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Abstract

This paper is the first study of the ap-
plication of Kolmogorov-Arnold Convolu-
tional Networks for Text data (KAConv-
Text) on Burmese sentence classification
across three tasks: hate speech detec-
tion (imbalanced binary), news classifi-
cation (balanced multiclass), and ethnic
language identification (imbalanced multi-
class). Various embedding configurations
were tested, utilizing random embeddings
and fastText in both static and fine-tuned
settings.  Experiments were conducted
with embedding dimensions of 100 and 300,
comparing the CBOW and Skip-gram algo-
rithms. Baseline models included Convolu-
tional Neural Networks (CNN) and CNNs
enhanced with a Kolmogorov-Arnold Net-
work (KAN) classification layer (CNN-
KAN). The proposed KAConv-Text with
fine-tuned fastText embeddings achieved
the best results, with 91.23% accuracy and
a weighted Fl-score of 0.9109 for hate
speech detection, 92.66% accuracy and
a weighted Fl-score of 0.9267 for news
classification, and 99.82% accuracy and a
weighted F1-score of 0.9982 for ethnic lan-
guage identification respectively.

1 Introduction

Text classification is a key part of natural lan-
guage processing (NLP). For low-resource lan-
guages like Burmese, this task is challenging
due to issues such as unbalanced datasets, dif-
ferent dialects, and a lack of pre-trained lan-
guage models. Traditional methods, like text
classification with Convolutional Neural Net-
works (CNNs) (Kim, 2014), use linear transfor-
mations with fixed activation functions. While
useful, these methods often have trouble cap-
turing complex patterns in text, especially in
languages with rich grammar and structure.
This paper introduces a new approach to text
classification using Text Kolmogorov-Arnold

Convolutional Networks (KAConv-Text) that
uses spline-based non-linearities to improve
flexibility and efficiency.

Recent advancements in deep learning have
seen the integration of advanced mathematical
frameworks into neural architectures. Among
these, Kolmogorov-Arnold Networks (KANs)
(Liu et al., 2024) stand out by leveraging
the Kolmogorov-Arnold representation theo-
rem (Schmidt-Hieber, 2021), (Selitskiy, 2022)
to replace linear weight matrices with learn-
able spline functions. Bodner et al. (2024) orig-
inally proposed integration of KAN concept
with convolution for computer vision tasks
studying the performance of image classifica-
tion on MNIST and Fashion MNIST datasets
1

In this paper, we adapted KAN princi-
ples to convolutional layers for text data, ex-
perimenting KAConv-Text that replace tra-
ditional one dimensional CNN kernels with
spline-parameterized functions. This innova-
tion allows the model to dynamically learn
non-linear mappings directly from data, cir-
cumventing the rigidity of fixed activation
functions. Inspired by SplineCNN (Fey and
Lenssen, 2018), which demonstrated splines’
efficacy in geometric deep learning, our work
extends these ideas with KAConv-Text to se-
quential text data, avoiding the need for graph-
based preprocessing.

In this study, we trained and evaluated the
proposed KAConv-Text across three Burmese
sentence classification tasks: hate speech de-
tection (imbalanced binary), news classifica-
tion (balanced multiclass), and ethnic lan-
guage identification (imbalanced multiclass).
Our experiments demonstrate that the pro-
posed KAConv-Text, when paired with fine-
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tuned fastText embeddings, achieve state-
of-the-art performance:  91.23% accuracy
(weighted F1: 0.9109) for hate speech de-
tection, 92.66% accuracy (F1: 0.9267) for
news categorization, and 99.82% accuracy
(F1: 0.9982) for ethnic language identification.
These results highlight KAConv-Text’s ability
to perform well in both imbalanced and bal-
anced sentence classification.

2 Corpus Preparation

We prepared sentence classification datasets
for three tasks: hate speech detection, news
classification, and ethnic language identifica-
tion. Table 1 shows the distributions of labels
in each dataset.

Each dataset was divided randomly into an
80:20 ratio for each class for training and
testing. Cleaned, word-segmented, in-house
Burmese monolingual corpus with 256,792 sen-
tences and 5,981,381 tokens is used to train
fastText embeddings (Bojanowski et al., 2016)
for the news classification and hate speech de-
tection experiments. For ethnic language iden-
tification experiments, syllable-segmented eth-
nic multilingual corpus with 200,781 sentences
and 2,755,734 tokens is used to train fastText
embeddings.

Hate Speech Detection: This imbal-
anced dataset comprises 10,140 annotated
syllable-segmented sentences (8,493 hateful
and 1,647 non-hateful), sourced from Myan-
mar social media platforms and public forums.
Hate speech can have different categories such
as abuse, religious bias, racism, body-shaming,
political animosity, sexism, potentially lethal
content, educational bias (Kyaw et al., 2024b).
For binary classification, we considered all
categories of hate speech into a single “hate
speech” class and retained the non-hateful con-
tent as the “non-hate speech” class.

News Classification: The news corpus
contains 7,315 word-segmented news sentences
evenly distributed across six categories. For
news classification, we used the corpus, which
includes six news categories - Sports, Politics,
Technology, Business, Entertainment, and En-
vironmental (Kyaw et al., 2024a).

Ethnic Language Identification: This
dataset spans syllable-segmented nine eth-
nic language sentences which mostly share

Burmese alphabets, totaling 108,016 sentences.
Data was collected from the web sources and
the previous machine translation researches
[Oo et al. (2018), Oo et al. (2020a), Htun et al.
(2021), Kyaw et al. (2020), Aye et al. (2020),
Linn et al. (2020), Thu et al. (2019), Oo et al.
(2020b), Oo et al. (2019), Myint Oo et al.
(2019), Oo et al. (2020c), Thu et al. (2022)].

Dataset Class Count Percentage
Hate Speech Hate 8,493 83.76%
Non-Hate 1,647 16.24%
Sports 1,232 16.84%
Politics 1,228 16.79%
Technology 1,224 16.73%
News
Business 1,221 16.69%
Entertainment 1,205 16.47%
Environment 1,205 16.47%
Burmese 19,519 18.07%
Beik 3,385 3.13%
Dawei 3,537 3.27%
Mon 5,854 5.42%
Language Pa’o 10,346 9.58%
Po Kayin 10,031 9.29%
Rakhine 9,778 9.05%
S’gaw Kayin 36,300 33.61%
Shan 9,266 8.58%

Table 1: Label Counts and Percentages of Sentence
Classification Datasets

3 Methodologies

We explore diverse embedding strategies, in-
cluding randomly initialized vectors and pre-
trained fastText embeddings under both static
and fine-tuned configurations. The models we
explored for experiments include baseline mod-
els, standard CNNs, and CNNs with KAN clas-
sification layers (CNN-KAN), along with the
proposed KAConv-Text. The architectural de-
signs are illustrated in Figure 1.

3.1 Embeddings

Word embeddings map discrete tokens to con-
tinuous vectors, capturing semantic and syn-
tactic relationships. We evaluate two initial-
ization strategies:

« Random Embeddings (Rand): Each
token w; in the vocabulary V is assigned
a randomly initialized embedding vector
e; € R% where d is the embedding di-
mension. The embedding matrix E;.nq €
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Figure 1: Architectural variations of experimented models: (i) Standard CNN, (ii) CNN-KAN with
classification layer adaptation, and (iii) proposed KAConv-Text

RVI%d i5 learned during training: X =

ERand[w1, w2, ..., wr] " € REX? where L
is the sequence length. This approach re-
quires no prior linguistic knowledge but
demands sufficient training data to learn
meaningful representations.

o fastText Embeddings: We lever-
age pre-trained fastText embeddings
EfastText € RIVI*4 trained on subword
n-grams. fastText represents words as
bags of character n-grams, which allows it
to capture subword information and han-
dle out-of-vocabulary (OOV) words effec-
tively. We investigated two approaches—
static and fine-tuned—using embedding
dimensions of 100 and 300, with both
CBOW and Skip-gram models.

1. Static Embeddings: The embed-
dings remain fixed during training.
Words, including those not found
in the vocabulary (which are initial-
ized with random uniform values in [-
0.25, 0.25]), are represented by their
corresponding fastText embeddings.
The embeddings themselves do not
change during training.

2. Fine-tuned Embeddings: The

fastText embeddings are updated
during training through backprop-
agation.  This allows the embed-
dings to adapt to the specific do-
main of the task. The embedding
vectors are refined to better capture
context-specific nuances and seman-
tics: EfastText < EfastText - HVEC
where 7 is the learning rate and L is
the loss function. Fine-tuning adapts
the embeddings to domain-specific
contexts.

3.2 Kolmogorov-Arnold Networks

3.2.1 Kolmogorov-Arnold
Representation Theorem

The Kolmogorov-Arnold Representation The-
orem (KART) (Kolmogorov, 1956) simpli-
fies complex mathematical functions. Sup-
pose a function f takes multiple inputs
(x1,x9,...,2,) and produces a single output.
The theorem states that any smooth function
of multiple variables can be represented using
simpler functions as follows:

1. Process each input individually: For
each input z,, apply a simple single-
variable function ¢ .



2. Combine results: Add the outputs of
these single-variable functions.

3. Final adjustment: Apply another set of
single-variable functions ®, to the com-
bined sums.

Mathematically, this is written as:

2n+1

f(x) = Z D4 Z%m(aﬁp) (1)
q=1 p=1

where ¢,, are simple functions that handle
each input z, individually and ®, are func-
tions that adjust the combined results to re-
construct f(x). Instead of using fixed activa-
tion functions (like ReLU), KANs use these
adaptive ¢4, and ®, functions to learn com-
plex patterns.

3.2.2 KAN Architecture

Kolmogorov-Arnold Networks (KANs) extend
the classical Kolmogorov-Arnold representa-
tion by using learnable activation functions
along graph edges. In a KAN layer, an in-
put with n;, dimensions is transformed into
an output with ngy dimensions. This layer
is defined by a collection of functions: & =
{gpt, P=1,2,...,nm, ¢=1,2,... Nout,
where each ¢, is a learnable spline function.

The output of the layer is computed by ap-
plying these functions to the input features.
For the [th layer, the output is given by:

ny
X(l+1) = Z ¢l,j,i (.legl)), ] = 17 ceey 41 (2)
i=1

In matrix notation, this operation is written
as: x(HD = Ox() | where O is the function
matrix for the [th layer.

In particular, the approximation error for

KANSs is bounded by

|7- (@g—l>o...oq>g>)chm cog i

(3)
where G is the grid size, k is the order of the
B-spline, and C is a constant. The notation
CIJ(GLfl) 0---0 (bg)) indicates that the output of
one function matrix is fed as the input to the

next.

3.3 Integrating with Convolution
3.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are
originally built for visual tasks with two-
dimensional convolutions (LeCun et al., 1989).
In our paper, the baseline CNN architecture
processes embeddings X with one-dimensional
convolutions, followed by pooling layer and a
linear classifier. For a kernel W € RF*dxC
with C output channels:

k d
H, = ReLU (Z > Wemm Xigm-1m + bc>

m=1n=1
(4)
where b, is the bias term. The final feature
representation is pooled and classified via

§ = Softmax(Wegh + beg). (5)

3.3.2 KAN as classification layer

CNN-KAN approach was introduced shortly
after the development of Kolmogorov-Arnold
Networks (KAN) to enhance their perfor-
mance in visual tasks (Cang et al., 2024).
CNN-KAN models combine convolutional fea-
ture extraction with the expressive, spline-
based nonlinearity of Kolmogorov-Arnold Net-
works (KAN) to better handle spatially struc-
tured visual data. In this paper, standard one-
dimensional convolutional layers first perform
feature extraction, producing feature maps
that capture local text patterns. These fea-
ture maps are then passed through a KAN-
inspired activation, where the conventional lin-
ear transformation is augmented with spline-
parameterized non-linearities.

3.3.3 Kolmogorov-Arnold Convolution
for Text

The idea of KAN is extended to one-
dimensional convolution by replacing the stan-
dard dot product with a learnable nonlinear
function defined via B-splines. In this ap-
proach, unlike its use in Computer Vision
(Azam and Akhtar, 2024), a KAConv-Text ker-
nel is represented as Kernel = [¢1, @2, ..., dK]
where each ¢,, is a B-spline function with
learnable parameters. The output at position
1 is computed by

yi = Z Gm (Tigtm) (6)



with x;4.,m denoting the input at index ¢ + m.
Following the original proposal(Liu et al.,
2024), each learnable function is defined by

®(x) = wy - spline(x) + wa - b(z),  (7)

where b(x) is a fixed basis function Paramet-
ric ReLU (PReLU) and spline(z) is a linear
combination of B-spline basis functions. The
extracted feature representation is pooled and
classified using softmax layers.

3.3.4 Interpretability

CNN-KAN improves interpretability by re-
placing the final linear classifier with a KAN
layer. The spline-based activation functions
in KAN are learnable and can be visualized as
univariate functions, revealing how input fea-
tures are nonlinearly transformed before clas-
sification. Unlike fixed activations in CNNs,
these splines adapt to the data, allowing to
be inspected how specific feature ranges influ-
ence class probabilities. The convolutional lay-
ers in CNN-KAN remain unchanged, retaining
CNN’s lack of transparency in feature extrac-
tion. As a result, while the classification stage
becomes more interpretable, the extraction of
intermediate positional patterns remains un-
clear. KAConv-Text enhances interpretabil-
ity at the convolutional level by replacing
linear kernels with learnable spline functions.
Each kernel operates as a transparent, univari-
ate nonlinear transformation, whose B-spline
parameters can be directly visualized to un-
derstand its response to input. Figure 2 visual-
izes the learned B-spline surfaces for each con-
volutional kernel, where the X-axis represents
spline coefficients, the Y-axis denotes individ-
ual filters, and the Z-axis reflects weight val-
ues, thereby offering an intuitive view of how
these nonlinear transformations shape feature
responses.

4 Experimental Setup

In this study, we explore a range of embed-
ding strategies, including randomly initialized
vectors and pre-trained fastText embeddings.
These embeddings are evaluated in both static
and fine-tuned configurations, with dimension-
alities of 100 and 300. The fastText embed-
dings are trained using the CBOW and Skip-
gram algorithms.

We trained and evaluated three models:
CNN, CNN-KAN, and KAConv-Text. The
models were evaluated using accuracy and
weighted Fl-scores. For each model, we em-
ploy a three-layer architecture, with successive
channel dimensions of 64, 128, and 256. The
kernel sizes for these layers are set to 3, 4,
and 5, respectively. ReLU activation is ap-
plied after each convolutional layer for CNN
and CNN-KAN models, and an adaptive aver-
age pooling operation is used for pooling. In
the case of KAConv-Text, we incorporate cu-
bic splines for the convolutions, with the poly-
nomial degree of the B-spline basis functions
set to three.

For the classification part, the linear layers
- Softmax for CNN and KAConv-Text, and
KAN for CNN-KAN were used. All models
were trained for 10 epochs with a dropout rate
of 0.3 to mitigate overfitting. The Adaptive
Moment Estimation (Adam) optimizer was
used for model optimization, with a learning
rate of le-3.

For model training, we utilized the Kag-
gle environment?, leveraging an NVIDIA P100
GPU with 16GB of memory for efficient com-
putation. The experiments were conducted us-
ing PyTorch?® framework developed by Paszke
et al. (2019).

5 Results and Discussion

This section examines the impact of differ-
ent embedding settings on each model across
various tasks and compares their performance
based on accuracy and weighted F1-scores for
the best-performing models in each setting.

5.1 Comparison of Different
Embedding settings

For Hate Speech Detection, the Figure 3 (a)
indicate that finetuned embeddings again lead
to improved performance. The CNN model
using 100-dimensional finetuned Skipgram em-
beddings obtained an F1-score of 0.9023 while
the KAConv-Text model with 300-dimensional
finetuned CBOW embeddings recorded the
best results (0.9109 F1).

For the News classification task, the Fig-
ure 3 (b) reveal that finetuned embeddings

https://www.kaggle.com/
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Figure 2: 3D visualization of the learned B-spline surfaces for each KAConv-Text convolutional kernel in
fine-tuned fastText with dimension 300 and Skip-gram + KAConv-Text model for Hate Speech Detection

Embed Model Hate Speech News Language

Acc (%) F1 Acc (%) F1 Acc (%) F1
CNN 88.96 0.8895 88.17 0.8823 99.73 0.9973
Rand CNN-KAN 88.81 0.8851 89.26 0.8932 99.73 0.9973
KAConv-Text 88.62 0.8819 89.67 0.8969 99.71 0.9971
CNN 89.90 0.9001 91.23 0.9124 99.71 0.9971
Static CNN-KAN 90.29 0.9017 91.30 0.9134 99.72 0.9972
KAConv-Text 89.16 0.8855 91.50 0.9147 99.73 0.9973
CNN 90.24 0.9023 91.98 0.9196 99.78 0.9978
Fine-tuned = CNN-KAN 89.40 0.8946 91.77 0.9179 99.79 0.9979
KAConv-Text 91.23 0.9109 92.66 0.9267 99.82 0.9982

Table 2: Accuracy (Acc) and Weighted Fl-scores (F1) comparison of the best models across different
settings on Hate Speech Detection (Binary), News (Multiclass), and Language Identification (Multiclass)
classification tasks. Bolded results are the best result for each task across each embedding type.

consistently yield superior results. The CNN
model with 100-dimensional Skipgram embed-
dings achieved the highest performance, reach-
ing an weighted Fl-score of 0.9196. Mean-
while, the CNN-KAN model performed best
with 100-dimensional finetuned CBOW em-
beddings (0.9179 F1), and the KAConv-Text
model excelled with 300-dimensional finetuned
Skipgram embeddings (0.9267 F1).

In the Language Identification task, the
Figure 3 (c¢) demonstrate near-perfect per-
The highest
scores were observed with the 300-dimensional
finetuned Skipgram setting, where the CNN
model reached an Fl-score of 0.9978 and the
KAConv-Text model achieved 0.9982.

formance across all models.

5.2 Comparison of Best Models
Across Each Setting

The performance of CNN, CNN-KAN, and
KAConv-Text models across three text classifi-
cation tasks is summarized in Table 2. Overall,
KAConv-Text with fine-tuned fastText embed-
dings achieved the strongest results, demon-
strating the advantage of integrating KAConv-
Text layers with trainable fastText embed-
dings.

For random embeddings (Rand), CNN
and KAConv-Text exhibited task-dependent
strengths. While CNN achieved the highest
Fl-score (0.8895) on Hate Speech detection,
KAConv-Text outperformed others on News
classification (89.67% Acc, 0.8969 F1). All
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Figure 3: F1 Scores of Different Embeddings Settings - Dimensions (100, 300) and Algorithms (CBOW,
Skip-gram) for Each Task. The figure shows the importance of finetuning and selecting appropriate
embedding dimensions for maximizing model performance across different tasks. We selected best per-

forming settings for each model across each task for further evaluation.

models achieved near-perfect results (> 99.7%
Acc) on Language Identification, suggesting
simpler patterns suffice for this task regardless
of architecture.

With static fastText embeddings, CNN-
KAN excelled in Hate Speech detection
(90.29% Acc, 0.9017 F1), whereas KAConv-

Text dominated News classification (91.50%
Acc, 0.9147 F1) and Language Identification
(99.73% Acc). This highlights KAN’s poten-
tial to enhance task-specific feature extraction
when combined with fixed embeddings.

The most significant improvements emerged
with fine-tuned fastText embeddings:



KAConv-Text surpassed CNN and CNN-KAN
across all tasks, achieving 91.23% Acc (Hate
Speech), 92.66% Acc (News), and 99.82% Acc
(Language). The marked gains in Hate Speech
(+0.99% Acc over CNN) and News (+0.68%
Acc) suggest KAConv-Text combines effec-
tively with trainable embeddings to capture
nuanced textual patterns. CNN-KAN under-
performed CNN in these tasks, implying that
KAN as the classification layer may insuffi-
ciently leverage fine-tuned embeddings.

These results indicate that KAConv-Text’s
full integration of KAN concept with con-
volutions enhances adaptability to complex,
embedding-dependent features. The marginal
differences in Language Identification across
models (< 0.1% Acc) further suggest that
architectural advantages diminish for highly
separable classes. Overall, KAConv-Text
emerges as the most robust model, particu-
larly when paired with fine-tuned embeddings,
demonstrating the efficacy of KAN in learning
task-specific hierarchical representations.

6 Conclusion and Future Work

In this work, we present the first study to in-
vestigate the application of KAConv-Text lay-
ers in text classification. Our contributions in-
clude (1) three novel cleaned text classification
datasets and (2) a KAConv-Text model that
achieves state-of-the-art results, outperform-
ing CNN architectures across tasks. Our find-
ings show that integrating these layers with
fine-tuned fastText embeddings significantly
enhances classification performance, with the
proposed KAConv-Text model consistently
outperforming other architectures across the
evaluated tasks.

In the future, we plan to extend our evalu-
ation to a more diverse set of languages and
datasets for cross-linguistic and cross-domain
generalizability, including low-resource scenar-
ios. Additionally, we will investigate the inte-
gration of contextual embeddings (e.g., BERT,
LLM-derived features) with KAConv-Text to
further improve classification accuracy while
preserving model transparency. We will also
release the implementation, experimental logs,
and the text classification corpus for the com-
munity.

Limitations

Despite the promising results, our study
has some limitations. Notably, our experi-
ments were conducted on a limited number
of datasets focused on the Burmese language,
which may not fully capture the challenges
posed by other languages or more diverse text
classification tasks such as code-mixed text.
This constraint limits the generalizability of
our findings, and further research is needed to
validate the proposed approach across broader
linguistic and domain-specific contexts.

Ethics Statement

This research utilizes three classification
datasets to develop and evaluate our proposed
approach. The datasets used in this study will
be publicly available and have been curated fol-
lowing ethical guidelines, including anonymiza-
tion and compliance with relevant regulations,
especially the Hate Speech dataset.

We acknowledge the sensitive nature of the
Hate Speech data and have taken necessary
precautions to ensure ethical data handling.
We recognize the risks associated with biases
in the datasets especially, the hate speech
dataset and have conducted an analysis by uni-
versity students who are native speakers to as-
sess and minimize these biases.
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