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Abstract

Models such as Word2Vec and GloVe construct word embeddings based on the
co-occurrence probability P(i, j) of words i and j in text corpora. The resulting
vectors W; not only group semantically similar words but also exhibit a strik-
ing linear analogy structure—for example, Wiing — Wnan + Wyoman = Waueen—
whose theoretical origin remains unclear. Previous observations indicate that
this analogy structure: (i) already emerges in the top eigenvectors of the matrix
M(i,5) = P(i,7)/P(i)P(j), (ii) strengthens and then saturates as more eigen-
vectors of M (i, j), which controls the dimension of the embeddings, are included,
(iii) is enhanced when using log M (4, j) rather than M (4, j), and (iv) persists
even when all word pairs involved in a specific analogy relation (e.g., king—queen,
man—woman) are removed from the corpus. To explain these phenomena, we
introduce a theoretical generative model in which words are defined by binary se-
mantic attributes, and co-occurrence probabilities are derived from attribute-based
interactions. This model analytically reproduces the emergence of linear analogy
structure and naturally accounts for properties (i)—(iv). It can be viewed as giving
fine-grained resolution into the role of each additional embedding dimension. It
is robust to various forms of noise and agrees well with co-occurrence statistics
measured on Wikipedia and the analogy benchmark introduced by Mikolov et al.

1. Introduction and Motivation

Vector representations of words have become a cornerstone of modern natural language processing.
Models such as Word2Vec [} 2] and GloVe [3] map any word ¢ to some continuous vector space
W, € RE based on their co-occurrence statistics in large text corpora. These embeddings capture
rich semantic relationships, including a remarkable form of analogical structure: for instance, the
arithmetic expression

Wking - Wman + Wwoman ~ uneen (1)

often holds in embedding space [4}[2]. While widely observed, understanding the origin of this geomet-
ric regularity remains a challenge. Several works [J5} 3] indicate that this property is already contained
in the co-occurrence matrix M (i, j) = P(i,5)/P(i)P(j), orin PM1(i,j) = log(M (i, 7)), called
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the pointwise mutual information or PMI matrix. Here, P(i, j) is the empirical probability that words
i and j appear together within a context window, and P(%) is the marginal probability of word i.

Key observations to explain are that (i) the top eigenvectors of M already separate semantic aspects
of words [6]]; (ii) If the word embedding is built by approximating M ~ W W, where W is a
K x m matrix whose columns W; are the embeddings of each word i = 1...m and rows W,  are the
(scaled) eigenvectors of M, then one finds that linear analogies initially becomes more accurate as K
increases, such that more of the top eigenvectors of M are retained [6]; (iii) linear analogies improve
further when the PMI is used instead of M itself, i.e. by approximating the PMI ~ W TW [B.[7].
Moreover, (iv) linear analogies persists even when the word pairs exemplifying the target analogy are
removed from the dataset [8] (e.g. removing from the corpus all word pairs including a masculine
word and its feminine counterpart, such as man-woman, king-queen, etc.).

2. Our Contributions

In this work, we propose a theoretical generative model for word co-occurrences, which rationalizes
the observations above. The model enables us to compute the properties of M and of the PMI
analytically and elucidates how linear analogies emerge.

(1). Our theory posits that each word is defined by a vector of d discrete semantic attributes, and that
each attribute of a word affects its context in an independent manner. This leads to an exact Kronecker
product structure in the co-occurrence matrix P(, j), and derived quantities such as M (4, ), which
allows us to compute eigenvectors and eigenvalues of M and the PMI analytically.

(2). We show that analogies naturally emerge as a result of dominant eigenvectors when the matrix M
or log(M) is used to create embeddings: vector arithmetic on the d-dimensional space of attributes
gives rise to the same arithmetic relations for word embeddings. We emphasize that this property
arises naturally in the eigendecomposition as a result of the factorization assumption. We show that
this linearity however breaks down as K increases if M is considered instead of the PMI.

(3). We find that our conclusions are remarkably robust to the presence of noise or to perturbations
of the co-occurrence matrix, including the addition of i.i.d. noise, the pruning of most words, as
well as the removal of co-occurrence probabilities that compose an analogy (such as “king”-“man”
and “queen”-“woman”), and correlations between attributes, showing how the analogy-supporting

subspace remains robust.

(4). Throughout this work, we test specific predictions of our theoretical model numerically through
comparison with Wikipedia text, demonstrating the predictive power of our model.

3. Related Work

Extensive empirical evidence suggests that many models of natural language [2, 3], including those
trained on non-english corpora [[9-11]], and contemporary large language models [12H15], exhibit
striking linear structure in their latent space. This observation motivates contemporary research in
modern language models, including mechanistic interpretability [[16H18]], in-context-learning [[19-21]],
and LLM alignment [22H24]. Linear analogy structure in word embedding models is the natural
precursor to these phenomena; thus, to understand linear representations in general, it is important to
develop a theoretical understanding of linear analogies in simple models.

The origin of the linear analogy structure in word embedding models has been the subject of
intense study [25H29]]. Prior works [3} 27, [30] have based their reasoning on the insight that ratios of
conditional probabilities, such as p(x|man)/p(x|woman) for a word ¥, are relevant for discriminating
its content. It led to the postulate [27, 30] that for arbitrary words x in the corpus,

p(x|king) /p(x|queen) =~ p(x|man)/p(x|woman). 2

If this approximation is an equality, and if the embedding is built from the full rank of the PMI, then
Eq[I] can be derived [30]. Yet, how good of an approximation Eq[2]and how large the embedding
dimension should be for this argument to work? Will some analogies be learned before others?

To make progress on these questions, further assumptions have been proposed, in particular the
existence of a ‘true’ Euclidean semantic space with some dimension d in which words are associated



with latent vectors. In that space, text generation corresponds to a random walk, such that closer
words co-occur more often [25] 27, [29]]. Using the assumption that this space is perfectly spherically
symmetric, [27] deduces that W; - W; = PM (i, j), and proves that deviations from Eq are tamed,
such that Eq[T|holds.

We argue that such views are problematic for two reasons. The proposed symmetry of word embed-
dings would imply that the spectrum of the PMI corresponds to d identical eigenvalues, whereas
in fact the spectrum of the PMI is broadly distributed, as we shall recall. More fundamentally, the
assumption that the true Euclidean semantic space has some geometry unconstrained by relations of
the kind of Eq[2]appears unlikely. It is inconsistent with the observation that the top eigenvectors of
the PMI have semantic content that correlates with analogy relationships [6]].

Instead, we base our approach on human psychology experiments describing how words can be
characterized by a list of features or attributes [31}|32]]. We propose that the co-occurrence of two
words is governed by the relationship between their two lists. In that view and in contrast to previous
approaches, the semantic space corresponds to the vector of attributes, and is thus organized by
relations of the kind of Eq[2] In a simplified setting of binary attributes, the geometry of the semantic
space is that of an hypercube (as already mentioned in [31]), yet co-occurrence does not simply
depend on the Euclidean distance between word representations. As we shall see, this view naturally
explains points (i-iv) above.

4. A model for words co-occurrence

Our main assumption is that the occurrence statistics of a word ¢ is governed by the set of attributes
that define it [32], such as feminine v.s. masculine, royal v.s. non-royal, adjective v.s. noun, etc. For
simplicity, we consider that there are d binary attributes (extending the model to attributes with more
than two choices is straightforward, as discussed in Appendix [A3). The word 7 is thus represented as
a vector a; € {—1, +1}¢ of the d-dimensional hypercube. As a first step, we assume that all the 27
possible words exist. We will see below that even if the vocabulary is much smaller than the total
number of possible words, our conclusions hold.

We further assume that different attributes affect the statistics of words in an independent manner
(this assumption is relaxed in Appendix . As a result, the probability P (i) of word 4 follows from
the set {pr, < 1/2,k = 1...d}, where py, indicates the probability that attribute k is +1:

d
P(i) = H (pké(al(-k), 1+ (1- pk)é(ozl(-k)7 —1))
k=1

where (4, j) denotes the Kronecker delta (6(4, j) = 1iff i = j and zero otherwise), and ozz(-k) denotes

the k" entry of c;. Likewise, the probability P(i, j) that words i and j co-occur follows from the
(k) (k)

and o’ co-occur:

probability P(¥) (agk), a§k)) that two words with given attributes «; J

d
P(i,j) = P)PG) [T P (a”, al") 3)
k=1

The symmetric matrices P(*) € R?*2 must be such that > ; P(i,j) = P(i), imposing that they can
be parametrized by a single scalar sg:

k) _ [ 1+sk  1—aqesk
F (1 —arsk 1+ qisk @

where s, € [0,1] characterizes the strength of the “signal" associated to an attribute, and g =
pr/(1 — pi) < 1 captures the asymmetry in incidence between positive and negative instances of the
attribute.

Note that in this noiseless version of the model, Eq[2Jholds exactly. Indeed, if ¢ and ¢* differ by a single
attribute (say the first one) such that o} = —a}. = 1, and a is any word, then P(ali)/P(a|i*) =
Pl(al,+1)/P'(al, —1), a result which does not depend on the choice of i. Below we will add
noise to the model to study how linear analogies persist.



5. Word embedding directly from the co-occurrence matrix

Denote by W the K x 2¢ matrix of word embeddings of dimension K, whose columns W; € R¥
correspond to the embedding of word <. Embeddings can be constructed by demanding that the
rescaled co-occurrence M (i, j) = % is approximated by W; - W}, or equivalently M ~ WTW.
In an L, sense, the optimal embedding corresponds to:

Wi= > Vs -vs(i)us )
S=1..K
where S is the rank of the eigenvector vg of eigenvalue Ag, such that \; > Ay > ...\g, and the

{ug, S = 1...K} is any orthonormal basis. Thus, solving for the word embeddings corresponds to
diagonalizing M, as we now proceed.

Theorem: The matrix M (i, j) = P(i, j)/(P(i)P(j)) defined by Eq[3|has eigenvectors
vg = v,(lll) ® v(g) ®® vg‘? with a, € {+, -} (6)
where ® indicates a Kronecker product. Its component for word ¢ of attributes c; is thus

vs(i) oc o (i)l () - oi (af). ™

Its associated eigenvalue follows:
d
k
A= [ A% ®)
k=1

where the /\(i]C ) are eigenvalues of the 2 x 2 matrices P(*) defined in Eq and vf ) are the two
eigenvectors of these matrices.

Proof sketch: This theorem follows from the fact that the matrix M is a Kronecker product of the
d matrices P(*), and from standard results on the eigen-decomposition of these products [33]. The
block structure of M defining a Kronecker product is most apparent if we order each word 7 based
on the lexicographic order of its attributes o;. That is, the first coordinate that differs between o;
and «; will determine which word appears first, with ¢ appearing first if its coordinate is +1. See
for the detailed proof, a review of Kronecker products, and an explicit construction for
the case d = 2.

Diagonalization of the matrices P(*): This symmetric matrix is diagonalizable, with eigenvalues
reported in Appendix A. To study the regime of weak semantic signal, we expand the eigenvalues
and eigenvectors to first order in sj. Let s := sj, and q := g, for brevity. We find in that regime:

M =24 51922+ 0(57), A =514 9)?/2+0(s?) ©)
associated to unnormalized eigenvectors vﬁf) and v(_k) :

k) _ 1 1) Ly ( 1 ) 2 k) _ 1 (—1) Lo 9 (1> 2
vy = — +—s5(¢°—1)/4 +0(s%), v’ =— +—s5(¢°—1)/4 +0O(s

O (1) () o = (3 )+ st () o

(10)

Note that when g = 1, i.e., px = %, these vectors reduce for all s to (1,1)7 and (1, —1)T, with the

exact eigenvalues 2 and 2s.

Eigensystem of )/: The spectrum of M can be obtained using Equation (9) in Equation (8] and the
corresponding eigenvectors by using Equation (I0) in Equation (7). In the limit where the signals
{sk,k = 1...d} are small, the top eigenbands are:

* A top eigenvalue \y = 2% and corresponding eigenvector 1 (with higher order corrections
linear in the {sg, k = 1...d}), corresponding to all a, = +.

* d ‘attribute’ eigenvectors vy with ap2; = + and ap = —, giving eigenvalue ~

—(d—2 2 : : : k

27(4=2) g, (1 + q)? and implying vy, (i) o< aF.

* (§) ~ d? eigenvectors of eigenvalues o sisy, of order (¢) ~ d* eigenvectors of order
X SgSk Sk, and so on. At dominant order, the corresponding eigenvectors encode the
product of several attributes.
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Figure 1: (a) A subset of the co-occurrence matrix for Wikipedia data, with labels drawn from
the categories “‘country—capitals” and “noun—plural”. (b) A subset of the co-occurrence matrix M
generated by our model (d = 8, s, ~ N(1/2,0) with o5 = 1073). Colors indicate value of M;; on
alog-scale. (¢) Averaged eigenvalue spectrum of the co-occurrence matrix M for d = 8, obtained
from 50 random realizations of the semantic strength for o3 = 1073,2x 1072, and 10~!, the uniform
sk € (0,1), and empirical co-occurrence data. The inset reveals that the spectrum of the PMI is not
peaked with a density of nearly identical eigenvalues, as assumed in some previous works.

As a result, the spectrum of M depends on the distribution of the s;. A representative M with
minimal variance in that distribution is shown in Figure [Ip, in the symmetric case where g, = 1
for all k, and can be contrasted with the empirical Wikipedia derived co-occurrences reported in
Figure [Th. Figure [T shows the density of eigenvalues, averaged over 50 realizations. When the
variance in the distribution in the s;’s is small, the eigenvalue spectrum is resolved into discrete
bands, while at higher values of the variance in the s, these bands merge and the distribution is
well-fitted by a log-normal distribution.

Emergence of linear analogy: Nearly perfect linear analogies appear under the restrictive conditions
that (i) the {sy, k = 1...d} are small, (ii) they are narrowly distributed and (iii) the dimension of the
word embedding satisfies K < d + 1. Indeed in that case, the first K eigenvectors into which words
are embedded belong to the span of the vy’s and the constant vector 1. Embeddings are thus affine in
the attributes. It implies that if four words A, B, C, D satisfy:

ap =0y —ap + oo

Then it must be that:
Wa—-Wp+We=Wp (11

We next show that this property emerges much more robustly if the matrix of elements PM I (4, j) is
considered.

6. Word embedding from the pointwise mutual information (PMI) matrix

Successful algorithms such as Glove focus on the PMI matrix, as our model justifies. Given word
pairs 4, j with semantic vectors a;, o € {—1, +11}4, the log co-occurrence matrix or PMI is:

d
log M(i,j) = > log P®) (af®), al™).
k=1
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Figure 2: Analogy completion accuracy emerges at low embedding dimension. (a): Wikipedia
analogy completion accuracy by analogy category for representations constructed from co-
occurrences M;; with a vocabulary of 10,000 words. (b): Analogy accuracy for Wikipedia text, with
different matrix targets M;; and log(M;; + cr) (regularizer ¢ = 1072). Shaded area indicates the
sample standard deviation across analogy categories. (¢): Analogy completion accuracy for a single
realization of the model for d = 8, for matrix target M;;. (d): Analogy accuracy for the model with
different matrix targets, averaged across all analogy tasks and 50 realizations of the s;. Shading
indicates standard deviation between realizations. (e): Analogy accuracy under the introduction of a
multiplicative noise to each entry of the co-occurrence matrix with P;; — P;; exp(&;;) for symmetric
&j ~ N(0,0¢) averaged over 10 realizations of s; and noise £. (f): Analogy accuracy after both

sparsifying the vocabulary and including a multiplicative noise (o = 10™!), retaining only a fraction
f=0.150f words ind = 12.

For each attribute k, the scalar log P(¥)(a,b), with a,b € {—1,+1}, can be written as a bilinear
expansion:

log P (a,b) = 6 + ni(a + b) + vrab,
where the values of these coefficients are indicated in Appendix A.

The total matrix takes the form log M (i,j) = § + n'a; + 0" oj + &) Dexj, where § = 3, 0y,
n=(m,...,n4),and D = diag(~1,...,Yd)-

Matrix Form, Rank and Eigenvectors: Let A € R2"*? be the matrix with components Al k) =
k
oy . Then:

logM =6-11" + ADAT + An1T +1nT AT, (12)
Result 1: The row space of A is of dimension d, thus rank(log M) < d + 1.
Result 2: Note that the eigenvectors

1 Ak
Uo;ﬁ’ Uk':\/?d fork=1,...,d

span the row space of (log M). The vector v, previously introduced, simply indicates the value of
attribute k for any words. Thus eigenvectors must be affine functions of the attributes.

Result 3: Consequently, the analogy relation of EqlI1]holds exactly in this model, independently of
the magnitude or distribution of the {sy, k = 1...d}.

Result 4: The eigenvalues of PMI are O(2¢). It follows from the fact that v} (log M)v; = O(2%)
for k =0, ...,d. When np is small (7 = 0 if g, = 1 for all k), the matrix log M has a simple spectral
structure, with a top eigenvalue Ao = 2%6 whose eigenvector is approximately vo; and d attribute
eigenvalues )\, = 297, which correspond approximately to the vy’s. All other eigenvalues are zero.



Numerical validation: The inset of Figure|llc confirms that the spectrum of the PMI matrix lacks
the higher-order modes present in the spectrum of M;;. For each realization of the PMI matrix in the
symmetric case simulated here, there are exactly d semantically relevant eigenvalues in the spectrum.

Next, we turn to the emergence of linear analogies in our model. We define the top-1 analogy accu-
racy by considering how frequently analogy parallelograms defined by equation [[T|are approximately
satisfied, as

1
top-1 accuracy = | Z 1) (WD, argmin(|Wa — Wp + We — WD/|2)) (13)
D'ey

‘T (A,B,C,D)eT

where 7T is a set of analogies consisting of quadruples of words satisfying A:B::D:C, §(i, j) denotes
the Kronecker delta (§(4, j) = 1 iff i = j and zero otherwise), and V denotes the vocabulary of all
possible words. That is, we check how often, for a given analogy family 7, the analogies in that
family, such as (King, Man, Woman, Queen), are satisfied in embedding space, with Wqyeen being
the closest vector in the vocabulary V to Wking — Winan + Waoman-

In Figure 2 we report analogy accuracy using embeddings derived from Wikipedia text co-occurence
matrices. The Mikolov et al.|analogy task set consists of 19,544 sets of four words analogies, e.g.
“hand:hands::rat:rats”, divided among 13 families e.g. adjective-superlative, verb-participle, country-
nationality, etc. In Figure [2b we report the average performance for embeddings obtained with
different M;; and log(M;;). The log(M) target performs strictly better than the raw M target, and
saturates at high embedding dimension.

We compute analogy tasks in the symmetric (¢ = 1, i.e. py = 1/2) binary semantic model (in d = 8)
as in the Wikpedia text data, by constructing sets of words 7 (k1, k2) that differ in two semantic
dimensions k; and ko and satisfy the parallelogram relation. Each analogy is defined by a base word,
oy = (aék) = +1) with oz(()kl) = —1and aé]”) = —1 fixed. There are 242 such base words (and
therefore analogy tuples) in the vocabulary. The analogy is constructed in the obvious way, defining
o) = g+ 28y, aa = o+ 2€y, and a9 = g + 2€x, + 2€y, (Where € denotes the k™ standard
basis vectors in semantic space). Denoting w the representation of oy, w1 the representation of a1,
etc., the analogy for base word «( has a score of 1 if

Wi = argming cyy [[(W1 — wo + wa) — wl[, (14)
and zero otherwise.

In Figure[2lc we show the emergence of linear analogical reasoning for a single realization of this
model for different fixed k; attributes, averaged over the ko # k1. The broadly distributed si’s give
rise to analogy performances that vary considerably with embedding dimension. In Figure[2d, we
show the performance for the same targets that are used in the text data. Validating our results, the
log(M) target achieves 100% accuracy, regardless of the sy, distribution for K > d. This is better
than the M;; target, because performance there is only good when entire eigenbands of the spectrum
are included (as we show in the appendix). For broadly distributed s (as occurs in real text data, cf.
Figure-[T), the bands mix and linear analogical reasoning is lost at increasing K.

7. Additive Noise Perturbation to the PMI matrix

We now establish the robustness of the spectral structure of log M under additive noise. Let us
consider a perturbed matrix:

1OgM/(i7j) - logM(i,j) + 5(2,])
where £(i, j) are independent, zero-mean random variables with bounded variance E[¢(4, §)?] = ag,
and £(7,j) = £(4, 1) to preserve symmetry. We have: log M’ = log M + A with A the symmetric
noise matrix. The spectral norm of the random matrix A is asymptotically ||Al]s ~ 205\/27 (see
theorem 2.1 of [34]). At fixed o¢ in the limit of large d, this norm is negligible in comparison with
distance between the semantic eigenvalues, which is O(29/d) in the non-degenerate case. We can
invoke the eigenvalue stability inequality, | Az (log M')— i (log M)| < ||A]|z ~ 2%/? (a consequence

of Weyl’s inequality, see[33l]), to justify that the eigen-decomposition of M is thus not affected in the
limit of large d. The linear analogies of Eq[TT]is thus approximately preserved in that limit.



Numerical validation: Analogy performance under this perturbation is shown in Figure-([2f). We
confirm a strong robustness to noise: even with o¢ ~ O(1), excellent analogy accuracy is possible
for the PMI case. The performance of linear analogies degrades at high K when enough “bad”
eigenvectors from the noise are introduced. This occurs at an embedding dimension of order
K~ %&Qd/ 2 as shown in appendix.

8. Spectral Stability under Vocabulary Subsampling

Our model assumes that all the possible 2¢ combinations of attributes are incarnated into existing
words, an assumption that is clearly unrealistic. We now show that even if we randomly prune an
immense fraction f of the words, the spectral properties of the PMI matrix are remarkably robust, as
long as the number of words m = f2¢ > d.

We analyze the impact of this sampling procedure on the eigendecomposition of log M in the
symmetric case pr, = 1/2 for all k, and focus on the interesting, non-constant part of the PMI matrix.
From Eq[I2] we obtain:

logM —6-117 = ADAT = AAT (15)

where A = AD'/2. After pruning, we restrict A to the retained vocabulary, yielding a matrix
Ag € R™*? Qur goal is to study the eigen-decomposition of ASA—SF. Its positive spectrum is
identical to that of the d X d Gram matrix:

G := AL As = DY?Al AgD'/?

Let aiT denote a row of Ag. Each «; is drawn independently from a uniform distribution on
the hypercube. We have G = D'/2 Y a;al DY2. Thus, E[G] = mDY?%D'/? where
S = ]E[a(k)a(l>] =T

The convergence of X to the identity is described by the Marchenko—Pastur theory for sample
covariance matrices of the form >",_, oy« /m, stating that eigenvalues converge to unity as
m/d — oo [36]. Thus for m > d, the eigenvalues of log Mg follow that of the un-pruned case,
except for a trivial rescaling of magnitude m /2.

i=1l...m

Acting with the operator Ag on eigenvectors of the Gram matrix, one obtains the desired eigenvectors
of AAT. As m/d — oo, the Gram matrix eigenvectors are simply the set e, € R of basis vectors
associated with a single attribute, and Agey o vy is the attribute k vector introduced above. The
limit m > d thus recovers the eigen-decomposition of the un-pruned matrix, and analogy must be
recovered.

Numerical validation: in Figure- (2f), we report results on a sparsified variation of the model in
d = 12 for retention probability f = 0.15 (see Appendix for a representative sparsified co-occurrence
matrix). Despite both a multiplicative noise and the removal of > 97% of the co-occurrence matrix,
excellent analogical reasoning performance can be obtained for K > d.

9. Analogy structure after removal of all pairs of a given relationship

Remarkably, it is found that a linear analogical structure persists even when all direct word pairs of a
given attribute are removed from the training set [8]]. Considering for example the masculine-feminine
relationship, even if all sentences where all the pairs of the type (king, queen), (man, woman), (actor,
actress), are removed, one still obtains that king-queen+woman=man.

This observation is naturally explained in our model. Fix an attribute index & = 1. Consider all the

gd—1 M _ 40

pairs (¢, j) such that words ¢ and j differ only in the value of the first attribute k, i.e., o; ' = >
forall I # 1, and oj = —aj. Next, define a modified co-occurrence matrix log(M’ (i, j)) where we
set log(M'(i, j)) = 0 for these 29~ entries, while leaving all other entries identical to those of M.

Let A = M’ — M be the resulting perturbation.

The operator norm of A is bounded by trace(A” A)!/2 ~ /24 (since it is a sparse matrix which
consists of 27 elements of order one), which is negligible with respect to the eigenvalues of M, of
order 2¢ as discussed in the previous section. Again using the eigenvalue stability inequality, we
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Figure 3: (a) Performance of the log(M) Wikipedia text co-occurrence matrix for analogy tasks. (b)
As in (a), but having pruned from the co-occurrence matrix all co-occurrences of pairs matching the
indicated analogy. The average, in black, reports the analogy accuracy when all analogies are pruned
from the corpus. (¢) Pruning of analogies from the co-occurrence matrix in the symmetric synthetic
model over ten realizations of s € (0,1) disorder for d = 8. Solid curves represent the average
analogy performance on analogies involving the unpruned dimension, while the dashed curve reports
performance on analogies that involve the dimension affected by pruning.

obtain that if eigenvalues of M are not degenerate, its eigenvectors and eigenvalues are not affected
in the limit of large d. Consequently, the embedding of each word is unaffected in this limit, and
Eq/[IT]still holds.

Numerical validation: In Figure [3a we show the performance of the PMI matrix for different
analogy families. For each family, we construct a pruned PMI matrix, with co-occurrences of pairs
matching the analogy set to zero, and find a minimal performance degradation in analogy accuracy
in Figure[3p. We try this experiment in the model, pruning either the strongest semantic direction
(WLOG, k = 1) or the weakest semantic direction (WLOG) k = d in Figure [3c. In both cases,
linear analogies survive this perturbation, with perfect accuracy appearing at KX = d. Analogies
that include the pruned dimension perform similarly to analogies that do not include the pruned
dimension. As with the real data (Figure 3p), this pruning introduces additional noisy eigenvectors
to the representation at high embedding dimension which eventually leads to a breakdown of linear
analogies.

10. Discussion

Word embeddings are central to the interpretation of large language models. Surprisingly, linear
subspaces characterizing semantically meaningful concepts, originally found in classical word
embedding methods, are also realized in large language models [[12, [13| 137, [38]] where they can
enable control of model behavior [[17] and are crucial for fact retrieval [39]. While these linear
subspaces are sometimes encoded in a context-dependent manner [[15], it is possible to obtain context-
free LLM embeddings (as in [40]) to test our views in modern LLMs. The prevalence of these linear
subspaces suggest that the statistics of language plays a fundamental role, and revisiting classical
word embedding methods allows us to develop a sharper understanding of this question.

We have shown that linear analogies in the word embeddings in such algorithms naturally arise
if words are characterized by a list of attributes, and if each attribute affects the context of their
associated word in an independent manner. We formulated a simple, analytically tractable model
of co-occurrence statistics that captures this view, where attributes are binary and all combinations
of attributes correspond to a word. This model rationalizes various observations associated with the
emergence of linear analogies, and provides a fine-grained description of how they depend on the
embedding dimension and the co-occurrence matrix considered. Remarkably, the model is extremely



robust to perturbations including noise, the sparsification of the word vocabulary, the introduction of
correlations between semantic attributes, or the removal of all pairs associated to a specific relation.

Limitations

Our model is obviously a great simplification of actual word statistics. For example, polysemantic
words such as bank (a bank, river bank, to bank) complicate co-occurrence statistics. Furthermore,
some attributes may be hierarchically organized [38]; this property can be captured by random
hierarchy models [41]] and is revealed by diffusion models [42] [43]]. The possibility that such
properties may be studied from co-occurrence alone is an intriguing question for future work. It calls
for the development of improved analytically tractable models that capture these effects.

Data, code availability, and compute budget

The code wused to produce the model results, Wikipedia co-occurence statis-
tics, and figures is available on GitHub at https://github.com/DJKorchinski/
linear-analogies-word-embedding-reproduction| and in the supplementary files. All
simulations together run in under 150 minutes on an Nvidia H100.
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Appendices

Al. Eigenspectrum of the P*) matrices.

Recalling the definition of the P(*) matrix,

k) _ ( 1+sk  1—qgsk
P <1_Qk5k 1+ gisy, (16)

the eigenvalues are given by:

s 1
AP :1+*2k(1+q13)i§\/5i(1+q,%)2*8Qk8k+4 (17)
and the corresponding eigenvectors are

(l—qz)s:i: (q241)252—8qs+4
VL =

2(1—gs) (18)

1

In the special (symmetric) case that ¢ = 1, the eigenvalues are simply 2 and 2s for the — and + cases
respectively with eigenvectors vy = [1,£1]"

Thereom proof

Theorem: The matrix M (i,j) = P(i,7)/(P(i)P(j)) = HZ P(k)(ozz(-k), ag-k)) indexed by word i of
attributes cv; and word j of attributes c; defined by Equation (T6) has eigenvectors

vs =N @ @ @ul® witha € {+1,-1} (19)
where ® indicates a Kronecker product. Its component for word ¢ of attributes «; is thus
vs(i) oo (i) () - oi (af). (20)
with associated eigenvalue:
d
As =A% @1
k=1

where the )\(ik) are eigenvalues of the 2 x 2 matrices P(®) defined in Equation li and Uf ) are the

two eigenvectors of these matrices given in Equation (T8).

Proof. This theorem follows from the fact that the matrix M is a Kronecker product of the d matrices
P®) and from standard results on the eigen-decomposition of these products [33]]. It suffices to show
that M matrix admits a Kronecker representation. We show this by induction. Let
d/
N k) (k
MO, ) = T] PP (af, al") (22)
k=1

denote scaled co-occurrence matrix up to semantic dimension d’. Clearly M = M(® . We will show
that M @) = @f_| PO,

To do so, we consider a canonical basis whose basis vectors correspond to words. Word ¢ is the vector
of zero everywhere, except at a position n(c;, d) that follows:

d
(e d) =Y 29776 w (23)
k=1

(k)

9

(k) _

i =

Note that the binary representation of n(a;, d) is simply given by «
1> 0anda®

%

, with the change a
— 1. A useful consequence of this definition is that

n(o,d+1) = 2n(a,d) + dpat1 1 = 2n(e, d) + n(a® 1, 1). (24)
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Base case: For a single semantic dimension, we trivially have that
d'=1 1
M@= = p)
which is the Kronecker product of one term.

Induction step: Assume that M (4) = ®z/P(k) for some d’ > 1. We must show that M (¢'+1) =
M) @ pld+1),

By the definition in Equation (22)), we have:

('+1) &
M@ H PO (P o) = | T]P® (P, alP) | @+ (o) o +0)

Using the row-indexing notation of Equation (23)), this expression can be written as:

(d'+1) (d") (d'+1)
Motsarsvntaren) = Magaanniasan P 1) e 1)

The Kronecker product between an arbitrary matrix A and a matrix B € RP*9 is defined as
(A® B)piyirgjtir = AijBirjr-

With B = P(@'+1) ¢ R2%2 e then have

(d'+1) (d" (d'+1)
Mn(z d/+1) n(J d/+1) (M X P )2n(a“d')+ ( (d +1) 1) 2n(aJ d’)+n( (d +1) 1)

and using the indexing identity of Equation (24), this simplifies to
(d'+1) d d'+1
n(i,d’+1),n(j,d'+1) — (M( ) ® P( ))n(ai1dl+1)7n(a]’7d,+1)

Thus
— M(d'+1) _ M(d/) ® pld+1)

By the assumption of our inductive step, we thus get:

M(d’Jrl) — ®z/:-‘rllp(k)

Properties of Kronecker products

It may be instructive to review a few standard results on the eigen-decomposition Kronecker products.

For a product of matrices A € R™*" with

A11B . AlnB

(AeB)=| : -~ (25)

AmB ... A,..B

if A\, and u are a eigen(value/vector) of A so \,u = Au and )\, and v similarly satisfy \,v = Bv,

then the vector
uiv
UV
uRv= . (26)

Up V.
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is an eigenvector of A ® B with eigenvalue A, )\, [33]. This can be seen schematically, with:

[AuyBv + ... + Aju,Bv
AsBusv) = | .o
_AmlulBV + ... + A,,u,Bv
[\, v > A
[ AoV D Amit
uv
= Ay
UV
= A (u®v)

Explicit construction for d=2

In this section, we provide an explicit example of the construction of the P(*) matrices and the
eigenvectors and eigenvalues for the case d = 2, which is the smallest case to support linear analogy.

Consider the symmetric ¢ = 1 case for d = 2 with two semantic strengths s; and so. The P(*)
matrices are:

1) _ s1+1 1—3s1
P _(1—51 51+1 (27)
and

(2) _ 52+1 1752

il G @

T

with eigenvectors v+ = (1,41)" and eigenvalues A\ = 2s(*¥1)/2_ The matrix M is given by:

. (1 + Sl)P(Q) (1 — 51)P<2)
M= (1—s)P? (1+ S1)P(2)}
(1+81)(1+52) (1+81>(1—82) (1—81)(1+82) (1—81)(1—82)
_ |(Tts1)(T=s2) (T4s1)(T4s2) (I—s1)(L—s2) (1—s1)(1+s2)
(L=s1)(I4s2) (L=s1)(I—s2) (L+s1)(I4s2) (1+51)(1—s2)
(I=s1)(1=52) (L—s1)(I+s2) (I4s1)(I—s2) (1+s1)(1+s2)

The eigenvalues are A\g = 22 A\ = 2251, Ay = 2259, A1y = 2257 55 with corresponding eigenvectors:
vo=(1,1,1,1)T, vy = (-1,-1,1,1) T, vy = (1,-1,1,-1) T, and vy5 = (1,—1,—1,1)". These

are precisely the eigenvectors and eigenvalues guaranteed by the theorem.

In d = 2, there is exactly one analogy possible. It can of course be made explicit, by using the
following mapping of words to semantic attributes

OMan = (_L _1)
Q'Woman = (_1» 1)
aKing - (la _1)

where the attribute s; corresponds to “Royalty” and sy to “Gender”. The word embeddings for
K =2 and K = 3 are given in Table[I] These embeddings are generated by using the embedding
matrix Wy = [vg,vi]" and W3 = [vg, vy, Vo] for K = 2 and K = 3 respectively. The
representation of each word is the corresponding column of diag(Ag, A1, A2)W. For example:

WQueen,i — [dlag( VAo, VA1, \/E)W]i,Queen-

The only possible analogy (up to trivial permutations) in d = 2 is then given by the equation:
WQueen — WWoman T WMan = WKing (29)

which is satisfied uniquely when K = 3, but not when K = 2 as is depicted in fig. ] and fig.[5] As
the example here shows, each successive eigenvector (after the first trivial 1 vector) included in the
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Word | K = 2Embedding | K = 3 Embedding

Man 2(17 7\/5) 2(17 7\/5’ 7\/5>
Woman | 2(1, —/&1) | 2(1, —y/55, +y/52)
King 2(17 +\/§) 2(17 +\/§7 7\/5)

Queen 2(1, +/51) 2(1, +¢/51, +/52)
Table 1: The explicitly constructed embeddings for the words “Man”, “Woman”, “King” and “Queen”
in the d = 2 case. The K = 3 embeddings are obtained by adding a third dimension corresponding
to the semantic strength ss.

WMan — WWoman
WwWoman :wMan:2(17—\/81) Q

[} [ ]
OwQueen = WKing = 2 (17 \/a)

Figure 4: A degenerate analogy when K = 2, since both wqueen and wking satisfy * = wWqueen +
(wMan - wWoman)

Wwoman :2(1,_\/57 \/82) WAQueen :2(17\/51,\/5)

WMan — WWoman

WMan = 2 (1, —/51, —/52) Wking = 2 (1, 1/51,/52)

Figure 5: The analogy is no-longer degenerate when K = 3.

representation allows the embedding to disambiguate one additional semantic direction — with K = 2
only the royalty axis present in the representation, while in K = 3, both the royalty and gender axes
are present.

A2. Coefficients characterizing the PMI matrix

The definitions for the three parameters dy, 75 and 7 are as follows:

1

0 =7 [log(1 + sx) + log(1 + gisk) + 2log(1 — qrsk)] ,
1

M= [log(1 + si) — log(1 + gisk)]
1

M= [log(1 + i) + log(1 + gisi) — 2log(1 — qrs)] -

A3. Tertiary model with neutral attribute

We now generalize our model to the case where each semantic attribute o(*) can take one of three
values: —1, 0, or +1. The value O corresponds to a neutral setting, indicating that the word does not
express this semantic dimension. This extension allows us to model richer vocabularies where many
attributes may be inactive for a given word. For simplicity of notations, we consider the case where
the three values of each attribute are equally likely.
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We define the co-occurrence matrix P*) for attribute k as a symmetric 3 X 3 matrix, where the rows
and columns correspond to {—1,+1,0}. We assume:

i 1+Sk+% 1—%4—% 1—fr
PO =1—s+ & 14s+L 15
1— fr 1—fx 1+2f

Here: - s; € [0, 1] encodes the strength of similarity between matching vs. opposite polarities (+1
vs. —1), - fi < 11is the frequency of non-neutral settings for attribute .

This matrix can be decomposed as:
P® =AW 4 1, B® 1+ O(f7)
where the unperturbed component is:

Ids, 1—s; 1 ~1
AR = (15, 14s, 1|, B® =

-1

| D=
I N

1 1 1

We now analyze the eigenvalues of P(*) using first-order perturbation theory in fj.

Eigenvectors of A(*), This symmetric matrix has three orthonormal eigenvectors:

1
vo = —(1,1,1)" (constant mode)
V3
1
v = —(1,-1,0)" contrast between —1 and +1
1
Vg = % (1,1,-2)" (contrast between neutral and polar values)

Resulting eigenvalues of P(*), Up to first order in fy, perturbation theory gives:
k
Ao =3+ 0(/})
k
MY =25, + O(f2)
E
MY =6+ O(fR)
Interpretation. - The top eigenvalue corresponds to the constant mode and is unaffected at linear
order in fj,
- The contrast direction between —1 and +1 preserves the same eigenvalue as in the binary case: 2sy,

- A new third direction, orthogonal to both, emerges with small but nonzero eigenvalue 6 f, reflecting
the semantic impact of neutral attribute values.

This shows that even in the presence of neutral words, the dominant structure of the embedding space
— necessary for analogy — remains intact up to small corrections.

A4. Additional numerical study of the model
Here, we report several additional experiments on the symmetric binary semantics model.

Dependence of analogy accuracy on disribution of the s;

In Figure [6] we measure the analogy accuracy for narrowly distributed semantic strengths s ~
N(1/2,1073). Accuracy with the M,; matrix target is perfect whenever a complete eigenband is
included in the representation. Perfect analogy reconstruction is possible for the symmetric model,
but is very fragile and requires a narrow distribution of sy.
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Figure 6: Analogy performance for narrowly distributed s, for different matrix targets in d = 8.
Shading represents the standard deviation across 50 replicates. Vertical lines at K; = 1 + (il),
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Figure 7: Analogy performance for uniformly distributed s; in different dimensions. Shading
represents the standard deviation across 50 replicates. Vertical lines mark K =5, K =6, K =7,
and K = 8, corresponding to the dimension of the semantic embedding space for the main curves.

When there is greater variance in the s distribution, e.g. s; € (0, 1), then the higher-order eigen-
values (corresponding to sy sy’) begin to be included, without first capturing all of the first-order
eigenvalues. In this case, perfect analogy accuracy is typically not attained and the peak in accuracy
happens at higher d, as can be seen in Figure In the log (M) case, the semantic eigenvalues are all
included at K = d, as is indicated by the vertical lines in Figure[7]

Vocabulary sparsification

In Figure[8] we show the effect of sparsification on the co-occurrence matrix M at a fraction f = 0.15.
Each row 7 in M corresponds to co-occurrences including word <. By removing row ¢ and column ¢,
we effectively remove word ¢ from the vocabulary. Despite removing ~ 98% of the co-occurrence
matrix, the overall hierarchical structure is still readily apparent. We test the effect of sparsification
on the top d semantic eigenvalues of a log(M) target in Figure @ As is predicted by the theory, the
top d eigenvalues are minimally perturbed by sparsification beyond a simple rescaling of f = m/29.
This breaks down only when the number of retained words approaches m — d, meaning that a
tremendously sparsified vocabulary still retains the same eigenvalue structure.

Breakdown of analogy accuracy with increasing K in the presence of noise.

Here, we study the effect of introducing a noise perturbation log(M;;) = log(M;;)+¢&;; onto the PMI
matrix, with &;; ~ N (0, o¢). The spectral density has two prominant features: a set of “semantic”

eigenvalues, with \;, ~ 2?7, and a set of small, noisy eigenvalues starting at a scale set by o, as can
be seen in Figure [T0h.
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Figure 8: The effect of sparsification (f = 0.15) on a realization of the co-occurrence matrix with
d =12 and s; € (0,1). Colours represent the value of log(M).
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Figure 9: The value of the top d = 12 eigenvalues for a log(}) matrix with s;, € (0, 1) as a function
of sparsification. Shaded area reflects the standard deviation across 20 realizations of sparsification,
for the same fixed sj. Inset is the same data, but rescaling by the asymptotic value of each eigenvalue
so as to effect a collapse for m > d.

The 27 x 2¢ dimensional & matrix has a spectral norm converging to ||£|| ~ 20,v24 as d — oo. This
scale collapses the noise floor of log(M”) across both dimension and o as can be seen in Figure .

As the the embedding dimension is increased, additional noisy eigenvectors are included in the
representation. The w representation vectors are constructed from the w eigenvectors as

Wy, = mw. (30)
We expect these noisy eigenvectors interfere with analogical reasoning when their combined magni-
tude is of the same order of magnitude as the semantic eigenvectors, i.e. when
K
D

k=d+1

A [y |, ~ 2.

2
. ~ . .. K ~ ~ \/— d/2
Since the Wy~ 4 are orthogonal, in the limit K >> d, we have that | kedr1 Wk| = Ko 2%<. We
2

expect linear analogies to break down when we have an embedding dimension of order

= K=~ izd/2.
Og
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Figure 10: (a) Eigenvalue spectrum of the PMI matrix with the addition of an elementwise inde-
pendently and identically distributed gaussian noise, for d = 8 and N = 10 replicates. (b) As in
a rescaled to collapse the noise floor across both noise scale and dimension. (¢) The accuracy of
analogy tasks for different dimensions and noise scales, rescaling the embedding dimension K to
collapse the breakdown in analogy accuracy at high d.

This is confirmed by the collapse in Figure [I0c.

AS5. Extension with correlated attributes

In so far we assumed that different attributes affected co-occurrence in an independent fashion. Here

we show that our main result holds, even when it is not true. We consider a more generic co-occurrence
model with P(i, j) = Z(i)Z(j) [T P®* (i, j) where PER) (i, j) = 1 + sg walPalF); and
the Z (i) are normalization factors chosen such that 3, P(i, j) = P(i). To maintain the symmetry

of the co-occurrence matrix requires sy jr = Sk’ k-

Consider, to simplify notations, the symmetric p;, = 1/2 case. We have that j I kok! Pk (i,5) =
1+ O(si,k,); so at this order of approximation henceforth considered, we have: P(i,j) ~
P(i)P(j) [T P**) (i, j) where P(i) = 279 As a result, the PMI matrix for a pair of words,
(i,7), is
PMI(i, j) = > log(P**) (i, 5)) 31
kK

Each of the constituent log (P(’“’“/)) can be re-expressed as

log (P(k’k/)(a, b)) = log(1 + sg,rab) = Og i + i,k ab (32)

where 05 v = £ (log(1 + spr) + log(1 — sgiv)) and e = 5 (log(1 + sp ) — log(1 — s)).
(k) (k")

,  and a; with @ and b, we have that

Identifying «

PMI =4 + AvA" (33)
where § = 117 > kok! Ok 1 therows of A € ng xd correspond to @; as before, and the elements of
the v matrix are just the v x.

Thus the main conclusions of Section 6 hold: The rank of the PMI is at most d+ 1 and its eigenvectors
are linear in the attributes, implying that linear analogies hold exactly. This is the central result.
However, because = is not diagonal, eigenvectors of the PMI will linearly combine attributes.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes], ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", it is perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe the paper’s main contribution:
a theoretical generative model that explains the emergence of linear analogies in word
embeddings and accounts for previously observed empirical phenomena. This is reflected in
the theoretical derivations (Sections 5-9) and numerical validations (Figures 1-3) compared
to results on empirical data.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a dedicated “Limitations” subsection within Section 11
(Discussion). This section acknowledges simplifications in the model, such as handling of
homographs and hierarchical attribute structures as areas for future study.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Theoretical results, such as the eigendecomposition of M (Theorem 1, Section
5) and the rank and eigenvector properties of log M (Section 6), are presented with their
assumptions. Proofs or derivations are provided in the main text (e.g., proof sketch for
Theorem 1) and supplemented by details in Appendix Al and A2.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper describes the generative model (Section 4), its parameters used in
each figure (e.g., d = 8 or d = 12 for simulations, distributions for sj, noise parameters o¢,
pruning fraction f), and the analogy evaluation metric (Equation 12). The analogy tasks for
the empirical data are descried and their source cited.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and Conda environment necessary to reproduce the numerical
simulations and the figures are included in the supplementary. The full Wikipedia co-
occurrence statistics can not be included due to size constraints.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: For the model-based experiments, parameters like the number of attributes (d),
distributions for semantic strengths (sj), noise levels (o¢), and vocabulary sparsification
(f) are specified in the text and figure captions (e.g., Figure 1, Figure 2). For Wikipedia
experiments, the vocabulary size and analogy co-occurrence statistics are used with a
vocabulary of 10,000 words and the Mikolov et al. analogy task set.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Figures 2b, 2d, 2e, 2f, 3c, Figure 4 (Appendix), and Figure 5 (Appendix)
include shaded areas representing the standard deviation across analogy categories or model
realizations. This indicates the variability of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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8.

10.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Most of the experiments run in a few minutes on an H100.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is theoretical and analytical, aiming to understand existing
phenomena in word embeddings. It does not involve human subjects, direct data collection
from individuals, or applications with immediate ethical risks outlined in the Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper focuses on a foundational, theoretical understanding of word
embedding models. While the authors believe in the positive social impact of scientific
understanding, we do not explicitly detail broader positive or negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper introduces a theoretical model and does not release new data or
pretrained models that would carry a high risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly cites foundational models like Word2Vec and GloVe (e.g.,
references [1, 2, 3]) and refers to the Wikipedia corpus and the Mikolov et al. analogy
benchmark, which are standard and publicly known assets in the field. Specific licenses for
these general resources are not typically detailed in individual research papers focused on
theoretical modeling based on them.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new datasets or software assets for release. The
primary contribution is a theoretical model.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research presented in this paper does not involve crowdsourcing or
experiments with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research presented in this paper does not involve crowdsourcing or
experiments with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methodology of this research involves a theoretical generative model
and mathematical derivations. LLMs were not used as an important, original, or non-standard
component of these core methods.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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