
Programming with Personalized PageRank:
A Locally Groundable First-Order Probabilistic Logic

William Yang Wang yww@cs.cmu.edu

Language Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213

Kathryn Mazaitis krivard@cs.cmu.edu
William W. Cohen wcohen@cs.cmu.edu

Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

In many probabilistic first-order represen-
tation systems, inference is performed by
“grounding”—i.e., mapping it to a propo-
sitional representation, and then perform-
ing propositional inference. With a large
database of facts, groundings can be very
large, making inference and learning compu-
tationally expensive. Here we present a first-
order probabilistic language which is well-
suited to approximate “local” grounding: ev-
ery query Q can be approximately grounded
with a small graph. The language is an exten-
sion of stochastic logic programs where infer-
ence is performed by a variant of personalized
PageRank. Experimentally, we show that the
approach performs well without weight learn-
ing on an entity resolution task; that super-
vised weight-learning improves accuracy; and
that grounding time is independent of DB
size. We also show how our approach can
be used for joint inference in a statistical re-
lational learning task.

1. INTRODUCTION

In many probabilistic first-order representation sys-
tems, including Markov Logic Networks (Richardson
& Domingos, 2006) and Probabilistic Similarity Logic
(Brocheler et al., 2012), inference is performed by map-
ping a first-order program to a propositional represen-
tation, and performing inference in that propositional
representation. This mapping is often called ground-

Presented at the International Conference on Machine
Learning (ICML) workshop on Inferning: Interactions be-
tween Inference and Learning, Atlanta, Georgia, USA,
2013. Copyright 2013 by the author(s).

Figure 1. A Markov logic network program and its ground-
ing. (Dotted lines are clique potentials associated with rule
R1, solid lines with rule R2.)

ing. For example, Figure 1 shows a simple MLN.1 As
is often the case, this MLN has two parts: the rules
R1, R2, which are weighted first-order clauses; and the
database DB, which consists of facts (unit clauses) of
the form links(a,b) for constants a, b. The figure also
shows the the grounded version of this MLN, which
is an ordinary Markov network: the DB facts become
constraints on node values, and the clauses become
clique potentials.

Grounding a first-order program can be an expensive
operation. For a realistic hyperlink graph, a Markov
network with size even linear in the number of facts
in the database, |DB|, is impractically large for in-
ference. Superficially, it would seem that groundings
must inheritly be o(|DB|) for some programs: in the
example, for instance, the probability of aboutSport(x)
must depends to some extent on the entire hyperlink
graph (if it is fully connected). However, it also seems
intuitive that if we are interested in inferring infor-
mation about a specific page—say, the probability of

1This MLN does a very simple sort of label-propagation
through hyperlinks.

Programming with Personalized PageRank: A Locally Groundable First-Order Probabilistic Logic

aboutSport(d1)–then the parts of the network only dis-
tantly connected to d1 are likely to have a small in-
fluence. This suggests that an approximate grounding
strategy might be feasible, in which a query such as
aboutSport(d1) would be grounded by constructing a
small subgraph of the full network, followed by infer-
ence on this small “locally grounded” subgraph. Like-
wise, consider learning (e.g., from a set of queries Q
with their desired truth values). Learning might pro-
ceed by locally-grounding every query goal, allowing
learning to also take less than O(|DB|) time.

In this paper, we present a first-order probabilistic
language which is well-suited to approximate “local”
grounding. We present an extension to stochastic logic
programs (SLP) (Cussens, 2001) that is biased to-
wards short derivations, and show that this is related
to personalized PageRank (PPR) (Page et al., 1998;
Chakrabarti, 2007) on a linearized version of the proof
space. Based on the connection to PPR, we develop a
proveably-correct approximate inference scheme, and
an associated proveably-correct approximate ground-
ing scheme: specifically, we show that it is possible
to prove a query, or to build a graph which contains
the information necessary for weight-learning, in time
O(1

αε), where α is a reset parameter associated with
the bias towards short derivations, and ε is the worst-
case approximation error across all intermediate stages
of the proof. This means that both inference and learn-
ing can be approximated in time independent of the
size of the underlying database—a surprising and im-
portant result.

The ability to locally ground queries has another im-
portant consequence: it is possible to decompose the
problem of weight-learning to a number of moderate-
size subtasks (in fact, tasks of size O(1

αε) or less) which
are weakly coupled. Based on this we outline a par-
allelization scheme, which in our initial implementa-
tion provides a order-of-magnitude speedup in learning
time.

Below, we will first introduce our formalism, and then
describe our weight-learning algorithm. We will then
present experimental results on a prototypical infer-
ence task, and compare the scalability of our method
to Markov logic networks. We finally discuss related
work and conclude.

2. PROPPR

2.1. LOGIC PROGRAM INFERENCE AS
GRAPH SEARCH

We will now describe our “locally groundable” first-
order probabilistic language, which we call ProPPR.2

Inference for ProPPR is based on a personalized

2For Programming with Personalized PageRank.

Table 1. A simple program in ProPPR. See text for expla-
nation.

about(X,Z) :- handLabeled(X,Z) # base.
about(X,Z) :- sim(X,Y),about(Y,Z) # prop.
sim(X,Y) :- links(X,Y) # sim,link.
sim(X,Y) :-

hasWord(X,W),hasWord(Y,W),
linkedBy(X,Y,W) # sim,word.

linkedBy(X,Y,W) :- true # by(W).

PageRank process over the proof constructed by Pro-
log’s Selective Linear Definite (SLD) theorem-prover.
To define the semantics we will use notation from logic
programming (Lloyd). Let LP be a program which
contains a set of definite clauses c1, . . . , cn, and con-
sider a conjunctive query Q over the predicates ap-
pearing in LP . A traditional Prolog interpreter can
be viewed as having the following actions. First, con-
struct a “root vertex” v0 which is a pair (Q,Q) and add
it to an otherwise-empty graph G′Q,LP . (For brevity,

we will use drop the subscripts of G′ where possible.)
Then recursively add to G′ new vertices and edges as
follows: if u is a vertex of the form (Q, (R1, . . . , Rk)),
and c is a clause in LP of the form R′ ← S′1, . . . , S

′
`,

and R1 and R′ have a most general unifier θ =
mgu(R1, R

′), then add to G′ a new edge u→ v where
v = (Qθ, (S′1, . . . , S

′
`, R2, . . . , Rk)θ). Let us call Qθ

the transformed query and (S′1, . . . , S
′
`, R2, . . . , Rk)θ

the associated subgoal list.

G′ is often large or infinite so it is not constructed ex-
plicitly. Instead Prolog performs a depth-first search
on G′ to find the first solution vertex v—i.e., a ver-
tex with an empty subgoal list—and if one is found,
returns the transformed query from v as an answer
to Q. Table 1 and Figure 2 show a simple Prolog
program and a proof graph for it.3 Given the query
Q = about(a,Z), Prolog’s depth-first search would re-
turn Q = about(a,fashion).

Note that in this proof formulation, the nodes are con-
junctions of literals, and the structure is, in general, a
digraph (rather than a tree). Also note that the proof
is encoded as a graph, not a hypergraph, even if the
predicates in the LP are not binary: the edges repre-
sent a step in the proof that reduces one conjunction
to another, not a binary relation between entities.

2.2. FROM STOCHASTIC LOGIC
PROGRAMS TO PROPPR

In stochastic logic programs (SLPs) (Cussens, 2001),
one defines a randomized procedure for traversing the

3The annotations after the hashmarks and the edge
labels in the proof graph will be described below. For
conciseness, only R1, . . . , Rk is shown in each node u =
(Q, (R1, . . . , Rk)).

Programming with Personalized PageRank: A Locally Groundable First-Order Probabilistic Logic

Figure 2. A partial proof graph for the query about(a,Z). The upper right shows the link structure between documents
a, b, c, and d, and some of the words in the documents. Restart links are not shown.

graph G′ which thus defines a probability distribution
over vertices v, and hence (by selecting only solution
vertices) a distribution over transformed queries (i.e.
answers) Qθ. The randomized procedure thus pro-
duces a distribution over possible answers, which can
be tuned by learning to upweight desired (correct) an-
swers and downweight others.

In past work, the randomized traversal of G′ was de-
fined by a probabilistic choice, at each node, of which
clause to apply, based on a weight for each clause.
We propose two extensions. First, we will introduce a
new way of computing clause weights, which allows for
a potentially richer parameterization of the traversal
process. We will associate with each edge u→ v in the
graph a feature vector φu→v. This edge is produced
indirectly, by associating with every clause c ∈ LP a
function Φc(θ), which produces the φ associated with
an application of c using mgu θ. This feature vec-
tor is computed during theorem-proving, and used to
annotate the edge u→ v in G′ created by applying
c with mgu θ. Finally, an edge u→ v will be tra-
versed with probability Pr(v|u) ∝ f(w, φu→v) where
w is a parameter vector and where f(w, φ) is a weight-
ing function—e.g., f(w, φ) = exp(wi ·φ). This weight-
ing function now determines the probability of a tran-
sition, in theorem-proving, from u to v: specifically,
Prw(v|u) ∝ f(w, φu→v). Weights in w default to 1.0,
and learning consists of tuning these.

The second and more fundamental extension is to add
edges in G′ from every solution vertex to itself, and
also add an edge from every vertex to the start vertex
v0. We will call this augmented graph GQ,LP below
(or just G if the subscripts are clear from context).
These links make SLP’s graph traversal a personal-
ized PageRank (PPR) procedure, sometimes known as

random-walk-with-restart (Tong et al., 2006). These
links are annotated by another feature vector function
Φrestart(R), which is a applied of the leftmost literal
of the subgoal list for u to annotate the edge u→ v.

The results of short proofs are upweighted by these
links back to the start vertex, due to the bias from the
traversal of the proof graph. To see this, note that if
the restart probability P (v0|u) = α for every node u,
then the probability of reaching any node at depth d
is bounded by (1− α)d.

2.3. LOCALLY GROUNDING A QUERY

Note that this procedure both performs inference
(by computing a distribution over literals Qθ) and
“grounds” the query, by constructing a graph G.
ProPPR inference for this query can be re-done ef-
ficiently, by running an ordinary PPR process on G.
This is useful for faster weight learning. Unfortunately,
the grounding G can be very large: it need not include
the entire database, but if T is the number of iterations
until convergence for the sample program of Table 1
on the query Q = about(d, Y), G will include a node
for every page within T hyperlinks of d.

To construct a more compact local grounding graph
G, we adapt an approximate personalized PageR-
ank method called PageRank-Nibble (Andersen et al.,
2008). This method has been used for the problem of
local partitioning : in local partitioning, the goal is to
find a small, low-conductance4 component of a large
graph G that contains a given node v.

4For small subgraphs GS , conductance of GS is the ratio
of the weight of all edges exiting GS to the weight of all
edges incident on a node in GS .

Programming with Personalized PageRank: A Locally Groundable First-Order Probabilistic Logic

Following the proof technique of Andersen et al, it can
be shown that after each push, p + r = ppr(v0). It
is also clear than when PageRank-Nibble terminates,
then for any u, the error ppr(v0)[u]−p[u] is bounded

by εN(u): the number of edges in the graph Ĝ pro-
duced by PageRank-Nibble-Prove is no more than 1

α′ε .

Importantly, the bound holds independent of the size
of the full database of facts. The bound also holds re-
gardless of the size or loopiness of the full proof graph,
so this inference procedure will work for recursive logic
programs.

To summarize, we have outlined an efficient approxi-
mate proof procedure, which is closely related to per-
sonalized PageRank. As a side-effect of inference for
a query Q, this procedure will create a ground graph
ĜQ on which personalized PageRank can be run di-
rectly, without any (relatively expensive) manipula-
tion of first-order theorem-proving constructs such as
clauses or logical variables. As we will see, this “locally
grounded” graph will be very useful in learning weights
w to assign to the features of a ProPPR program.

As an illustration of the sorts of ProPPR programs
that are possible, some small sample programs are
shown in Figure 2. Clauses c1 and c2 are, together,
a bag-of-words classifier: each proof of predicted-
Class(D,Y) adds some evidence for D having class
Y , with the weight of this evidence depending on the
weight given to c2’s use in establishing related(w,y),
where w and y are a specific word in D and y is a
possible class label. In turn, c2’s weight depends on
the weight assigned to the r(w, y) feature by w, rela-
tive to the weight of the restart link.5 Adding c3 and
c4 to this program implements label propagation, and
adding c5 and c6 implements a sequential classifier.

In spite of its efficient inference procedure, and its lim-
itation to only definite clauses, ProPPR appears to
have much of the expressive power of MLNs (Domin-
gos & Lowd, 2009), in that many useful heuristics can
apparently be encoded.

2.4. LEARNING FOR PROPPR

As noted above, inference for a query Q in ProPPR
is based on a personalized PageRank process over the
graph associated with the SLD proof of a query goal
G. More specifically, the edges u→ v of the graph
G are annotated with feature vectors φu→v, and from
these feature vectors, weights are computed using a
parameter vector w, and finally normalized to form a
probability distribution over the neighbors of u. The
“grounded” version of inference is thus a personalized

5The existence of the restart link thus has another im-
portant role in this program, as it avoids a sort of “label
bias problem” in which local decisions are difficult to ad-
just.

PageRank process over a graph with feature-vector an-
notated edges.

In prior work, Backstrom and Leskovic (Backstrom
et al., 2006) outlined a family of supervised learn-
ing procedures for this sort of annotated graph. To
optimize this loss, we use stochastic gradient descent
(SGD), rather than the quasi-Newton method of Back-
strom and Leskovic.

We implemented SGD because it is fast and has been
adapted to parallel learning tasks (Zinkevich et al.,
2010; Niu et al., 2011b). Local grounding means
that learning for ProPPR is quite well-suited to par-
allelization. The step of locally grounding each Qi
is “embarassingly” parallel, as every grounding can be
done independently. To parallelize the weight-learning
stage, we use multiple threads, each of which computes
the gradient over a single grounding ĜQk , and all of
which accesses a single shared parameter vector w.
Although the shared parameter vector is a potential
bottleneck (Zinkevich et al., 2009), it is not a severe
one, as the gradient computation dominates the learn-
ing cost.6

3. EXPERIMENTS

3.1. Entity Resolution

To evaluate this method, we use data from an entity
resolution task previously studied as a test case for
MLNs (Singla & Domingos, 2006a). The program we
used is approximately the same as the MLN(B+T)
approach from Singla and Domingos.7 To evaluate ac-
curacy, we use the CORA dataset, a collection of 1295
bibliography citations that refer to 132 distinct papers.
Throughout the experiments, we set the regularization
coefficient µ to 0.001, the total number of epochs to
5, and learning rate parameter η to 1. A standard log
loss function was used in our objective function.

While the speedup in inference time is desirable, the
more important advantages of the local grounding ap-
proach are that (1) grounding time, and hence infer-
ence, need not grow with the database size and (2)
learning can be performed in parallel, by using mul-
tiple threads for parallel computations of gradients
in SGD. Figure 3 illustrates the first of these points:
the scalability of the PageRank-Nibble-Prove method
as database size increases. For comparison, we also
show the inference time for MLNs with three well-
published inference methods: Gibbs refers to Gibbs
sampling, and Lifted BP is the lifted belief propaga-
tion method. We also compare with the maximum a
posteriori (MAP) inference approach, which does not

6This is not the case when learning a linear classifier,
where gradient computations are much cheaper.

7The principle difference is that we do not include tests
on the absence of words in a field in our clauses.

Programming with Personalized PageRank: A Locally Groundable First-Order Probabilistic Logic

Table 2. Some more sample ProPPR programs. LP = {c1, c2} is a bag-of-words classifier (see text). LP = {c1, c2, c3, c4} is
a recursive label-propagation scheme, in which predicted labels for one document are assigned to similar documents, with
similarity being an (untrained) cosine distance-like measure. LP = {c1, c2, c5, c6} is a sequential classifier for document
sequences.

c1: predictedClass(Doc,Y) :-
possibleClass(Y),
hasWord(Doc,W),
related(W,Y) # c1.

c2: related(W,Y) :- true
relatedFeature(W,Y)

Database predicates:
hasWord(D,W): doc D contains word W
inDoc(W,D): doc D contains word W
previous(D1,D2): doc D2 precedes D1
possibleClass(Y): Y is a class label

c3: predictedClass(Doc,Y) :-
similar(Doc,OtherDoc),
predictedClass(OtherDoc,Y) # c3.

c4 : similar(Doc1,Doc2) :-
hasWord(Doc1,W),
inDoc(W,Doc2) # c4.

c5 : predictedClass(Doc,Y) :-
previous(Doc,OtherDoc),
predictedClass(OtherDoc,OtherY),
transition(OtherY,Y) # c5.

c6: transition(Y1,Y2) :- true
transitionFeature(Y1,Y2)

Figure 3. Run-time for inference in ProPPR (with a sin-
gle thread) as a function of the number of entities in the
database. The base of the log is 2.

return probabilistic estimates of the specified queries.
In each case the performance task is inference over 16
test queries.

Note that ProPPR’s runtime is constant, independent
of the database size: it takes essentially the same time
for 28 = 256 entities as for 24 = 16. In contrast, lifted
belief propagation is around 1000 times slower on the
larger database.

The results in Table 3 all use the same data and
evaluation procedure, and the MLNs were trained
with the state-of-the-art Alchemy system using the
recommended commands for this data (which is dis-

Table 3. AUC results on CORA citation-matching.

Cites Authors Venues Titles
MLN(Fig 1) 0.513 0.532 0.602 0.544
MLN(S&D) 0.520 0.573 0.627 0.629
ProPPR(w=1) 0.680 0.836 0.860 0.908
ProPPR 0.800 0.840 0.869 0.900

tributed with Alchemy8). However, we should note
that the MLN results reproduced here are not iden-
tical to previous-reported ones (Singla & Domingos,
2006a). Singla and Domingos used a number of com-
plex heuristics that are difficult to reproduce—e.g.,
one of these was combining MLNs with a heuristic,
TFIDF-based matching procedure based on canopies
(McCallum et al., 2000). While the trained ProPPR
model outperformed the reproduced MLN model in all
prediction tasks, it outperforms the reported results
from Singla and Domingos only on venue, and does
less well than the reported results on citation and au-
thor9.

3.2. Joint Inference for Link Prediction

In addition to the entity resolution task, we also in-
vestigate our approach for joint inference in a link
(relation) prediction problem. To do this, we use a
subset of 19,527 beliefs from a knowledge base, which
is extracted imperfectly from the web by NELL, a
never-ending language learner (Carlson et al., 2010).
The training set contains 12,331 queries, and the test

8http://alchemy.cs.washington.edu
9Performance on title matching is not reported by

Singla and Domingos.

Programming with Personalized PageRank: A Locally Groundable First-Order Probabilistic Logic

Table 4. AUC results on the NELL link prediction task.

AUC
ProPPR(Non-recursive PRA rules) 0.858
ProPPR(Recursive PRA rules) 0.916

set contains 1,185 queries. In contrast to a previ-
ous approach (Lao et al., 2011) for link prediction, we
combine the learned top-ranked paths (Lao & Cohen,
2010) from the NELL relational network, and tranform
these paths as ProPPR programs, then perform joint
inference to predict the link between entities. In this
experiment, our goal is to answer the following ques-
tion: can we use ProPPR to perform joint inference to
improve the performance of a link prediction task on
a relational knowledge base?

The results on the NELL link-prediction task is shown
in Table 4. We observe that when not performing joint
inference with the learned top-ranked paths, ProPPR
obtains an AUC of 0.858. However, when using these
rules for joint learning, we observe an AUC of 0.916
when using the ProPPR. The total time for joint in-
ference with 797 rules takes only 13 minutes.

4. RELATED WORK

Although we have chosen here to compare experimen-
tally to MLNs (Richardson & Domingos, 2006; Singla
& Domingos, 2006a), ProPPR represents a rather dif-
ferent philosophy toward language design: rather than
beginning with a highly-expressive but intractible log-
ical core, we begin with a limited logical inference
scheme and add to it a minimal set of extensions that
allow probabilistic reasoning, while maintaining sta-
ble, efficient inference and learning. While ProPPR is
less expressive than MLNs (for instance, it is limited
to definite clause theories) it is also much more effi-
cient. This philosophy is similar to that illustrated by
probabilistic similarity logic (PSL) (Brocheler et al.,
2012); however, unlike ProPPR, PSL does not include
a “local” grounding procedure, which leads to small
inference problems, even for large databases.

Technically, ProPPR is most similar to stochastic logic
programs (SLPs) (Cussens, 2001). The key innovation
is the integration of a restart into the random-walk
process, which, as we have seen, leads to very differ-
ent computational properties. More broadly speaking,
ProPPR also relates to the prior work on probabilistic
theorem proving (e.g. (Gogate & Domingos, 2011)).

There has been some prior work on reducing the cost
of grounding probabilistic logics: noteably, Shavlik et
al (Shavlik & Natarajan, 2009) describe a preprocess-
ing algorithm called FROG that uses various heuristics
to greatly reduce grounding size and inference cost,
and Niu et al (Niu et al., 2011a) describe a more ef-

ficient bottom-up grounding procedure that uses an
RDBMS. Other methods that reduce grounding cost
and memory usage include “lifted” inference methods
(e.g., (Singla & Domingos, 2008; Van den Broeck et al.,
2011; 2012; Venugopal & Gogate, 2012)) and “lazy”
inference methods (e.g., (Singla & Domingos, 2006b));
in fact, the LazySAT inference scheme for Markov net-
works is broadly similar algorithmically to PageRank-
Nibble-Prove, in that it incrementally extends a net-
work in the course of theorem-proving. However, there
is no theoretical analysis of the complexity of these
methods, and experiments with FROG and LazySAT
suggest that they still lead to a groundings that grow
with DB size, albeit more slowly. Our work also aligns
with the lifted personalized PageRank approach (Ah-
madi et al., 2011), which constructs a network of lifted
supernodes and superpotentials of indistinguishable
nodes to improve the efficiency of inference in graphi-
cal models.

ProPPR is also closely related to the Path Ranking
Algorithm (PRA), learning algorithm for link predic-
tion (Lao & Cohen, 2010). Like ProPPR, PRA uses
random-walk methods to approximate logical infer-
ence. However, the set of “inference rules” learned
by PRA corresponds roughly to a logic program in a
particular form—namely, the form

p(S, T)← r1,1S,X1), . . . , r1,k1(Xk1−1, T).
p(S, T)← r2,1(S,X1), . . . , r2,k2(Xk2−1, T).
...

ProPPR allows much more general logic programs.
However, unlike PRA, we do not consider the task of
searching for new logic program clauses.

5. CONCLUSIONS

We described a new probabilistic first-order language
which is designed with the goal of highly efficient infer-
ence and rapid learning. ProPPR takes Prolog’s SLD
theorem-proving, extends it with a probabilistic proof
procedure, and then limits this procedure further, by
including a “restart” step which biases the system to
short proofs. This means that ProPPR has a simple
polynomial-time proof procedure, based on the well-
studied personalized PageRank (PPR) method.

Following prior work on PPR-like methods, we de-
signed a local grounding procedure for ProPPR, based
on local partitioning methods (Andersen et al., 2008),
which leads to an inference scheme that is an order of
magnitude faster that the conventional power-iteration
approach to computing PPR, takes time O(1

εα′), in-
dependent of database size. This ability to “locally
ground” a query also makes it possible to partition
the weight learning task into many separate gradient
computations, one for each training example, leading

Programming with Personalized PageRank: A Locally Groundable First-Order Probabilistic Logic

to a weight-learning method that can be easily paral-
lelized. Experimentally, we showed that ProPPR per-
forms well, even without weight learning, on an entity
resolution task, and that supervised weight-learning
improves accuracy. We also investigated how ProPPR
can be used to perform joint inference and improve the
performance in a link prediction task. A longer version
of this extended abstract can be found on arXiv (Wang
et al., 2013).

References

Ahmadi, Babak, Kersting, Kristian, and Sanner,
Scott. Multi-evidence lifted message passing, with
application to pagerank and the kalman filter.
In Proceedings of the Twenty-Second international
joint conference on Artificial Intelligence-Volume
Volume Two, pp. 1152–1158. AAAI Press, 2011.

Andersen, Reid, Chung, Fan R. K., and Lang, Kevin J.
Local partitioning for directed graphs using pager-
ank. Internet Mathematics, 5(1):3–22, 2008.

Backstrom, Lars, Huttenlocher, Dan, Kleinberg, Jon,
and Lan, Xiangyang. Group formation in large
social networks: membership, growth, and evolu-
tion. In KDD ’06: Proceedings of the 12th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pp. 44–54, New York,
NY, USA, 2006. ACM. ISBN 1-59593-339-5. doi:
http://doi.acm.org/10.1145/1150402.1150412.

Brocheler, Matthias, Mihalkova, Lilyana, and Getoor,
Lise. Probabilistic similarity logic. arXiv preprint
arXiv:1203.3469, 2012.

Carlson, Andrew, Betteridge, Justin, Kisiel, Bryan,
Settles, Burr, Jr., Estevam R. Hruschka, and
Mitchell, Tom M. Toward an architecture for never-
ending language learning. In Fox, Maria and Poole,
David (eds.), AAAI. AAAI Press, 2010.

Chakrabarti, Soumen. Dynamic personalized PageR-
ank in entity-relation graphs. In WWW ’07: Pro-
ceedings of the 16th international conference on
World Wide Web, pp. 571–580, New York, NY,
USA, 2007. ACM Press. ISBN 978-1-59593-654-7.
doi: http://doi.acm.org/10.1145/1242572.1242650.

Cussens, James. Parameter estimation in stochastic
logic programs. Machine Learning, 44(3):245–271,
2001.

Domingos, Pedro and Lowd, Daniel. Markov Logic: An
Interface Layer for Artificial Intelligence. Synthe-
sis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers, 2009.

Gogate, Vibhav and Domingos, Pedro. Probabilistic
theorem proving. Proceedings of the 27th Confer-
ence on Uncertainty in Artificial Intelligence (UAI),
2011.

Lao, Ni and Cohen, William W. Relational retrieval
using a combination of path-constrained random
walks. Machine Learning, 81(1):53–67, 2010.

Lao, Ni, Mitchell, Tom M., and Cohen, William W.
Random walk inference and learning in a large scale
knowledge base. In EMNLP, pp. 529–539. ACL,
2011. ISBN 978-1-937284-11-4.

Lloyd, J. W. Foundations of Logic Programming: Sec-
ond Edition. Springer-Verlag, 1987.

McCallum, Andrew, Nigam, Kamal, and Ungar,
Lyle H. Efficient clustering of high-dimensional data
sets with application to reference matching. In
Knowledge Discovery and Data Mining, pp. 169–
178, 2000. URL citeseer.nj.nec.com/article/
mccallum00efficient.html.

Niu, Feng, Ré, Christopher, Doan, AnHai, and Shav-
lik, Jude. Tuffy: Scaling up statistical inference in
markov logic networks using an RDBMS. Proceed-
ings of the VLDB Endowment, 4(6):373–384, 2011a.

Niu, Feng, Recht, Benjamin, Ré, Christopher, and
Wright, Stephen J. Hogwild!: A lock-free approach
to parallelizing stochastic gradient descent. arXiv
preprint arXiv:1106.5730, 2011b.

Page, Larry, Brin, Sergey, Motwani, R., and Wino-
grad, T. The PageRank citation ranking: Bringing
order to the web. In Technical Report, Computer
Science department, Stanford University, 1998.

Richardson, Matthew and Domingos, Pedro. Markov
logic networks. Mach. Learn., 62(1-2):107–136,
2006. ISSN 0885-6125. doi: http://dx.doi.org/10.
1007/s10994-006-5833-1.

Shavlik, Jude and Natarajan, Sriraam. Speeding up
inference in markov logic networks by preprocess-
ing to reduce the size of the resulting grounded
network. In Proceedings of the Twenty-first Inter-
national Joint Conference on Artificial Intelligence
(IJCAI-09), 2009.

Singla, Parag and Domingos, Pedro. Entity resolu-
tion with markov logic. In Data Mining, 2006.
ICDM’06. Sixth International Conference on, pp.
572–582. IEEE, 2006a.

Singla, Parag and Domingos, Pedro. Memory-efficient
inference in relational domains. In Proceedings of the
national conference on Artificial intelligence, vol-
ume 21, pp. 488. Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999, 2006b.

citeseer.nj.nec.com/article/mccallum00efficient.html
citeseer.nj.nec.com/article/mccallum00efficient.html

Programming with Personalized PageRank: A Locally Groundable First-Order Probabilistic Logic

Singla, Parag and Domingos, Pedro. Lifted first-order
belief propagation. In Proceedings of the 23rd na-
tional conference on Artificial intelligence, volume 2,
pp. 1094–1099, 2008.

Tong, Hanghang, Faloutsos, Christos, and Pan, Jia-
Yu. Fast random walk with restart and its appli-
cations. In ICDM, pp. 613–622. IEEE Computer
Society, 2006.

Van den Broeck, Guy, Taghipour, Nima, Meert,
Wannes, Davis, Jesse, and De Raedt, Luc. Lifted
probabilistic inference by first-order knowledge com-
pilation. In Proceedings of the Twenty-Second inter-
national joint conference on Artificial Intelligence-
Volume Volume Three, pp. 2178–2185. AAAI Press,
2011.

Van den Broeck, Guy, Choi, Arthur, and Darwiche,
Adnan. Lifted relax, compensate and then recover:
From approximate to exact lifted probabilistic in-
ference. In Proceedings of the 28th Conference on
Uncertainty in Artificial Intelligence (UAI), 2012.

Venugopal, Deepak and Gogate, Vibhav. On lifting
the gibbs sampling algorithm. In Advances in Neural
Information Processing Systems 25, pp. 1664–1672,
2012.

Wang, William Yang, Mazaitis, Kathryn, and Cohen,
William W. Programming with personalized pager-
ank: A locally groundable first-order probabilistic
logic. arXiv preprint arXiv:1305.2254, 2013.

Zinkevich, Martin, Smola, Alex, and Langford, John.
Slow learners are fast. Advances in Neural Informa-
tion Processing Systems, 22:2331–2339, 2009.

Zinkevich, Martin, Weimer, Markus, Smola, Alex,
and Li, Lihong. Parallelized stochastic gradient de-
scent. Advances in Neural Information Processing
Systems, 23(23):1–9, 2010.

