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Abstract. Image editing techniques can modify the content of images indiscriminately, which

causes a grave threat to the security of society. Hence, the localization of manipulated images

is inevitable. A serious challenge for image manipulation detection is the lack of strategies for

perceiving global features and refining edges. In this paper, we present a multiscale boundary

interaction learning network for image manipulation localization to solve both problems. This

network contains an adjacent-scale mutual module to enrich the global perception domain by

interactively learning adjacent scale features. It avoids the tremendous noise interference caused

by the direct fusion of all scale features. To effectively suppress semantic content segmentation,

the boundary pixel disparity module computes interpixel differences at specific angles to

enhance boundary artifact recognition between tampered and real regions. The fusion attention

module is proposed to combine scale and edge messages, integrating spatial and channel

correlations in a compatible way. Extensive experimental results indicate that our proposed

method is significantly superior to current state-of-the-art methods on public standard datasets.
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1 Introduction

The rapid development of image editing software allows attackers to quickly forge visually

unrecognizable tampered images. Widespread dissemination of these images can cause irrevers-

ible and tremendous harm to society. At present, it is a significant challenge to determine the

image authenticity as well as the tampered regions in a short period of time. Common image

manipulation techniques include splicing (copying and pasting elements from one image to

another), copy-move (copying and pasting elements from an image to other areas of the same

image), and removal (removing elements from an image). Figure 1 illustrates instances of manip-

ulated images. These instances are produced by the three manipulation methods, namely splic-

ing, copy-move, and removal, on NIST16,1 Columbia,2 and COVERAGE.3 The operations can

severely interfere with the semantic information of the image without creating a great sense of

separation from the source image. The ground-truth indicates the tampered regions of the

images.

Deep learning is extensively employed to detect image manipulation. The fully convolutional

network for semantic segmentation (FCN)4 is one of the most popular deep learning models.

Most investigations5–7 take the last layer result of FCN as the prediction mask. But because the

FCN contains multilayer downsampling, the model loses the majority of details in the learning

process. This suggests that focusing solely on the decision layer is detrimental. For further

optimization, multiscale feature fusion8,9 ameliorates this problem. It integrates information by

concatenating features of all resolutions. Nevertheless, directly connecting multiresolution

features can trigger uncontrollable excessive noise interference,10 which is fatal for manipulated
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image detection. Noise obscures the presence of tampered regions. Therefore, the method of

blending multiscale features is one of the most urgent demands for addressing this issue.

Moreover, the FCN network is more concerned with capturing the image semantic informa-

tion as an earlier semantic segmentation structure. Due to the unrestricted means of tampering,

the manipulated regions are not necessarily complete objects. Purely semantic-based information

segmentation is likely to result in loss of details, classification errors, or recognition difficulties.

The semantic content in manipulation detection should be inhibited as much as possible.

Meanwhile, attention mechanisms11,12 are extensively exploited in tamper localization. Most

of them depend on only one type of characteristic for enhancement. This affects the combina-

tion of local features with global relevance. The attention paid to the means of integration is

indispensable.

To address the above issues, we establish a multiscale boundary interaction learning network,

named MB-Net. The proposed network involves an adjacent-scale mutual module (ASMM) that

enriches the perceptual domain at neighboring resolutions. In addition, the boundary pixel dis-

parity module (BPDM) is introduced to enhance boundary recognition between tampered and

real regions. Ultimately, the fusion attention module (FAM) integrates scale and edge messages

in a compatible way.

The contributions of our work are as follows:

1. We build a multiscale boundary interaction learning network (MB-Net) to efficiently

localize manipulated regions under multiresolution integration feature feedback.

2. ASMM is designed to obtain contextual information exchange at neighboring scales while

avoiding generating redundant noise due to large resolution differences. BPDM calculates

the differences between pixel points from specific directions to inhibit the semantic con-

tent of the image. The FAM interactively studies the spatial and channel information of

adjacent-scale features and edge features.

3. Extensive experimental results indicate that our proposed method can precisely identify

the manipulated regions. The performance on three public standard datasets is excellent

and significantly superior to the current state-of-the-art methods.

The remainder of the paper is organized as follows. Section 2 discusses related work on the

manipulated direction. Section 3 presents an overview of MB-Net and the corresponding

module. The experimental procedure, comparisons, and visualization results are given in Sec. 4.

We conclude this paper in Sec. 5.

Fig. 1 Instances of manipulated images. These examples are derived from splicing, copy-move,

and removal manipulations, respectively, on NIST16, Columbia, and COVERAGE. The ground-

truth indicates the tampered region of the image.
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2 Related Work

2.1 Manipulation Detection

The majority of current approaches are focused on a single sort of operation. For example,

Bi et al.13 proposed the Ringed Residual U-Net (RRU-Net) to identify splicing forgeries

using residual propagation and convolutional feedback loops. Salloum et al.5 also employed

a multitask full convolutional network (MFCN) with two output branches for joint learning.

However, it is difficult to determine the specific form of tampering in real-world circumstances,

especially because photographs may have numerous types of overlay manipulation activities.

Consequently, structures that can detect generic processes are essential.

Bappy et al.14 combined elements of the long short-term network (LSTM) and convolutional

layers to reinforce the network and highlight the disagreement between tampered and non-

tampered regions. The method had trouble acquiring a large amount of contextual data, and

the analysis took longer. By merging RGB images and noise features extracted through steg-

analysis rich model (SRM) filters, learning rich features network (RGB-N) highlights the impor-

tance of dual-stream feature fusion for manipulation detection.15 Meanwhile, Zhou et al.16

exploited boundary fusion to forecast tampered regions and refine branching, concentrating

on operational artifacts rather than semantic content. Multiview multiscale supervision network

(MVSS-Net) captures universal characteristics by employing numerous perspectives and focus-

ing on the boundary distribution at various scales.9 Hence, our proposed method focuses on

the boundary details of different scale contents and tampered regions by interactively learning

two branch features. It promotes the full communication between local perception and global

perception.

2.2 Attention Mechanism

Attention mechanism has been increasingly popular in deep learning applications such as

image manipulation, natural language processing, and audio recognition in recent years.

The self-adversarial training model (SAT) provided a self-attentive technique for image

tampering detection that incorporates internal dependencies in the spatial dimension as well

as exterior relationships between channels.17 The spatial-channel correlation module in

progressive spatio-channel correlation network (PSCC) utilized a progressive process to

improve multiscale feature representation by capturing spatial and channel correlations in

a bottom-up approach. It provided holistic information to make the network more generalized

to manipulation attacks.18

To reinforce the focus on contextual information, attention mechanisms such as coordinate

attention (CA),8 convolutional block attention module (CBAM),11 and efficient channel attention

(ECA)19 boost the operational effect in both the channel and spatial dimensions. Their presence

is common in tamper detection. In our method, the FAM combines RGB and border features to

consolidate global information, resulting in improved inference.

3 Proposed Method

We propose a multiscale boundary interaction learning network to detect manipulated images.

The general framework of MB-Net is shown in Fig. 2.

We denote the input image as I ∈ RH×W×C, where H,W, and C are the height, width, and the

number of channels of the image, respectively. Image I is input into the backbone of ResNet50,20

where the features acquired are Fi, i ∈ f0;1; 2;3; 4g. These features are passed to ASMM and

BPDM to obtain the feature maps, respectively. Then the multiscale feature map FM and the new

boundary map EM at the same scale are connected by jumping to obtain the first prediction mask

through the FAM. At the same time, the second prediction mask is obtained by combining the

boundary maps at different scales. In the end, we calculate the loss of prediction maps and

ground-truths to train the model.
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3.1 Adjacent-Scale Mutual Module

Multiscale feature extraction is often applied in image tampering detection and localization.

The method is the integration of shallower features layer by layer and the integration of multiple

layers of features in a fully concatenated or heuristic manner. However, single-layer features can

only represent information on a specific scale, and shallow features also lack deeper details.

Although maximizing the integration of features at different scales, the heuristic suffers from

difficulties due to the presence of different resolutions and noise at each scale. Influenced by

the aggregated interaction strategy,10 we propose the adjacent-scale mutual module to avoid the

interference of large resolution differences caused by multiscale information fusion. It fully

learns the contextual information of neighboring scales.

As illustrated in Fig. 3, ASMM is divided into two blocks. Of these, two pairs, F0 and F1 and

F3 and F4 are entered into a two-layer adjacent-scale mutual block (2AS), and the rest are put

into a three-layer adjacent-scale mutual block (3AS).

Consider the case of 3AS, the feature maps Fi−1, Fi, and Fiþ1 ∈ R
H×W×C, i ∈ f1;2; 3g are

fed into the 3 × 3 convolution layer to obtain F 0
i−1, F

0
i , and F 0

iþ1 ∈ R
H×W×C

2 , respectively,

Fig. 3 Details of the adjacent-scale mutual module: (a) two-layer adjacent-scale mutual block

(2AS) and (b) three-layer adjacent-scale mutual block (3AS).

Fig. 2 MB-Net architecture.
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by reducing the number of channels. The computational processes of interactively extracting

features F 00
i−1, F

00
i , and F 00

iþ1 are expressed as

EQ-TARGET;temp:intralink-;e001;116;711F 00
i−1 ¼ σðCðUpðF 0

i ÞÞÞ ⊗ F 0
i−1 � F 0

i−1; (1)

EQ-TARGET;temp:intralink-;e002;116;667F 00
i ¼ ðσðCðDownðF 0

i−1ÞÞÞ ⊗ F 0
i � F 0

i Þ � ðσðCðUpðF 0
iþ1ÞÞÞ ⊗ F 0

i � F 0
i Þ; (2)

EQ-TARGET;temp:intralink-;e003;116;645F 00
iþ1 ¼ σðCðDownðF 0

i ÞÞÞ ⊗ F 0
iþ1 � F 0

iþ1; (3)

where Up and Down are the samples, C denotes the 3 × 3 convolution layer with batch normali-

zation and ReLU, and � and ⊗ denote dot product and addition, respectively. σ is the sigmoid

function. The sigmoid function is applied to acquire the weight values of the feature. The

prediction range of the pixels in the manipulation localization task is between 0 and 1. Therefore,

we chose this function to implement cross-learning for multiplying weights at adjacent scales.

At the same time, feature fusion at neighboring resolutions avoids the huge computational effort

and noise disturbance associated with large resolution gaps while taking into account contextual

information. This will optimize the feature extraction capability of the module. FM1, FM2, and

FM3 are the final output resolution features.

In the same way, 2AS calculates two pairs of neighboring features to access FM0 and FM4.

3.2 Boundary Pixel Disparity Module

To detect boundaries effectively, pixel difference convolution21 is selected. It executes the

convolution operation using pixel differences to replace the original pixels in the feature map

covered by the convolution kernel. The BPDM consists of normal convolution, central convo-

lution, angular convolution, skip convolution, and radial convolution, as shown in Fig. 4.

In addition to normal convolution, other convolutions capture differences between pixels in

specific directions, thereby reinforcing the pixel perceptual domain.

The calculations of pixel disparity convolutions are expressed as follows:

EQ-TARGET;temp:intralink-;e004;116;393ynor ¼
XN

i¼1

ωi · xi; (4)

Fig. 4 Various convolutions of boundary pixel disparity module.
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EQ-TARGET;temp:intralink-;e005;116;723ycen ¼
XN−1

i¼1

ωi · ðxi − x9Þ; (5)

EQ-TARGET;temp:intralink-;e006;116;682yang ¼
XN−2

i¼1

ωi · ðxi − xiþ1Þ þ ω8 · ðx8 − x1Þ; (6)

EQ-TARGET;temp:intralink-;e007;116;641yskip ¼
XN−3

i¼1

ωi · ðxi − xiþ2Þ þ ω7 · ðx7 − x1Þ þ ω8 · ðx8 − x2Þ; (7)

EQ-TARGET;temp:intralink-;e008;116;600yrad ¼
XN−2

i¼0

ωi · ðx2iþ1 − xiþ17Þ; (8)

where xi is the input pixels and ωi is the weight in the 3 × 3 or 5 × 5 convolution kernel.

The ability to perceive the surrounding region is reduced when only a single pixel is com-

puted. As a result, a suitable pixel disparity must be chosen. First, the central convolution

expands the perception of the surrounding area by the central pixel. Second, according to the

extended local binary pattern (ELBP),22 both the angular and radial directions are useful for

computer vision recognition. Thus, angular and radial convolution are born. In addition, we

suggest skip convolution, which is similar to angular convolution but differs in that the pixel

pairs are the different values from two neighboring pixels, as inspired by a jump junction. Except

for the radial convolution, which selects eight pairs of pixels in this local block, all convolution

kernels are 3 × 3, as shown in Fig. 4. Their differences are calculated as weights. The radial

convolution kernel is of size 5 × 5. Eight pairs of pixels are created in the radial direction, and

together with the middle pixel difference of 0, they are again treated as weights.

We sequentially input Fi, i ∈ f0;1; 2;3; 4g to radial convolution, skip convolution, angular

convolution, central convolution, and normal convolution to obtain multiscale boundary maps

EM. Each convolution contains a group normalization and rectified linear unit as postprocessing.

They are merged as the edge prediction output, namely output2.

3.3 Fusion Attention Module

ASMM and BPDM can inform each other to capture the abundant contextual dependencies of

the intrinsic inconsistencies extracted from the tampered region. Therefore, we propose a fusion

attention module to bridge and channel the exchange of the two information streams and to

facilitate qualitative feature fusion. The module consists of two parts, shown in Fig. 5, the cross-

attention learning block and the receptive domain enhancement block. The output feature of

FAM is represented as Foutput.

The cross-attention learning block is divided into three parts: spatial feature extraction, chan-

nel feature extraction, and feature fusion. Spatial feature extraction As and channel feature

extraction Ac are denoted as

Fig. 5 Details of the fusion attention module: (a) cross-attention learning block and (b) receptive

domain enhancement block.
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EQ-TARGET;temp:intralink-;e009;116;735As ¼ σðFT
M ⊗ EMÞ; (9)

EQ-TARGET;temp:intralink-;e010;116;701Ac ¼ σðFM ⊗ ET
MÞ; (10)

where FT
M and ET

M are the transposed features of FM and EM , respectively, ⊗ denotes the dot

product, and σ is attention weighting obtained by the sigmoid function. Subsequently, the feature

maps are input into the extraction blocks for interactive learning as

EQ-TARGET;temp:intralink-;e011;116;654FEM ¼ α × concatððEM ⊗ AsÞ; ðAc ⊗ EMÞÞ; (11)

EQ-TARGET;temp:intralink-;e012;116;611FFM ¼ β × concatððFM ⊗ AsÞ; ðAc ⊗ FMÞÞ; (12)

where α and β denote the adaptive training parameters, which are used to emphasize the impor-

tance of complementary information. The computation of the feature fusion is presented as

EQ-TARGET;temp:intralink-;e013;116;577FAll ¼ FEM � FFM � Foutput; (13)

where � denotes addition.

The cross-attention learning block extracts mappings in the channel and spatial dimensions

under multiple features. It adaptively trains the model structure using learnable factors that

reflect long-term contextual information and effectively exploits weighting properties.

Specifically, boundary extraction aims to capture tampered boundaries at full strength. However,

it tends to focus on all of the item boundaries of images in real scenarios. Thus, it requires the

introduction of adaptive parameters for boundary screening guided by a multiscale module.

In the end, we successfully interactively fused the features.

To better refine the feature map, we present a receptive domain enhancement block. It takes

FAll as the input and reduces the number of channels through a 1 × 1 convolution layer. It then

convolves through dilated convolution of specified dilatation rates to capture the information

and resize the feature map. The final prediction mask is generated with a channel of 1 by the

sigmoid function.

3.4 Loss Function

To better train and evaluate the functionality of the model, MB-Net has two outputs: loss at pixel

scale for improving sensitivity to detection of pixel-level operations and loss at boundary

for learning semantically irrelevant features. In the training process, binary cross-entropy loss

(Lbce) is used as the training loss function. The expression of the loss function is formulated

as follows:

EQ-TARGET;temp:intralink-;e014;116;292Lbce ¼ −ðy log xÞ þ ð1 − yÞ logð1 − xÞ; (14)

where y represents the ground-truth and x represents the output of the model. The total loss Ltotal

is expressed as

EQ-TARGET;temp:intralink-;e015;116;237Ltotal ¼ Lbceðygt; youtput1Þ þ Lbceðyedge; youtput2Þ; (15)

where ygt denotes ground-truth, youtput1 denotes prediction mask, and yedge and youtput2 denote

boundary ground-truth and boundary-prediction masks, respectively.

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets

In our investigation, we conducted comprehensive experiments, demonstrated our proposed

method in four public standard image manipulation localization datasets (DEFACTO,23
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COVERAGE,3 NIST16,1 and Columbia2), and compared the results with state-of-the-art meth-

ods. DEFACTO is a synthesized dataset generated from MSCOCO.24 We select 54,000 photos

for training (excluding morphing). Due to memory limitations, we randomly select 8000 images

per epoch from the synthetic dataset for training. To ensure that the size of the testing dataset

does not surpass the number of actual training images, the ratio of training to testing in the

ablation experiment is adjusted to 10:1. It is worth noting that the photos that we dealt with

are far fewer than Mantra-Net25 and SPAN.12 In the comparison experiment, we employed

benchmark training and fine-tuning as our model training regimes for optimal performance.

According to benchmark training, the model was directly trained and tested on COVERAGE,

Columbia, and NIST16. Fine-tuning entails training the model on DEFACTO initially, followed

by additional training and testing on COVERAGE, Columbia, and NIST16. Specifically,

COVERAGE3 generates 100 images by copy-move tactics, which are derived from real images

and were 75:25 for training and testing, respectively. NIST161 consists of 564 tampered images

by three operations (splicing, copy-move, and removal). It has a training to testing ratio of

404:160. With the exception of ground-truth and boundary-masks, Columbia2 offers 180 splic-

ing pictures. A 7:3 training/testing division is provided for fine-tuning. Table 1 gives details of

the training approach and the distribution of the datasets.

4.1.2 Metrics

For pixel-level manipulation detection, pixel-level AUC (the area under the receiver operating

characteristic curve) and F1 scores are employed for comparison experiments. When F1 is

calculated from pixel-level precision and recall, we follow previous work to acquire the best

F1 scores obtained by adjusting the prediction thresholds.

4.1.3 Implementation details

MB-Net is implemented in PyTorch26 and trained on an NVIDIA GeForce RTX 3090. The

dimensions of the entered model are 320 × 320. Our backbone is initialized by ImageNet

pretrained parameters. Adam27 is deployed to optimize the whole model. The batch size

in one epoch is 10, and the initial learning rate is fixed at 1 × 10−3. If the validation loss

recorded in each epoch is not decreased within 10 epochs, the learning rate is divided by

10 until it reaches 1 × 10−8. In terms of processing speed, MB-Net takes ∼0.21 s per image

(320 × 320).

4.2 Ablation Study

This section discusses the effectiveness of each module and different boundary convolutions.

4.2.1 Effectiveness of modules

To evaluate the effectiveness of the proposed ASMM, BPDM, and FAM, we quantitatively

evaluate MB-Net and its components:

ResNet50: As the backbone of the model, ResNet5020 is selected.

Table 1 Training methods and dataset distribution.

Training method Training Testing

Ablation study DEFACTO (54000) DEFACTO (5400), NIST16 (564)

Benchmark COVERAGE (75), Columbia (126),
and NIST16 (404)

COVERAGE (25), Columbia (54),
and NIST16 (160)

Fine-tuning DEFACTO (54000), COVERAGE (75),
Columbia (126), and NIST16 (404)

COVERAGE (25), Columbia (54),
and NIST16 (160)
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ASMM: It is constructed on the backbone of ResNet50 and consists of a pair of two-

layer adjacent feature interaction blocks and many three-layer adjacent feature interaction

blocks.

BPDM: This module contains blocks of interpixel disparity convolutions at different angles.

FAM: This module applies attention mechanisms to fuse multiscale interaction streams

and boundary extraction streams after invoking skip connections for self-attentive feature

enhancement.

Our proposed components are beneficial on DEFACTO, as demonstrated in Table 2, with

enhancements in both AUC and F1. ASMM is optimized over backbone in terms of AUC and F1

by 0.2% and 2.8%, respectively. It demonstrates that incorporating adjacent scale features sig-

nificantly amplifies the extraction strength of the module. The accurately derived characteristics

are essential for manipulation localization. Based on that, there is a further enhancement of

BPDM from the experimental results. The module is sensitive to surrounding pixels and expands

the perceived domain. Local edge information is therefore purposefully refined. Compared with

the former, MB-Net with the introduction of FAM improves by 0.6% and 1.3% on AUC and F1,

respectively. The cross-attention learning block provides the majority of the optimization sup-

port. Unlike most attention mechanisms that focus only on themselves, it cross-multiplies the

spatial and channel information of scale features and edge features separately. The final result,

therefore, contains the advantages of both features.

4.2.2 Effectiveness of pixel disparity convolutions

Table 3 demonstrates the effectiveness of the different boundary convolutions on NIST16 for

benchmark training. Normal convolution (also called vanilla convolution), central convolution,

angular convolution, skip convolution, and radial convolution are mainly included.

From the table, the module is somewhat ameliorated by replacing the vanilla convolution

with the last four convolutions. For example, in comparison with setup2, setup3 enhanced the

AUC by 0.19% and F1 by 5.84%. The AUC for setup5 represents a 0.19% increase over setup4

and a 5.84% increase for F1. This means that convolutions with interpixel differences at specific

orientations are estimated optimally. Although setup2 is lower than setup1 in F1, it is 0.25%

higher in AUC than the latter. We speculate that the main reason for the drop may be the lack

Table 2 Quantitative results of MB-Net and its components on

DEFACTO.

Component AUC F1

ResNet50 97.2 71.4

ASMM 97.4 74.2

ASMM + BPDM 97.9 76.8

ASMM + BPDM + FAM (MB-Net) 98.5 78.1

Table 3 Quantitative results of pixel disparity convolutions on NIST16.

Setup Component AUC F1

1 Normal convolution (NC) × 5 97.79 81.52

2 Central convolution (CC) + NC × 4 98.04 77.94

3 Angular convolution (AC) + CC + NC × 3 98.23 83.78

4 Skip convolution (SC) + AC + CC + NC × 2 98.31 84.21

5 Radial convolution (RC) + SC + AC + CC + NC 98.68 86.90
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of adequate sensory fields. Central convolution has difficulties with complementary pixel values

in the same row or column. Subsequently, other convolutions have compensated for this

problem.

4.3 Quantitative Results Compared Against State-of-the-Art Methods

We select two training settings (benchmark/fine-tuning) and evaluate them on three public

datasets (COVERAGE,3 Columbia,2 and NIST161), comparing the current more state-of-the-art

methods. The differences between these settings are presented in Sec. 4.1. The compared detec-

tion methods are the classical unsupervised method (ELA,28 NOI1,29 and CFA130), the detection

method implemented by deep learning networks (J-LSTM,31 H-LSTM,14 RGB-N,15 GSR-Net,16

SPAN,12 Mantra-Net,12 and SAT17), in which the training settings of the last two methods are

pre-training and benchmark training, respectively. Table 4 shows the results of the AUC/F1

comparison between our method and other baseline methods. Specifically, the performance of

our method appears to be fairly outstanding on public datasets and the average values.

Compared with typical unsupervised methods, deep learning network structure (incorporat-

ing MB-Net) largely avoids the errors associated with manual manipulation analysis. As evi-

denced by the table, the overall results for the network with the supervised system are better

than the unsupervised methods, with the AUC and F1 being far superior to the latter.

MB-Net achieves the best performance on Columbia, NIST16, and the average compared

with the supervised approach deep learning method. Although the AUC metric did not achieve

the best value on COVERAGE, it is only 1% lower than the AUC of SPAN, and F1 outperformed

the other networks. It demonstrates the excellence of MB-Net. Meanwhile, when using bench-

mark training with few training images, e.g., Columbia with 126 forged images and NIST16 with

404 forged images, MB-Net surpasses SAT in terms of performance. When faced with high-

value evaluation results, we outperformed AUC and F1 of SPAN by 3.9% (97.5% - 93.6%) and

8.1% (89.6% - 81.5%) on Columbia. Our method does not rely on large-scale training data to

complete the objectives.

Analysis of the models and tables reveals that the J-LSTM and H-LSTM split the image into

patches for input, limiting the network to locating contiguous tampered regions at a single scale.

They apply the LSTM for linear processing but struggle to acquire large areas of spatial and

Table 4 Quantitative results compared against state-of-the-art methods.

Method Training COVERAGE Columbia NIST16 Average

ELA28 Unsupervised 58.3/22.2 58.1/47.0 42.9/23.6 53.1/30.9

NOI129 Unsupervised 58.7/26.9 54.6/57.4 48.7/28.5 54.0/37.6

CFA130 Unsupervised 48.5/19.0 72.0/46.7 50.1/17.4 56.9/27.7

J-LSTM31 Fine-tuning 61.4/— —/— 76.4/— 68.9/—

H-LSTM14 Fine-tuning 71.2/— —/— 79.4/— 75.3/—

RGB-N15 Fine-tuning 81.7/43.7 85.8/69.7 93.7/72.2 87.1/61.9

GSR-Net16 Fine-tuning 76.8/47.7 —/— 94.5/73.6 85.7/60.7

ManTra-Net25 Pretraining 81.9/— 82.4/— 79.5/— 81.3/—

SPAN12 Fine-tuning 93.7/55.8 93.6/81.5 96.1/58.2 94.5/65.2

SAT12 Benchmark 85.6/52.6 91.7/89.1 94.3/62.2 90.5/68.0

MB-Net Benchmark 79.7/43.1 96.0/90.5 96.4/71.5 90.7/68.4

MB-Net Fine-tuning 92.7/ 59.6 97.5/89.6 98.7/86.9 96.3/78.7

Pixel-level AUC/F1 (%) on public datasets. “—” denotes that the result is not available in the literature.
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contextual information. RGB-N improved performance substantially by introducing noise

stream enhancement features. Generative networks are employed by GSR-Net for various oper-

ations. There is the necessity for information interaction. The AUC of GSR-Net exceeded that of

H-LSTM by 15.1% on NIST16. However, further improvements are needed to the operation

segmentation problem. SPAN constructs a pyramid of local self-attentive blocks and effectively

models the relationships between multiscale image blocks, with quantitative results far exceed-

ing those of the previously mentioned models. ManTra-Net learns operation traces by classifying

385 image operation types and proposes a long-term and short-term memory solution to evaluate

local anomalies. The network is pretrained using over 300,000 images and has a high AUC on

common datasets. It reveals that the larger the dataset is, the more beneficial the model train-

ing is.

SAT utilizes a channeled high-pass filter block (CW-HPF) to enhance noise inconsistency

between the original and tampered regions. Although MB-Net clearly outperformed SAT on

other datasets and the average results, the predictions on COVERAGE were less promising.

We suspect that this is because COVERAGE has too few images. We have difficulty refining

the performance of the model with a small amount of data in benchmark training. It is therefore

insensitive to this dataset. However, MB-Net has compensated for the data volume, and the

evaluation results are satisfactory with fine-tuning. We also consider that SAT introduces noise

blocks to complement the frequency information. Frequency is additive to manipulation locali-

zation. But frequencies are not utilized in MB-Net. In future research, we will investigate the

high- and low-frequency features in further depth.

4.4 Robustness Evaluation

To evaluate the robustness of MB-Net under various attacks, we performed the following attacks

on NIST16 and Columbia, respectively: noise attacks with Gaussian, Uniform, and Poisson;

JPEG and WEBP compression; and Box, Gaussian, and Median blur. Figures 6 and 7 show

the performance curves of MB-Net for pixel-level AUC under benchmark training, with each

Fig. 6 Robustness results on NIST16 under various attacks: (a) blur attacks, (b) compression

attacks, and (c) noise attacks.

Fig. 7 Robustness results on Columbia under various attacks: (a) blur attacks, (b) compression

attacks, and (c) noise attacks.
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data point representing the performance under a fixed distortion. MB-Net is stable under the

compression attacks. Under the blurring attacks, the model performance degrades, but the deg-

radation is almost negligible. In addition, under the attacks of noise, especially UniformNoise

and PossionNoise, the performance of the MB-Net degrades even more, almost linearly. The

reason is that the model does not have the introduction of a high-pass filter for noise feature

extraction. We will investigate this aspect in the future. In addition, Tables 5 and 6 include results

for comparison with other models on NIST16 and Columbia. The performance of ManTra-Net

and SPAN was severely affected by the attack, with a much higher degradation trend than

MB-Net. This indicates the robustness of MB-Net.

4.5 Visualization Results

Figure 8 shows the visualization results of the MB-Net on NIST16 and Columbia. The samples

contain the tampered image, the ground-truth mask, and the predicted binary mask. From top

to bottom, the image processing methods are as follows: splicing, copy-move, and removal on

NIST16 on the left. The Columbia dataset contains only splicing operations on the right. For

different operations, our model still detects forgery regions accurately. Reinforcing the details of

the edge-optimized prediction maps by suppressing semantic information ensures more accurate

results.

In Fig. 9, MB-Net compares the qualitative comparative visualization of localization predic-

tions against state-of-the-art methods from NIST16, COVERAGE, and Columbia. MB-Net is

Table 6 Robustness comparison with respect to various distortions

on Columbia.

Attack ManTra-Net SPAN Ours

None 77.95 96.60 96.00

Gaussian blur (kernel size = 3) 67.72 78.97 95.92

Gaussian blur (kernel size = 15) 62.88 67.70 93.94

JPEG compress (quality = 100) 75.00 93.32 95.88

JPEG compress (quality = 50) 59.37 74.62 95.75

Gaussian noise (sigma = 3) 68.22 75.11 91.56

Gaussian noise (sigma = 15) 54.97 65.80 83.08

Results are reported as pixel-level AUC (%).

Table 5 Robustness comparison with respect to various distortions

on NIST16.

Attack ManTra-Net SPAN Ours

None 78.05 83.95 96.40

Gaussian blur (kernel size = 3) 77.46 83.10 96.06

Gaussian blur (kernel size = 15) 74.55 79.15 94.31

JPEG compress (quality = 100) 77.91 83.59 95.89

JPEG compress (quality = 50) 74.38 80.68 95.97

Gaussian noise (sigma = 3) 67.41 75.17 95.48

Gaussian noise (sigma = 15) 58.55 67.28 93.10

Results are reported as pixel-level AUC (%).
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more effective at localization for all three operations than the vaguely localized ManTra-Net,

SPAN, and less precise MVSS-Net. Multiscale interactive learning facilitates our model to focus

on the tampered region, suppressing misclassification due to semantic information and ensuring

more accurate segmentation. The prediction masks for the splicing images are extremely similar

to ground-truth. The boundaries are smoother. The prediction masks for copy-move images

were approximated to the ground-truth. Even reflections in water can be accurately identified.

However, there are still misjudgments in terms of contour detail, and complete objects cannot be

accurately identified. The predictions from the removal images are good, and basic shapes can

already be discerned. However, further improvements are needed to achieve complete agree-

ment. In the future, we will supplement more information by adding training data and adversarial

training.

5 Conclusion

We proposed a multiscale boundary interaction learning network for image manipulation. It

incorporated scale messages and boundary artifacts through fusion attention mechanisms. In

this regard, the adjacent-scale mutual module facilitated the fusion of feature information at

neighboring scales. Global awareness was further strengthened. The influence of semantic con-

tent was then substantially avoided by calculating the disparity between pixels in multiple direc-

tions. In addition, we introduced an attention mechanism with learnable parameters to

dramatically promote the capability of integrating contextual components. Extensive experimen-

tal results demonstrated that MB-Net outperformed advanced image manipulation detection

methods. In the future, we will explore even more superior high-frequency information to com-

plement the texture-focused CNN streams to address the challenge of manipulation.

Fig. 8 Examples of segmentation results are shown on NIST16 from the left and the Columbia

dataset from the right. The instances indicate tampered images, ground-truth, and predicted binary

masks. From the top to the bottom are the samples showing manipulations of splicing, copy-move,

and removal on NIST16. The Columbia contains only splicing operations.
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