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Abstract

Data assimilation, in its most comprehensive form, addresses the Bayesian inverse
problem of identifying plausible state trajectories that explain noisy or incomplete
observations of stochastic dynamical systems. Various approaches have been
proposed to solve this problem, including particle-based and variational methods.
However, most algorithms depend on the transition dynamics for inference, which
becomes intractable for long time horizons or for high-dimensional systems with
complex dynamics, such as oceans or atmospheres. In this work, we introduce
score-based data assimilation for trajectory inference. We learn a score-based
generative model of state trajectories based on the key insight that the score of
an arbitrarily long trajectory can be decomposed into a series of scores over short
segments. After training, inference is carried out using the score model, in a non-
autoregressive manner by generating all states simultaneously. Quite distinctively,
we decouple the observation model from the training procedure and use it only at
inference to guide the generative process, which enables a wide range of zero-shot
observation scenarios. We present theoretical and empirical evidence supporting
the effectiveness of our method.

1 Introduction

Data assimilation (DA) [1-9] is at the core of many scientific domains concerned with the study of
complex dynamical systems such as atmospheres, oceans or climates. The purpose of DA is to infer
the state of a system evolving over time based on various sources of imperfect information, including
sparse, intermittent, and noisy observations.

Formally, let z1.;, = (z1,22,...,21) € REXD denote a trajectory of states in a discrete-time
stochastic dynamical system and p(x;11 | ;) be the transition dynamics from state z; to state x;.
An observation y € RM of the state trajectory x.;, follows an observation process p(y | z1.1.),
generally formulated as y = A(x1.7) + 7, where the measurement function A : REXP s RM g
often non-linear and the observational error € RM is a stochastic additive term that accounts for
instrumental noise and systematic uncertainties. In this framework, the goal of DA is to solve the
inverse problem of inferring plausible trajectories x1.;, given an observation y, that is, to estimate the
trajectory posterior

p(y)

where the initial state prior p(x) is commonly referred to as background [5-9]. In geosciences,
the amount of data available is generally insufficient to recover the full state of the system from the
observation alone [8]. For this reason, the physical model underlying the transition dynamics is of
paramount importance to fill in spatial and temporal gaps in the observation.
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State-of-the-art approaches to data assimilation are based on variational assimilation [1, 2, 5-7].
Many of these approaches formulate the task as a maximum-a-posteriori (MAP) estimation problem
and solve it by maximizing the log-posterior density log p(x1.1, | y) via gradient ascent. Although this
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approach only produces a point estimate of the trajectory posterior, its cost can already be substantial
for problems of the size and complexity of geophysical systems, since it requires differentiating
through the physical model. The amount of data that can be assimilated is therefore restricted because
of computational limitations. For example, only a small volume of the available satellite data is
exploited for operational forecasts and yet, even with these restrictions, data assimilation accounts
for a significant fraction of the computational cost for modern numerical weather prediction [10,
11]. Recent work has shown that deep learning can be used in a variety of ways to improve the
computational efficiency of data assimilation, increase the reconstruction performance by estimating
unresolved scales after data assimilation, or integrate multiple sources of observations [12—19].

Contributions In this work, we propose a novel approach to data assimilation based on score-
based generative models. Leveraging the Markovian structure of dynamical systems, we train a
score network from short segments of trajectories which is then capable of generating physically
consistent and arbitrarily-long state trajectories. The observation model is decoupled from the score
network and used only during assimilation to guide the generative process, which allows for a
wide range of zero-shot observation scenarios. Our approach provides an accurate approximation
of the whole trajectory posterior — it is not limited to point estimates — without simulating or
differentiating through the physical model. The code for all experiments is made available at
https://github.com/francois-rozet/sda.

2 Background

Score-based generative models have recently shown remarkable capabilities, powering many of the
latest advances in image, video or audio generation [20-27]. In this section, we review score-based
generative models and outline how they can be used for solving inverse problems.

Continuous-time score-based generative models Adapting the formulation of Song et al. [28],
samples 2 € RP from a distribution p(z) are progressively perturbed through a continuous-time
diffusion process expressed as a linear stochastic differential equation (SDE)

da(t) = £(t) a(t) dt + g(t) du(t) @)

where f(t) € R is the drift coefficient, g(t) € R is the diffusion coefficient, w(t) € R denotes a
Wiener process (standard Brownian motion) and z(¢) € RP is the perturbed sample at time ¢ € [0, 1].
Because the SDE is linear with respect to x(t), the perturbation kernel from z to x(¢) is Gaussian

and takes the form
p(z(t) [ 2) = N(z(t) | p(t) z, 2(t)) 3)

where 1(t) and X(t) = o(t)21 can be derived analytically from f(¢) and g(¢) [29, 30]. Denoting
p(x(t)) the marginal distribution of x(¢), we impose that 1(0) = 1 and ¢(0) < 1, such that
p(x(0)) =~ p(x), and we chose the coefficients f(¢) and ¢(¢) such that the influence of the initial
sample z on the final perturbed sample z(1) is negligible with respect to the noise level — that is,
p(z(1)) = N (0,%(1)). The variance exploding (VE) and variance preserving (VP) SDEs [28, 31,
32] are widespread examples satisfying these constraints.

Crucially, the time reversal of the forward SDE (2) is given by a reverse SDE [28, 33]
da(t) = [f(t) 2(t) — 9(t)” Vi log p(a(1))] dt + g(t) dw(?). ©)

That is, we can draw noise samples z:(1) ~ N (0, (1)) and gradually remove the noise therein to
obtain data samples z(0) ~ p(z(0)) by simulating the reverse SDE from ¢ = 1 to 0. This requires
access to the quantity V() log p(x(t)) known as the score of p(z(t)).

Denoising score matching In practice, the score V) log p(z(t)) is approximated by a neural
network sy (x(t), t), named the score network, which is trained to solve the denoising score matching

objective [28, 34, 35]
. 2
arg m(;n Ep(m)p(t)p(m(t)hc) |:U(t)2 HS¢7(‘T(t)a t) - Vm(t) Ing(x(t) ‘ x)H2i| (5)

where p(t) = U(0,1). The theory of denoising score matching ensures that s4(x(t),t) ~
V) log p(x(t)) for a sufficiently expressive score network. After training, the score network
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is plugged into the reverse SDE (4), which is then simulated using an appropriate discretization
scheme [28, 30, 36, 37].

In practice, the high variance of V, ;) log p(z(t) | ) near t = 0 makes the optimization of (5) unsta-
ble [30]. To mitigate this issue, a slightly different parameterization e, (z(t),t) = —o(t) s¢(x(t),t)
of the score network is often used, which leads to the otherwise equivalent objective [30, 32, 36]

. 2
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where p(e) = N(0, I). In the following, we keep the score network notation s, (z(t), t) for conve-
nience, even though we adopt the parameterization €, (z(t), t) and its objective for our experiments.

Zero-shot inverse problems With score-based generative models, we can generate samples from
the unconditional distribution p(x(0)) ~ p(x). To solve inverse problems, however, we need to
sample from the posterior distribution p(z | y). This could be accomplished by training a conditional
score network s¢(x(t),t | y) to approximate the posterior score V) log p(x(t) | y) and plugging it
into the reverse SDE (4). However, this would require data pairs (x, y) during training and one would
need to retrain a new score network each time the observation process p(y | =) changes. Instead,
many have observed [28, 38—41] that the posterior score can be decomposed into two terms thanks to
Bayes’ rule

V() log p(z(t) | y) = Vi) log p(x(t)) + Vi) log p(y | (1)) ™

Since the prior score V4 log p(z(t)) can be approximated with a single score network, the remaining
task is to estimate the likelihood score V,,(;) log p(y | x(t)). Assuming a differentiable measurement
function A and a Gaussian observation process p(y | ) = N(y | A(x),%,), Chung et al. [41]
propose the approximation

Py [ 2(t) = /p(y | 2)p(x [ z(t)) do = N (y | A(2(x(1))), By) (®)
where the mean & (2(t)) = Ep(g)z(¢))[7] is given by Tweedie’s formula [42, 43]

(t) + o (t)? Vi) log p(a(t))

() o) ss(x(t) 1)
~ D . (10)

As the log-likelihood of a multivariate Gaussian is known analytically and s, (z(t), t) is differentiable,
we can compute the likelihood score V) log p(y | «(t)) with this approximation in zero-shot, that
is, without training any other network than s, (z(t), t).

3 Score-based data assimilation

Coming back to our initial inference problem, we want to approximate the trajectory posterior
p(z1. | y) of a dynamical system. To do so with score-based generative modeling, we need to
estimate the posterior score V,, , () log p(21.(t) | ), which we choose to decompose into prior
and likelihood terms, as in (7), to enable a wide range of zero-shot observation scenarios.

In typical data assimilation settings, the high-dimensionality of each state x; (e.g. the state of atmo-
spheres or oceans) combined with potentially long trajectories would require an impractically large
score network s¢(21.1(t), ) to estimate the prior score V,, , () log p(z1.1.(t)) and a proportional
amount of data for training, which could be prohibitive if data is scarce or if the physical model is
expensive to simulate. To overcome this challenge, we leverage the Markovian structure of dynamical
systems to approximate the prior score with a series of local scores, which are easier to learn, as
explained in Section 3.1. In Section 3.2, we build upon diffusion posterior sampling (DPS) [41]
to propose a new approximation for the likelihood score V,, ; +)log p(y | 21.(t)), which we find
more appropriate for posterior inference. Finally, in Section 3.3, we describe our sampling procedure
inspired from predictor-corrector sampling [28]. Our main contribution, named score-based data
assimilation (SDA), is the combination of these three components.



Forward SDE (data — noise) Figure 1: Trajectories
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1.1, (0) —— da(t) = [f(H)x(t) — g(t)* Vi log p(a(t))] dt + g(t)dw(t)
Reverse SDE (noise — data)

3.1 How is your blanket?

Given a set of random variables 1.1, = {21, za, ..., 2}, it is sometimes possible to find a small
Markov blanket z, C x; such that p(x; | ;) = p(x; | xp,) for each element x; using our
knowledge of the set’s structure. It follows that each element V,, log p(x1.1,) of the full score
V.., log p(z1.1) can be determined locally, that is, only using its blanket;

Ve, logp(x1:n) = Vi, log p(z; | 22) + Vi, log p(@4;) 11
= Vg, logp(z; | xp,) + Vi, log p(zy,) = Vi, log p(zs, x5, ). (12)

This property generally does not hold for the diffusion-perturbed set 1.1, (¢) as there is no guarantee
that a3, (¢) is a Markov blanket of the element x;(¢). However, there exists a set of indices b; 2 b;
such that

Vit log p(z1.0(t)) = Va, 1) log p(a4(t), 25, (t)) (13)

is a good approximation for all ¢ € [0, 1]. That is, 2 () is a “pseudo” Markov blanket of x;(t).
In the worst case, b; contains all indices except i, but we argue that, for some structures, there is a
set b; not much larger than b; that satisfies (13). Our rationale is that, since we impose the initial
noise to be negligible, we know that x, (¢) becomes indistinguishable from x;, as ¢ approaches
0. Furthermore, as ¢ grows and noise accumulates, the mutual information between elements x; (t)
and z; (t) decreases to finally reach 0 when ¢ = 1. Hence, even if b; = b;, the pseudo-blanket
approximation (13) already holds near ¢t = 0 and ¢ = 1. In between, even though the approximation
remains unbiased (see Appendix A), the structure of the set becomes decisive. If it is known and
present enough regularities/symmetries, (13) could and should be exploited within the architecture of
the score network sy (1.1 (), t).

In the case of dynamical systems, the set x1.;, is by definition a first-order Markov chain and
the minimal Markov blanket of an element x; is z, = {x;_1,%;41}. For the perturbed element
x;(t), the pseudo-blanket xj () can take the form of a window surrounding x;(t), that is b; =
{i —k,...,i+ Kk} \ {i} with & > 1. The value of k is dependent on the problem, but we argue,
supported by our experiments, that it is generally much smaller than the chain’s length L. Hence, a
fully convolutional neural network (FCNN) with a narrow receptive field is well suited to the task, and
any long-range capabilities would be wasted resources. Importantly, if the receptive field is 2k + 1,
the network can be trained on segments x;_j.;+ instead of the full chain z;.7, thereby drastically
reducing training costs. More generally, we can train a local score network (see Algorithm 1)

Sp(Timhirn(t),t) = Vi) 108 P(Ti _peiq k(1)) (14

such that its k& 4 1-th element approximates the score of the i-th state V,,, ;) log p(x1..(t)). We
also have that the k first elements of s4(x1.2x+1(t),t) approximate the score of the k first states
Vi) 10g p(z1:2(t)) and the £ last elements of s4(xr_2x.1(t), ) approximate the score of the k
last states V., _, | ) log p(w1..(t)). Hence, we can apply the local score network on all sub-segments
Xi— gk (t) of 1.1 (¢), similar to a convolution kernel, and combine the outputs (see Algorithm 2) to
get an approximation of the full score V., (+) log p(21.1,(t)). Note that we can either condition the
score network with ¢ or assume the statistical stationarity of the chain, that is p(x;) = p(x;11).



Algorithm 1 Training €, (2;—j.i+%(t),t) Algorithm 2 Composing s (z;—k:i+x(£), t)

1 fori=1to N do 1 function sy (z1.1,(¢),t)

2 T1.L ~ p(fEl:L) 2 S1:k+1 < S¢($1;2k+1(t ,t)[:k‘ + 1]
3 i~Uk+1,...,L—k}) 3 fori=k+2toL—k—1do

4 t~U0,1), GNN( I) 4 5i <= 8¢(Ti—puiyn(t), t) [k + 1]
5 xi—k.z+k(t) — p(t) Tiogirk +o(t) e 5 Sh—kr, < S¢(Tr—ok.r(t), t)[k + 11]
g 0 leg(@impivn(t), t) — €l|3 6 return s.;,

¢ < GRADIENTDESCENT(¢, V {)

3.2 Stable likelihood score

Due to approximation and numerical errors in &(z(t)), computing the score V) log p(y | x( )
with the likelihood approximation (8) is very unstable, especially in the low 51gnal to -noise regime,
that is when o (¢) > p(t). This incites Chung et al. [41] to replace the covariance ¥, by the identity
I and rescale the likelihood score with respect to ||y — A(Z(x(¢)))|| to stabilize the samphng process.
These modifications introduce a significant error in the approximation as they greatly affect the norm
of the likelihood score.

We argue that the instability is due to (8) being only exact if the variance of p(x | x(¢)) is null
or negligible, which is not the case when ¢t > 0. Instead, Adam et al. [40] and Meng et al. [44]
approximate the covariance of p(z | z(t)) with =(#)/u()?, which is valid as long as the prior p(z)
is Gaussian with a large diagonal covariance »,. We motivate in Appendix B the more general
covariance approximation o(t)*/,(¢)2I, where the matrix I" depends on the eigendecomposition of 3.
Then, taking inspiration from the extended Kalman filter, we approximate the perturbed likelihood as

2
o |ol0) = A7 (3| A (al), 5, + T ATAT) (15)
where A = 0, A [;((+)) is the Jacobian of A. In practice, to simplify the approximation, the term

AT AT can often be replaced by a constant (diagonal) matrix. We find that computing the likelihood
score Vg (y) log p(y | x(t)) with this new approximation (see Algorithm 3) is stable enough that
rescaling it or ignoring X, is unnecessary.

3.3 Predictor-Corrector sampling

To simulate the reverse SDE, we adopt the exponential integrator (EI) discretization scheme introduced
by Zhang et al. [30]

wu(t — At)Jj pt —At) ot — Al)
2t —at) = =g o0 ( a0 o0

which coincides with the deterministic DDIM [36] sampling algorithm when the variance preserving
SDE [32] is used. However, as we approximate both the prior and likelihood scores, errors accumulate
along the simulation and cause it to diverge, leading to low-quality samples. To prevent errors from
accumulating, we perform (see Algorithm 4) a few steps of Langevin Monte Carlo (LMC) [45, 46]

) ot so(a(t))  (6)

2(t)  z(t) + 0 54(x(t), ) + V25 € (17)

where € ~ N(0, I), between each step of the discretized reverse SDE (16). In the limit of an infinite
number of LMC steps with a sufficiently small step size 6 € R, simulated samples are guaranteed
to follow the distribution implicitly defined by our approximation of the posterior score at each time
t, meaning that the errors introduced by the pseudo-blanket (13) and likelihood (15) approximations
do not accumulate. In practice, we find that few LMC steps are necessary. Song et al. [28] introduced
a similar strategy, named predictor-corrector (PC) sampling, to correct the errors introduced by the
discretization of the reverse SDE.



4 Results

We demonstrate the effectiveness of score-based data assimilation on two chaotic dynamical systems:
the Lorenz 1963 [47] and Kolmogorov flow [48] systems. The former is a simplified mathematical
model for atmospheric convection. Its low dimensionality enables posterior inference using classical
sequential Monte Carlo methods [49, 50] such as the bootstrap particle filter [51]. This allows us
to compare objectively our posterior approximations against the ground-truth posterior. The second
system considers the state of a two-dimensional turbulent fluid subject to Kolmogorov forcing [48].
The evolution of the fluid is modeled by the Navier-Stokes equations, the same equations that underlie
the models of oceans and atmospheres. This task provides a good understanding of how SDA would
perform in typical data assimilation applications, although our analysis is primarily qualitative due to
the unavailability of reliable assessment tools for systems of this scale.

For both systems, we employ as diffusion process the variance preserving SDE with a cosine schedule
[52], that is p1(t) = cos(wt)? with w = arccos v'10~3 and o(t) = \/1 — u(t)2. The score networks
are trained once and then evaluated under various observation scenarios. Unless specified otherwise,
we estimate the posterior score according to Algorithm 3 with I' = 1027 and simulate the reverse
SDE (4) according to Algorithm 4 in 256 evenly spaced discretization steps.

4.1 Lorenz 1963

The state = (a,b,c) € R3 of the Lorenz system evolves according to a system of ordinary
differential equations

a=o0(b—a)
b=a(p—c)—b (18)
¢=ab— B¢

where 0 = 10, p =28 and § = % are parameters for which the system exhibits a chaotic behavior.

We denote a and ¢ the standardized (zero mean and unit variance) versions of a and ¢, respectively. As
our approach assumes a discrete-time stochastic dynamical system, we consider a transition process
of the form x; 1 = M(z;) + 1, where M : R3 s R3 is the integration of the differential equations
(18) for A = 0.025 time units and n ~ N (0, AT) represents Brownian noise.
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Figure 2: Average posterior summary statistics over 64 observations from the low (A) and high (B)
frequency observation processes. We observe that, as k& and the number of corrections C increase, the
statistics of the approximate posteriors get closer to the ground-truth, in red, which means they are
getting more accurate. However, increasing k and C' improves the quality of posteriors with decreasing
return, such that all posteriors with k¥ > 3 and C' > 2 are almost equivalent. This is visible in C,
where we display trajectories inferred (C' = 2) for an observation of the low frequency observation
process. For readability, we allocate a segment of 32 states to each & instead of overlapping all 192
states. Note that the Wasserstein distance between the ground-truth posterior and itself is not zero as
it is estimated with a finite number (1024) of samples.



1
[
ot
L I L L L L N L L L B

0 1
a b c qy' | y)

Figure 3: Example of multi-modal posterior inference with SDA. We identify four modes (dashed
lines) in the inferred posterior. All modes are consistent with the observation (red crosses), as
demonstrated by the posterior predictive distribution q(y’ | y) = Eq(a,., o) [P(¥' | 21.1)].

We generate 1024 independent trajectories of 1024 states, which are split into training (80 %),
validation (10 %) and evaluation (10 %) sets. The initial states are drawn from the statistically
stationary regime of the system. We consider two score network architectures: fully-connected local
score networks for small k (k < 4) and fully-convolutional score networks for large k. Architecture
and training details for each k are provided in Appendix D.

We first study the impact of k (see Section 3.1) and the number of LMC corrections (see Section
3.3) on the quality of the inferred posterior. We consider two simple observation processes N (y |
a1:1-8, 0.0521) and N(y | a1.r, 0.2521). The former observes the state at low frequency (every
eighth step) with low noise, while the latter observes the state at high frequency (every step) with
high noise. For both processes, we generate an observation y for a trajectory of the evaluation
set (truncated at L. = 65) and apply the bootstrap particle filter (BPF) to draw 1024 trajectories
x1.7, from the ground-truth posterior p(x1.;, | y). We use a large number of particles (21) to
ensure convergence. Then, using SDA, we sample 1024 trajectories from the approximate posterior
q(x1.1, | y) defined by each score network. We compare the approximate and ground-truth posteriors
with three summary statistics: the expected log-prior Ey (g, , |, [log p(z2.1. | 21)], the expected log-
likelihood Eq s, ., y)[log p(y | z1.)] and the Wasserstein distance W (p, ) in trajectory space. We
repeat the procedure for 64 observations and different number of corrections (7 = 0.25, see Algorithm
4) and present the results in Figure 2. To paraphrase, SDA is able to reproduce the ground-truth
posterior accurately. Interestingly, accuracy can be traded off for computational efficiency: fewer
corrections leads to faster inference at the potential expense of physical consistency.

Another advantage of SDA over variational data assimilation approaches is that it targets the whole
posterior distribution instead of point estimates, which allows to identify when several scenarios
are plausible. As a demonstration, we generate an observation from the observation process p(y |
21.1.) = N(y | ¢1.1.4,0.121) and infer plausible trajectories with SDA (k = 4, C' = 2). Several
modes are identified in the posterior, which we illustrate in Figure 3.

4.2 Kolmogorov flow

Incompressible fluid dynamics are governed by the Navier-Stokes equations

1 1
u=-uVu+ —V?u—-Vp+
Re pvrts (19)

0=V-u

where u is the velocity field, Re is the Reynolds number, p is the fluid density, p is the pressure
field and f is the external forcing. Following Kochkov et al. [53], we choose a two-dimensional
domain [0, 27]? with periodic boundary conditions, a large Reynolds number Re = 103, a constant
density p = 1 and an external forcing f corresponding to Kolmogorov forcing with linear damping
[48, 54]. We use the jax-cfd library [53] to solve the Navier-Stokes equations (19) on a 256 x 256
domain grid. The states x; are snapshots of the velocity field u, coarsened to a 64 x 64 resolution,
and the integration time between two such snapshots is A = 0.2 time units. This corresponds to 82
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Figure 4: Example of sampled trajectory from coarse, intermittent and noisy observations. States are
visualized by their vorticity field w = V X wu, that is the curl of the velocity field. Positive values
(red) indicate clockwise rotation and negative values (blue) indicate counter-clockwise rotation. SDA
closely recovers the original trajectory, despite the limited amount of available data. Replacing SDA’s
likelihood score approximation with the one of DPS [41] yields trajectories inconsistent with the
observation.

integration steps of the forward Euler method, which would be expensive to differentiate through
repeatedly, as required by gradient-based data assimilation approaches.

We generate 1024 independent trajectories of 64 states, which are split into training (80 %), validation
(10 %) and evaluation (10 %) sets. The initial states are drawn from the statistically stationary regime
of the system. We consider a local score network with k = 2. As states take the form of 64 x 64
images with two velocity channels, we use a U-Net [55] inspired network architecture. Architecture
and training details are provided in Appendix D.

We first apply SDA to a classic data assimilation problem. We take a trajectory of length L = 32
from the evaluation set and observe the velocity field every four steps, coarsened to a resolution
8 x 8 and perturbed by a moderate Gaussian noise (3, = 0.121). Given the observation, we sample
a trajectory with SDA (C' = 1, 7 = 0.5) and find that it closely recovers the original trajectory, as
illustrated in Figure 4. A similar experiment where we modify the amount of spatial information is
presented in Figure 8. When data is insufficient to identify the original trajectory, SDA extrapolates
a physically plausible scenario while remaining consistent with the observation, which can also be
observed in Figure 6 and 7.

Physical model

Figure 5: A trajectory consistent with an unlikely observation of the final state x 1, is generated with
SDA. To verify whether the trajectory is realistic and not hallucinated, we plug its initial state z; into
the physical model and obtain an almost identical trajectory. This indicates that SDA is not simply
interpolating between observations, but rather propagates information in a manner consistent with the
physical model, even in unlikely scenarios.



Finally, we investigate whether SDA generalizes to unlikely scenarios. We design an observation
process that probes the vorticity of the final state x;, in a circle-shaped sub-domain. Then, we
sample a trajectory (C' = 1, 7 = 0.5) consistent with a uniform positive vorticity observation in this
sub-domain, which is unlikely, but not impossible. The result is discussed in Figure 5.

5 Conclusion

Impact In addition to its contributions to the field of data assimilation, this work presents new
technical contributions to the field of score-based generative modeling.

First, we provide new insights on how to exploit conditional independences (Markov blankets) in
sets of random variables to build and train score-based generative models. Based on these findings,
we are able to generate/infer simultaneously all the states of arbitrarily long Markov chains xy.z,
while only training score models on short segments x;_.; 4, thereby reducing the training costs
and the amounts of training data required. The decomposition of the global score into local scores
additionally allows for better parallelization at inference, which could be significant depending on
available hardware. Importantly, the pseudo-blanket approximation (13) is not limited to Markov
chains, but could be applied to any set of variables x.r,, as long as some structure is known.

Second, we motivate and introduce a novel approximation (15) for the perturbed likelihood p(y|z(t)),
when the likelihood p(y|x) is assumed (linear or non-linear) Gaussian. We find that computing the
likelihood score V,, ;) log p(y|=(t)) with this new approximation leads to accurate posterior inference,
without the need for stability tricks [41]. This contribution can be trivially adapted to many tasks
such as inpainting, deblurring, super-resolution or inverse problems in scientific fields [39—41].

Limitations From a computational perspective, even though SDA does not require simulating or
differentiating through the physical model, inference remains limited by the speed of the simulation
of the reverse SDE. Accelerating sampling in score-based generative models is an active area of
research [30, 36, 37, 56] with promising results which would be worth exploring in the context of our
method.

Regarding the quality of our results, we empirically demonstrate that SDA provides accurate ap-
proximations of the whole posterior, especially as k£ and the number of LMC corrections C' increase.
However, our approximations (13) and (15) introduce a certain degree of error, which precise im-
pact on the resulting posterior remains to be theoretically quantified. Furthermore, although the
Kolmogorov system is high-dimensional (tens of thousands of dimensions) with respect to what
is approachable with classical posterior inference methods, it remains small in comparison to the
millions of dimensions of some operational DA systems. Whether SDA would scale well to such
applications is an open question and will present serious engineering challenges.

Another limitation of our work is the assumption that the dynamics of the system are shared by
all trajectories. In particular, if a parametric physical model is used, all trajectories are assumed to
share the same parameters. For this reason, SDA is not applicable to settings where fitting the model
parameters is also required, or at least not without further developments. Some approaches [57—60]
tackle this task, but they remain limited to low-dimensional settings. Additionally, if a physical model
is used to generate synthetic training data, instead of relying on real data, one can only expect SDA to
be as accurate as the model itself. This is a limitation shared by any model-based approach and robust
assimilation under model misspecification or distribution shift is left as an avenue for future research.

Finally, posterior inference over entire state trajectories is not always necessary. In forecasting tasks,
inferring the current state of the dynamical system is sufficient and likely much less expensive. In
this setting, data assimilation reduces to a state estimation problem for which classical methods such
as the Kalman filter [61] or its nonlinear extensions [62, 63] provide strong baselines. Many deep
learning approaches have also been proposed to bypass the physical model entirely and learn instead
a generative model of plausible forecasts from past observations only [64—67].

Related work A number of previous studies have investigated the use of deep learning to improve
the quality and efficiency of data assimilation. Mack et al. [12] use convolutional auto-encoders to
project the variational data assimilation problem into a lower-dimensional space, which simplifies the
optimization problem greatly. Frerix et al. [14] use a deep neural network to predict the initial state
of a trajectory given the observations. This prediction is then used as a starting point for traditional



(4D-Var) variational data assimilation methods, which proves to be more effective than starting at
random. This strategy is also possible with SDA (using a trajectory sampled with SDA as a starting
point) and could help cover multiple modes of the posterior distribution. Finally, Brajard et al. [17]
address the problem of simultaneously learning the transition dynamics and estimating the trajectory,
when only the observation process is known.

Beyond data assimilation, SDA closely relates to the broader category of sequence models, which
have been studied extensively for various types of data, including text, audio, and video. The
latest advances demonstrate that score-based generative models achieve remarkable results on the
most demanding tasks. Kong et al. [26] and Goel et al. [27] use score-based models to generate
long audio sequences non-autoregressively. Ho et al. [23] train a score-based generative model
for a fixed number of video frames and use it autoregressively to generate videos of arbitrary
lengths. Conversely, our approach is non-autoregressive which allows to generate and condition all
elements (frames) simultaneously. Interestingly, as part of their method, Ho et al. [23] introduce
“reconstruction guidance” for conditional sampling, which can be seen as a special case of our
likelihood approximation (15) where the observation y is a subset of x. Lastly, Ho et al. [25]
generate low-frame rate, low-resolution videos which are then up-sampled temporally and spatially
with a cascade [24] of super-resolution diffusion models. The application of this approach to data
assimilation could be worth exploring, although the introduction of arbitrary observation processes
seems challenging.
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A The pseudo-blanket approximation is unbiased
For any continuous random variables a, b and c,

1
V, logp(a,b) = ———V, p(a,b
gp(a,b) o) p(a,b)
1
= 7Va/ a,b,c)de
p(a,b) pla,b,¢)

[ p(c|a,b)
_/71)(%1)7 2 Ve pla, b, c)de

= Ep(cla,b) [Va logp(a, b, 0)] .
Replacing a, b and ¢ by (1), &, (1) and g (1) = {u;(¢) : j 1 \J & Di}, respectively, we obtain
VIl(t) logp(xz (t)7 x51 (t)) = EP(TQ(t)|I1(t)IB7 ®)) [VCQ (t) 10gp(3?1L(t))] ,

meaning that V,, ;) log p(z4(t), x5, (t)) is the expected value of V,, 4) log p(21.1.(t)) over z¢(t). In
other words, regardless of the elements or the size of b;, V,, ) log p(x;(t), z, (t)) is an unbiased
(exact in expectation) estimate of V,, ;) log p(1.1.(t)).

B On the covariance of p(z | x(t))

Assuming a Gaussian prior p(z) with covariance X, the covariance 3. of p(z | 2(t)) takes the form

. o(t)? >‘1
S=%, -, <zz+1 DR
p(t)?
SO (A + U(t)21>1 Q!
n(t)? p(t)?

where QAQ ™! is the eigendecomposition of X,,. We observe that for most of the perturbation time ¢,
the central diagonal term is close to A(A + I)~. We therefore propose the covariance approximation

o(t)?
p(t)?

where I' = QA (A + 1)~ Q! is a positive semi-definite matrix.

ZA::
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C Algorithms

Algorithm 3 Estimating the posterior score V) log p(x(t) | y)

1 function sy (x(t),t | y)

2 Sp  Sp(x(t),1)

z(t)+o(t)? s,
n(t)

2
4 sy VyulogN (y | A(z), 2, + ZE§§2F)
5 return s, + sy

3 T

Algorithm 4 Predictor-Corrector sampling from s (z(t),t | y)

I function SAMPLE({t;} Y, C,T)
2 z(1) ~N(0,%(1))
3 fori = Ntoldo
i1 ti o(ti—1
4 altio) Mt + (M) — 2Ud) o (6)? sy (w(t), 1 | )
5 for j=1toC do
6 e~N(0,1)
7 S S¢($(ti_1),ti_1 ‘ y)
8 6 T4
9 x(ti 1) & x(ti1)+0s+V20¢

10 return z(0)
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D Experiment details

Resources Experiments were conducted with the help of a cluster of GPUs. In particular, score
networks were trained and evaluated concurrently, each on a single GPU with at least 11 GB of
memory.

Lorenz 1963 We consider two score network architectures: fully-connected local score networks
for small k£ (k < 4) and fully-convolutional score networks for large k& (K > 4). Residual blocks
[68], SiLU [69] activation functions and layer normalization [70] are used for both architecture. The
number of blocks in the fully-convolutional architecture controls the value of k. We train all score
networks for 1024 epochs with the AdamW [71] optimizer and a linearly decreasing learning rate.
Other hyperparameters are provided in Table 1.

Table 1: Score network hyperparameters for the Lorenz experiment.

Hyperparameter k<4 k>4
Architecture fully-connected fully-convolutional
Residual blocks 5 k—2
Features/channels 256 64
Kernel size - 3
Activation SiLU SiL.U
Normalization LayerNorm LayerNorm
Optimizer AdamW AdamW
Weight decay 1073 1073
Learning rate 1073 1073
Scheduler linear linear
Epochs 1024 1024
Batches per epoch 256 256
Batch size 256 64

Kolmogorov flow The local score network is a U-Net [55] with residual blocks [68], SiLU [69]
activation functions and layer normalization [70]. This architecture is motivated by the locality of
the Navier-Stokes equations, which impose that the evolution of a drop of fluid is determined by its
immediate environment. This can be seen as an application of the pseudo-blanket approximation (13)
to a grid-structured set of random variables. We train the score network for 1024 epochs with the
AdamW [71] optimizer and a linearly decreasing learning rate. Other hyperparameters are provided
in Table 2.

Table 2: Score network hyperparameters for the Kolmogorov experiment.

Architecture U-Net
Residual blocks per level (3,3,3)
Channels per level (96,192, 384)
Kernel size 3
Padding circular
Activation SiLU
Normalization LayerNorm
Optimizer AdamW
Weight decay 1073
Learning rate 2x 1074
Scheduler linear
Epochs 1024
Batches per epoch 128
Batch size 32
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E Assimilation examples

Figure 6: Example of sampled trajectory when the observation is insufficient to identify the original
trajectory. The observation is the center of the velocity field every three steps, coarsened to a
resolution 8 x 8 and perturbed by a small Gaussian noise (3, = 0.0121). SDA (C =1, 7 = 0.5)
identifies the original state where data is sufficient, while generating physically plausible states
elsewhere. Replacing SDA’s likelihood score approximation with the one of DPS [41] yields a
trajectory less consistent with the observation.

SDA

DPS

SDA

DPS

Figure 7: Example of sampled trajectory when the observation process is non-linear. The observation
corresponds to a saturating transformation = — 7 +|m\ of the vorticity field w. SDA (512 discretization
steps, C' = 1, 7 = 0.5) identifies the original state where data is sufficient, while generating physically
plausible states elsewhere. Replacing SDA’s likelihood score approximation with the one of DPS
[41] yields a trajectory inconsistent with the observation.
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Figure 8: Example of sampled trajectories when the observation is spatially sparse. The observation
y™ corresponds to a spatial subsampling of factor n of the velocity field. SDA (C = 1, 7 = 0.5)
closely recovers the original trajectory for all factors n, despite the limited amount of available data.
Replacing SDA’s likelihood score approximation with the one of DPS [41] leads to trajectories that

are progressively less consistent with the observation as n increases.
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Figure 9: Example of long (L. = 127) sampled trajectory. Odd states are displayed from left to right
and from top to bottom. The observation process probes the difference between the initial and final
states and the observation is set to zero, which enforces a looping trajectory (x; ~ x ). Note that
this scenario is not realistic and will therefore lead to physically implausible trajectories.
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Figure 10: Example of sampled trajectories when the observation is insufficient to identify the
original trajectory. The observation is the center of the velocity field every three steps, coarsened to a
resolution 8 x 8 and perturbed by a small Gaussian noise (3, = 0.01%21). SDA (C =1, 7 = 0.5)
identifies the original state where data is sufficient, while generating physically plausible states
elsewhere.
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Figure 11: Example of sampled trajectories when the observation is spatially sparse. The observation
y corresponds to a spatial subsampling of factor 16 of the velocity field with small Gaussian noise
(2, = 0.012]). SDA (C = 1, 7 = 0.5) generates trajectories similar to the original, with physically
plausible variations.
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