
Published as a conference paper at ICLR 2023

SPARSE TOKEN TRANSFORMERS WITH
ATTENTION BACK TRACKING

Heejun Lee1,2 Minki Kang1,3 Youngwan Lee1,4 Sung Ju Hwang1
KAIST1, DeepAuto.ai2∗, AITRICS3, ETRI4
{ainl, zzxc1133}@kaist.ac.kr yw.lee@etri.re.kr
sjhwang82@kaist.ac.kr

ABSTRACT

Despite the success of Transformers in various applications from text, vision, and
speech domains, they are yet to become standard architectures for mobile and edge
device applications due to their heavy memory and computational requirements.
While there exist many different approaches to reduce the complexities of the
Transformers, such as the pruning of the weights/attentions/tokens, quantization,
and distillation, we focus on token pruning, which reduces not only the complexity
of the attention operations, but also the linear layers, which have non-negligible
computational costs. However, previous token pruning approaches often remove
tokens during the feed-forward stage without consideration of their impact on later
layers’ attentions, which has a potential risk of dropping out important tokens for
the given task. To tackle this issue, we propose an attention back-tracking method
that tracks the importance of each attention in a Transformer architecture from
the outputs to the inputs, to preserve the tokens that have a large impact on the
final predictions. We experimentally validate the effectiveness of the method on
both NLP and CV benchmarks, using Transformer architectures for both domains,
and the results show that the proposed attention back-tracking allows the model to
better retain the full models’ performance even at high sparsity rates, significantly
outperforming all baselines. Qualitative analysis of the examples further shows
that our method does preserve semantically meaningful tokens.

1 INTRODUCTION

Transformers have achieved huge success in various application domains such as natural language
processing (NLP) and computer vision (CV), obtaining state-of-the-art performances on a variety of
tasks, and are now considered the de facto standard architectures for a number of domains. However,
Transformers require over a few tera-flops per entry (Devlin et al., 2019; Dosovitskiy et al., 2021b)
to compute, which is orders of magnitude larger than the computational cost for previous CNN and
RNN architectures (Tan & Le, 2019; Bahdanau et al., 2015). To reduce such computational burdens
of Transformer models, previous works explored model compression methods such as distillation
(Wang et al., 2020; Jiao et al., 2020), quantization (Han et al., 2015; Frankle & Carbin, 2018), and
pruning (Zaheer et al., 2020; Guo et al., 2019; Kim et al., 2022; Rao et al., 2021; Wang et al., 2021).
Pruning approaches for Transformers mostly aim to remove unnecessary model weights (Han et al.,
2015; Frankle & Carbin, 2018), or the attentions (Zaheer et al., 2020), which could achieve a linear
reduction in complexity. Token pruning can reduce the complexity of attentions and fully connected
layers simultaneously by removing less relevant tokens for the target task (Kim et al., 2022; Goyal
et al., 2020; Kong et al., 2021). How can we decide which tokens to prune then? Previous studies
either compute the importance score of each input token as the average attention scores (Goyal et al.,
2020; Kim et al., 2022) (Figure 1), or learn the importance score of each token with an additional
neural network (NN) at each layer (Rao et al., 2021; Kong et al., 2021).

However, previous token pruning methods have the following problem: they prune the tokens in the
input sequence without explicitly evaluating the importance of each token on the final sequence
representation and prediction tasks. This is because all existing works (Kim et al., 2022; Wang

∗DeepAuto.ai, Seoul, South Korea

1



Published as a conference paper at ICLR 2023

Pruned Pruned

Steve Love Cat[CLS]

Pruned Pruned

0.5

Feed-Forward 
Token Pruning Attention Back-Tracking Token Pruning

0.3 0.4

[CLS]

Steve

Love

Cat

[C
LS

]

St
ev

e

Lo
ve

Ca
t

Key

Q
ue

ry

0.2 0.1

Mean

or

Threshold θ𝑙 Sort (Top-k)

0.5

[C
LS

]

St
ev

e

Lo
ve

Ca
t

Key

Q
ue

ry

0.0 0.0

or

Required Output Tokens 
of Layer 𝑙

Accumulate

Threshold θ𝑙 
(Concrete) 

Sort (Top-k) 
(ABT)

[CLS]

Steve

Love

Cat

Layer 𝑙

Layer 𝑙 + 1

Steve Love Cat[CLS]

Text or Image Text or Image

ApproxNet

Important Input
Tokens of Layer 𝑙

Run ApproxNet For ABT Token Pruning

Layer 𝑙 + 1

Layer 𝑙 + 2

Layer 𝑙 + 1

Layer 𝑙 + 2

Token Pruning

Recursive Token Pruning

Masked 
Mean

Recursive Token Pruning

Pruned Pruned

Pruned

Layer 𝑙

Layer 𝑙

Token Pruning
Feed-forward attention
could not be calculated yet
before token pruning

Figure 1: Concepts. Comparison of token pruning method between feed-forward and attention back-tracking.
The thickness of arrows represents the weight of attention probability. The left side is token pruning in a
feed-forward pass. The right side is token pruning with attention back-tracking.

et al., 2021; Goyal et al., 2020; Rao et al., 2021; Kong et al., 2021) compute the importance score of
an input token at each attention layer while doing the forward pass from the input to the final output
(feed-forward token pruning, Figure 1). Thus, they may prune out important tokens at earlier layers
that are important for the final representation as well as the task loss. For example, in Figure 1, the
token Love in the layer l + 1 is pruned by the feed-forward method, although the token has a high
attention probability in the representation at the final layer l + 2 that is used by the classification task.

To tackle such a limitation of conventional feed-forward token pruning methods, we propose an
Attention back-tracking method for computing the importance score of each input token by their
importance on the required output tokens (e.g.: sequence representation token, in last layer) and the
task performance. As illustrated in Figure 1 (right), we take a backward pass from the last layers’
token representations to input tokens, pruning the tokens by their importance score of each input
token by accumulating its attention score. By doing so, we are able to better select and keep the
important tokens that will minimally affect the output and the prediction. We name our novel token
pruning method as Sparse Token Transformer with Attention Back-Tracking (STTABT).

However, one challenge here is that such backtracking requires us to know the attention score of each
token before feed-forwarding the input sequence to the model. To handle the issue, we introduce a
lightweight attention approximation network trained with knowledge distillation called ApproxNet.
Moreover, to actually prune the tokens, we need to decide which tokens to be retained based on the
importance scores. The top-k method, by design, can select a predefined number of tokens (Goyal
et al., 2020), but requires sorting the tokens by their importance scores, which is not differentiable.
The thresholding method, which prunes the tokens with scores under the threshold value (Kim et al.,
2022) does not require sorting, but setting the threshold can be tricky since it is difficult to know how
many tokens will be remained in advance with the given threshold. To remedy such issues in both
methods, we propose a learnable and smooth threshold function named Concrete masking, inspired
by Concrete Dropout (Gal et al., 2017). Specifically, we jointly train the threshold value for each
layer and importance score which is computed by attention back-tracking, with the task objective to
find the thresholds that can minimize the task loss.

Our method is generally applicable to Transformer encoders for any domains, and we validate our
method on text and image classification tasks. For text classification, we validated the proposed
token pruning methods on GLUE (Wang et al., 2019) benchmark with BERT (Devlin et al., 2019).
For image classification, we validate it on ImageNet-1K (Deng et al., 2009) benchmark with DeiT
(Touvron et al., 2021). The experimental results show that our model works surprisingly well even at
very high pruning rates, for which baselines show significant performance degeneration. For example,
on a GLUE benchmark task (QQP), our method obtains 45.54% increased token sparsity (17.15% to
9.34%) compared to the baseline with the same accuracy. Moreover, our method obtains very high
token sparsity (18.7%), keeping only half of the tokens retained by DynamicViT (37.5%), with only
0.8% accuracy loss on ImageNet-1K benchmark. Our contributions can be summarized as follows:
• We propose a novel token pruning method for Transformers based on attention back-tracking,

which considers the importance of each token on the final representations as well as the task loss
based on the approximated attention from the distilled model.

• We propose Concrete masking, which automatically learns the pruning rate for each layer with
Concrete dropout. (Gal et al., 2017).

2



Published as a conference paper at ICLR 2023

• Our token pruning is generally applicable to any Transformers, and we validated it on trained
Transformers from both NLP (BERT) and CV (DeiT) domains, on GLUE and ImageNet benchmark,
whose results show that it achieves a significantly better accuracy-computation tradeoff. (Kim et al.,
2022; Rao et al., 2021).

2 RELATED WORK

Attention Pruning for Transformers Since the literature on the general neural network compres-
sion techniques such as quantization and weight pruning is vast, we discuss compression techniques
specifically targeting Transformers (Vaswani et al., 2017). Due to the heavy computational cost of
the self-attention, several recent works have focused to reduce its time complexity from O(N2) to
about O(N) given the N length of the sequence by pruning the attentions in the self-attention layers.
BigBird (Zaheer et al., 2020) is one such method, and it utilizes set of sparse attentions, that are
both local and random, while using few global attentions, to deal with longer sequences. Similarly,
Star-Transformer (Guo et al., 2019) leverages the concept of a virtual relay node and reduces the
number of fully-connected attentions with the radial and ring connections. However, these prior works
do not consider the content of the input sequence, as they make use of static sparsity patterns. To
remedy this, some recent works aim to dynamically sparsify attentions of the Transformer considering
the input data. Specifically, Reformer (Kitaev et al., 2020) divides the tokens into several groups
through Locally Sensitive Hashing (LSH) and calculates attentions by sparsely connecting them.
Routing Transformer (Roy et al., 2021) uses the k-means clustering algorithm to cluster input tokens.

Token Pruning for Transformers However, in most datasets used in Natural Language Processing
(NLP), such as text classification (Wang et al., 2019), input sequences with with excessively long
lengths are quite rare, as the length of most sequences is limited to 256 tokens (Kim et al., 2022).
Moreover, fully connected layers require significant computations that are non-negligible, although
they have been relatively overlooked. Therefore, some recent works (Kim et al., 2022; Goyal
et al., 2020) focus on reducing the number of tokens by selecting the most important tokens for
the given task, to reduce the computational cost of both linear and self-attention layers. Notably,
PoWER-BERT (Goyal et al., 2020) progressively eliminates tokens based on their importance scores,
computed from the attentions at each layer of the Transformer encoder, and Learned Token Pruning
(LTP) (Kim et al., 2022) aims to learn to threshold the importance scores to prune the token. However,
both methods prune the tokens during the feed-forward pass, assuming that important input tokens
are also important output tokens. Therefore, they may prune out tokens that are important for the
output vector at earlier layers. Compared to them, our method STTABT can consider the impact
of each token on the output vector and the prediction task by attention back-tracking, thanks to our
novel lightweight attention approximation network.

3 SPARSE TOKEN TRANSFORMER WITH ATTENTION BACK TRACKING

We start by briefly describing the Transformer model that our method focuses on. Then, we propose
two components for our Sparse Token Transformer with Attention Back Tracking (STTABT): At-
tention Back Tracking (ABT) which obtains the importance score for each token with an attention
approximation network and Concrete masking for dynamically learning the token-wise threshold for
each input. STTABT is a post-hoc token pruning method and assumes that the target Transformer
encoder has previously been optimized on the training dataset for the target task. Our goal is to lower
the inference cost of the given pretrained Transformer by pruning the tokens at each layer.

3.1 TRANSFORMER

For concepts used in later sections, we define the self-attention layer — the fundamental element of
the Transformer architecture (Vaswani et al., 2017) — in this section. Let us denote the attention
score and probability at l-th Transformer layer as follows:

Al
score =

QlKl⊤

√
dk

, Al
prob = softmax(Al

score), (1)

3



Published as a conference paper at ICLR 2023

where Ql ∈ RL×dk is the query matrix, Kl ∈ RL×dk is the key matrix, dk is the dimension of query
and key matrix, and l ∈ [1, L] is the layer index.

3.2 ATTENTION BACK-TRACKING (ABT)

We now describe the details of our method, Attention Back Tracking (ABT). The fundamental idea of
ABT is to prune the tokens based on their importance scores that measure their impacts on the final
sequence representation for task prediction, by back-tracking the attentions. Specifically, as shown
in Figure 1 (right), we start with the tokens with higher attention probabilities from the last layer,
and backtrack their accumulated attention probabilities to the first layer of the Transformer encoder
consisting of L layers with regards to the token for the sequence classification task (specifically,
[CLS] token). However, to apply such a technique into practice, we must feed-forward the input
sequence through all of the Transformer layers in order to compute attention scores beforehand. Thus
a straightforward implementation of the technique could be quite inefficient because it will require us
to perform forward pass of the model twice for each input.

Attention Approximation Network To alleviate the cost, we use an attention approximation
network (ApproxNet), a distilled Transformer encoder that approximates the attention probabilities
of the original network with a significantly less number of parameters. We perform knowledge
distillation based on the distillation loss from TinyBERT (Jiao et al., 2020) to build the ApproxNet.
Specifically, we leverage embedding based distillation loss Lembd, hidden state based distillation
loss Lhidn, attention-based distillation loss Lattn, and prediction-layer distillation loss Lpred for
the distillation. Especially, for the attention-based distillation, we use the KL divergence loss from
MiniLM (Wang et al., 2020) instead of the mean squared error loss as follows:

Lattn =
1

HT 2L

L∑
l=1

H∑
h=1

T∑
j=1

T∑
i=1

(Al
prob ∗ (logAl

prob − log Âl
prob))h,j,i, (2)

where Al
prob ∈ RH×T×T denotes l-th layer attention probability of the original network (teacher),

Âl
prob ∈ RH×T×T denotes l-th layer attention probability of the ApproxNet (student), H is the

number of heads for multi-head self-attention layers, T is the length of input sequence, and L is the
number of layers in the Transformer network.

Algorithm 1: Update token mask from the output token indices

1 def UpdateTokenMaskOfLayer(Âl
prob, il+1, sl+1, p, k)

// Reduce attention heads and gather required
output tokens’ attention probabilities
with previous importance score.

2 A← gather(mean(Âl
prob, dim=0), il+1, dim=0)

3 a← mean(diag(sl+1)A ∗ p+A ∗ (1− p), dim=0)

4 il ← unique(cat(il+1, topk(a, k)))

5 sl ← gather(a, il)

6 sl ← sl / sum(sl)

7 return il, sl

Figure 2: Computation flow of update token mask of whole Trans-
former encoder layers with attention back-tracking by Algorithm 1.

Top-k (k)

Layer 𝑙

To
ke

n
Pr

un
in

g

Pruned

Layer 𝑙+1

Pruned

Pruned

Layer 𝑙 ApproxNet

Selected by Required
Output Token Index

0.5 0.30.2

Weighted
Average (p)

0.5

0 2 1
0.2

:index

:value0.3

Re
cu

rs
iv

e 
To

ke
n 

Pr
un

in
g

Gather & 
Normalize

Token Pruning with Attention Back-tracking on Approximated Attention Then, using the
approximated attentions from the ApproxNet, we can now prune the tokens at each layer of the main
network. In Algorithm 1, we define the pruning function UpdateTokenMaskOfLayer, which
updates the mask at each Transformer layer l for token pruning. The input arguments of the pruning
function are the approximated attention probability Âl

prob of l-th layer from the ApproxNet, the token
mask il+1 ∈ Zol+1 , and the importance scores of the tokens sl+1 ∈ Rol+1 from the upper layer l+ 1,
where l = 1 is the first layer of the Transformer model and ol+1 is the number of selected tokens
in (l + 1)-th layer. iL is initialized with indices of required tokens, which is [CLS] token in the
classification task. sL ∈ RoT is initialized as the one vector 1/oT where ot is the number of output

4



Published as a conference paper at ICLR 2023

tokens, which is generally a single token. p ∈ (0, 1) ⊂ R determines how much importance scores
should be propagated from the upper layer. If p = 0, the importance scores from the upper layer will
be completely ignored when pruning the tokens in l-th layer. k ∈ Z determines how many tokens
should be selected in case of using top-k selection method, and we could easily change the number
of tokens to retain at each layer, by adjusting k. The function returns the index of remaining input
tokens at l-th layer and their importance scores given those arguments.

3.3 CONCRETE MASKING

The top-k tokens at each layer of the Transformer model may still be selected using the previous
scheme’s static value of k, but in order to regulate the pruning based on the input, a mechanism for
dynamically altering the pruning ratio is also necessary. Therefore, previous work, such as LTP (Kim
et al., 2022) proposed to learn a layer-wise threshold for token pruning. In detail, during fine-tuning,
LTP keeps tokens that have larger scores than the threshold, which is jointly optimized with the
network parameters. However, it can be challenging to control the number of tokens left at each layer
when the importance score is relatively sparse and the majority of score values are close to zero or
very small values. To address the problem, we suggest a novel dynamic thresholding method named
as Concrete Masking, inspired by the learnable dropout function idea in Concrete dropout (Gal et al.,
2017).

Let us consider a single row of one of multi-head attention score matrix al
t = Ascore

l
h,t ∈ RT in

this section for brevity, where h is the head index and i is the row index. We further assume that the
attention scores follow a normal distribution. We transform at into the uniform distribution where
at,i ∈ [0, 1] so that the importance score becomes uniformly distributed. Formally,

ãl = Φ(
al − µa

σa
), Ãl =

— ãl
1 —

· · ·
— ãl

T —

 (3)

where Φ is the cumulative distribution function of the standard normal distribution, µa =
∑T

t=1 a
l
t/T

is the mean of al, and σa =
√∑T

t=1(a
l
t − µa)2/T is the standard deviation of the al. Then, we

apply above transformation to all the rows of the predicted attention score matrix from ApproxNet
Âl

score to acquire Ãl where all of rows are uniformly distributed. Similar to the line 3 of Algorithm 1,
we then propagate the transformed importance score ã as follows:

bl =

∑T
t=1

((
pdiag(sl+1) + 1− p

)
diag(ml+1)Ãl

)
t,:∑

ml+1
, sl =

(
1− ϵ

bl

max bl
+ ϵ

)
(4)

where the token mask ml+1 ∈ (0, 1)T ⊂ RT is the Concrete mask vector. Then, the updated
Concrete token mask mt is defined as follows (Gal et al., 2017):

ml = max

(
ml+1, sigmoid

(
log pθl − log(1− pθl) + log sl − log(1− sl)

τ

))
(5)

where sigmoid is the sigmoid function, τ is the temperature hyperparameter, and pθl = sigmoid(θl)
where θl is a learnable parameter and initialized with θinit. During training, the model learn the
proper value of θl with the soft mask function applied to each layer. After training for reproducing
the base accuracy with sufficient epochs, we change the soft mask into a hard mask, then fine-tune
the parameters to fit the hard mask as in LTP (Kim et al., 2022). For hard masking, we threshold the
soft Concrete token mask ml using a set threshold, usually 0.5.

To train our Concrete masking mechanism, we need regularization terms in addition to the task loss.
First of all, we add the regularization term Lp, which prevents θl from deviating too far from the
initialized value and another regularization term Lmask so that the average token retention ratio stay
around pθinit

as follows:

Lp = λp

L∑
l=1

(θl − θlinit)
2, Lmask = λmask

((
1

TL

L∑
l=1

T∑
t=1

ml
t

)
− pθinit

)2

(6)

where λp and λmask are hyperparameters.

5



Published as a conference paper at ICLR 2023

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To show the general applicability of our method, STTABT, we validate it on both Natural Language
Processing (NLP) and vision tasks. In order to evaluate our method, we primarily compare the
performance of our method against those of the baselines at the same token retention ratios, which
is a metric that measures how many tokens are retrained after pruning. We use the average token
retention ratio values across all the layers of the target Transformers. To accurately measure the
efficiency of our method, even considering the overhead for computing the ApproxNet for attention
approximation, we also report the performance as a function of FLOPs in Section 5.

4.1.1 PRUNING TRANSFORMER-BASED TRAINED LANGUAGE MODELS

Dataset and metric. We use nine datasets from GLUE (Wang et al., 2019) benchmark for the
text classification and use the BERTbase (Devlin et al., 2019) as the base model. For evaluation
metric, we use the metrics from the original paper (Wang et al., 2019). Baselines. We compare
STTABT against two notable token pruning baselines – the manual top-k method and Learned Token
Pruning (LTP) (Kim et al., 2022). The manual top-k method is the feed-forward token pruning
which keeps the kl tokens with highest importance scores for each l-th layer. LTP is a baseline
with a learnable threshold, which requires to fine-tune the whole parameters to learn the appropriate
threshold value for each input. We match the training settings of STTABT and LTP, then follow the
hyperparameter search strategies described in (Kim et al., 2022). For the comparison against LTP, we
use STTABT with Concrete masking strategy (§3.3), while use top-k pruning with our method (§3.2)
when comparing against the manual top-k baseline.

4.1.2 PRUNING VISION TRANSFORMERS

Dataset and metric. We use ImageNet-1k (Deng et al., 2009) for the image classification experiment,
using the Data-efficient Image Transformer (DeiT) (Dosovitskiy et al., 2021a; Touvron et al., 2021)
as the base Vision Transformer model. Specifically, we use DeiT-small as the base architecture for
all experiments on the image classification. Baselines. We use DynamicViT (Rao et al., 2021) as
the primary baseline. We follow the experimental setups, including data preprocessing and training
pipeline of DynamicViT for all experiments on the image classification task.

4.2 EXPERIMENTAL RESULTS ON NLP TASKS

Attention back-tracking. We measure the performance of our attention back-tracking (ABT)
method with the ApproxNet (§3.2). We experiment with different k in Algorithm 1 to vary the
average token retention ratios. The experimental results in Figure 3 show that the our method
significantly outperforms the manual top-k with the same average token retention ratio. Furthermore,
we find that using the ApproxNet (blue lines) obtains similar performance to using the attention
from the full network (green lines). These results support that our attention backtracking strategy
can identify more important tokens than the feed-forward pruning methods do, which compute the
importance scores and perform pruning with forward passes.

Concrete masking. In Figure 3, we further present the performance evaluations with or without
the Concrete masking, to examine its effect. One of the advantages of our model with Concrete
masking is that the user can flexibly adjust the token retention ratio by changing θinit value. In
contrast, the user cannot easily adjust the token retention ratio of LTP since the method does not
support the control of the token and relies on regularization on the mask, which is the token retention
ratio with a regularization scaling factor. For the lower token retention ratio of LTP, we must increase
the scaling factor, then the regularization term becomes significantly bigger than task loss at some
point. As a result, the LTP token retention ratio converges to zero or an extremely low ratio which is
not appropriate to deal with task loss. For instance, in QNLI, MRPC, CoLA, and SST-2 of Figure 3,
LTP baseline cannot cover the low token retention ratio, whereas our method can.

At relatively high token retention ratios around 30-50%, both STTABT with concrete masking and
LTP work well, although our method still outperforms LTP in most cases. However, at lower than 30%
token retention ratios, our method with Concrete masking show significantly superior performance

6



Published as a conference paper at ICLR 2023

0 20 40 60
Average Token Retention Ratio (%)

50

60

70

80

Ac
cu

ra
cy

 (%
)

MNLI

20 40 60
Average Token Retention Ratio (%)

75

80

85

90

Ac
cu

ra
cy

 (%
)

QNLI

10 20 30 40 50 60 70
Average Token Retention Ratio (%)

70

75

80

85

Ac
cu

ra
cy

 (%
)

MRPC

10 20 30 40 50 60 70
Average Token Retention Ratio (%)

10

20

30

40

50

M
at

th
ew

s C
or

re
la

tio
n

CoLA

0 20 40 60
Average Token Retention Ratio (%)

82

84

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

SST-2

0 20 40 60
Average Token Retention Ratio (%)

82

84

86

88

90

92

Ac
cu

ra
cy

 (%
)

QQP

10 20 30 40 50 60 70
Average Token Retention Ratio (%)

52

54

56

58

Ac
cu

ra
cy

 (%
)

WNLI

20 40 60
Average Token Retention Ratio (%)

0.75

0.80

0.85

0.90

Pe
ar

so
n 

Co
rre

la
tio

n

STSB

20 40 60
Average Token Retention Ratio (%)

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

RTE

STTABT (Approx. Att.)
STTABT (Actual Att.)

STTABT (Concrete, with train)
STTABT (Concrete, w/o train)

LTP (Best valid.)
Manual Top-k

BERTBASE

Figure 3: Experimental results with varying average token retention ratio for our method STTABT
(by ApproxNet with factor 4) and baselines on GLUE and BERTbase. Our results with top-k pruning
(blue, green) are compared against the manual top-k method (black dot). In contrast, results with
Concrete masking (red, orange) are compared to the LTP (grey dot).

over LTP, better preserving the accuracy of the full model (Please see the results on MNLI, QNLI,
MRPC, CoLA, SST-2, QQP, and RTE). To examine which tokens are pruned with our method and
LTP, we further visualize the pruning mask at each layer of BERTbase in Figure 6. We observe that
LTP keeps most of the important tokens, but unimportant tokens as well such as dots in Figure 6. On
the other hand, our method with Concrete masking prunes useless tokens such as dots at much earlier
layers than LTP, yielding higher sparsity in total.

The Concrete masking method have significantly higher accuracy in most of cases in GLUE bench-
mark than ABT without Concrete masking and baselines. The Concrete masking method works
especially well at high pruning rates, while have competitive performance to baselines at low pruning
rates too.

[CLS] it
does n ' t

believe in
itself , it
has no

sense of
humor . . . it ' s

just
plain

bored .
[SEP]

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10
Layer 11
Layer 12

STTABT (Concrete)

[CLS] it
does n ' t

believe in
itself , it
has no

sense of
humor . . . it ' s

just
plain

bored .
[SEP]

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10
Layer 11
Layer 12

LTP

Figure 4: Token pruning visualization between our Concrete masking and LTP layer by layer. Layer l
means the input token mask on the layer l. Yellow color indicates the remained input tokens in each
layer. The input texts are randomly selected from The Stanford Sentiment Treebank (SST-2) (Wang
et al., 2019). Similar accuracy of trained LTP and our Concrete masking models are used (≈ 89%).

7



Published as a conference paper at ICLR 2023

20 40 60 80
Average Token Retention Ratio (%)

66

68

70

72

74

76

78

80

To
p-

1 
Ac

cu
ra

cy
 (%

)

ImageNet-1k

STTABT (Concrete, with train)
STTABTema (Concrete, with train)
DynamicViT
DeiTsmall

STTABT (Approx. Att.)
STTABT (Actual Att.)
Manual Top-k

Figure 5: Top-1 accuracy plot vary-
ing the average token retention ra-
tio for our method and baselines on
ImageNet-1k.

Figure 6: The visualization of token pruning with STTABT
(Concrete) and DynamicViT. Models with similar accuracy
are used (Ours@f4: 74.1%, DynamicViT: 74.9%).

Table 2: Relative FLOPs of various overhead sources of our methods. The FLOPs results are
calculated with a sequence length of 128. We randomly generate token retention ratios for each layer
for simulation. Fused MulAdd for matmul is not considered in FLOPs calculation.

BERTbase ApproxNet Manual Top-k Attention Back-Tracking Concrete Masking
Reduce Factor Token Retention Ratio Token Retention Ratio Token Retention Ratio

4 8 16 0.2 0.4 1.0 0.2 0.4 1.0 0.2 0.4 1.0

FLOPs 22.4G 1.5G 436.9M 140.6M 559.5K 1.1M 2.8M 597.4K 1.2M 2.8M 9.2M 18.5M 46.1M
Relative 100% 6.86% 1.95% 0.63% 0.00% 0.00% 0.01% 0.00% 0.01% 0.01% 0.04% 0.08% 0.21%

4.3 EXPERIMENTAL RESULTS ON COMPUTER VISION TASKS

The experimental results show that our Attention back-tracking (ABT) performs competitively to
DynamicViT even without Concrete masking, on computer vision tasks, and our full model with
Concrete masking significantly outperforms Dynamic ViT 5, especially at lower token retention ratios.
For example, our method with Concrete masking achieves 74.1%(−5.8%p) accuracy with 18.7% token
retention ratio, but DynamicViT requires 37.5% token retention ratio with 74.9%(−5.0%p) accuracy.
Moreover, since our ABT requires training ApproxNet only once regardless of the target token
retention ratio, it has a huge advantage in training cost than DynamicViT. The DynamicViT used
twice more tokens than our Concrete masking, but the accuracy improvement is only 0.8%. Even
considering attention approximation overhead, our model performs better than DynamicViT since the
overhead is only about 1.95− 6.86% of the base model, as shown in Table 2.

We visualize the pruned tokens at different layers of the vision Transformers in Figure 6. The visual-
ization shows that our model with Concrete masking concentrates on the important tokens in an earlier
layer than DynamicViT. Moreover, our model preserves more important tokens while DynamicViT
attends to a larger number of tokens, including unimportant ones. For instance, DynamicViT selects
tokens with other attributes at Layer 4, while our model keeps only the tokens related to Chihuahua
from the beginning of the model, thanks to the attention back-tracking in Figure 6.

5 COMPUTATIONAL EFFICIENCY OF STTABT

5.1 FLOPS COMPARISION

Table 1: Approximation error of ApproxNet
depending on initializing methods.

Init. Random Distilled

Dataset Factor 2 4 4 8

Average
GLUE

MSE 0.0112 0.0112 0.0013 0.0018
KL Div. 1.6430 1.6450 0.2019 0.2981

For the GLUE benchmark, we compare the attention back-
tracking (ABT) method and the manual top-k method
with respect to FLOPs. In Figure 7a, we compare the
performance with respect to FLOPs over the test set. We
find that the ABT performs better than the manual top-k
baseline on most datasets.

The ABT results look shifted toward the right than the Figure 3, because the computational cost
includes overheads such as computing the mask update function (Algorithm 1) and the ApproxNet.
We examine the relative overheads of each additional component in Table 2. We see that ApproxNet

8



Published as a conference paper at ICLR 2023

30 40 50 60 70 80
Relative FLOPs (%)

96

97

98

99

100
Re

la
tiv

e 
M

et
ric

 (%
)

Average GLUE

STTABT@f8 (Approx. Att.)
STTABT@f8 (Actual Att.)
STTABT@f4 (Approx. Att.)
STTABT@f4 (Actual Att.)
Manual Top-k
BERTBASE

(a)

1 2 3 4
GFLOPs

70

72

74

76

78

80

To
p-

1 
Ac

cu
ra

cy
 (%

)

ImageNet-1k

DynamicViT
STTABT@f4 (Concrete) DeiT-S
STTABT@f8 (Concrete) DeiT-S

DeiT-T

DeiT-SSPViT-DeiT-SIA-RED2
S2 ViTE

HVT-S-1

DeiT-S/320
DeiT-S/288

DeiT-S/256

(b)
Figure 7: (a) FLOPs comparison between attention back-tracking with top-k and manual top-k baseline
on BERTbase. (b) FLOPs comparison between our method with concrete masking and baselines on ViT. All
plotted models except DeiT-T are based from DeiTsmall for fair comparison. STTABT@fx means the attention
back-tracking by ApproxNet with factor x. DeiT-S/h means the DeiTsmall with hidden size h (Kong et al.,
2021).

is the major bottleneck, as the ApproxNet with factor 4 requires about 6.86% of the BERTbase

FLOPs, which is significantly larger than the manual top-k (0.01%). However, the overhead is more
convincing with higher reduction factor of 8 (1.95%) than 4. Therefore in Figure 7a, the ABT results
with factor 8 shows better result than 4.

We further compare the performance of STTABT with different reduction factors of the ApproxNet.
Table 1 shows that the ApproxNet performs accurately approximations of the actual attention scores
with a lower reduction factor, thus results in better preformance. However, when considering the
accuracy-efficiency tradeoff, the performance of the model with the reduction factor of 4 are often
worse than the one with the reduction factor of 8.

In Figure 7b, we show the accuracy over FLOPs comparison of our model against baselines on
ImageNet-1k (Deng et al., 2009), using DeiTsmall as the base model to prune. The baselines include
DynamicViT (Rao et al., 2021) is used as the primary baseline, DeiTsmall (Touvron et al., 2021),
SPViT (Kong et al., 2021), IA-RED2 (Pan et al., 2021a), S2 ViTE (Chen et al., 2021), and HVT (Pan
et al., 2021b). We observe that the fine-tuned DeiTsmall model pruned by our Concrete masking
significantly outperforms the fine-tuned DeiTtiny model with the same FLOPs trained from scratch.
DynamicViT with DeiTsmall, on the other hand, results in a model with much lower performance
than DeiTtiny. This is good news for practitioners, as this suggests that we may not need to train
Transformers at different scales from scratch, to deploy the model to systems or applications with
different computational budgets.

6 CONCLUSIONS

In this paper, we propose a sparse token Transformer architecture based on a novel token pruning
method, Sparse Token Transformer with Attention Back Tracking (STTABT), with two novel ideas
– Attention Back-Tracing (ABT) and Concrete masking. In particular, the ABT method enables
our pruning method to back-track the important tokens for classification from the topmost layer to
the lower layers, while approximating the attentions using a lightweight approximation network
(ApproxNet). Then, we propose a novel thresholding method named as Concrete masking, which
adapts the idea from Concrete dropout to learn the appropriate token-wise pruning threshold given the
desired amount of tokens to be retained. We evaluate the performance of our method on classification
tasks from NLP and CV domains, by pruning tokens from the trained Transformer encoder-based
language models and Vision Transformers. Our method shows a better accuracy-efficiency trade-off
and yields Transformers with significantly higher accuracy for the same ratio of tokens retained, or at
the same FLOPs even when considering the computational overhead from the ApproxNet. Qualitative
analysis of the tokens retained by STTABT shows that it preserves relatively more important tokens
while pruning out less relevant ones, compared to previous methods.

9



Published as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

We will introduce code construction and data collection in this section for reproducibility.

Model Implementation. First we construct our model with PyTorch (Paszke et al., 2019) and
Huggingface (Wolf et al., 2020). We modify bert-base-uncased from Huggingface Models
(Wolf et al., 2020). ApproxNet. We create ApproxNet (§3.2, trainer/glue base.by) with the
pretrained models. The approximation result is shown in Section A. ABT. We implement Algorithm
1 on top of bert-base-uncased (Devlin et al., 2019) (models/sparse token.py). LTP,
Concrete masking. Then, we modify forward path to support LTP (Kim et al., 2022) and fix
ApproxSparseBertModel to implement Concrete masking (§3.3).

NLP training. The training for NLP tasks, we implemented our own training loop
(trainer/concrete trainer.py) and hyper-parameter tuning settings inher-
its LTP hyper-parameter settings (Kim et al., 2022) (main/ltp glue plot.py,
main/concrete glue plot.py). We use the GLUE dataset from Huggingface Dataset (Wolf
et al., 2020).

Vision training. We start from DynamicViT implementation (Rao et al., 2021) including data
loader, training loop, training loss, and evaluation codes (main/vit concrete end2end.py).
Therefore, we did not apply hyper parameter grid search on ViT pipeline. And we remove hard token
mask training stage, and we use larger λmask = 100 than NLP task, because of lack of padding.
Also, we did not use prediction distillation loss for training ApproxNet for ViT. The training dataset
is ImageNet-1k (ILSVRC2012) (Deng et al., 2009). We replace the Transformer encoder in ViT
model (Dosovitskiy et al., 2021b) into our model code. Our PyTorch model is modified to apply ViT
changes from Transformer encoder (Dosovitskiy et al., 2021b).

ACKNOWLEDGMENTS

This work was supported by DeepAuto.ai. This work was partly supported by Institute of Information
& communications Technology Planning & Evaluation (IITP) grant funded by the Korea government
(MSIT) (No. RS-2022-00187238, Development of Large Korean Language Model Technology
for Efficient Pre-training), (No.2022-0-00124, Development of Artificial Intelligence Technology
for Self-Improving Competency-Aware Learning Capabilities), and (No.2019-0-00075, Artificial
Intelligence Graduate School Program (KAIST)). This work was supported by the Engineering
Research Center Program through the National Research Foundation of Korea (NRF) funded by the
Korean Government MSIT (NRF-2018R1A5A1059921).

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Yoshua Bengio and Yann LeCun (eds.), 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1409.0473. 1

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang. Chas-
ing sparsity in vision transformers: An end-to-end exploration. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
19974–19988, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
a61f27ab2165df0e18cc9433bd7f27c5-Abstract.html. 9

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. ISSN 1063-6919. doi: 10.1109/cvpr.2009.5206848. 2, 6, 9, 10

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of

10

http://arxiv.org/abs/1409.0473
https://proceedings.neurips.cc/paper/2021/hash/a61f27ab2165df0e18cc9433bd7f27c5-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a61f27ab2165df0e18cc9433bd7f27c5-Abstract.html


Published as a conference paper at ICLR 2023

the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186.
Association for Computational Linguistics, 2019. URL https://doi.org/10.18653/v1/
n19-1423. 1, 2, 6, 10, 14

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021a. URL https://openreview.net/forum?id=
YicbFdNTTy. 6

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021b. URL https://openreview.net/forum?id=
YicbFdNTTy. 1, 10

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Training pruned neural networks.
CoRR, abs/1803.03635, 2018. URL http://arxiv.org/abs/1803.03635. 1

Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
3581–3590, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
84ddfb34126fc3a48ee38d7044e87276-Abstract.html. 2, 5

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan T. Chakaravarthy, Yogish
Sabharwal, and Ashish Verma. Power-bert: Accelerating BERT inference via progressive word-
vector elimination. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pp. 3690–3699. PMLR, 2020. URL http://proceedings.mlr.press/v119/
goyal20a.html. 1, 2, 3

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, and Zheng Zhang. Star-
transformer. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), pp. 1315–1325. Association for Computational Linguistics,
2019. URL https://doi.org/10.18653/v1/n19-1133. 1, 3

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks. CoRR, abs/1506.02626, 2015. URL http://arxiv.org/abs/
1506.02626. 1

Zihang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Xiaojie Jin, Anran Wang, and Jiashi Feng. Token
labeling: Training a 85.4% top-1 accuracy vision transformer with 56m parameters on imagenet.
CoRR, abs/2104.10858, 2021. URL https://arxiv.org/abs/2104.10858. 18

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun
Liu. Tinybert: Distilling BERT for natural language understanding. In Trevor Cohn, Yulan He,
and Yang Liu (eds.), Findings of the Association for Computational Linguistics: EMNLP 2020,
Online Event, 16-20 November 2020, volume EMNLP 2020 of Findings of ACL, pp. 4163–4174.
Association for Computational Linguistics, 2020. URL https://doi.org/10.18653/v1/
2020.findings-emnlp.372. 1, 4, 14

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Woosuk Kwon, Joseph Hassoun, and
Kurt Keutzer. Learned token pruning for transformers. In Aidong Zhang and Huzefa Rangwala
(eds.), KDD ’22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, August 14 - 18, 2022, pp. 784–794. ACM, 2022. URL https://doi.
org/10.1145/3534678.3539260. 1, 2, 3, 5, 6, 10, 15

11

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
http://arxiv.org/abs/1803.03635
https://proceedings.neurips.cc/paper/2017/hash/84ddfb34126fc3a48ee38d7044e87276-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/84ddfb34126fc3a48ee38d7044e87276-Abstract.html
http://proceedings.mlr.press/v119/goyal20a.html
http://proceedings.mlr.press/v119/goyal20a.html
https://doi.org/10.18653/v1/n19-1133
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
https://arxiv.org/abs/2104.10858
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.1145/3534678.3539260
https://doi.org/10.1145/3534678.3539260


Published as a conference paper at ICLR 2023

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
rkgNKkHtvB. 3

Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei Niu, Mengshu Sun, Bin Ren, Minghai
Qin, Hao Tang, and Yanzhi Wang. Spvit: Enabling faster vision transformers via soft token pruning.
CoRR, abs/2112.13890, 2021. URL https://arxiv.org/abs/2112.13890. 1, 2, 9

Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, and
Christoph Feichtenhofer. Mvitv2: Improved multiscale vision transformers for classification
and detection. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2022, New Orleans, LA, USA, June 18-24, 2022, pp. 4794–4804. IEEE, 2022. URL https:
//doi.org/10.1109/CVPR52688.2022.00476. 18

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In 2021 IEEE/CVF
International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-
17, 2021, pp. 9992–10002. IEEE, 2021. URL https://doi.org/10.1109/ICCV48922.
2021.00986. 18

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=Byj72udxe. 14

Bowen Pan, Rameswar Panda, Yifan Jiang, Zhangyang Wang, Rogerio Feris, and Aude Oliva. Ia-
red 2: Interpretability-aware redundancy reduction for vision transformers. Advances in Neural
Information Processing Systems, 34:24898–24911, 2021a. 9

Zizheng Pan, Bohan Zhuang, Jing Liu, Haoyu He, and Jianfei Cai. Scalable visual transformers
with hierarchical pooling. CoRR, abs/2103.10619, 2021b. URL https://arxiv.org/abs/
2103.10619. 9

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf. 10

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynam-
icvit: Efficient vision transformers with dynamic token sparsification. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
13937–13949, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
747d3443e319a22747fbb873e8b2f9f2-Abstract.html. 1, 2, 3, 6, 9, 10, 15, 18

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Trans. Assoc. Comput. Linguistics, 9:53–68, 2021. URL
https://doi.org/10.1162/tacl_a_00353. 3

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning Research, pp. 6105–6114. PMLR, 2019.
URL http://proceedings.mlr.press/v97/tan19a.html. 1

12

https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://arxiv.org/abs/2112.13890
https://doi.org/10.1109/CVPR52688.2022.00476
https://doi.org/10.1109/CVPR52688.2022.00476
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/ICCV48922.2021.00986
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://arxiv.org/abs/2103.10619
https://arxiv.org/abs/2103.10619
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.neurips.cc/paper/2021/hash/747d3443e319a22747fbb873e8b2f9f2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/747d3443e319a22747fbb873e8b2f9f2-Abstract.html
https://doi.org/10.1162/tacl_a_00353
http://proceedings.mlr.press/v97/tan19a.html


Published as a conference paper at ICLR 2023

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pp. 10347–10357. PMLR, 2021. URL http://proceedings.mlr.
press/v139/touvron21a.html. 2, 6, 9, 14

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html. 3

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
rJ4km2R5t7. 2, 3, 6, 7, 17, 18

Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse attention architecture with
cascade token and head pruning. In IEEE International Symposium on High-Performance Computer
Architecture, HPCA 2021, Seoul, South Korea, February 27 - March 3, 2021, pp. 97–110. IEEE,
2021. URL https://doi.org/10.1109/HPCA51647.2021.00018. 1

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm:
Deep self-attention distillation for task-agnostic compression of pre-trained transformers. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html. 1, 4, 14

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.
10

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird:
Transformers for longer sequences. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html. 1, 3

13

http://proceedings.mlr.press/v139/touvron21a.html
http://proceedings.mlr.press/v139/touvron21a.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.1109/HPCA51647.2021.00018
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html


Published as a conference paper at ICLR 2023

APPENDIX

A EXPERIMENTAL DETAILS

A.1 DETAILS ON ATTENTION APPROXIMATION NETWORK

Init. Random Interpolate Distilled
Dataset Factor 2 4 2 4 4 8

MNLI MSE 0.0087 0.0087 0.0086 0.0086 0.0013 0.0018
KL Div. 1.7503 1.7520 1.7174 1.7097 0.2393 0.3423

QNLI MSE 0.0052 0.0052 0.0052 0.0052 0.0009 0.0012
KL Div. 1.8026 1.8078 1.7826 1.7750 0.2666 0.3866

MRPC MSE 0.0052 0.0052 0.0052 0.0052 0.0007 0.0011
KL Div. 1.9680 1.9751 1.9484 1.9406 0.2248 0.3740

CoLA MSE 0.0339 0.0338 0.0337 0.0334 0.0032 0.0042
KL Div. 1.0845 1.0810 1.0709 1.0629 0.1223 0.1644

SST-2 MSE 0.0167 0.0167 0.0166 0.0165 0.0019 0.0025
KL Div. 1.4762 1.4744 1.4622 1.4528 0.1899 0.2606

QQP MSE 0.0099 0.0099 0.0099 0.0098 0.0014 0.0020
KL Div. 1.5960 1.6020 1.5756 1.5679 0.2269 0.3149

WNLI MSE 0.0070 0.0070 0.0070 0.0069 0.0005 0.0009
KL Div. 1.5982 1.5977 1.5752 1.5688 0.1375 0.2211

STSB MSE 0.0097 0.0097 0.0096 0.0096 0.0009 0.0012
KL Div. 1.5230 1.5266 1.4991 1.4915 0.1561 0.2258

RTE MSE 0.0048 0.0048 0.0048 0.0048 0.0007 0.0010
KL Div. 1.9883 1.9881 1.9678 1.9593 0.2533 0.3930

Average GLUE MSE 0.0112 0.0112 0.0112 0.0111 0.0013 0.0018
KL Div. 1.6430 1.6450 1.6221 1.6143 0.2019 0.2981

Table A.1: The ApproxNet performance results over GLUE benchmark with various initialization
setting.

In this section, we provide additional details on the attention approximation networks (ApproxNet).
We train the ApproxNet following the instructions in Section 3.2. As we mentioned, the architecture
of the ApproxNet is identical with the original network such as BERT (Devlin et al., 2019) and Vision
Transformer (ViT) (Touvron et al., 2021), except for the dimension of hidden and intermediate hidden
unit size. We downsize the architecture by reducing the hidden unit dimension with different reducing
factors. We use 4 and 8 as the reducing factors in all experiments of the paper. We then train the
ApproxNet with the knowledge distillation (Wang et al., 2020; Jiao et al., 2020). Specifically, we
use the embedding based distillation loss Lembd, hidden state based distillation loss Lhidn, attention-
based distillation loss Lattn, and prediction-layer distillation loss Lpred to train the ApproxNet for
BERT. For Vision Transformer, we do not use the prediction-layer distillation loss.

In Table A.1, we present the approximation error between the attention probability in the original
network and the ApproxNet. We observe that the distillation helps the ApproxNet to approximate
almost identical attention probability of the original network. We also observe that the smaller reduce
factor leads to lower attention approximation error. However, we also find that the ApproxNet with a
larger reducing factor also accurately approximate the attention probability of the original network.

To boost the training speed for ApproxNet on downstream tasks, we first distill the pre-trained
Transformer encoders prior to the distillation of the fine-tuned network on each task. This procedure
is not necessary if the downstream task is large enough or there is no downstream task such as
ImageNet-1k. For instance, we directly train ApproxNet by setting the fine-tuned ViT as the teacher
network with ImageNet-1k dataset. However, for experiments on GLUE benchmark, we first train
the ApproxNet by setting the original pre-trained BERT as the teacher network with the Wikitext-
103 dataset (Merity et al., 2017) for 200 epochs. Then, we finetune the ApproxNet by setting the
fine-tuned BERT on each task as the teacher network with each task dataset for 30∼50 epochs.

14



Published as a conference paper at ICLR 2023

B ADDITIONAL EXPERIMENTAL RESULTS

2 4 6 8 10 12 14
GFLOPs

52

54

56

58

60

62

Ac
cu

ra
cy

 (%
)

WNLI

5 10 15 20 25
GFLOPs

84

86

88

90

92

Ac
cu

ra
cy

 (%
)

QNLI

1 2 3 4 5 6 7
GFLOPs

82

84

86

88

90

92

Ac
cu

ra
cy

 (%
)

SST-2

2.5 5.0 7.5 10.0 12.5 15.0
GFLOPs

84

86

88

90

Ac
cu

ra
cy

 (%
)

QQP

1 2 3 4
GFLOPs

40

45

50

55

M
at

th
ew

s C
or

re
la

tio
n

CoLA

4 6 8 10
GFLOPs

0.85

0.86

0.87

0.88

Pe
ar

so
n 

Co
rre

la
tio

n

STSB

2 4 6 8 10 12
GFLOPs

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

MRPC

5 10 15 20 25
GFLOPs

76

78

80

82

84

86

Ac
cu

ra
cy

 (%
)

MNLI

5 10 15 20 25 30 35
GFLOPs

64

66

68

70

72

74

Ac
cu

ra
cy

 (%
)

RTE

STTABT@f8 (Approx. Att.)
STTABT@f8 (Actual Att.)

STTABT@f4 (Approx. Att.)
STTABT@f4 (Actual Att.)

Manual Top-k BERTBASE

Figure B.1: FLOPs comparison between attention back-tracking with top-k and manual top-k
baseline on all of datasets in GLUE benchmark. STTABT@fx means the attention back-tracking by
ApproxNet with factor x.

B.1 ADDITIONAL RESULTS ON GLUE EXPERIMENTS WITH FLOPS

In Figure B.1, we present evaluation results on all GLUE benchmark with regards to FLOPs. We
average every data point across 9 datasets in Figure B.1 to plot Figure 7a in the main paper.

B.2 ADDITIONAL VISUALIZATION EXAMPLES

In Figure B.2 and B.3, we visualize the additional visualization of the token pruning on each layer
with STTABT (Concrete) and baselines (Kim et al., 2022; Rao et al., 2021). We further confirm that
our method prunes more tokens throughout all of transformer layers than baselines in both sentence
and image classification tasks.

15



Published as a conference paper at ICLR 2023

Figure B.2: More visualization examples of the token pruning on each layer with STTABT (Concrete)
and DynamicViT on ImageNet-1k dataset.

16



Published as a conference paper at ICLR 2023

[CLS] it
does n ' t

believe in
itself , it
has no

sense of
humor . . . it ' s

just
plain

bored .
[SEP]

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10
Layer 11
Layer 12

STTABT (Concrete)

[CLS] it
does n ' t

believe in
itself , it
has no

sense of
humor . . . it ' s

just
plain

bored .
[SEP]

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10
Layer 11
Layer 12

LTP

[CLS] it
does n ' t

believe in
itself , it
has no

sense of
humor . . . it ' s

just
plain

bored .
[SEP]

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10
Layer 11
Layer 12

Manual Top-k

[CLS]
for
the

most
part ,

director
anne -

sophie bi
##rot ' s

first
feature is a

sensitive ,
extra

##ord
##ina
##rily

well -
acted

drama .
[SEP]

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10
Layer 11
Layer 12

STTABT (Concrete)

[CLS]
for
the

most
part ,

director
anne -

sophie bi
##rot ' s

first
feature is a

sensitive ,
extra

##ord
##ina
##rily

well -
acted

drama .
[SEP]

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10
Layer 11
Layer 12

LTP

[CLS]
for
the

most
part ,

director
anne -

sophie bi
##rot ' s

first
feature is a

sensitive ,
extra

##ord
##ina
##rily

well -
acted

drama .
[SEP]

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10
Layer 11
Layer 12

Manual Top-k

[CLS]
mr . ts

##ai is a
very

original
artist in his

medium ,
and

what
time is it

there ?
[SEP]

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10
Layer 11
Layer 12

STTABT (Concrete)

[CLS]
mr . ts

##ai is a
very

original
artist in his

medium ,
and

what
time is it

there ?
[SEP]

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10
Layer 11
Layer 12

LTP

[CLS]
mr . ts

##ai is a
very

original
artist in his

medium ,
and

what
time is it

there ?
[SEP]

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10
Layer 11
Layer 12

Manual Top-k

[CLS]
you

wonder
why

enough
was n ' t
just a

music
video
rather

than a full -
length
movie .
[SEP]

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10
Layer 11
Layer 12

STTABT (Concrete)

[CLS]
you

wonder
why

enough
was n ' t
just a

music
video
rather

than a full -
length
movie .
[SEP]

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10
Layer 11
Layer 12

LTP

[CLS]
you

wonder
why

enough
was n ' t
just a

music
video
rather

than a full -
length
movie .
[SEP]

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10
Layer 11
Layer 12

Manual Top-k

Figure B.3: More visualization examples of the token pruning on each layer with STTABT (Concrete),
LTP, and Manual Top-k on SST-2 dataset.

C ABLATION STUDY

C.1 PROPAGATION FACTOR p

0.0 0.2 0.4 0.6 0.8 1.0
p

0.35

0.40

0.45

0.50

0.55

M
et

ric

CoLA

ABT@f4
ABT@f8
Concrete Masking@f4
Concrete Masking@f8

Figure C.4: Ablation study about propagation factor p in Algorithm 1.

We perform an ablation study on the importance score propagation factor p, which is introduced in
Algorithm 1. We use CoLA dataset in GLUE benchmark (Wang et al., 2019) for this ablation study.

17



Published as a conference paper at ICLR 2023

In Figure C.4, we observe that Attention Back-Tracking method with p value between the range
of 0.0-0.5 shows the similar task performance. However, we also observe that using p value as 0.1
performs the best.

C.2 CONCRETE λmask AND λp

1e-05 0.001 0.1
p

1e-05

0.001

0.1

m
as

k

CoLA (Metric/Token Retention Ratio)

1e-05 0.001 0.1
p

1e-05

0.001

0.1

m
as

k

CoLA (Metric)

Figure C.5: Ablation study on λmask, λp used in Concrete masking training (§3.3). Yellow indicates
a relatively large value while dark blue indicates a relatively small value. (Left) Heatmap of task
performance divided by token retention ratio. (Right) Heatmap of task performance.

We perform an ablation study on two balancing terms λmask, λp used in Concrete masking training,
which is introduced in Section 3.3. We use CoLA dataset in GLUE benchmark (Wang et al., 2019)
for this ablation study. In Figure C.5, we could not observe any clear pattern from varying λp and
λmask. Therefore, it is better to adjust both values individually depending on the task. For instance,
for tasks in GLUE benchmark, we observe θl does not change a lot during the training. Therefore,
we use a low λp around 1e− 3 in GLUE task training. On the other hand, we observe the model with
concrete masking tend to fail in keeping the target token retention ration in the image classification
task with ViT. In this case, we use a high λmask around 100 to keep the token retention ratio close to
the desired target value.

D EXTRA BASELINES ON VIT EXPERIMENT

D.1 TRADE-OFF BETWEEN TOP-1 ACCURACY AND TOKEN RETENTION RATIO

Technically, it is possible to apply our proposed method on any transformer-based architecture. To
validate this, we perform additional experiments on the image classification task with another ViT
architecture (Jiang et al., 2021). In Figure D.6, we additionally plot results of STTABT (Concrete
masking) on LVViT (Jiang et al., 2021). Please note that Figure D.6 is the extended version of
Figure 5 where we add experimental results on STTABT (Concrete) with LVViT and the original
LVViT (Jiang et al., 2021). Concrete masking on LVViT results in accuracy drop of 3.68%p when
we drop a token retention ratio from 76% to 18%, while Concrete masking on DeiT suffers accuracy
drop of 5.53%p in the same range of token retention ratio. This result shows our Concrete masking
method preserves the performance of the original model by preserving important tokens better.

D.2 TRADE-OFF BETWEEN FLOPS AND TOKEN RETENTION RATIO

We additionally plot the results of STTABT (Concrete masking) with LVViTsmall (Jiang et al., 2021)
and DynamicViT (Rao et al., 2021) with LVViTsmall in Figure D.7. Figure D.7 is an extended
version of Figure 7b. When we use LVViT as the backbone model, Concrete masking outperforms
DynamicViT. The additional baselines include MViTv2 (Li et al., 2022), SwinT (Liu et al., 2021),
and LVViT (Jiang et al., 2021).

18



Published as a conference paper at ICLR 2023

20 40 60 80
Average Token Retention Ratio (%)

67.5

70.0

72.5

75.0

77.5

80.0

82.5

To
p-

1 
Ac

cu
ra

cy
 (%

)
DeiTsmall

LVViTsmall

ImageNet-1k

STTABT (Concrete, with train)
STTABTema (Concrete, with train)
DynamicViT
DeiTsmall

STTABT (Concrete) LVViTsmall

LVViTsmall

STTABT (Approx. Att.)
STTABT (Actual Att.)
Manual Top-k

Figure D.6: Top-1 accuracy plot with results of STTABT (Concrete) with LVViT.

1 2 3 4 5 6
GFLOPs

72

74

76

78

80

82

84

To
p-

1 
Ac

cu
ra

cy
 (%

)

ImageNet-1k

DynamicViT
STTABT@f4 (Concrete) DeiT-S
STTABT@f8 (Concrete) DeiT-S
STTABT@f4 (Concrete) LVViTsmall

DeiT-T

DeiT-S
SPViT-DeiT-SIA-RED2

S2 ViTE

HVT-S-1

DeiT-S/320
DeiT-S/288

DeiT-S/256

LVViT-S
DyViT-LV-S

Swin-T

MViTv2-T

Figure D.7: Results of STTABT and DynamicViT using LVViTsmall as the backbone network.
DyViT-LV-S means DynamicViT with LVViTsmall. Note that this figure is the extended version of
Figure 7b.

19


	Introduction
	Related Work
	Sparse Token Transformer with Attention Back Tracking
	Transformer
	Attention Back-Tracking (ABT)
	Concrete Masking

	Experiments
	Experimental Setup
	Pruning Transformer-based Trained Language Models
	Pruning Vision Transformers

	Experimental Results on NLP Tasks
	Experimental Results on Computer Vision Tasks

	Computational Efficiency of STTABT
	FLOPs Comparision

	Conclusions
	Experimental Details
	Details on Attention Approximation Network

	Additional Experimental Results
	Additional Results on GLUE experiments with FLOPs
	Additional Visualization Examples

	Ablation Study
	Propagation Factor p
	Concrete mask and p

	Extra Baselines on ViT Experiment
	Trade-off between Top-1 Accuracy and Token Retention Ratio
	Trade-off between FLOPs and Token Retention Ratio


