
FUG: Feature-Universal Graph Contrastive
Pre-training for Graphs with Diverse Node Features

Jitao Zhao1, Di Jin1∗, Meng Ge2, Lianze Shan1, Xin Wang1, Dongxiao He1, Zhiyong Feng1

1College of Intelligence and Computing, Tianjin University, China
2Department of Electrical and Computer Engineering, National University of Singapore, Singapore

1{zjtao, jindi, shanlz2119, wangx, hedongxiao, zyfeng}@tju.edu.cn, 2gemeng@nus.edu.sg

Abstract

Graph Neural Networks (GNNs), known for their effective graph encoding, are
extensively used across various fields. Graph self-supervised pre-training, which
trains GNN encoders without manual labels to generate high-quality graph rep-
resentations, has garnered widespread attention. However, due to the inherent
complex characteristics in graphs, GNNs encoders pre-trained on one dataset
struggle to directly adapt to others that have different node feature shapes. This
typically necessitates either model rebuilding or data alignment. The former results
in non-transferability as each dataset need to rebuild a new model, while the latter
brings serious knowledge loss since it forces features into a uniform shape by
preprocessing such as Principal Component Analysis (PCA). To address this chal-
lenge, we propose a new Feature-Universal Graph contrastive pre-training strategy
(FUG) that naturally avoids the need for model rebuilding and data reshaping.
Specifically, inspired by discussions in existing work on the relationship between
contrastive Learning and PCA, we conducted a theoretical analysis and discovered
that PCA’s optimization objective is a special case of that in contrastive Learning.
We designed an encoder with contrastive constraints to emulate PCA’s generation
of basis transformation matrix, which is utilized to losslessly adapt features in
different datasets. Furthermore, we introduced a global uniformity constraint to
replace negative sampling, reducing the time complexity from O(n2) to O(n),
and by explicitly defining positive samples, FUG avoids the substantial memory
requirements of data augmentation. In cross domain experiments, FUG has a
performance close to the re-trained new models. The source code is available at:
https://github.com/hedongxiao-tju/FUG.

1 Introduction

Graph Neural Networks (GNNs) [1], renowned for their effectiveness in encoding both graph topology
and feature information, have emerged as the mainstream methods in graph representation learning.
They are extensively applied in various scenarios such as protein molecule prediction [2], e-commerce
recommendation systems [3], and community detection [4]. Training high-quality GNNs typically
relies on extensive manually labeled data [5], which is costly and limits their applications. To address
this challenge, graph self-supervised pre-trainings have gained significant attentions [6, 7, 5]. These
approaches leverage self-supervised signals mined from the graph data themselves and design proxy
tasks to train models without manually labeled data.

Unfortunately, due to the inherent complexity of graph data, models trained on one graph dataset
often fail to perform well on another. This complexity arises from two main aspects: 1). topological

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

diversity, where a node in a graph can connect to any number of other nodes, and 2). feature diversity,
where nodes represent a variety of information such as textual or float data. In domains like vision [8],
text [9], and speech [10], data shares common latent semantics (such as RGB channels in pixels, word
vectors, or audio samples), and have relative positional information like spatial relations in vision
or sequence relations in text and audio. Unlike these domains, features in graphs are unordered and
chaotic. Even within the same citation dataset category using identical feature extraction methods,
such as Cora, CiteSeer, and PubMed [11, 12], the node features have different shapes.

Train
Dataset

Test Dataset

Graph
Pre-train
Models

Lose Information

FUG

GNN
Encoder

Preprocessing

Figure 1: Motivation.

Existing GNNs can address the issue of topological diversity through well-
designed message-passing and aggregation methods [13, 14]. However,
due to the neural networks’ requirement for fixed input-output dimen-
sions, GNNs struggle with feature diversity. This necessitates retraining a
new graph neural network for datasets with different node feature shapes,
significantly restricting the applicability of existing graph self-supervised
pre-training models. This leads to some graph pre-training works [6, 15]
that have to ignore node attributes and encode only the structural infor-
mation. Recent “All-In-One” work in graph attempts to reshape node
features to the same dimensions through preprocessing methods like Prin-
cipal Component Analysis (PCA) [16, 17], feature similarity embedding
[18] and language models [17]. However, these methods inevitably lose
crucial semantic information related to downstream tasks during data
preprocessing. Classical machine learning methods such as PCA cannot
participate in training, and they primarily encode the information with the
highest variance as principal components, overly focusing on differences
between node features and losing substantial homophily information in
node features. Encoding informative features into single-dimensional
similarity also brings obvious information loss. Language models suffer
assumption biases, presuming that all input data is textual, thus inef-
fectively handling extensive float features. Furthermore, using large language model interfaces
or involving language models in training incurs additional significant costs. Additionally, sliding
window-based neural networks, such as 1D-CNNs [19] and LSTMs [20], also fail to address the issue
of feature diversity. While they can handle inputs of varying dimensions, they operate under the prior
assumption that the data is sequential, which is not satisfied by graph node features.

Among the feature-unifying approaches discussed earlier, only PCA-like methods exhibit no assump-
tion bias and are adaptable to various feature forms. Their primary limitation lies in the misalignment
between their model objectives and the proxy tasks of graph pre-training, coupled with their inability
to train based on specific loss functions. Noting discussions in existing works that link contrastive
learning with PCA-like methods, which regard contrastive pre-training as a generalized form of non-
linear PCA [21], we draw inspiration to propose a question: Could a graph contrastive pre-training
principle based on PCA theory be developed to address inherent issues of PCA and broadly applied
to node features of different shapes?

In this paper, we theoretically demonstrate that classical PCA and contrastive learning fundamentally
follow the same theoretical framework. PCA’s optimization objective is a special case of that in
contrastive learning. The adaptability of PCA-like methods to various feature shapes stems from
their intrinsic component that acts as a columnar encoder for values under specific feature dimension,
creating a basis transformation matrix, which we term dimensional encoding. The loss and parameter
update mechanisms of contrastive learning could offer traditional PCA methods new goals and
training mechanisms that align better with the graph data and downstream tasks. Based on these
analyses, we propose a new strategy for Feature-Universal Graph pre-training (FUG strategy), which
includes three steps: dimensional encoding, graph encoding, and relative relationship optimization
task.

Guided by this theory, we instantiate a simple FUG model. Simulating PCA, this model utilizes
sampling to capture the distribution among different nodes within specific feature dimension for
dimensional encoding, and generates basis transformation vectors for feature dimensions which are
used to losslessly unify the node features. It employs GNN encoder for graph encoding. We also
design an improved and more efficient graph contrastive loss as the relative relationship optimization
task. According to this task, FUG effectively learns the relative relations within graph data, and
transfers this encoding capability effectively to other datasets with different node feature shapes.

2

We conducted extensive experiments to validate FUG’s efficacy. In in-domain self-supervised
learning experiments, FUG demonstrated competitive performance with existing advanced graph
self-supervised models. In the cross-domain learning experiments, the FUG trained and tested on
different datasets shows similar performance to the model trained and tested on the same dataset.
These results prove the strong adaptability and transferability of FUG.

2 Notations and Preliminary

In this section, we introduce some preliminary concepts and notations to facilitate analysis in later.
We consider a graph data G = (V, E), where V = {v1, v2, ..., vn} represents the set of nodes and
E ⊆ V × V represents the set of edges. X ∈ Rn×d denotes the feature matrix of the nodes. A is the
adjacency matrix representing the topological relationships between nodes, with aij = 1 if eij ∈ E
and aij = 0 otherwise.

Graph Neural Networks (GNNs) . GNNs can be uniformly described as H(t+1) = ÃWH(t), where
H represents the embeddings in hidden layer, with t = 0 denoting the node features X . Ã is the
message passing matrix, which can be derived through neighbor sampling [13], random walks, or
deep learning [22] techniques to mine graph data. W is a learnable parameter matrix. Under the
successful design of existing works, the message passing matrix Ã can generically encode graph
data with varying edges. However, the presence of the parameter matrix W means that a trained
GNN model can only be directly applied to graphs with the same node feature dimensionality as the
training dataset, significantly limiting the application scenarios of GNNs.

Graph Contrastive Pre-training. It is based on Contrastive Learning (CL). Given graph G, graph
contrastive pre-training aims to train a GNN encoder f(·) in a self-supervised manner, which generates
low-dimensional dense graph representations Z = f(G) for downstream tasks. Typically, InfoNCE
loss functions are used for training, formulated as:

LInfoNCE = − log

(∑
(vi,vj)∈PS eSim(g(vi),g(vj))/τ∑

(vi,vj)∈PS eSim(g(vi),g(vj))/τ +
∑

(vi,vj)∈NS eSim(g(vi),g(vj))/τ

)
, (1)

where PS denotes the data sampled as positive pairs, and NS denotes the data sampled as negative
pairs. Sim(·) represents the cosine similarity calculation, g(·) is a non-linear projector, τ is a
temperature parameter. The training objective is to increase the similarity between positive pairs and
decrease the similarity between negative pairs.

Principal Component Analysis (PCA). Given data X with any number of dimensions d, PCA
aims to reduce the dimensionality to k dimensions, where k ≤ d, while maximizing the retention of
variance between the data. PCA based on eigendecomposition is shown as:

PCA(X) = X̃P, P = Norm[Concat{ci|ci ∈ C, λc ≥ λ(k)}], (Λ, C) = δ[Cov(X̃:,1, X̃:,2, ..., X̃:,d)],
(2)

where P represents the basis transformation matrix, X̃ = X −Mean(X). ci denotes the i-th eigen-
vector, λi denotes the corresponding eigenvalue, λ(k) denotes the k-th largest eigenvalue. Concat(·)
represents concatenating the eigenvectors within the set, and Norm(·) represents normalization. C
and Λ represent the matrix composed of eigenvectors and the corresponding eigenvalues, respectively.
Cov(·) represents covariance computation, and δ denotes matrix decomposition. Note that since the
covariance matrix is symmetric, the extracted eigenvectors are orthogonal to each other. This formu-
lation mathematically ensures that the dimensionality-reduced embeddings maximize the retention of
variance between the original data and minimize homogeneity among the data.

3 Graph Contrastive Pretrained Models from the PCA perspective

In this section, we first theoretically summarize the framework that PCA essentially follows. We
then analyze contrastive learning, demonstrating that it also adheres to this framework, and the
PCA optimization task is a special case of that of CL. Furthermore, we answer the question why
the PCA embeddings generally underperform graph contrastive pre-training in downstream tasks
within the same framework, and why graph contrastive pre-training models lose the ability to adapt
datasets with varying node feature shapes. Based on these findings, we propose a new strategy for
Feature-Universal Graph pre-training (FUG strategy). First we define a class of objectives:

3

Definition 3.1 (Data relative relationship optimization task LRT) . Given a dataset X and a
model ϕ(·), LRT involves maximizing or minimizing the l2−distance between certain pairs of
data points, formulated as:

Minimize [LRT] ∝ Minimize [E(xi,xj)∈X− [Sim(zi, zj)]− E(xi,xj)∈X+ [Sim(zi, zj)]], (3)

where X+ represents the set of data pairs that need to be encoded as similar, whereas X− denotes
the set of pairs that should be encoded as dissimilar. And zi denotes the embedding of xi.

Notably, unlike the contrastive loss, X+ represents positive pairs within the raw data, rather than
positive pairs between the augmented views. It means LRT focuses solely on the relative semantic
relationships among the data points, disregarding their absolute semantic.

Definition 3.2 (Encoder Dim(·)) Dim(·) refers to a series of dimension-specific encoders that di-
rectly take the data of all samples under a specific dimension i, XT

:,i, and output the embedding of
that dimension, DimEmbi, formalized as DimEmbi = Encode(XT

:,i), DimEmb ∈ RD×N ′
.

Definition 3.3 (Encoder Fea(·)) Fea(·) refers to a series of sample-specific encoders that take the
data of all dimensions of a specific sample j, Xj , and output the embedding of that sample, FeaEmbj ,
formalized as FeaEmbj = Encode(Xj , ϵ), FeaEmb ∈ RN×D′

, where ϵ represents additional
input.

Theorem 3.1 (PCA framework) . Consider Dim(·) as an encoder modeling the distribution of data
across a specific dimension (as in Definition 3.2), Fea(·) as an encoder modeling the relationships
between different dimensions of data (as in Definition 3.3). PCA is an instantiation model for these
two encoders. Assuming that data representations have equal length m, when X+ = ∅ in Definition
3.1 of LRT , PCA adheres to the following form:

Minimize [LPCA(PCA(X))] ∝ Minimize [LRT (Fea(Dim(X)))]. (4)

Rigorous proof can be found in Appendix A.1. Here, LPCA = −E[||PCA(xi)−mean(PCA(X))||22]
is interpreted as an instantiation of LRT , based on the principle of maximizing the retention of data
variance. We consider the covariance function in Eq. 2, Cov(·) , as an implementation of Dim(·),
since it essentially encodes the distribution information of a single dimension through the computation
of covariance. The matrix decomposition and normalization concatenation in Eq. 2 are viewed as
an implementation of Fea(·), as they fundamentally encode the relationships among different data
dimensions. This interpretation also applies to PCA methods based on Singular Value Decomposition.
Thus, we summarize the framework that PCA adheres to as shown in Eq. 4.

PCA framework has powerful transfer ability. From Eq. 4, it can be inferred that PCA essentially
functions as a neural network model trained to reach a global optimum. The parameters of PCA’s
two encoders learn to encode the covariance of dimensional data and to extract and concatenate
eigenvectors to form the basis transformation matrix, respectively. Extensive researchers have vali-
dated PCA’s success across various fields with the same parameters [23, 24, 25], demonstrating that
under the guidance of the LRT loss, the model’s capacity to encode difference in data demonstrates
formidable transferability. This transform capability originates from the model’s focus on encoding
the differential relationships among data rather than their absolute semantics.

PCA is capable of adapting to arbitrary Euclidean data and demonstrates strong transfer performance.
However, its effectiveness generally falls short of advanced NN-based models, and it lacks the ability
to encode structure information. To address the issue of node feature generality in graph pre-training
models, inspired by existing work [26], we attempt to further theoretically analyze the relationship
between existing graph contrast pre-training models and the PCA framework. We start by analyzing
the InfoNCE loss which is commonly used in contrastive learning.

Theorem 3.2 (Equivalence of Contrastive Loss and LRT) . Assuming that data augmentation in
contrastive learning does not alter the essential semantics of node pairs for downstream tasks, it
follows:

Minimize [LInfoNCE] ∝ Minimize [LRT]. (5)

Detailed proof can be found in Appendix A.2. Here we offer an intuitive explanation: the negative
sampling component in InfoNCE loss is widely acknowledged for encoding dissimilarities within

4

the data. We contend that the augmentation-based positive sampling part, inherently encodes
similar relationship between data points rather than their absolute semantics. Consider a pair
of data points, xi and xj , with the same semantics. Ideally, when data augmentation does not
alter the essential semantics of the nodes, the augmented data, Aug(xi) and Aug(xj), should be
identical. Consequently, Maximize [Sim(xi, Aug(xi)) + Sim(xj , Aug(xj))], essentially equates
to Maximize [Sim(xi, xj). Thus, data augmentation is essentially looking for positive samples in
the dataset, aligning with the views expressed in work [27]. Furthermore, this view explains why
augmentation is less critical in graph contrastive learning compared to other domains [28], leading to
the proposal of many augmentation-free graph contrastive studies [29, 30, 31], as the edges in graph
data (especially in homophilic graphs) inherently convey similarities between data points.

Corollary 3.2.1 Consider a specific instantiation of a dimension encoder defined as Dim(X) = X ,
and the contrastive model viewed as an instantiation of an Fea(·) = ContrastiveModel(·). Under
this the contrastive model also adheres to the framework in Theorem 3.1, which states:

Minimize [LInfoNCE(ContrastiveModel(X))] ∝ Minimize [LRT (Fea(Dim(X)))]. (6)

From this, we can conclude that the PCA optimization objective is, in fact, a special case of the CL
loss, detailed proofs are in Appendix A.2. As demonstrated by Theorem 3.1 and Corollary 3.2.1, PCA
and contrastive pre-training fundamentally follow the same framework. Our analysis extends the
existing discussions [26] on the relationship between the two. Within this framework, we can more
clearly analyze why PCA is versatile across various data, while advanced contrastive pre-training
models generally outperform PCA when directly used as embeddings in downstream tasks.

Table 1: Comparative Analysis of Model Com-
ponents in PCA, Contrastive Pre-training Models
(CL), and the proposed FUG

Dim(·) Fea(·) X+ X−

PCA ✓ ✓ ✓
CL ✓ ✓ ✓

FUG (Ours) ✓ ✓ ✓ ✓

Answer 1. The robust versatility of PCA
across various types of Euclidean data is at-
tributed to its inclusion of the Dim(·) compo-
nent. As illustrated in Table 1, PCA, in contrast
to contrastive learning models, incorporates the
Dim(·) component. Most existing neural net-
work layers encode features of individual data
points rather than encoding across the same di-
mension for different data. Due to these layers’
fixed input-output dimensionality requirements,
they cannot universally adapt to data with var-
ied feature forms except using a sliding window
strategy. In contrast, PCA encodes different data within the same dimension by computing covariance
between dimensions, inherently encoding the data distribution of that dimension. This enables PCA
to generate transform matrix and integrate data into embeddings within a unified shape.

Answer 2. The superior performance of contrastive pre-training models over PCA primarily
stems from their additional encoding of data homogeneity and a more flexible Fea(·) component.
As noted in Table 1, a key advantage of contrastive learning (CL) compared to PCA is its consideration
of homogeneity in the optimization objective, rather than merely encoding differences between data
points. Furthermore, thanks to a variety of neural network layers, these models are capable of
extracting richer data information and are adaptable to non-Euclidean graph data.

Feature-Universal Graph Contrastive Pre-training. Based on the above analysis, we propose
that a Feature-Universal Graph Contrastive Pre-training model should include a dimension-specific
data distribution encoder Dim(·), a cross-dimensional data information encoder Fea(·), and an
optimization objective LRT that encodes both similarities and differences between data. Models
designed under this theory can universally adapt to graph data with any node feature shapes. Moreover,
guided by LRT , the model captures the relative semantic relationships among data, rather than
absolute semantics. This type of knowledge, which is more easily transferable, ensures that the model
can generalize across different datasets.

4 Feature-Universal Graph Pre-training Model

Guided by the theories presented in Section 3, we instantiated a Feature-Universal Graph pre-training
model (FUG model), as depicted in Fig. 2. This model incorporates a Dimension Encoding component
DE(·), a Graph Encoder GE(·), and a relative relationship optimization task LRT-FUG. The DE(·)

5

Ideal
Representation

Distribution

Mean
Origin

Dimensional Encoding

Graph Encoding

Local Alignment

Global Uniformity

Figure 2: The overview of the proposed FUG model.Given the node features X and structure A
of a graph, X is first processed through a learnable dimensional encoding component, DE(·), to
generate a basis transformation matrix T , which is used to embed features into a unified shape
H = XT ∈ Rn×k. H and A are then input into the graph encoder GE(·) to produce representations
Z. We set three losses, LDE, LRT-FUG+ , and LRT-FUG− , which collaboratively train GE(·) and DE(·).

learns the data distribution within a specific dimension to generate a basis transformation matrix T ,
which converts any form of node features to a unified shape. The GE(·) encodes both the structure
and the node features to obtain graph representations. LRT-FUG is an improved contrastive loss based
on the LRT concept. Compared to the classical InfoNCE loss, LRT-FUG more effectively guides the
model in encoding the relative semantic information in the data. Furthermore, in line with the earlier
discussion on augmentation essentially serving as positive sampling, we explicitly define positive
sampling within LRT-FUG to replace data augmentation.

Dimension Encoder DE(·). We designed a non-linear dimension encoder, DE(·), to encode the
distribution information of a specific dimension. If it encodes the features of all nodes under one
dimension, with the input dimension fixed at the number of nodes in the training set nt, this encoder
would be constrained by the number of input nodes. Therefore, we randomly sample ns nodes from
the training set as the input for this encoder, approximating the feature distribution of the entire data
through the sampled nodes. The dimension distribution information, after being processed by DE(·),
generates a basis transformation vector for each dimension as follows:

ti = DE(X:,i) = Norm[MLP(X̂:,i

⊤
)], (7)

where X̂ = Sample(X) and MLP represents a Multi-Layer Perceptron. X:,i represents the i-th
column of the X matrix, that is, all the data under the i-th feature dimension. Eq. 7 can be seen as
DE(·) assigning a point to each feature dimension in a hyperspherical embedding space which the
center at the origin and radius one. The basis transformation vectors should maximally reflect the
differences among the feature dimensions while retaining inter-dimension correlations. In terms of the
embedding space, this means the base vectors should be uniformly distributed over the hypersphere
globally. This implies that the mean of the base vectors should approximate the origin. Therefore, we
designed a separate loss for DE(·) as follows:

LDE(T) = ||
1

d

d∑
i=1

ti − 0||22, (8)

where d represents the number of dimensions, T denotes the basis transformation matrix. Eq.
8 ensures the global uniformity of the basis transformation vectors, while the local similarity or
dissimilarity is controlled by the dimension’s inherent information and the overall model’s loss.

Graph Encoder GE(·). Following numerous existing works [5, 32, 33], we implement our graph
encoder using GNNs, which effectively encode the feature and structural information of graphs. We
use H = XT as the node feature embedding input to GE(·). This approach standardizes any shape
of node features to the same dimension, making GE(·) generally applicable across various datasets.

Relative Relationship Optimization Task LRT-FUG. Based on the analysis of LRT in Section 3 , the
LRT-FUG loss should be divided into positive and negative parts, LRT-FUG+ and LRT-FUG− . For negative
part, although the InfoNCE loss has demonstrated strong performance in prior studies [8, 5], it faces
challenges with false negative sampling [34, 35] and high computational complexity (which is O(n2),
see Appendix B.1). Moreover, existing studies have shown that InfoNCE-based loss functions face

6

conflicts in graph data, making the model gradient unable to descend [36]. Thus, we propose a new
type of loss based on the analysis in LRT . Ideally, representations should be able to be divided into
multiple clusters based on their intrinsic semantics, with nodes within the same cluster close together
(positive pairs) and nodes between clusters far apart (negative pairs). Without prior knowledge,
accurately identifying negative pairs is difficult and prone to sampling bias. Therefore, we opt not to
explicitly determine negative pairs but instead constrain the overall representations, as:

LRT-FUG− = || 1
n

n∑
i=1

Norm(zi)− 0||22, (9)

where zi represents the embedding of node vi. Similar to Eq. 8, we first constrain the representations
to a unit sphere and then force the mean of the representations to be close to the origin. From Eq. 9,
we reduce the complexity of the negative sampling in InfoNCE loss which is O(n2) to O(n).

For positive sampling, inspired by existing work [37, 31, 30] and based on the natural homophily
assumption in graphs, which means connected nodes have similar semantics, we consider node
neighbors as positive samples. As Eq. 8 and 9 both use the l2 distance, for loss balance, we also
adopt l2 loss here:

LRT-FUG+ =
1

|E|
∑

(vi,vj)∈E

||zi − zj ||22, (10)

where E represents the set of edges. Note that Eq 9 focuses on encoding global differences, while
Eq. 10 focuses on encoding local homogeneity, complementing each other without conflict. The
relationship between of LRT and LRT-FUG is in Appendix A.3. The final loss is defined as:

LFUG = λ1LRT-FUG− + λ2LRT-FUG+ + λ3LDE, (11)

where, λ1, λ2, λ3 are hyper-parameters which adjust the weight of the three losses. Compared to
the classical InfoNCE contrastive loss, LFUG better encodes the relative relationships between nodes
and offers a lower computational complexity of O(n+ e+ d) (Please see Appendix B.1 for details).
Notably, although the final loss involves three hyper-parameters, in fact, FUG has only one additional
hyper-parameter compared to classical GCLs (or even fewer, as FUG does not require tuning multiple
augmentation-related parameters). Details can be found in Appendix E.3.

Table 2: Cross-domain Node Classification. The performances of OFA and GraphControl are reported
from [17, 18]. FUG-C (Cora) means FUG-C (Cora) means FUG-C model pre-trained on Cora dataset.

Method Cora CiteSeer PubMed Photo Computers CS Physics
OFA [17] 75.90 ± 1.26 - 78.25 ± 0.71 - - - -
GraphControl [18] - - - 89.66 ± 0.56 - - 94.31 ± 0.12

FUG-C (Cora) 82.35 ± 2.60 67.13 ± 2.80 84.58 ± 0.57 92.78 ± 1.23 86.27 ± 1.60 92.78 ± 0.66 95.41 ± 0.42
FUG-C (CiteSeer) 82.28 ± 2.67 68.53 ± 2.43 84.57 ± 0.35 92.89 ± 1.06 85.76 ± 1.59 92.62 ± 0.80 95.41 ± 0.41
FUG-C (PubMed) 83.31 ± 2.72 69.31 ± 1.49 84.80 ± 0.74 92.82 ± 1.04 87.70 ± 1.18 92.65 ± 0.72 95.20 ± 0.39
FUG-C (Photo) 83.35 ± 1.94 68.92 ± 2.05 84.34 ± 0.41 92.93 ± 1.14 88.01 ± 1.38 92.44 ± 0.69 95.25 ± 0.41
FUG-C (Computers) 83.31 ± 2.25 69.01 ± 1.79 84.37 ± 0.47 93.11 ± 1.33 88.23 ± 1.31 92.50 ± 0.65 95.58 ± 0.40
FUG-C (CS) 81.73 ± 2.34 66.32 ± 2.64 84.44 ± 0.50 91.96 ± 1.11 83.28 ± 1.55 92.54 ± 0.78 95.34 ± 0.37
FUG-C (Physics) 80.85 ± 2.15 63.32 ± 2.28 84.26 ± 0.61 84.59 ± 1.80 73.43 ± 2.08 92.13 ± 0.66 95.35 ± 0.42

FUG (Rebuild) 84.45 ± 2.45 72.43 ± 2.92 85.47 ± 1.13 93.07 ± 0.82 88.42 ± 0.98 92.89 ± 0.45 95.45 ± 0.27

5 Experiments

5.1 Experiment Settings

To comprehensively evaluate the effectiveness of FUG, we selected commonly used graph datasets
with diverse node feature shapes, including Cora, CiteSeer, PubMed [11, 12], Photo, Computers
[38], CS, and Physics [39]. Detailed information about these datasets can be found in Appendix
E.1. We primarily compared four types of methods: supervised GNN model (GCN [1]), classic
machine learning algorithms (PCA[16], DeepWalk [40]), advanced self-supervised contrastive models
(GRACE [5], BGRL [32], GBT [41] DGI [33], GCA [42], ProGCL [34]), and recent graph universal
pre-training models (OFA [17], GraphControl [18]). In both self-supervised model-rebuilding tests
and cross-domain transfer tests, FUG is initially trained in a self-supervised manner. The trained

7

model is then frozen, and node representations are generated on the test datasets. These representations
are subsequently used as input for downstream predictors. For the node classification experiments, to
simulate a few-shot scenario, we split the dataset into train, valid, and test sets by 10%/10%/80%. We
train a simple downstream l2 classifier [35] using only 10% labels. Detailed experimental settings
can be found in Appendix E.3.

Table 3: Intra-domain Model Re-building Node Classification. Data without standard deviation are
reported from previous works [5, 42, 32]. Aside from GCN, the best results are highlighted in bold,
and the second-best results are underlined. OOM indicates Out-Of-Memory on an RTX 3090 GPU.

Method Cora CiteSeer PubMed Photo Computers CS Physics
Raw features 57.90 ± 3.90 57.60 ± 2.85 79.55 ± 0.98 80.99 ± 1.65 75.59 ± 1.69 89.92 ± 0.95 93.18 ± 0.45
PCA 56.36 ± 4.14 48.29 ± 3.18 82.80 ± 0.91 74.92 ± 1.82 71.26 ± 1.34 87.12 ± 0.73 92.48 ± 0.47
DeepWalk [40] 75.70 ± 0.00 50.50 ± 0.00 80.50 ± 0.00 89.44 ± 0.00 85.68 ± 0.00 84.61 ± 0.00 91.77 ± 0.00
DeepWalk+Features 73.10 ± 0.00 47.60 ± 0.00 83.70 ± 0.00 90.05 ± 0.00 86.28 ± 0.00 87.70 ± 0.00 94.90 ± 0.00

GRACE [5] 83.20 ± 1.87 70.99 ± 2.29 85.46 ± 0.54 91.93 ± 0.83 85.36 ± 0.82 91.84 ± 0.37 OOM
BGRL [32] 81.57 ± 2.07 70.10 ± 2.04 83.67 ± 0.84 92.34 ± 0.73 86.51 ± 1.53 92.12 ± 0.63 95.42 ± 0.41
GBT [41] 82.45 ± 1.97 70.16 ± 2.32 85.69 ± 1.22 92.44 ± 0.48 87.46 ± 0.82 92.39 ± 0.78 95.07 ± 0.23
DGI [33] 83.24 ± 2.12 71.23 ± 2.37 84.62 ± 0.83 92.32 ± 0.49 86.12 ± 0.73 92.47 ± 0.60 94.47 ± 0.50
GCA [42] 82.83 ± 2.29 72.06 ± 1.91 85.69 ± 0.68 92.63 ± 1.12 87.78 ± 0.78 92.69 ± 0.49 OOM
ProGCL [34] 82.65 ± 1.74 72.85 ± 2.17 OOM 92.87 ± 0.44 OOM OOM OOM

FUG (Rebuild) 84.45 ± 2.45 72.43 ± 2.92 85.47 ± 1.13 93.07 ± 0.82 88.42 ± 0.98 92.89 ± 0.45 95.45 ± 0.27
GCN (Supervised) 82.80 ± 0.00 72.00 ± 0.00 84.80 ± 0.00 92.42 ± 0.00 86.51 ± 0.00 93.03 ± 0.00 95.65 ± 0.00

Table 4: Ablation study of the loss functions of FUG.

Cora CiteSeer PubMed Photo Computers CS Physics
FUG w/o LDE 81.32 ± 2.56 71.74 ± 2.88 84.68 ± 1.19 57.37 ± 3.38 50.55 ± 1.69 91.25 ± 0.75 93.77 ± 0.40
FUG w/o LRT-FUG− 83.31 ± 2.85 68.44 ± 2.63 85.18 ± 1.01 92.80 ± 0.71 88.29 ± 1.09 92.71 ± 0.53 95.18 ± 0.29
FUG w/o LRT-FUG+ 84.30 ± 2.88 70.48 ± 2.47 85.24 ± 1.05 92.89 ± 0.82 88.27 ± 0.86 92.74 ± 0.47 95.29 ± 0.19

FUG 84.45 ± 2.45 72.43 ± 2.92 85.47 ± 1.13 93.07 ± 0.82 88.42 ± 0.98 92.89 ± 0.45 95.45 ± 0.27

5.2 Evaluating on Cross-domain Learning

We conduct experiments to test FUG’s performance in cross-domain learning, as shown in Table 2.
FUG-C represents a fixed FUG model where all hyperparameters remain constant during pre-training.
This presents a more challenging scenario, as it means we cannot adjust parameters based on changes
in the training datasets. In Table 2, we report the optimal accuracy of the state-of-the-art graph
universal pre-training models, OFA and GraphControl, which are capable of training across datasets
with different node features. These models have access to richer data during pre-training than FUG,
which is not fair to FUG. However, as Table 2 shows, FUG’s overall performance in cross-domain
learning significantly surpasses both models. This is because OFA and GraphControl employ data
preprocessing methods that significantly degrade the information in the node features (OFA uses
LLM to reshape node features to the same dimension, and GraphControl replaces original node
features with feature similarity). This validates our views made in Section 1 and Appendix D. It also
demonstrates that FUG’s dimension encoder can almost losslessly adapt to graph data with various
node feature shapes.

Additionally, we derived some interesting findings from Table 2: 1). Counterintuitively, FUG-
C’s performances are not necessarily the best when pre-trained and tested on the same dataset.
This is mainly because our loss functions focus on the relative semantic relationships between
nodes, allowing the encoder to learn the knowledge of relative relationships. This leads to: a) This
knowledge is generalizable across different datasets, so even though the datasets are from different
domains, this knowledge remains the same. In other words, relative semantic relationship knowledge
has weak cross-domain limitations, as stated in Section 3. b) The learning of relative semantic
knowledge primarily relies on the distributional differences between nodes and between different
feature dimensions, rather than on the absolute semantics contained in the data. Therefore, it is
common in Table 2 to see that FUG-C pre-trained on other datasets performs better than when
pre-trained and tested on the same dataset. 2). The performances of cross-domain trained FUG-C are
close to that of FUG which is trained and tested on the same datasets with tuned hyper-parameters. In

8

fact, on the Photo dataset, FUG-C (Computers) outperforms FUG. This demonstrates FUG’s strong
cross-domain learning capability and the success of our proposed dimension encoding and relative
relationship loss. It proves FUG’s robust applicability to various graph data.

5.3 Evaluating on In-domain Learning

Table 5: Comparison of computational cost

GRACE BGRL GBT FUG

X− ✓ ✓

CS Time 0.2169 0.0462 0.0593 0.0526
CS VRAM 11,960 4,482 3,324 2,482

Physics Time OOM 0.1084 0.1320 0.1047
Physics VRAM OOM 10,278 8,002 5,190

In Table 3, we designed node classification ex-
periments to evaluate FUG in intra-domain self-
supervised scenarios. We also report the computa-
tional overhead of FUG when the hidden layer is
fixed to 256 as shown in Table 5, and the complete
results are in Appendix B.2. From Table 3 and 5,
we can observe that FUG demonstrates compet-
itive performance. In Table 3, we observed that:
1). FUG outperforms GRACE across all datasets,
reaffirming that the learnable DE(·) encoder in
FUG can almost losslessly standardize node fea-
tures to the same shape. This also supports our views in Section 3 that both positive and negative
sampling in the InfoNCE loss inherently constrain the relative relationships between nodes. Fur-
thermore, it demonstrates that our loss function maintains excellent performance while reducing
computational overhead. 2). FUG significantly surpasses PCA on all datasets. Although PCA, FUG,
and GRACE follow the same framework, PCA is limited by its inability to encode graph structure and
the relative semantics between data points, leading to poor performance. This validates our previous
views. FUG simulates PCA’s encoding process through graph contrastive learning, thereby addressing
PCA’s shortcomings and significantly improving performance. 3). FUG generally outperforms the
negative-sample-free GBT and BGRL, while maintaining comparable time costs as shown in Table 5.
This indicates that considering negative relative relationships between data points is effective, and
FUG successfully reduces the time and space overhead associated with these negative considerations
to match that of methods that do not consider negative samples. Additionally, we compare FUG with
latest advanced in-domain self-supervised methods [43, 44, 45] in Appendix E.4.

5.4 Model Analysis

Figure 3: Hyper-parameter analysis of FUG.

To validate the effective-
ness of each component
in FUG, we conducted ab-
lation studies and param-
eter analysis, as shown
in Table 4 and Fig. 3.
From Table 4, it is ev-
ident that FUG outper-
forms other models with-
out part of loss functions
across all datasets, demon-
strating the effectiveness
of the three proposed loss
functions. Furthermore,
we observed that FUG w/o
LRT-FUG+ generally achieves the second-best performance. This is primarily due to LRT-FUG− con-
straining global uniformity without focusing on the distance between local node pairs, preventing the
model from over-encoding differences between nodes. Additionally, FUG w/o LDE generally exhibits
the worst results. The main reason is that, LRT−FUG+ and LRT−FUG− are effective when based on
LDE , especially for datasets with high quality features. As described in Section 5.4, when LDE is
absent, DE is not sufficiently trained, which leads to DE embedding X almost randomly to generate
H , which is an important input for GE. Furthermore, without the guidance of LDE , GE only needs
to extract relationships in H to reduce the loss, ignoring whether H contains sufficient information
from X . Therefore, in FUG w/o LDE , the H input to GE is of poor quality, resulting in worst
performances on some datasets. From Fig. 3, we can observe that as the number of sampled nodes
and the dimensionality of the basis transformation vectors increase, the overall model performance

9

improves until it stabilizes at around 1024. This indicates that a limited number of sampled nodes
can effectively represent the overall data distribution. Moreover, once the dimensionality of the basis
transformation vectors reaches a certain threshold, it can embed dimensional information nearly
losslessly, thereby unifying data features to the same shape. This further validates the design of the
dimensional encoder.

6 Discussions and Future Works

In this paper, we explore the connection between contrastive learning and PCA, and propose the
FUG strategy, which includes specific dimension encoding, inter-dimensional encoding, and relative
semantic relationship loss. The models instantiated under this framework achieve near-lossless unifi-
cation of node attributes with different shapes without data preprocessing, making them applicable
to graph data and demonstrating strong cross-domain learning capabilities. We instantiated a FUG
model and validated its effectiveness through extensive experiments. Additionally, our theoretical
analysis shows that the complexity of the GCL loss involving negative samples is reduced from
O(n2) to O(n), further lowering FUG’s training costs.

In future works, the FUG strategy can support research on graph prompt tuning, universal graph
models, and general large models based on graph networks, enabling graph models to train directly
on various data. Moreover, upon acceptance of this paper, we will release a pre-trained FUG model
on existing seven datasets, allowing for direct use of FUG-generated graph representations as priors
for further extensions. While the FUG strategy is general, the instantiated model has some limitations,
such as only considering homophilic graphs in positive sampling, which may perform poorly on
heterophilic graphs, and not constraining absolute semantic information in the loss function. Future
work can further refine the universal graph contrastive pre-training model based on the FUG strategy.

Acknowledgement

This work was supported by the National Natural Science Foundation of China [grants num-
bers 62422210, 62276187, 92370111, 62372323, 62472311] and the Ant Group Research Fund
(2023061517131).

References
[1] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[2] Sebastian Vlaic, Theresia Conrad, Christian Tokarski-Schnelle, Mika Gustafsson, Uta Dahmen,
Reinhard Guthke, and Stefan Schuster. Modulediscoverer: Identification of regulatory modules
in protein-protein interaction networks. Scientific reports, 8(1):433, 2018.

[3] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based
recommendation with graph neural networks. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages
346–353. AAAI Press, 2019.

[4] Yao Zhang, Yun Xiong, Yun Ye, Tengfei Liu, Weiqiang Wang, Yangyong Zhu, and Philip S
Yu. Seal: Learning heuristics for community detection with generative adversarial networks.
In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Virtual Event, CA, USA, August 23-27, 2020, pages 1103–1113. ACM, 2020.

[5] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. CoRR, abs/2006.04131, 2020.

[6] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan
Wang, and Jie Tang. GCC: graph contrastive coding for graph neural network pre-training.
In Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash, editors, KDD ’20: The 26th

10

ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA,
August 23-27, 2020, pages 1150–1160. ACM, 2020.

[7] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. GPT-GNN: gen-
erative pre-training of graph neural networks. In Rajesh Gupta, Yan Liu, Jiliang Tang, and
B. Aditya Prakash, editors, KDD ’20: The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, pages 1857–1867.
ACM, 2020.

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework
for contrastive learning of visual representations. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages 1597–1607. PMLR, 2020.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages
4171–4186. Association for Computational Linguistics, 2019.

[10] Shigeki Karita, Xiaofei Wang, Shinji Watanabe, Takenori Yoshimura, Wangyou Zhang, Nanxin
Chen, Tomoki Hayashi, Takaaki Hori, Hirofumi Inaguma, Ziyan Jiang, Masao Someki, Nelson
Enrique Yalta Soplin, and Ryuichi Yamamoto. A comparative study on transformer vs RNN
in speech applications. In IEEE Automatic Speech Recognition and Understanding Workshop,
ASRU 2019, Singapore, December 14-18, 2019, pages 449–456. IEEE, 2019.

[11] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-
Rad. Collective classification in network data. AI Mag., 29(3):93–106, 2008.

[12] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In Maria-Florina Balcan and Kilian Q. Weinberger, editors, Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages
40–48. JMLR.org, 2016.

[13] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems, Long Beach, CA, USA, pages 1024–1034, 2017.

[14] Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and Philip S. Yu. A survey on
heterogeneous graph embedding: Methods, techniques, applications and sources. IEEE Trans.
Big Data, 9(2):415–436, 2023.

[15] Kaiwen Dong, Haitao Mao, Zhichun Guo, and Nitesh V. Chawla. Universal link predictor by
in-context learning on graphs. CoRR, abs/2402.07738, 2024.

[16] Andrzej Maćkiewicz and Waldemar Ratajczak. Principal components analysis (pca). Computers
& Geosciences, 19(3):303–342, 1993.

[17] Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. CoRR,
abs/2310.00149, 2023.

[18] Yun Zhu, Yaoke Wang, Haizhou Shi, Zhenshuo Zhang, Dian Jiao, and Siliang Tang. Graphcon-
trol: Adding conditional control to universal graph pre-trained models for graph domain transfer
learning. In Tat-Seng Chua, Chong-Wah Ngo, Ravi Kumar, Hady W. Lauw, and Roy Ka-Wei
Lee, editors, Proceedings of the ACM on Web Conference 2024, WWW 2024, Singapore, May
13-17, 2024, pages 539–550. ACM, 2024.

[19] Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and Daniel J
Inman. 1d convolutional neural networks and applications: A survey. Mechanical systems and
signal processing, 151:107398, 2021.

11

[20] Alex Graves and Alex Graves. Long short-term memory. Supervised sequence labelling with
recurrent neural networks, pages 37–45, 2012.

[21] Zhenmei Shi, Jiefeng Chen, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, and
Somesh Jha. The trade-off between universality and label efficiency of representations from
contrastive learning. In The Eleventh International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[22] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.

[23] Andreas Daffertshofer, Claudine JC Lamoth, Onno G Meijer, and Peter J Beek. Pca in studying
coordination and variability: a tutorial. Clinical biomechanics, 19(4):415–428, 2004.

[24] Jian Yang, David Zhang, Alejandro F. Frangi, and Jing-Yu Yang. Two-dimensional PCA: A
new approach to appearance-based face representation and recognition. IEEE Trans. Pattern
Anal. Mach. Intell., 26(1):131–137, 2004.

[25] Daniel Granato, Jânio S Santos, Graziela B Escher, Bruno L Ferreira, and Rubén M Maggio.
Use of principal component analysis (pca) and hierarchical cluster analysis (hca) for multivari-
ate association between bioactive compounds and functional properties in foods: A critical
perspective. Trends in Food Science & Technology, 72:83–90, 2018.

[26] Zhenmei Shi, Jiefeng Chen, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, and
Somesh Jha. The trade-off between universality and label efficiency of representations from
contrastive learning. In The Eleventh International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[27] Benoit Dufumier, Carlo Alberto Barbano, Robin Louiset, Edouard Duchesnay, and Pietro
Gori. Integrating prior knowledge in contrastive learning with kernel. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett,
editors, International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pages 8851–8878.
PMLR, 2023.

[28] Wen-Zhi Li, Chang-Dong Wang, Hui Xiong, and Jian-Huang Lai. Homogcl: Rethinking
homophily in graph contrastive learning. In Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dim-
itrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye, editors, Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023,
Long Beach, CA, USA, August 6-10, 2023, pages 1341–1352. ACM, 2023.

[29] Dongxiao He, Jitao Zhao, Rui Guo, Zhiyong Feng, Di Jin, Yuxiao Huang, Zhen Wang, and
Weixiong Zhang. Contrastive learning meets homophily: Two birds with one stone. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett, editors, Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pages 12775–12789. PMLR, 23–29
Jul 2023.

[30] Haonan Wang, Jieyu Zhang, Qi Zhu, and Wei Huang. Augmentation-free graph contrastive
learning with performance guarantee. arXiv preprint arXiv:2204.04874, 2022.

[31] Namkyeong Lee, Junseok Lee, and Chanyoung Park. Augmentation-free self-supervised
learning on graphs. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022,
Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The
Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022, pages 7372–7380. AAAI Press, 2022.

[32] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar
Veličković, and Michal Valko. Bootstrapped representation learning on graphs. In ICLR
2021 Workshop on Geometrical and Topological Representation Learning, 2021.

12

[33] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
Hjelm. Deep graph infomax. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[34] Jun Xia, Lirong Wu, Ge Wang, Jintao Chen, and Stan Z. Li. Progcl: Rethinking hard negative
mining in graph contrastive learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, International Conference on Machine
Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 24332–24346. PMLR, 2022.

[35] Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. An empirical study of graph contrastive
learning. In Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021.

[36] Dongxiao He, Jitao Zhao, Cuiying Huo, Yongqi Huang, Yuxiao Huang, and Zhiyong Feng. A
new mechanism for eliminating implicit conflict in graph contrastive learning. In Michael J.
Wooldridge, Jennifer G. Dy, and Sriraam Natarajan, editors, Thirty-Eighth AAAI Conference
on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of
Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, pages 12340–12348. AAAI
Press, 2024.

[37] Hengrui Zhang, Qitian Wu, Yu Wang, Shaofeng Zhang, Junchi Yan, and Philip S Yu. Localized
contrastive learning on graphs. arXiv preprint arXiv:2212.04604, 2022.

[38] Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile,
August 9-13, 2015, pages 43–52. ACM, 2015.

[39] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Paul Hsu, and Kuansan
Wang. An overview of microsoft academic service (MAS) and applications. In Proceedings of
the 24th International Conference on World Wide Web Companion, WWW 2015, Florence, Italy,
May 18-22, 2015 - Companion Volume, pages 243–246. ACM, 2015.

[40] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In The 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014, pages 701–710. ACM,
2014.

[41] Piotr Bielak, Tomasz Kajdanowicz, and Nitesh V. Chawla. Graph barlow twins: A self-
supervised representation learning framework for graphs. Knowl. Based Syst., 256:109631,
2022.

[42] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive
learning with adaptive augmentation. In WWW ’21: The Web Conference 2021, Virtual Event /
Ljubljana, Slovenia, April 19-23, 2021, pages 2069–2080. ACM / IW3C2, 2021.

[43] Teng Xiao, Huaisheng Zhu, Zhengyu Chen, and Suhang Wang. Simple and asymmetric graph
contrastive learning without augmentations. In Alice Oh, Tristan Naumann, Amir Globerson,
Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

[44] Jiaming Zhuo, Can Cui, Kun Fu, Bingxin Niu, Dongxiao He, Chuan Wang, Yuanfang Guo,
Zhen Wang, Xiaochun Cao, and Liang Yang. Graph contrastive learning reimagined: Exploring
universality. In Tat-Seng Chua, Chong-Wah Ngo, Ravi Kumar, Hady W. Lauw, and Roy Ka-Wei
Lee, editors, Proceedings of the ACM on Web Conference 2024, WWW 2024, Singapore, May
13-17, 2024, pages 641–651. ACM, 2024.

[45] Yue Yu, Xiao Wang, Mengmei Zhang, Nian Liu, and Chuan Shi. Provable training for graph
contrastive learning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
Hardt, and Sergey Levine, editors, Advances in Neural Information Processing Systems 36:

13

Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, 2023.

[46] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

[47] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast for
unsupervised visual representation learning. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 9726–9735.
Computer Vision Foundation / IEEE, 2020.

[48] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[49] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to
improve graph contrastive learning. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages 15920–15933, 2021.

[50] Nian Liu, Xiao Wang, Deyu Bo, Chuan Shi, and Jian Pei. Revisiting graph contrastive learning
from the perspective of graph spectrum. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle
Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, November 28 - December 9, 2022, 2022.

[51] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[52] Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting
for graph neural networks. In Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopu-
los, Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye, editors, Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach,
CA, USA, August 6-10, 2023, pages 2120–2131. ACM, 2023.

[53] Yizhen Zheng, Shirui Pan, Vincent Lee, Yu Zheng, and Philip S Yu. Rethinking and scaling
up graph contrastive learning: An extremely efficient approach with group discrimination.
Advances in Neural Information Processing Systems, 35:10809–10820, 2022.

14

A Proofs

A.1 Proof for Theorem 3.1

The proof of Theorem 3.1 is divided into two parts: framework equivalence and objective equivalence.
We first present the framework equivalence part, where PCA can be decomposed into the Fea(·) and
Dim(·) components.

Proof:

Given an input data X with a standardized matrix X̃ = X −Mean(X), PCA is as follows.

PCA(X) = X̃P, P = Norm[Concat(ci|ci ∈ C, λc ≥ λ(k))], (Λ, C) = δ[Cov(X̃)], (12)

where (Λ, C) represents the eigenvalues and eigenvectors matrix, Norm(·) represents normalization,
Concat(·) represents concatenation, λ(k) represents the k-th largest eigenvalue, Cov(·) represents
covariance computation, and δ(·) represents eigenvalue and eigenvector computation. This can be
decomposed into the forms of Dim(·) and Fea(·) as follows:

DimEmb = Encode1(X̃) = X̃TW1,W1 = X̃,

FeaEmb = Encode2(X̃) = PCA(X) = X̃W2,W2 = P = φ(DimEmb),
(13)

where W1 is a special parameter matrix, W1 = X̃ , and φ(·) represents the operation to solve W2 as:

W2 = P = φ(DimEmb) = Norm[Concat{ci|ci ∈ C, λc ≥ λ(k)}], (Λ, C) = δ(DimEmb).
(14)

From the above, Encode1(·) and Encode2(·) satisfy linear or nonlinear mappings. So, we derive:

PCA(X) = Fea(X̃) = X̃W2 = X̃δ(Dim(X̃)) = Fea(X̃,Dim(X̃)). (15)

Thus, PCA can be rigorously decomposed into Dim(·) and Fea(·) as described in Theorem 3.1.

□

Then, we prove that MinimizeLPCA ∝ MinimizeLRT .

Proof:

We start with the loss function of PCA, which maximizes the variance:

Minimize [LPCA] = Minimize [−E[||PCA(xi)−mean(PCA(X))||22]]
= Minimize [−E[||zi −mean(Z)||22]],

(16)

where Z denotes the PCA embeddings. To obtain a form corresponding to Eq. 3, we consider an
arbitrary pair of data points zi and zj , as shown below::

Minimize [LPCA(zi, zj)] = Minimize [−||zi −
z1 + z2 + · · ·+ zi + · · ·+ zj + · · ·+ zn

n
||22]

= Minimize [−||zi −
zi + zj + c

n
||22]

= Minimize [−||n− 1

n
zi −

1

n
zj + c||22]

(17)
Where c represents the sum of the representations of all other nodes. From Eq. 2, Z = X̃P and
Mean(X̃) = 0. So Mean(X̃P) = Z = 0. Therefore, we approximate c to 0 here. The following

15

equation can be derived:

Minimize LPCA(zi, zj) = Minimize [−||n− 1

n
zi −

1

n
zj + c||22]

≈ Minimize [−||n− 1

n
zi −

1

n
zj ||22]

= Minimize [−((n− 1)2

n2
||zi||22 +

1

n2
||zj ||22 −

2n− 2

n2
zizj)]

= Minimize [−((n− 1)2

n2
m2 +

1

n2
m2 − 2n− 2

n2
zizj)]

= Minimize [−((n− 1)2

n2
m2 +

1

n2
m2 − 2n− 2

n2
m2 zizj
||zi||2||zj ||2

)]

= Minimize [−((n− 1)2

n2
m2 +

1

n2
m2 − 2n− 2

n2
m2Sim(zi, zj))]

= −((n− 1)2

n2
m2 +

1

n2
m2) +

2n− 2

n2
m2(Minimize [Sim(zi, zj)])

∝ Minimize [Sim(zi, zj)]

(18)

here we use the assumption that all representations have the same length m. When X+ =, Eq. 3 can
have the following form:

Minimize [LRT] ∝ Minimize [E(xi,xj)∈X− [Sim(zi, zj)]− E(xi,xj)∈∅[Sim(zi, zj)]]

= Minimize [E(xi,xj)∈X− [Sim(zi, zj)]]

∝ Minimize [LPCA]

(19)

□

Assumption Analysis. In Theorem 3.1, we assume that all representations have the same length m.
This assumption is reasonable because in many deep learning scenarios, normalizing is a common
practice, specifically normalizing the length of the embeddings to 1.

A.2 Proofs for Theorem3.2 and Corollary 3.2.1

Similar to Appendix A.1, the instantiation part of the theorem has already been clearly explained in
the main text. We consider Dim(X) = X as a special form of dimensional encoding instantiation,
given that CL essentially lacks a dimensional encoding component. We view the neural network in
CL as the instantiation of Fea(·). Here, we prove that Minimize [LCL] ∝ Minimiaze [LRT].

Proof: First, we define a set X+
A representing the positive pairs in contrastive learning. (xi, xj) ∈

X+
A means that xi and xj are two augmented data points derived from the same original data point.

Then we have:

LInfoNCE = − log

(∑
(zi,zj)∈X+

A
eSim(zi,zj)/τ∑

(zi,zj)∈X+
A
eSim(zi,zj)/τ +

∑
(zi,zj)∈X− eSim(zi,zj)/τ

)
(20)

where zi means the embedding of data point xi. Considering a positive pair (xa, x
+
a) ∈ X+

A , we can
obtain:

Minimize [LInfoNCE(xa, x
+
a)] = Minimize [− log

(
eSim(za,z

+
a)/τ + cp

eSim(za,z
+
a)/τ + cp + cn

)
]

= Minimize [− log

(
1− cn

eSim(za,z
+
a)/τ + cp + cn

)
]

= − log

(
1− cn

Maximize [eSim(za,z
+
a)/τ] + cp + cn

)

= − log

(
1− cn

eMaximize [Sim(za,z
+
a)]/τ + cp + cn

)
∝ Maximize [Sim(za, z

+
a)]

(21)

16

where cp, cn are constants Considering a negative pair (xa, x
−
a) ∈ X−, we can obtain:

Minimize [LInfoNCE(xa, x
−
a)] = Minimize [− log

(
cp

eSim(za,z
−
a)/τ + cp + cn

)
]

= − log

(
cp

Minimize [eSim(za,z
−
a)/τ] + cp + cn

)

= − log

(
cp

eMinimize [Sim(za,z
−
a)]/τ + cp + cn

)
∝ Minimize [Sim(za, z

−
a)]

(22)

So, we have:

Minimize [LInfoNCE] ∝ Minimize [
∑

(xi,xj)∈X−

Sim(zi, zj)] & Maximize [
∑

(xi,xj)∈X+
A

Sim(zi, zj)]

∝ Minimize [
∑

(xi,xj)∈X−

Sim(zi, zj)−
∑

(xi,xj)∈X+
A

Sim(zi, zj)]

(23)
Here we get the conclusion that minimizing the contrastive InfoNCE loss is maximizing the similarity
between positive pairs and minimizing the similarity between negative pairs. Based on our assumption,
data augmentation does not alter the essential semantics of the data. We define H as the data stripped
of all irrelevant and redundant information by data augmentation, containing only the essential
semantics. For a data point xa, maximizing

∑
(xa,xj)∈X+

A
Sim(xa, xj) is equivalent to maximizing∑

(xa,xj)∈X+
A

Sim(xa, ha). For downstream tasks, data of the same category embodies the same
essential semantics. Therefore, for a set D of data points have similar essential semantics, their h
values are identical. For any two data points xa, xb ∈ D∥, we have:

Minimize [LInfoNCE] ∝ Minimize [
∑

(xi,xj)∈X−

Sim(zi, zj)−
nk∑
k=1

∑
xi∈D∥

Sim(zi, z
+
i)]

= Minimize [
∑

(xi,xj)∈X−

Sim(zi, zj)−
nk∑
k=1

∑
xi∈D∥

Sim(zi, hk)]

= Minimize [
∑

(xi,xj)∈X−

Sim(zi, zj)−
nk∑
k=1

∑
xi,xj∈D∥

Sim(zi, zj)]

= Minimize [
∑

(xi,xj)∈X−

Sim(zi, zj)−
∑

xi,xj∈X+

Sim(zi, zj)]

∝ Minimize [LRT]

(24)

Comparing equations 19 and 24, we can conclude that the PCA optimization objective is, in fact, a
special case of the contrastive loss when X+ = ∅. □

Assumption Analysis. We assume that data augmentation does not alter the essential semantics of
the data, which is an idealized condition. Many works in contrastive learning aim to achieve this
through augmentation. Therefore, this assumption is reasonable. Additionally, this assumption is
made for the sake of clarity. Under this assumption, the set D is correctly defined, meaning all data
within the set share the same essential semantics. If the assumption does not hold, the essential
semantics within the set D may not be identical across all nodes. However, this does not affect the
correctness of the proof, as the set D still exists.

A.3 The Relationship Between the RT-FUG Loss and RT Loss

In this section, we discuss the relationship between LRT-FUG and LRT .

Theorem A.1 Assuming the representations have the same length m, then:
Minimize [LRT-FUG] ∝ Minimize [LRT] (25)

17

Proof:

The LRT-FUG consists of both positive and negative parts, which we discuss separately. For LRT-FUG+ ,
we have:

Minimize [LRT-FUG+] = Minimize [
∑

(vi,vj)∈X+

||zi − zj ||22]

= Minimize [
∑

(vi,vj)∈X+

(z2i + z2j − 2zizj)]

= Minimize [
∑

(vi,vj)∈X+

(2m2 − 2m2 zi, zj
||zi||2||zj ||2

)]

= Minimize [
∑

(vi,vj)∈X+

(2m2 − 2m2Sim(zi, zj))]

= 2nX+m2 − 2m2 Maximize [
∑

(vi,vj)∈X+

(Sim(zi, zj)])

∝ Minimize [−
∑

(vi,vj)∈X+

Sim(zi, zj)]

(26)

For LRT-FUG− take any two nodes vi, vj then we have:

Minimize [LRT-FUG−(vi, vj)] = Minimize [||
z1
m + z2

m + · · ·+ zi
m + · · ·+ zj

m + · · ·+ zn
m

n
− 0||22]

= Minimize [|| 1
n
(
zi
m

+
zj
m

+ c)− 0||22]

= Minimize [|| 1
n
(
zi
m

+
zj
m

+ c)||22]
(27)

here, we also use a similar trick as in Appendix A.1, treat the constant vector c as 0:

Minimize [LRT-FUG−(vi, vj)] = Minimize [|| 1
n
(
zi
m

+
zj
m

+ c)||22]

≈ Minimize [|| 1
n
(
zi
m

+
zj
m

)||22]

= Minimize [
1

nm
||zi + zj ||22]

= Minimize [
1

nm
(z2i + z2j + 2zizj)]

= Minimize [
1

nm
(2m2 + 2zizj)]

= Minimize [
1

nm
(2m2 + 2m2 zizj

||zi||2||zj ||2
)]

= Minimize [
1

nm
(2m2 + 2m2 Sim(zi, zj))]

=
1

nm
(2m2 + 2m2Minimize [Sim(zi, zj)])

∝ Minimize [Sim(zi, zj)]

(28)

Hence, from Eq. 28 and 26, we can obtain:
Minimize [LRT-FUG] = Minimize [LRT-FUG+ + LRT-FUG−]

∝ Minimize [LRT-FUG+] + Minimize [LRT-FUG−]

∝ Minimize [LRT-FUG+] + Minimize [LRT-FUG−]

∝ Minimize [E(xi,xj)∈X− [Sim(zi, zj)]− E(xi,xj)∈X+ [Sim(zi, zj)]]

∝ Minimize [LRT]

(29)

□

18

Table 6: Comparison of Computational Cost (Completed)

GRACE BGRL GBT FUG

X− ✓ ✓

Cora Time 0.0106 0.0055 0.0095 0.0091
Cora VRAM 680 532 526 674

CiteSeer Time 0.0153 0.0075 0.0126 0.0148
CiteSeer VRAM 910 788 658 848

PubMed Time 0.2154 0.0201 0.0257 0.0165
PubMed VRAM 11,610 1,254 1,432 1,340

Photo Time 0.0552 0.0225 0.0270 0.0220
Photo VRAM 3,692 1,336 2,158 1,962

Computers Time 0.1397 0.0440 0.0492 0.0407
Computers VRAM 8,952 2,316 2,570 6,418

CS Time 0.2169 0.0462 0.0593 0.0526
CS VRAM 11,960 4,482 3,324 2,482

Physics Time OOM 0.1084 0.1320 0.1047
Physics VRAM OOM 10,278 8,002 5,190

B Analysis of Computational Costs

B.1 Computational Complexity

RT-FUG Loss. As shown in Eq. 9, LRT-FUG in the negative sampling part only requires calculating
the mean of all node representations after normalization and computing the distance to the origin. In
fact, since Mean(·)− 0 = Mean(·), we only need to perform operations directly on the mean. Thus,
its computational complexity is O(n). The negative sampling part of the InfoNCE loss is well-known
for its high complexity, as it must compute the similarity between every pair of nodes, resulting in
O(n2) complexity. Therefore, we state in the main paper that LRT-FUG, as an optimized contrastive
loss, reduces the original time complexity from O(n2) to O(n).

As shownin Eq. 10, for the positive sampling part, we discard the costly data augmentation and,
guided by Theorem 3.2, explicitly define neighbors as positive samples. Hence, we only need to
compute the distance for the two points linked by an edge. Its time complexity is O(e), where e is
the number of edges. Therefore, the overall complexity of the RT-FUG loss is O(n+ e).

DE Loss. Similar to LRT-FUG− , we compute the mean of the basis transformation matrix for each
dimension and its distance to the origin. Thus, its time complexity is O(d).

Overall Time Complexity. From the above, the overall time complexity of the loss is O(n+ e+ d).
Furthermore, considering d is the number of dimensions of node features, it is negligible compared
to the number of nodes n when the data is large enough. Additionally, even if the number of nodes
is very large, the average degree of nodes is generally small. Assuming the average node degree is
a fixed constant a, the overall time complexity becomes O((2a + 1)n), which can be regarded as
O(n). For accuracy, we still state the complexity of LFUG as O(n+ e+ d) in the main paper.

B.2 Computational overhead experiments

In this section, we present the complete computational cost experiments reported in Table 3 of the
main text, as shown in Table 6. The implementation details of the comparative methods are provided
in Appendix E.2. To eliminate the influence of hidden layer size on model comparison, we fixed the
hidden layer to 256 dimensions and reported the memory usage and computational cost per epoch.
As observed in the table, FUG, which considers negative samples, has time and space complexity
comparable to methods that only consider positive samples. Furthermore, FUG’s advantages become
more pronounced as the number of nodes in the dataset increases. As stated in Appendix B.1, when

19

the dataset is large enough, the time complexity of FUG is O(n) rather than O(n+ e+ d). Therefore,
FUG performs comprehensively best on the Physics dataset. However, on smaller datasets like Cora
and CiteSeer, FUG’s advantage is not as evident because the feature dimensions are large relative to
the number of nodes. Table 6 further demonstrates FUG’s superiority in computational efficiency.

C Algorithm

To further illustrate how FUG works, we provide pseudocode as shown in Algorithm 1

Algorithm 1 FUG Training

Input: Data {X(g), A(g)|(X(g), A(g)) ∈ G(g), g = 1, 2, ..., gn};
Dimensional encoder DEθ(·); Graph encoder GEϕ(·);
Hyper-parameters: Learning rate α; Loss weights λ1, λ2, λ3

Output: Trained DEθ(·) and GEϕ(·);
1: for Number of training epochs do
2: for g = 1, 2, ..., gn do
3: /* Generate basis transformation matrix */
4: X̂(g) = Sample(X(g))

5: T = Norm(DEθ(X̂(g)
T

))
6: H = X(g)T
7: Z = GEϕ(H,A(g))
8: /* Calculate loss */
9: LRT-FUG− = ||Mean(Norm(Z))||22

10: LRT-FUG+ =
∑

Ai,j !=0 ||zi − zj ||22
11: LDE = ||Mean(T)||22
12: LFUG = λ1LRT-FUG− + λ2LRT-FUG+ + λ3LDE
13: /* Update parameters */
14: ϕ← ϕ− α∆ϕL; θ ← θ − α∆θL
15: end for
16: end for
17: return DEθ(·),GEϕ(·)

D Related works

Graph Contrastive Learning (GCL). Graph Contrastive Learning is dedicated to learning graph
representations in a self-supervised manner [35]. Initially inspired by the success of contrastive
learning in the visual domain [8, 46, 47], approaches such as GRACE [5] were proposed. These
methods generate augmented views by randomly perturbing graph data, treating nodes augmented
from the same original node as positive samples, and other nodes as negative samples. They employ
the InfoNCE loss [48] to maximize mutual information between positive pairs while minimizing it
between negative pairs. Numerous improvements have been made within this framework. To address
the computational burden of negative sampling, some studies [32, 41] have explored training methods
that do not require negative sampling. BGRL [32] utilizes two distinct encoders, Online and Target,
with the Online encoder learning to replicate the Target’s output for positive samples. GBT [41]
proposes a loss to reduce redundancy in node representations. To mitigate the semantic distortion
caused by random graph data augmentations, GCA [42] assesses the importance of nodes based on
degree centrality, increasing perturbations for less important nodes. HomoGCL [28] uses community
detection algorithms to assess the importance of edges and node features for designing augmentation.
AD-GCL [49] introduces a learnable data augmentation strategy through a minimax approach. SpCo
[50] proposes a graph spectral-based augmentation strategy. Works like AFGRL [31], AFGCL [30],
and NeCo [29] have introduced contrastive learning algorithms that do not use data augmentations.
To resolve sampling biases in positive and negative sampling, LocalGCL [37] and NeCo [29] suggest
using neighbors as positive samples. ProGCL [34] utilizes a Beta distribution fitting approach to
select negative samples. While these methods have shown great success, they all use GNNs [1, 22]

20

as encoders, meaning the trained models are not applicable to other datasets with different forms of
node features.

Unified Graph Pre-training Models Inspired by the recent success of unified large language models
[51], numerous studies have attempted to propose unified, generic graph pre-training models for
graph data. All-In-One [52] employs transferable graph prompts, allowing graph pre-training models
to be applicable across various tasks, though it still cannot handle graphs with diverse features
and relies on methods like PCA to standardize node feature dimensions first. OFA [17] introduces
a pre-training and fine-tuning pipeline that transforms all downstream tasks into link prediction
tasks, with the model itself lacking adaptability to arbitrary node features. It uses large language
models to convert node features into a uniform format. Classic approaches like GCC [6] and recent
methods like UniLink [15] discard original node features in favor of encoding new topology-based
positional attributes, allowing application across diverse data but resulting in significant information
loss. Very recently, GraphControl [18] converts distances between node features into a matrix similar
to adjacency matrices, utilizing the universality of GNNs for arbitrary topologies to achieve attribute
universality. However, this approach, which only encodes distances between node features, still
significantly harms the semantic integrity of the original node features.

Although these methods have extended the applicability of existing GNNs, they still lead to consider-
able loss of node feature information during preprocessing. In contrast, our FUG retains the semantic
integrity of node features while ensuring the universality of the graph pre-training model.

E Experimental Supplement

E.1 Datasets

We follow many prior works [5, 42, 32, 33] and evaluated our performance on seven widely used
public datasets:

• Cora, CiteSeer, and PubMed are the citation datasets from PlantoID [11, 12]. Nodes
represent scientific papers, edges represent citation relationships, node features are bag-of-
words vectors of papers, and labels represent domains of papers.

• Photo and Computers are co-purchase graphs from Amazon [38]. Nodes represent products,
edges represent frequent co-purchase relationships, node features are bag-of-words vectors
of product reviews, and labels represent product categories.

• CS and Physics are from the Microsoft Academic Graph [39]. The nodes represent re-
searchers, the edges represent paper co-authorship relationships, the node features are the
bag-of-words vectors of the authors’ papers, and the labels represent the research fields of
the authors.

The statistical information is presented in Tab. 7. We follow the exist work [5, 35], utilized the
Python library “torch_geometric.dataset” to load the datasets. Bidirectional links were established
for all edges. For all the data, we divided the training, validation, and test data sets with 10%, 10%,
and 80%, to simulate the scenario with fewer tags downstream.

Table 7: Dataset statistics

Name Nodes Edges Features Classes

Cora 2,708 4,732 1,433 7
CiteSeer 3,327 5,429 3,703 6
PubMed 19,717 44,338 500 3
Photo 7,650 119,081 745 8
Computers 13,752 245,861 767 10
CS 18,333 81,894 6,805 15
Physics 34,493 247,962 8,415 5

21

E.2 Compared Methods

In this section, we detail the implementations of the methods we compare against. For supervised
GCN [1], as well as the classic Deepwalk and Deepwalk+Features [40] methods, we directly report
the accuracy from [5, 42, 32] for comparison. For the “Raw features” method in Table 3, we directly
use the node features from the dataset as embeddings for the downstream classifier. For the PCA [16]
in Table 3, we use node features as PCA input, reduce the dimensions uniformly to 100, and then
feed them into the downstream classifier. For GRACE [5], GCA [42], DGI [33], and ProGCL [34],
we use the official code for implementation. To ensure a fair comparison, we replace the downstream
classifiers with a unified classifier (details in Appendix E.3). For BGRL, since the official code is
entirely based on “PyTorch” while other methods are based on “torch_geometric” or “DGL” libraries,
we use the implementation from [31] for fair comparison. For GBT [41], since the official code is
based on Docker, we use the implementation from [35] for fair comparison. For the graph pre-training
models OFA [17] and GraphControl [18], due to their use of large language models or massive
datasets for training, we were unable to reproduce the models due to computational constraints.
Therefore, we directly report the best accuracies from their respective papers.

E.3 Detail Settings

Training, Embedding and Testing. For all experiments, we first train our models in an unsupervised
manner on the training dataset, and then generate representations on the test dataset which are fed
into a downstream classifier. Following the prior work [35], we set up a simple l2 classifier, training
it with only 10% of the data and validating as well as testing with the remaining 90%. Moreover, for
edge-sparse datasets like Cora and CiteSeer, we adhere to the method proposed in [53] by further
enhancing the similarity relations between connected nodes through topological propagation during
embedding.

Evaluation Methods. The number of propagation layers is denoted by “num hop”. All reported
results are averaged over 20 runs with different splits, providing mean and variance. The mean and
standard deviation are directly calculated using “torch.mean” and “torch.std”, respectively.

Installation of FUG. For FUG in all scenarios, we use a two-layer GCN as the graph encoder.
We chose Adam as the Optimizer, the learning rate is set to 0.00001, the weight decay is set to
0.00001, and PReLU is selected as the activation function. The dimension encoder is a MLP,
Linear(PReLU(Linear(·))). The number of nodes sampled and the dimension of the basis transfor-
mation vector are both 1024. In addition, in order to reduce the fluctuation caused by random, we
directly select the first 1024 nodes as the sampling nodes for all datasets. The random seed is fixed to
“66666” in all scenarios. All experiments were conducted on a device equipped with an Intel 12400
CPU and an NVIDIA RTX 3090 GPU. For FUG-C in Table 2, we set the same hyper-parameters as
shown in Table 8. The hyper-parameters for FUG (Rebuild) in Table 3 are as depicted in Table 9.

The Selection of Hyper-parameters. Although Equation 11 includes three hyper-parameters, in fact,
tuning hyper-parameters of FUG is not complex. Because the FUG model has only one additional
hyper-parameter compared to classical GCLs (or even fewer, as FUG does not require tuning multiple
augmentation-related parameters). Specifically, (1) in Equation 11, λ1 is fixed at 1, requiring only
two hyper-parameters to be tuned, while classic GCLs require tuning the temperature parameter τ .
Therefore, FUG has just one more hyper-parameter to be tuned. (2) As shown in Table 9 (in the
appendix), the search spaces for λ2 and λ3 are small, specifically [0.1, 0.3, 0.5] and [20, 50, 100, 200,
300], respectively. They exhibit clear unimodality in sensitive analysis in Figure 4, making the tuning
process straightforward. (3) As shown in Table 2 and Figure 4, the model can achieve good results
even without meticulous tuning, demonstrating the robustness of FUG.

Table 8: Hyper-parameters of FUG-C in cross-domain learning

#Epoch #Hidden Units λ1 λ2 λ3

FUG-C 500 1,024 1 0.5 200

22

Table 9: Hyper-parameters of FUG in in-domain learning

#Epoch #Hidden Units λ1 λ2 λ3 Num Hop

Cora 300 512 1 0.3 100 3
CiteSeer 500 512 1 0.5 50 5
PubMed 700 2,048 1 0.1 20 0
Photo 500 1,024 1 0.5 200 0
Computers 500 1,024 1 0.1 300 0
CS 300 1,024 1 0.1 200 0
Physics 300 1,024 1 0.1 200 0

E.4 Further Comparing FUG with Recent Advanced in-domain Methods

To further showcase FUG’s performance in in-domain scenarios, we compare FUG with the latest
state-of-the-art algorithms, as shown in Table 10. The results for GraphACL [43] and ROSEN [44]
are obtained using the same experimental settings as described above. For POT [45], a plug-in method
with similar experimental settings to ours, we directly report its best performances as stated in its
original paper. As shown in Table 10, even in intra-domain scenarios (which are not our primary
focus), FUG demonstrates competitive performance, achieving the best results on three out of five
datasets. This highlights the effectiveness of FUG and supports the claims made in our paper.

Table 10: Additional Intra-domain Model Re-building Node Classification.

Method Cora CiteSeer PubMed Photo Computers
GraphACL [43] 83.40 ± 2.12 73.37 ± 1.77 85.07 ± 0.62 92.93 ± 0.79 89.50 ± 0.31
ROSEN [44] 83.35 ± 1.77 73.01 ± 2.01 85.33 ± 0.84 92.82 ± 0.72 88.87 ± 0.42
POT [45] 80.50 ± 0.90 69.00 ± 0.80 82.80 ± 2.00 92.40 ± 0.30 89.10 ± 0.30

FUG (Rebuild) 84.45 ± 2.45 72.43 ± 2.92 85.47 ± 1.13 93.07 ± 0.82 88.42 ± 0.98

E.5 Hyper-Parameters Analysis

To fully illustrate the interactions among the three losses included in FUG, we report the analysis
experiments on the weight parameters λ1, λ2, and λ3 across all datasets, as shown in Figure 3.

F Limitations

Here, we describe the limitations of the proposed FUG model. The FUG model serves as a straight-
forward implementation to validate our proposed FUG strategy and has some imperfections. For
example, the loss LRT-FUG+ in FUG model is based on the assumption of graph homophily assumption,
which leads to good performance on homophily datasets. However, it might face challenges on
heterophilic datasets because neighboring nodes in such datasets often have different semantics.
Additionally, the encoder used in FUG is a GCN, which also operates under the graph homogeneity
assumption. Furthermore, the GCN encoder we use can only handle weighted ordinary edges and
homogeneous nodes. Therefore, when dealing with heterogeneous graphs, where node types within
the same dataset differ, the model still faces applicability challenges. These issues can be addressed
by following the FUG strategy to construct new instantiated models, which is a direction we aim to
explore in future works.

G Border Impacts

Here, we discuss the social border impacts related to the FUG strategy and model. As a foundational
study in graph pre-training models, FUG itself does not have direct Border Impacts. Furthermore, all
datasets used for training the FUG model are public, eliminating privacy concerns. Given the broad
applications of Graph Neural Networks (GNNs), further research on FUG could potentially advance

23

Figure 4: Parameter Analysis of λ1, λ2 and λ3

24

multiple fields and serve as foundational research for large graph-based models. While FUG, like
any neural network, might face societal risks, these risks are too remote for a preliminary theoretical
study like this and should be addressed in subsequent research.

25

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We simulate the PCA process by utilizing graph contrastive learning, thus
solving the proposed problem that graph pre-training models cannot be directly generalized
to graphs with different node feature shapes. We also improve the contrastive loss to make
pre-training faster.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have stated the limitations of the proposed FUG model in the last section
of the main paper. In addition, we set up a separate section in the appendix to state the
limitations of the proposed FUG theory and the instantiated model.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

26

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide instructions for each of our conclusions in the main paper and
formal proofs in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide full explanations and implementation details for the proposed FUG
strategy and the instantiated FUG model in the main paper and in the appendix. And we
provide the core code as supplementary material in the submission. All datasets required for
the experiments are public datasets. In addition, we will release the source code after the
paper is accepted.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

27

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the source code as supplementary material in the submission.
The source code will be released after the paper is accepted, and we will also release a
FUG model trained on the 7 datasets mentioned in the paper for easily use. In addition, we
believe that the main paper and appendix provide sufficient experimental details to ensure
the reproducibility of our model.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present the experimental setup in the main text and provide details in the
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: For all experiments with the FUG model, we provide the standard deviation of
20 runs of the random split to describe the randomness of the model. We provide the details
in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the experimental platform in the main paper and appendix, includ-
ing the settings of hardware, hyper-parameters, and so on, as well as providing the time
complexity of the model.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes we followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

29

https://neurips.cc/public/EthicsGuidelines

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We are committed to analysing and improving the existing graph pre-training
strategies and methods, and propose FUG. It does not have any negative social impact, from
this view we should choose NA. But Considering the potential problems widely possessed
by neural networks, we provide a discussion about the social implications of FUG in the
appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: FUG is a basic research on graph pre-training models. The training datasets
are all public datasets. We believe that FUG does not have this risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

30

Answer: [Yes]

Justification: The datasets and comparison methods involved in this paper are all publicly
available. We quote them correctly in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: In fact, we have no new assets except our FUG model. All the libraries and
datasets used are publicly available, and we referenced them as required. We have provided
the source code with the submission as supplementary material. In addition, the code will
be made public upon acceptance of the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Crowd-related experiments are not included in this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

31

paperswithcode.com/datasets

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: These kinds of experiments are not included in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

32

	Introduction
	Notations and Preliminary
	Graph Contrastive Pretrained Models from the PCA perspective
	Feature-Universal Graph Pre-training Model
	Experiments
	Experiment Settings
	Evaluating on Cross-domain Learning
	Evaluating on In-domain Learning
	Model Analysis

	Discussions and Future Works
	Proofs
	Proof for Theorem 3.1
	Proofs for Theorem3.2 and Corollary 3.2.1
	The Relationship Between the RT-FUG Loss and RT Loss

	Analysis of Computational Costs
	Computational Complexity
	Computational overhead experiments

	Algorithm
	Related works
	Experimental Supplement
	Datasets
	Compared Methods
	Detail Settings
	Further Comparing FUG with Recent Advanced in-domain Methods
	Hyper-Parameters Analysis

	Limitations
	Border Impacts

