Y ≜ M(X ×A)×R,
K ≜ Lip(X ×A)+ × {0}, K∗ ≜ M(X ×A)+ ×R,

b0 ≜ (0, 1), l0 ≜ (µπE
ν0
,−ν0),

A(c, u) ≜

[
A1(c, u)
A2(c, u)

]
≜

[
c− T ∗

γ u∫
X×A(c− T ∗

γ u)(x, a) d(x, a)

]
.

On the pair (X,C) we consider the norms

∥x∥ = ∥(c, u)∥ ≜ max{∥c∥L , ∥u∥L}, x = (c, u) ∈ X,

∥l∥∗ = sup
∥x∥≤1

⟨l,x⟩ = sup
∥c∥L≤1

⟨l1, c⟩ + sup
∥u∥L≤1

⟨l2, u⟩

= ∥l1∥W + ∥l2∥W, l = (l1, l2) ∈ L,

which are dual to each other. Similarly, on the pair (B,Y ) we consider the norms

∥(b1, b2)∥ = max{∥b1∥L, |b2|},
∥(y1, y2)∥∗ = ∥y1∥W + |y2|.

With this notation in mind, by virtue of [31, Th. 3.3] we have that

ε̃ ≤ Jnc,u
− J︸︷︷︸

=0

≤ (∥l0∥∗ +Dγ,θ ∥A∥op) (23)

(∥c⋆ −ΠCnc
(c⋆)∥L + ∥u⋆ −ΠUnu

(u⋆)∥L),

where Dγ,θ is an upper bound of a dual optimizer of (20) with respect to an appropriately defined dual
norm, and ∥A∥op is the operator norm of A. We will next compute the involved quantities in (23).

We have
∥l0∥∗ = ∥µπE

ν0
∥W + ∥ν0∥W =

1

1− γ
+ 1. (24)

Next note that

∥Pu∥L = ∥Pu∥∞ + |Pu|L ≤ ∥u∥∞ + LP|u|L
≤ max{1, LP} ∥u∥L ,

where in the first inequality we used that P is a stochastic kernel and Assumption 2.1 (A2). Therefore,

∥A1(c, u)∥L = ∥c− u+ Pu∥L

≤ (2 + γmax{1, LP}) ∥(c, u)∥ .
Moreover,

|A2(c, u)| ≤ (∥c∥∞ + (1 + γ) ∥u∥∞)dim(X ×A)

≤ (2 + γ)leb(X ×A) ∥(c, u)∥ .
All in all,

∥A∥op ≜ sup
∥(c,u)∥≤1

∥A(c, u)∥
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≤ max{(2 + γ)leb(X ×A), 2 + γmax{1, LP}}
≤ (2 + γ)max{1, LP, leb(X ×A)}. (25)

It remains to compute the constant Dγ,θ. To this aim, let {xi}nc+nu
i=1 be basis elements in X given by

xi = (ci, 0), for i = 1, . . . , nc and xi = (0, ui), for i = nc+1, . . . , nc+nu. These are linearly inde-
pendent by assumption. Then, we define the linear operator Anc,u : Rnc+nu → Y by Anc,u(ρ) =∑nc+nu

i=1 ρiAxi =
∑nc

i=1 αiAxi +
∑nc+nu

i=nc+1 βiAxi, for ρ = (α, β) ∈ Rnc+nu . Then, it is easy to
see that its adjoint A∗

nc,u
: Y → Rnc+nu is given by A∗

nc,u
(y) = [⟨Ax1,y⟩ , . . . , ⟨Axnc+nu ,y⟩].

On Rnc+nu we consider the norm
∥ρ∥R = ∥(α, β)∥R ≜ max{∥α∥1, ∥β∥1}

Moreover, we set
l̃0 ≜ [

〈
µπE
ν0
, c1

〉
, . . . ,

〈
µπE
ν0
, cnc

〉︸ ︷︷ ︸
=l̃0,1

, ⟨−ν0, u1⟩ , . . . , ⟨−ν0, unu
⟩︸ ︷︷ ︸

=l̃0,2

]

Then, the semi-infinite convex program (20) can be written in the form

Jnc,u
=

 infρ l̃0 · ρ
s.t. Anc,uρ− b0 ∈ K,

∥ρ∥R ≤ θ, ρ ∈ Rnc+nu .
(26)

Dualizing the conic inequality constraint in (26) and using the dual norm definition, we get its dual

J̃nc,u
=

{
supy∈Y ⟨b0, y⟩ − θ∥A∗

nc,u
y − l̃0∥R⋆

s.t. y ∈ K∗.
(27)

Let y⋆ be a dual optimizer for (26). Assume that there exists a constant C > 0 such that
∥A∗

nc,u
y⋆∥R∗ ≥ C ∥y⋆∥∗.

Then by virtue of [31, Prop. 3.2], we have the bound

∥y⋆∥∗ ≤ 2θ∥l̃0∥R∗

Cθ − ∥b0∥
≤ Dγ,θ. (28)

To compute the constant Dγ,θ, we need to bound the involved quantities in (28).

We will first show that y⋆2 ≥ 0. By Sion’s minimax Theorem [75] the duality gap between (26)
and (27) is zero, i.e., Jnc,u

= J̃nc,u
. Note however that by construction Jnc,u

≥ 0, since for any
feasible ρ to (26) it holds that l̃0 ·ρ =

〈
µπE
ν0
,Anc,uρ− b0

〉
≥ 0. Then,

0 ≤ Jnc,u = J̃nc,u = ⟨b0, y⋆⟩ − θ∥A∗
nc,u

y⋆ − l̃0∥R⋆

= y⋆2 − θ∥A∗
nc,u

y⋆ − l̃0∥R⋆ .

Thus, y⋆2 ≥ 0. Therefore,
∥A∗

nc,u
y⋆∥R∗ ≥ | ⟨Axnc+1,y

⋆⟩ | = | ⟨A(0, u1),y
⋆⟩ |

= |
〈
T ∗
γ u1, y

⋆
1

〉
+ y⋆2

∫
X×A

T ∗
γ u1 d(x, a)|

= (1− γ) ∥y⋆1∥W + (1− γ)dim(X ×A)|y⋆2 |
≥ (1− γ)min{1, leb(X ×A)}︸ ︷︷ ︸

≜C

∥y⋆∥∗,

where we used that u1 ≡ 1, y⋆1 ∈ M(X ×A)+ and so ∥y⋆1∥W = y⋆1(X ×A), and y⋆2 ≥ 0.

In addition, a direct computation gives,

∥l̃0∥R∗ = sup
∥ρ∥R≤1

l̃0 · ρ = ∥l̃0,1∥∞ + ∥l̃0,2∥∞ ≤ Kc,∞

1− γ
+Ku,∞.

Putting them all together in (28), we get

∥y⋆∥∗ ≤ 2θ∥l̃0∥R∗

Cθ − ∥b0∥
≤ 2θ(Kc,∞ +Ku,∞)

(1− γ)2 min{1, d}θ + γ − 1
≜ Dγ,θ, (29)

where we used that ∥b0∥ = 1. A combination of (23), (24), (25) and (29) ends the proof.
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B.7 Proof of Theorem 4.1

The symbol |= refers to feasibility satisfaction, i.e., x |= R means that x is a feasible solution for the
program R.

Proof. The proof is a consequence of [29, Theorem 1], [30, Lemma 3.2] and [30, Proposition
3.2]. Let us denote the optimization variable of (SIPN) by z = (α, β, ε) ∈ Rnc+nu+1, where
α = (α1, . . . , αnc

) and β = (β1, . . . , βnu
). Let λ = (x, a) be the uncertainty parameter and

Λ = X ×A the uncertainty set. Consider the function

f(z, λ) = −
nc∑
i=1

αici(x, a) +

nu∑
j=1

βj(uj(x)− γPuj(x, a))− ε

and the set

Z =

{
z = (α, β, ε) ∈ Rnc+nu+1 : ∥α∥2 ≤ θ, ∥β∥2 ≤ θ,

〈
µπE
ν0
,−f(z, ·)− ε

〉
≤ ε,

∫
Λ

(−f(z, λ) + ε)dλ = 1, ε ≥ 0

}
.

Note that Z ⊂ Rnc+nu+1 is convex and compact and independent of λ ∈ Λ. We show that the set Z
is nonempty. As noted in the proof of Proposition 4.2 (Appendix B.6) the assumption that u1 ≡ 1
and θ > 1

(1−γ)leb(X×A) considered in Proposition 4.2 and Theorems 4.1-4.2 ensures the feasibility
of the convex program (IP) which in particular implies that Z ≠ ∅. Here leb(X × A) denotes the
Lebesgue measure of X ×A.

Note that the function f : Z × Λ → R is measurable, and linear in the first argument for all λ ∈ Λ.
Moreover, by Assumption 2.1 (A1)-(A2), we get that f is bounded in the second argument for all
z ∈ Z , and f is Lipschitz continuous on Λ uniformly in Z with Lipschiz constant

LΛ ≜ θ
√
ncLc + θ

√
nu(LuLP + Lu).

After introducing this notation, one can see that the random convex program (SIPN) can be written
as,

SIPN :

{
infz∈Z h⊤z
s.t. f(z, λ(ℓ)) ≤ 0, ∀ℓ = 1, . . . , N,

where h = (0Rnc ,0Rnu , 1) and the multisample {λ(i) = (x(ℓ), a(ℓ))}Nℓ=1 is a random element on the
product probability space (ΛN ,B(Λ)N ,PN ). Moreover, (SIPN) is the scenario counterpart of (IP),

IP :

{
infz∈Z h⊤z
s.t. f(z, λ) ≤ 0, ∀λ ∈ Λ,

where one enforces constraint satisfaction for all the realizations of the uncertainty. Clearly if
z = (α, β, ε) |= IP, then the associated cost function c =

∑nc

i=1 αici ∈ Cε(πE).

For a fixed reliability level ϵ ∈ (0, 1), the associated chance-constrained program is given by

CCPϵ :

{
infz∈Z h⊤z
s.t. P[λ ∈ Λ : f(z, λ) ≤ 0] ≥ 1− ϵ,

where one allows constraint violation with low probability. Now the assumption that u1 ≡ 1 and
θ > 1

(1−γ)dim(X×A) is sufficient for the existence of a Slater point for the robust convex program (IP),
i.e., there exists z0 ∈ Z such that supλ∈Λ f(z0, λ) < 0. By this fact and by Assumption 4.2, we can
apply [29, Theorem 1] and conclude that for N ≥ N(nc + nu + 1, ϵ, δ) it holds that

PN [z̃N |= CCPϵ] ≥ 1− δ, (30)

where z̃N = (α̃N , β̃N , ε̃N ) is the optimizer of (SIPN). Note that by Assumption 4.2, the optimizer
z̃N is uniquely defined and is a Z-valued random variable on (ΛN ,B(Λ)N ,PN ).
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Consider now the ζ-perturbed robust convex program for some ζ > 0,

IPζ :

{
infz∈Z h⊤z
s.t. f(z, λ) ≤ ζ, ∀λ ∈ Λ.

Note that due to the min-max structure of (IP), the mapping from ζ to the optimal value of IPζ is
Lipschitz continuous with Lipschitz constant 1 [30, Remark 3.5].

We have the following implication,

z = (α, β, ε) |= IPζ ⇒ c =

nc∑
i=1

αici ∈ Cε+ζ(πE). (31)

Moreover, under Assumption 4.1 and since f(z, ·) is Lipschitz continuous on Λ uniformly in Z with
Lipschitz constant LΛ, by virtue of [30, Lemma 3.2] and [30, Proposition 3.8], we have that

z |= CCPϵ ⇒ z |= IPh(ϵ), (32)

where
h(ϵ) ≜ LΛg

−1(ϵ). (33)

Combining (30), (31), (32) and (33) we get that for N ≥ N(nc + nu + 1, g( ϵ
LΛ

), δ),

PN [c̃N ∈ C ε̃+ϵ(πE)] ≥ 1− δ.

Finally notice that since (SIPN) is a relaxation of (IP) we have ε̃ ≤ εapprox with probability 1.

B.8 Proof of Theorem 4.2

For the remaining analysis we will use for brevity the following notation,

Pζ ≜ PN , Pτ ≜ (PπE
ν0
)m, Pξ ≜ ν0

n

and adopt a similar notation for products of probability measures, e.g., Pτ,ξ ≜ Pτ ⊗ Pξ. We first
need the following result.
Proposition B.1. Let ϵ ∈ (0, 1) and δ ∈ (0, 1). Under Assumption 2.1and (A1), for n ≥
8K2

u,∞θ2nu ln ( 8nu
δ )

ϵ2 and m ≥ 8K2
c,∞θ2nc ln ( 8nc

δ )

(1−γ)2ϵ2 , it holds with probability at least 1− δ/2 that

sup
c∈Cnc ,u∈Unu

∣∣∣〈µπE
ν0
, c− T ∗

γ u
〉
− ̂⟨µπE

ν0 , c⟩ + ⟨̂ν0, u⟩
∣∣∣ ≤ ϵ,

where Kc,∞ ≜ maxi=1,...,nc
∥ci∥∞ and Ku,∞ ≜ maxj=1,...,nu

∥ui∥∞.

Proof. First note that under Assumption (A1), the quantities Kc,∞ and Ku,∞ are finite. Now by

using the Hoeffding’s bound, we have that for n ≥ 8K2
u,∞θ2nu ln ( 8nu

δ )

ϵ2 ,

Pξ

[∣∣∣⟨ν0, uj⟩ − ̂⟨ν0, uj⟩
∣∣∣ ≤ ϵ

2
√
nuθ

]
≥ 1− δ

4nu
, (34)

for all j = 1, . . . , nu. Therefore,

Pξ

[
sup

u∈Unu

∣∣∣⟨ν0, u⟩ − ⟨̂ν0, u⟩
∣∣∣ ≤ ϵ

2

]

≥ Pξ

[
∀j = 1, . . . , nu :

∣∣∣⟨ν0, uj⟩ − ̂⟨ν0, uj⟩
∣∣∣ ≤ ϵ

2
√
nuθ

]
≥ 1− δ/4,

where the first inequality follows by the monotonicity property of probability measures and the
second one follows by (34) and a union bound. Integrating over the whole (Ωm,Pτ ), we end up that

Pτ,ξ[ sup
u∈Unu

∣∣∣⟨ν0, u⟩ − ⟨̂ν0, u⟩
∣∣∣ ≤ ϵ

2︸ ︷︷ ︸
≜A

] ≥ 1− δ/4. (35)
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By using analogous arguments and taking into account that |
∑∞

t=0 γ
tci(xt, at)| ≤ Kc,∞

1−γ , for all

(xt, at) ∈ X ×A, t ∈ N, i = 1, . . . , nc, we can conclude that for m ≥ 8K2
c,∞θ2nc ln ( 8nc

δ )

(1−γ)2ϵ2 ,

Pτ,ξ[ sup
c∈Cnc

∣∣∣〈µπE
ν0
, c
〉
− ̂⟨µπE

ν0 , c⟩
∣∣∣ ≤ ϵ

2︸ ︷︷ ︸
≜B

] ≥ 1− δ/4. (36)

Finally, note that

Pτ,ξ

[
sup

c∈Cnc ,u∈Unu

∣∣∣〈µπE
ν0
, c− T ∗

γ u
〉
− ̂⟨µπE

ν0 , c⟩+⟨̂ν0, u⟩
∣∣∣ ≤ ϵ

]
≥ Pτ,ξ[A ∩B]

≥ 1− δ/2,

where in the first inequality we have used the monotonicity property of probability measures and the
second inequality follows by (35), (36) and a simple union bound.

Proof of Theorem 4.2. By using the same notation as in the proof of Theorem 4.1, we can write

SIPN,m,n :

{
infz∈Zm,n

h⊤z
s.t. f(z, λ(i)) ≤ 0, ∀i = 1, . . . , N,

where
Zm,n =

{
z = (α, β, ε) ∈ Rnc+nu+1 : ∥α∥2 ≤ θ, ∥β∥2 ≤ θ,

nc∑
i=1

αi
̂⟨µπE
ν0 , ci⟩(τ)−

nu∑
j=1

βj
̂⟨ν0, uj⟩(ξ) ≤ ε,

∫
Λ

(−f(z, λ) + ε)dλ = 1, ε ≥ 0

}
.

Let z̃N,m,n = (α̃N,m,n, β̃N,m,n, ε̃N,m,n) be the optimizer of SIPN,m,n and let c̃N,m,n =∑nc

i=1 α̃N,m,ni
ci be the associated cost function.

We first fix multi-samples τ, ξ. Similarly as in Theorem 4.1, we can conclude that for N ≥ N(nc +
nu + 1, g( ϵ

LΛ
), δ/2),

Pζ [y ∈ ΛN : z̃N,m,n(y, τ, ξ) |= IPm,n,ϵ(y, τ)] ≥ 1− δ/2,

where IPm,n,ϵ is the ϵ-perturbed robust counterpart of SIPN,m,n given by

IPm,n,ϵ :

{
infz∈Zm,n h⊤z
s.t. f(z, λ) ≤ ϵ, ∀λ ∈ Λ,

Integrating over the whole probability space (Ωm ⊗Xn,Pτ,ξ), we get

Py,τ,ξ[z̃N,m,n |= IPm,n,ϵ] ≥ 1− δ/2. (37)

However, by virtue of Proposition B.1, for n ≥ 8K2
u,∞θ2nu ln ( 8nu

δ )

ϵ2 and m ≥ 8K2
c,∞θ2nc ln ( 8nc

δ )

(1−γ)2ϵ2〈
µπE
ν0
, c̃N,m,n − T ∗

γ ũN,m,n

〉
≤ ̂⟨µπE

ν0 , c̃N,m,n⟩ + ̂⟨ν0, ũN,m,n⟩ + ϵ (38)

with probability Py,τ,ξ at least 1− δ/2. Combining (37), (38) and the bounds in Theorem 2 of [76]
by a simple union bound completes the proof.
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C Numerical Results

We consider a one-dimensional truncated Linear-Quadratic-Gaussian (LQG) control problem com-
prising a linear dynamical system

xt+1 = Axt +Bat + ωt, t ∈ N,

and a quadratic state cost c(s, a) = Qx2 + Ra2, where A,B ∈ R, Q > 0, R > 0. We assume
that state and action spaces are given by X = A = [−L,L] for some parameter L > 0. The
disturbances {ωt}t∈N are i.i.d. random variables generated by a truncated normal distribution with
known parameters µ and σ, independent of the initial state x0. Thus, the process ωt has a distribution
density

f(s, µ, σ, L) =

{
1
σϕ( s−µ

σ )
Φ(L−µ

σ )−Φ(−L−µ
σ )

, s ∈ [−L,L]

0 o.w. ,

where ϕ is the probability density function of the standard normal distribution, and Φ is its cumulative
distribution function. The transition kernel P has a density function p(y | x, a), i.e., P(C | x, a) =∫
C
p(y | x, a)dy for all C ∈ B(X ), that is given by

p(y | x, a) = f(y −Ax−Ba, µ, σ, L).

In the special case that L = +∞ the above problem represents the classical LQG problem, whose so-
lution can be obtained via the algebraic Riccati equation [77, p. 372]. By referencing [31, Lemma7.1],
we can readily conclude that Assumption 2.1 holds in this context with specific constants

LP =
2Lmax{A,B}

σ2
√
2π

(
Φ
(

L−µ
σ

)
− Φ

(
−L−µ

σ

)) , Lc = max{Q,R}2L.

As value function u : X → R we use a simple polynomial of degree 2 (nu = 3) such that

u(x) =

nu∑
i=1

βiui(x), ui(x) = xi−1,

whereas the cost function c : X ×A → R is approximated by the following weighted sum (nc = 9)

c(x, a) =

nc∑
i=1

αici(x, a),

where c1(x, a) = 1, c2(x, a) = x, c3(x, a) = a, c4(x, a) = xa, c5(x, a) = x2, c6(x, a) = a2,
c7(x, a) = x2a, c8(x, a) = xa2, c9(x, a) = x2a2. For the simulation, the parameters are set as
L = 10, A = −1.5, B = 1, Q = R = 1, µ = 0, σ = 1, and γ = 0.99. The code for these
experiments can be found at github.com/RAPACIRLCS/code. The experiments were run on a
workstation with an AMD Ryzen 9 5950X CPU (16 cores) and 128GB of RAM.

Sampled Inverse Program with known transition kernel. In our first experiments highlighted in
Figure 3, we focus on the sampled inverse program SIPN. More precisely, we solve the program SIPN

for various choices of sample sizes N and denote its corresponding optimizers as (α̃N , β̃N , ε̃N ) and
its extracted cost function as c̃N =

∑nc

i=1 α̃Ni
ci. Figure 3a shows the probability of the learnt cost

function c̃N being (ε̃N + ϵ)-inverse feasible for various choices of ϵ and N . The plotted probability
represents the empirical probability derived from 1000 experiments. It is evident that, for a constant
parameter ϵ, the likelihood of being inverse feasible grows with the increase of the sample size N .
Additionally, for a constant sample size N , the probability of being inverse feasible increases as the
parameter ϵ decreases. Both of these trends align with and support our theoretical findings as outlined
in Theorem 4.1. Figure 3b shows the objective function of program SIPN for various choices of
sample sizes N . Since these are random programs, we plot the empirical average (solid line) and its
corresponding standard deviations (shaded area) derived from 1000 independent experiments. As
expected, the objective value ε̃N increases as a function of the sample size N . Figure 3c visualizes
the theoretical sample complexity of Theorem 4.1, i.e., for various choices of δ and ϵ, we plot the
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Figure 3: Solutions of the Sampled Inverse Program SIPN. The variable N is the number of
i.i.d. samples (x, a) drawn uniformly from X ×A. We run 1000 independent experiments. Plot (a)
shows the empirical probability of the estimated cost function c̃N being an element of the feasibility
set, as described in Theorem 4.1 for given values of N and ϵ. Plot (b) shows the objective value of the
random program SIPN, i.e., ε̃N on average over the 1000 experiments, where the shaded area shows
the standard deviations. Plot (c) is a visualization of the theoretical sample complexity as given by
Theorem 4.1. For various values of δ and ϵ, we plot the sample size N = N(nc + nu + 1, g( ϵ

LΛ
), δ).

The variation parameter is set to ∆ = 1 · 10−7. Plot (d) compares the discounted long-run costs
V π
¯̃cN

(ν0) for the average ¯̃cN of the learnt costs c̃N under the expert policy πE (red) and the optimal
policy (blue). The solid line plots average over 1000 independent experiments, where the shaded area
shows the standard deviations.

sample size N = N(nc + nu + 1, g( ϵ
LΛ

), δ). To simplify the computation, we used the closed form
upper bound for the function N derived in [78] and given as

N(n, ϵ, δ) ≤ 2

ϵ
log

(
1

δ

)
+ 2n+

2n

ϵ
log

(
2

ϵ

)
.

When comparing Figure 3a and Figure 3c, we can see that there is a significant gap between the
empirical and theoretical bounds. The dynamics of a variation in ϵ, however, match the empirically
observed behaviour. Figure 3d visualizes the performance of the learnt cost c̃N by comparing the
discounted long-run cost of the expert policy under this learnt policy V πE

c̃N
(ν0) with its theoretical

lower bound minπ∈Π V π
c̃N

(ν0). According to Theorem 4.1 and Proposition 3.1 for large N this
difference vanishes with high probability, this behaviour can be observed in the plot. To reduce the
computational effort replace in Figure 3d the learnt cost c̃N with its empirical average, denoted ¯̃cN ,
taken over 1000 independent experiments. More precisely, for 1000 initial conditions x0 ∼ ν0 we
plot V πE

¯̃cN
(x0) and the theoretical lower bound minπ∈Π V π

¯̃cN
(x0).

Sampled Inverse Program with unknown transition kernel. The second experiment, Figure 4,
solves the sampled inverse program SIPN,m,n,k with unknown transition kernel. Compared to SIPN,
since we assume the transition kernel to be unknown, the inequality constraints are based on sampled
state transitions. The empirical probability, shown in Figure 4a, is derived from 1000 independent
experiments. To decrease the degrees of freedom in the parameter selection we set n = m = k for
the simulations. The behaviour of the empirical confidence, observable in Figure 4a, follows the
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Figure 4: Solutions of the Sampled Inverse Program SIPN,m,n,k. The variable N is the number of
i.i.d. samples (x, a) drawn uniformly from X × A. We run 1000 independent experiments. Plot
(a) shows the empirical probability of the estimated cost function c̃N,m,n,k being an element of the
feasibility set, as described in Theorem 4.2 for different N, k pairs given a chosen accuracy parameter
ϵ. Plot (b) shows the theoretical lower bound on k depending on N , for a set ϵ, as described by
Theorem 4.2.

trends shown in Figure 3. As expected, an increase in the number of samples increases the confidence
of learning a cost function c̃N,m,n,k that belongs to the inverse feasibility set C ε̃N,m,n,k+ϵ(πE).
It can be seen how, even for the largest possible ϵ, to reach a certain empirical confidence the
SIPN,m,n,k program requires many more state-action samples N compared to the SIPN program.
When comparing the empirical confidence of a given ϵ, N , and k with the theoretical sample
complexity, following Theorem 4.2, of k corresponding to the same ϵ and N it can be seen that the
empirical sample performance of SIPN,m,n,k is much more efficient.
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Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Remark 4.1, where we point to the exponential
dependence of our sample complexity with respect to the dimension of the state space
(known as curse of dimensionality). Moreover, in this remark we point out that the selection
of an “informative" distribution for the random state-action selection is not well understood
and crucial for the practical efficiency of the method.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All statements in the paper are equipped with detailed and correct proofs,
which are provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All our simulations are transparent and can be easily reproduced by the code
available via the GitHub link in the paper, see Section C. We would like to note that our
datasets are synthetic datasets.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code of all our experiments is available via the GitHub link in the paper,
see Section C. It is therefore easy to reproduce our results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details of the experiments are provided via our files available in the
GitHub, whose link is provided in the paper, see Section C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In our plots we show average performance over 1000 independent experiments
(solid lines), but additionally we show the corresponding standard deviations with the
shaded areas, see Figure 3. In Figure 4 we run 1000 independent experiments and plots
show empirical probabilities computed from them.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As pointed out in Section C all our experiments were run on a workstation
with an AMD Ryzen 9 5950X CPU (16 cores) and 128GB of RAM.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, it does.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: Our work is a theoretical result on inverse reinforcement learning and has not
direct, neither positive nor negative, societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Due to the theoretical and mathematical nature of our work, this question does
not apply. The risks stated in the question are not present in our work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use any existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce any new assets in our work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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