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Abstract
This paper is the first study of the ap-001
plication of Kolmogorov-Arnold Convolu-002
tional Networks for Text data (KAConv-003
Text) on Burmese sentence classification004
across three tasks: hate speech detec-005
tion (imbalanced binary), news classifi-006
cation (balanced multiclass), and ethnic007
language identification (imbalanced multi-008
class). Various embedding configurations009
were tested, utilizing random embeddings010
and fastText in both static and fine-tuned011
settings. Experiments were conducted012
with embedding dimensions of 100 and 300,013
comparing the CBOW and Skip-gram algo-014
rithms. Baseline models included Convolu-015
tional Neural Networks (CNN) and CNNs016
enhanced with a Kolmogorov-Arnold Net-017
work (KAN) classification layer (CNN-018
KAN). The proposed KAConv-Text with019
fine-tuned fastText embeddings achieved020
the best results, with 91.23% accuracy and021
a weighted F1-score of 0.9109 for hate022
speech detection, 92.66% accuracy and023
a weighted F1-score of 0.9267 for news024
classification, and 99.82% accuracy and a025
weighted F1-score of 0.9982 for ethnic lan-026
guage identification respectively.027

1 Introduction028

Text classification is a key part of natural lan-029

guage processing (NLP). For low-resource lan-030

guages like Burmese, this task is challenging031

due to issues such as unbalanced datasets, dif-032

ferent dialects, and a lack of pre-trained lan-033

guage models. Traditional methods, like text034

classification with Convolutional Neural Net-035

works (CNNs) (Kim, 2014), use linear transfor-036

mations with fixed activation functions. While037

useful, these methods often have trouble cap-038

turing complex patterns in text, especially in039

languages with rich grammar and structure.040

This paper introduces a new approach to text041

classification using Text Kolmogorov-Arnold042

Convolutional Networks (KAConv-Text) that 043

uses spline-based non-linearities to improve 044

flexibility and efficiency. 045

Recent advancements in deep learning have 046

seen the integration of advanced mathematical 047

frameworks into neural architectures. Among 048

these, Kolmogorov-Arnold Networks (KANs) 049

(Liu et al., 2024) stand out by leveraging 050

the Kolmogorov-Arnold representation theo- 051

rem (Schmidt-Hieber, 2021), (Selitskiy, 2022) 052

to replace linear weight matrices with learn- 053

able spline functions. Bodner et al. (2024) orig- 054

inally proposed integration of KAN concept 055

with convolution for computer vision tasks 056

studying the performance of image classifica- 057

tion on MNIST and Fashion MNIST datasets 058
1. 059

In this paper, we adapted KAN princi- 060

ples to convolutional layers for text data, ex- 061

perimenting KAConv-Text that replace tra- 062

ditional one dimensional CNN kernels with 063

spline-parameterized functions. This innova- 064

tion allows the model to dynamically learn 065

non-linear mappings directly from data, cir- 066

cumventing the rigidity of fixed activation 067

functions. Inspired by SplineCNN (Fey and 068

Lenssen, 2018), which demonstrated splines’ 069

efficacy in geometric deep learning, our work 070

extends these ideas with KAConv-Text to se- 071

quential text data, avoiding the need for graph- 072

based preprocessing. 073

In this study, we trained and evaluated the 074

proposed KAConv-Text across three Burmese 075

sentence classification tasks: hate speech de- 076

tection (imbalanced binary), news classifica- 077

tion (balanced multiclass), and ethnic lan- 078

guage identification (imbalanced multiclass). 079

Our experiments demonstrate that the pro- 080

posed KAConv-Text, when paired with fine- 081

1https://github.com/AntonioTepsich/
Convolutional-KANs
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tuned fastText embeddings, achieve state-082

of-the-art performance: 91.23% accuracy083

(weighted F1: 0.9109) for hate speech de-084

tection, 92.66% accuracy (F1: 0.9267) for085

news categorization, and 99.82% accuracy086

(F1: 0.9982) for ethnic language identification.087

These results highlight KAConv-Text’s ability088

to perform well in both imbalanced and bal-089

anced sentence classification.090

2 Corpus Preparation091

We prepared sentence classification datasets092

for three tasks: hate speech detection, news093

classification, and ethnic language identifica-094

tion. Table 1 shows the distributions of labels095

in each dataset.096

Each dataset was divided randomly into an097

80:20 ratio for each class for training and098

testing. Cleaned, word-segmented, in-house099

Burmese monolingual corpus with 256,792 sen-100

tences and 5,981,381 tokens is used to train101

fastText embeddings (Bojanowski et al., 2016)102

for the news classification and hate speech de-103

tection experiments. For ethnic language iden-104

tification experiments, syllable-segmented eth-105

nic multilingual corpus with 200,781 sentences106

and 2,755,734 tokens is used to train fastText107

embeddings.108

Hate Speech Detection: This imbal-109

anced dataset comprises 10,140 annotated110

syllable-segmented sentences (8,493 hateful111

and 1,647 non-hateful), sourced from Myan-112

mar social media platforms and public forums.113

Hate speech can have different categories such114

as abuse, religious bias, racism, body-shaming,115

political animosity, sexism, potentially lethal116

content, educational bias (Kyaw et al., 2024b).117

For binary classification, we considered all118

categories of hate speech into a single “hate119

speech” class and retained the non-hateful con-120

tent as the “non-hate speech” class.121

News Classification: The news corpus122

contains 7,315 word-segmented news sentences123

evenly distributed across six categories. For124

news classification, we used the corpus, which125

includes six news categories - Sports, Politics,126

Technology, Business, Entertainment, and En-127

vironmental (Kyaw et al., 2024a).128

Ethnic Language Identification: This129

dataset spans syllable-segmented nine eth-130

nic language sentences which mostly share131

Burmese alphabets, totaling 108,016 sentences. 132

Data was collected from the web sources and 133

the previous machine translation researches 134

[Oo et al. (2018), Oo et al. (2020a), Htun et al. 135

(2021), Kyaw et al. (2020), Aye et al. (2020), 136

Linn et al. (2020), Thu et al. (2019), Oo et al. 137

(2020b), Oo et al. (2019), Myint Oo et al. 138

(2019), Oo et al. (2020c), Thu et al. (2022)]. 139

Dataset Class Count Percentage

Hate Speech Hate 8,493 83.76%
Non-Hate 1,647 16.24%

News

Sports 1,232 16.84%
Politics 1,228 16.79%

Technology 1,224 16.73%
Business 1,221 16.69%

Entertainment 1,205 16.47%
Environment 1,205 16.47%

Language

Burmese 19,519 18.07%
Beik 3,385 3.13%

Dawei 3,537 3.27%
Mon 5,854 5.42%
Pa’o 10,346 9.58%

Po Kayin 10,031 9.29%
Rakhine 9,778 9.05%

S’gaw Kayin 36,300 33.61%
Shan 9,266 8.58%

Table 1: Label Counts and Percentages of Sentence
Classification Datasets

3 Methodologies 140

We explore diverse embedding strategies, in- 141

cluding randomly initialized vectors and pre- 142

trained fastText embeddings under both static 143

and fine-tuned configurations. The models we 144

explored for experiments include baseline mod- 145

els, standard CNNs, and CNNs with KAN clas- 146

sification layers (CNN-KAN), along with the 147

proposed KAConv-Text. The architectural de- 148

signs are illustrated in Figure 1. 149

3.1 Embeddings 150

Word embeddings map discrete tokens to con- 151

tinuous vectors, capturing semantic and syn- 152

tactic relationships. We evaluate two initial- 153

ization strategies: 154

• Random Embeddings (Rand): Each 155

token wi in the vocabulary V is assigned 156

a randomly initialized embedding vector 157

ei ∈ Rd, where d is the embedding di- 158

mension. The embedding matrix Erand ∈ 159
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Figure 1: Architectural variations of experimented models: (i) Standard CNN, (ii) CNN-KAN with
classification layer adaptation, and (iii) proposed KAConv-Text

R|V|×d is learned during training: X =160

ERand[w1, w2, . . . , wL]
⊤ ∈ RL×d where L161

is the sequence length. This approach re-162

quires no prior linguistic knowledge but163

demands sufficient training data to learn164

meaningful representations.165

• fastText Embeddings: We lever-166

age pre-trained fastText embeddings167

EfastText ∈ R|V|×d, trained on subword168

n-grams. fastText represents words as169

bags of character n-grams, which allows it170

to capture subword information and han-171

dle out-of-vocabulary (OOV) words effec-172

tively. We investigated two approaches—173

static and fine-tuned—using embedding174

dimensions of 100 and 300, with both175

CBOW and Skip-gram models.176

1. Static Embeddings: The embed-177

dings remain fixed during training.178

Words, including those not found179

in the vocabulary (which are initial-180

ized with random uniform values in [-181

0.25, 0.25]), are represented by their182

corresponding fastText embeddings.183

The embeddings themselves do not184

change during training.185

2. Fine-tuned Embeddings: The186

fastText embeddings are updated 187

during training through backprop- 188

agation. This allows the embed- 189

dings to adapt to the specific do- 190

main of the task. The embedding 191

vectors are refined to better capture 192

context-specific nuances and seman- 193

tics: EfastText ← EfastText − η∇EL 194

where η is the learning rate and L is 195

the loss function. Fine-tuning adapts 196

the embeddings to domain-specific 197

contexts. 198

3.2 Kolmogorov-Arnold Networks 199

3.2.1 Kolmogorov-Arnold 200

Representation Theorem 201

The Kolmogorov-Arnold Representation The- 202

orem (KART) (Kolmogorov, 1956) simpli- 203

fies complex mathematical functions. Sup- 204

pose a function f takes multiple inputs 205

(x1, x2, . . . , xn) and produces a single output. 206

The theorem states that any smooth function 207

of multiple variables can be represented using 208

simpler functions as follows: 209

1. Process each input individually: For 210

each input xp, apply a simple single- 211

variable function ϕq,p. 212
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2. Combine results: Add the outputs of213

these single-variable functions.214

3. Final adjustment: Apply another set of215

single-variable functions Φq to the com-216

bined sums.217

Mathematically, this is written as:218

f(x) =
2n+1∑
q=1

Φq

 n∑
p=1

ϕq,p(xp)

 (1)219

where ϕq,p are simple functions that handle220

each input xp individually and Φq are func-221

tions that adjust the combined results to re-222

construct f(x). Instead of using fixed activa-223

tion functions (like ReLU), KANs use these224

adaptive ϕq,p and Φq functions to learn com-225

plex patterns.226

3.2.2 KAN Architecture227

Kolmogorov-Arnold Networks (KANs) extend228

the classical Kolmogorov-Arnold representa-229

tion by using learnable activation functions230

along graph edges. In a KAN layer, an in-231

put with nin dimensions is transformed into232

an output with nout dimensions. This layer233

is defined by a collection of functions: Φ =234

{ϕq,p}, p = 1, 2, . . . , nin, q = 1, 2, . . . , nout,235

where each ϕq,p is a learnable spline function.236

The output of the layer is computed by ap-237

plying these functions to the input features.238

For the lth layer, the output is given by:239

x(l+1) =

nl∑
i=1

ϕl,j,i

(
x
(l)
i

)
, j = 1, . . . , nl+1. (2)240

In matrix notation, this operation is written241

as: x(l+1) = Φ(l)x(l), where Φ(l) is the function242

matrix for the lth layer.243

In particular, the approximation error for244

KANs is bounded by245 ∥∥∥f −(Φ(L−1)
G ◦ · · · ◦Φ(0)

G

)
x
∥∥∥
Cm
≤ C G−k−1+m,

(3)246

where G is the grid size, k is the order of the247

B-spline, and C is a constant. The notation248

Φ
(L−1)
G ◦ · · · ◦Φ(0)

G indicates that the output of249

one function matrix is fed as the input to the250

next.251

3.3 Integrating with Convolution 252

3.3.1 Convolutional Neural Networks 253

Convolutional Neural Networks (CNNs) are 254

originally built for visual tasks with two- 255

dimensional convolutions (LeCun et al., 1989). 256

In our paper, the baseline CNN architecture 257

processes embeddings X with one-dimensional 258

convolutions, followed by pooling layer and a 259

linear classifier. For a kernel W ∈ Rk×d×C 260

with C output channels: 261

Hc = ReLU
(

k∑
m=1

d∑
n=1

Wc,m,n ·Xi+m−1,n + bc

)
(4) 262

where bc is the bias term. The final feature 263

representation is pooled and classified via 264

ŷ = Softmax(Wclsh + bcls). (5) 265

3.3.2 KAN as classification layer 266

CNN-KAN approach was introduced shortly 267

after the development of Kolmogorov-Arnold 268

Networks (KAN) to enhance their perfor- 269

mance in visual tasks (Cang et al., 2024). 270

CNN-KAN models combine convolutional fea- 271

ture extraction with the expressive, spline- 272

based nonlinearity of Kolmogorov-Arnold Net- 273

works (KAN) to better handle spatially struc- 274

tured visual data. In this paper, standard one- 275

dimensional convolutional layers first perform 276

feature extraction, producing feature maps 277

that capture local text patterns. These fea- 278

ture maps are then passed through a KAN- 279

inspired activation, where the conventional lin- 280

ear transformation is augmented with spline- 281

parameterized non-linearities. 282

3.3.3 Kolmogorov-Arnold Convolution 283

for Text 284

The idea of KAN is extended to one- 285

dimensional convolution by replacing the stan- 286

dard dot product with a learnable nonlinear 287

function defined via B-splines. In this ap- 288

proach, unlike its use in Computer Vision 289

(Azam and Akhtar, 2024), a KAConv-Text ker- 290

nel is represented as Kernel = [ϕ1, ϕ2, . . . , ϕK ] 291

where each ϕm is a B-spline function with 292

learnable parameters. The output at position 293

i is computed by 294

yi =
∑
m

ϕm

(
xi+m

)
(6) 295

4



with xi+m denoting the input at index i+m.296

Following the original proposal(Liu et al.,297

2024), each learnable function is defined by298

Φ(x) = w1 · spline(x) + w2 · b(x), (7)299

where b(x) is a fixed basis function Paramet-300

ric ReLU (PReLU) and spline(x) is a linear301

combination of B-spline basis functions. The302

extracted feature representation is pooled and303

classified using softmax layers.304

3.3.4 Interpretability305

CNN-KAN improves interpretability by re-306

placing the final linear classifier with a KAN307

layer. The spline-based activation functions308

in KAN are learnable and can be visualized as309

univariate functions, revealing how input fea-310

tures are nonlinearly transformed before clas-311

sification. Unlike fixed activations in CNNs,312

these splines adapt to the data, allowing to313

be inspected how specific feature ranges influ-314

ence class probabilities. The convolutional lay-315

ers in CNN-KAN remain unchanged, retaining316

CNN’s lack of transparency in feature extrac-317

tion. As a result, while the classification stage318

becomes more interpretable, the extraction of319

intermediate positional patterns remains un-320

clear. KAConv-Text enhances interpretabil-321

ity at the convolutional level by replacing322

linear kernels with learnable spline functions.323

Each kernel operates as a transparent, univari-324

ate nonlinear transformation, whose B-spline325

parameters can be directly visualized to un-326

derstand its response to input. Figure 2 visual-327

izes the learned B-spline surfaces for each con-328

volutional kernel, where the X-axis represents329

spline coefficients, the Y-axis denotes individ-330

ual filters, and the Z-axis reflects weight val-331

ues, thereby offering an intuitive view of how332

these nonlinear transformations shape feature333

responses.334

4 Experimental Setup335

In this study, we explore a range of embed-336

ding strategies, including randomly initialized337

vectors and pre-trained fastText embeddings.338

These embeddings are evaluated in both static339

and fine-tuned configurations, with dimension-340

alities of 100 and 300. The fastText embed-341

dings are trained using the CBOW and Skip-342

gram algorithms.343

We trained and evaluated three models: 344

CNN, CNN-KAN, and KAConv-Text. The 345

models were evaluated using accuracy and 346

weighted F1-scores. For each model, we em- 347

ploy a three-layer architecture, with successive 348

channel dimensions of 64, 128, and 256. The 349

kernel sizes for these layers are set to 3, 4, 350

and 5, respectively. ReLU activation is ap- 351

plied after each convolutional layer for CNN 352

and CNN-KAN models, and an adaptive aver- 353

age pooling operation is used for pooling. In 354

the case of KAConv-Text, we incorporate cu- 355

bic splines for the convolutions, with the poly- 356

nomial degree of the B-spline basis functions 357

set to three. 358

For the classification part, the linear layers 359

- Softmax for CNN and KAConv-Text, and 360

KAN for CNN-KAN were used. All models 361

were trained for 10 epochs with a dropout rate 362

of 0.3 to mitigate overfitting. The Adaptive 363

Moment Estimation (Adam) optimizer was 364

used for model optimization, with a learning 365

rate of 1e-3. 366

For model training, we utilized the Kag- 367

gle environment2, leveraging an NVIDIA P100 368

GPU with 16GB of memory for efficient com- 369

putation. The experiments were conducted us- 370

ing PyTorch3 framework developed by Paszke 371

et al. (2019). 372

5 Results and Discussion 373

This section examines the impact of differ- 374

ent embedding settings on each model across 375

various tasks and compares their performance 376

based on accuracy and weighted F1-scores for 377

the best-performing models in each setting. 378

5.1 Comparison of Different 379

Embedding settings 380

For Hate Speech Detection, the Figure 3 (a) 381

indicate that finetuned embeddings again lead 382

to improved performance. The CNN model 383

using 100-dimensional finetuned Skipgram em- 384

beddings obtained an F1-score of 0.9023 while 385

the KAConv-Text model with 300-dimensional 386

finetuned CBOW embeddings recorded the 387

best results (0.9109 F1). 388

For the News classification task, the Fig- 389

ure 3 (b) reveal that finetuned embeddings 390

2https://www.kaggle.com/
3https://pytorch.org/
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Figure 2: 3D visualization of the learned B-spline surfaces for each KAConv-Text convolutional kernel in
fine-tuned fastText with dimension 300 and Skip-gram + KAConv-Text model for Hate Speech Detection

Embed Model Hate Speech News Language

Acc (%) F1 Acc (%) F1 Acc (%) F1

Rand
CNN 88.96 0.8895 88.17 0.8823 99.73 0.9973

CNN-KAN 88.81 0.8851 89.26 0.8932 99.73 0.9973
KAConv-Text 88.62 0.8819 89.67 0.8969 99.71 0.9971

Static
CNN 89.90 0.9001 91.23 0.9124 99.71 0.9971

CNN-KAN 90.29 0.9017 91.30 0.9134 99.72 0.9972
KAConv-Text 89.16 0.8855 91.50 0.9147 99.73 0.9973

Fine-tuned
CNN 90.24 0.9023 91.98 0.9196 99.78 0.9978

CNN-KAN 89.40 0.8946 91.77 0.9179 99.79 0.9979
KAConv-Text 91.23 0.9109 92.66 0.9267 99.82 0.9982

Table 2: Accuracy (Acc) and Weighted F1-scores (F1) comparison of the best models across different
settings on Hate Speech Detection (Binary), News (Multiclass), and Language Identification (Multiclass)
classification tasks. Bolded results are the best result for each task across each embedding type.

consistently yield superior results. The CNN391

model with 100-dimensional Skipgram embed-392

dings achieved the highest performance, reach-393

ing an weighted F1-score of 0.9196. Mean-394

while, the CNN-KAN model performed best395

with 100-dimensional finetuned CBOW em-396

beddings (0.9179 F1), and the KAConv-Text397

model excelled with 300-dimensional finetuned398

Skipgram embeddings (0.9267 F1).399

In the Language Identification task, the400

Figure 3 (c) demonstrate near-perfect per-401

formance across all models. The highest402

scores were observed with the 300-dimensional403

finetuned Skipgram setting, where the CNN404

model reached an F1-score of 0.9978 and the405

KAConv-Text model achieved 0.9982.406

5.2 Comparison of Best Models 407

Across Each Setting 408

The performance of CNN, CNN-KAN, and 409

KAConv-Text models across three text classifi- 410

cation tasks is summarized in Table 2. Overall, 411

KAConv-Text with fine-tuned fastText embed- 412

dings achieved the strongest results, demon- 413

strating the advantage of integrating KAConv- 414

Text layers with trainable fastText embed- 415

dings. 416

For random embeddings (Rand), CNN 417

and KAConv-Text exhibited task-dependent 418

strengths. While CNN achieved the highest 419

F1-score (0.8895) on Hate Speech detection, 420

KAConv-Text outperformed others on News 421

classification (89.67% Acc, 0.8969 F1). All 422
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(a) F1-scores for Hate Speech Detection Task
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(b) F1-scores for News Classification Task
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(c) F1-scores for Language Identification Task

Figure 3: F1 Scores of Different Embeddings Settings - Dimensions (100, 300) and Algorithms (CBOW,
Skip-gram) for Each Task. The figure shows the importance of finetuning and selecting appropriate
embedding dimensions for maximizing model performance across different tasks. We selected best per-
forming settings for each model across each task for further evaluation.

models achieved near-perfect results (> 99.7%423

Acc) on Language Identification, suggesting424

simpler patterns suffice for this task regardless425

of architecture.426

With static fastText embeddings, CNN-427

KAN excelled in Hate Speech detection428

(90.29% Acc, 0.9017 F1), whereas KAConv-429

Text dominated News classification (91.50% 430

Acc, 0.9147 F1) and Language Identification 431

(99.73% Acc). This highlights KAN’s poten- 432

tial to enhance task-specific feature extraction 433

when combined with fixed embeddings. 434

The most significant improvements emerged 435

with fine-tuned fastText embeddings: 436
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KAConv-Text surpassed CNN and CNN-KAN437

across all tasks, achieving 91.23% Acc (Hate438

Speech), 92.66% Acc (News), and 99.82% Acc439

(Language). The marked gains in Hate Speech440

(+0.99% Acc over CNN) and News (+0.68%441

Acc) suggest KAConv-Text combines effec-442

tively with trainable embeddings to capture443

nuanced textual patterns. CNN-KAN under-444

performed CNN in these tasks, implying that445

KAN as the classification layer may insuffi-446

ciently leverage fine-tuned embeddings.447

These results indicate that KAConv-Text’s448

full integration of KAN concept with con-449

volutions enhances adaptability to complex,450

embedding-dependent features. The marginal451

differences in Language Identification across452

models (< 0.1% Acc) further suggest that453

architectural advantages diminish for highly454

separable classes. Overall, KAConv-Text455

emerges as the most robust model, particu-456

larly when paired with fine-tuned embeddings,457

demonstrating the efficacy of KAN in learning458

task-specific hierarchical representations.459

6 Conclusion and Future Work460

In this work, we present the first study to in-461

vestigate the application of KAConv-Text lay-462

ers in text classification. Our contributions in-463

clude (1) three novel cleaned text classification464

datasets and (2) a KAConv-Text model that465

achieves state-of-the-art results, outperform-466

ing CNN architectures across tasks. Our find-467

ings show that integrating these layers with468

fine-tuned fastText embeddings significantly469

enhances classification performance, with the470

proposed KAConv-Text model consistently471

outperforming other architectures across the472

evaluated tasks.473

In the future, we plan to extend our evalu-474

ation to a more diverse set of languages and475

datasets for cross-linguistic and cross-domain476

generalizability, including low-resource scenar-477

ios. Additionally, we will investigate the inte-478

gration of contextual embeddings (e.g., BERT,479

LLM-derived features) with KAConv-Text to480

further improve classification accuracy while481

preserving model transparency. We will also482

release the implementation, experimental logs,483

and the text classification corpus for the com-484

munity.485

Limitations 486

Despite the promising results, our study 487

has some limitations. Notably, our experi- 488

ments were conducted on a limited number 489

of datasets focused on the Burmese language, 490

which may not fully capture the challenges 491

posed by other languages or more diverse text 492

classification tasks such as code-mixed text. 493

This constraint limits the generalizability of 494

our findings, and further research is needed to 495

validate the proposed approach across broader 496

linguistic and domain-specific contexts. 497

Ethics Statement 498

This research utilizes three classification 499

datasets to develop and evaluate our proposed 500

approach. The datasets used in this study will 501

be publicly available and have been curated fol- 502

lowing ethical guidelines, including anonymiza- 503

tion and compliance with relevant regulations, 504

especially the Hate Speech dataset. 505

We acknowledge the sensitive nature of the 506

Hate Speech data and have taken necessary 507

precautions to ensure ethical data handling. 508

We recognize the risks associated with biases 509

in the datasets especially, the hate speech 510

dataset and have conducted an analysis by uni- 511

versity students who are native speakers to as- 512

sess and minimize these biases. 513
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