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Abstract
We consider test-time adaptation (TTA), the task
of adapting a trained model to an arbitrary test do-
main using unlabeled input data on-the-fly during
testing. A common practice of TTA is to disre-
gard data used in training due to large memory
demand and privacy leakage. However, the train-
ing data are the only source of supervision. This
motivates us to investigate a proper way of using
them while minimizing the side effects. To this
end, we propose two lightweight yet informative
proxies of the training data and a TTA method
fully exploiting them. One of the proxies is com-
posed of a small number of images synthesized
(hence, less privacy-sensitive) by data condensa-
tion which minimizes their domain-specificity to
capture a general underlying structure over a wide
spectrum of domains. Then, in TTA, they are
translated into labeled test data by stylizing them
to match styles of unlabeled test samples. This en-
ables virtually supervised test-time training. The
other proxy is inter-class relations of training data,
which are transferred to target model during TTA.
On four public benchmarks, our method outper-
forms the state-of-the-art ones at remarkably less
computation and memory.

1. Introduction
Supervised learning with large-scale training data has driven
remarkable improvement in a variety of machine learning
tasks. In spite of its great success, however, it often suf-
fers from limited generalization performance due to the
distribution shift between training and test data (Long et al.,
2015; Ganin & Lempitsky, 2015; Li et al., 2017; Dai &
Van Gool, 2018; Hendrycks & Dietterich, 2019). In real-
world deployment, such a distribution shift is inevitable
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Figure 1. An overview of our test-time adaptation (TTA) frame-
work. Before TTA, it (1) condenses training data into a tiny number
of synthetic images and (2) extracts inter-class relations the train-
ing data exhibit. During TTA, the condensed data are used as
labeled data for test-time training and the inter-class relations are
used to regularize predictions of the model.

since it is practically impossible to collect and annotate data
for all possible environments in advance of training. A large
body of research has alleviated the distribution shift prob-
lem via domain adaptation and generalization. Although
they have provided impressive performance gain on realistic
benchmarks, there is still a large gap between their prob-
lem settings and practical application scenarios: Domain
adaptation relies on an impractical assumption that test do-
main data are available in training (Long et al., 2015; Sun
& Saenko, 2016; Tzeng et al., 2017; Ganin & Lempitsky,
2015; Tsai et al., 2018; Chang et al., 2019), and domain
generalization does not exploit test data at all although they
are available in testing (Muandet et al., 2013; Li et al., 2017;
Huang et al., 2020; Iwasawa & Matsuo, 2021; Choi et al.,
2021; Shi et al., 2021; Kang et al., 2022).

To address these limitations of domain adaptation and gen-
eralization, test-time adaptation (TTA) has been proposed
recently (Sun et al., 2020; Liu et al., 2021; Sarkar et al.,
2022; Wang et al., 2021; Iwasawa & Matsuo, 2021; Wang
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et al., 2022b; Chen et al., 2022; Boudiaf et al., 2022; Shin
et al., 2022). The goal of TTA is to adapt a trained model
to the test domain using unlabeled input data during testing,
and a convention in the literature is to disregard training data
in that adaptation process. This practice makes sense since
it is usually impractical to distribute a model along with
training data whose scale is prohibitively vast in these days.
Also, distributing raw training data may lead to privacy leak-
age issues when the data contain critical private information.
Nevertheless, we believe the practice limits further improve-
ment of TTA since it ignores the only source of supervision.
The adaptation process using only unlabeled test data could
be unreliable or even deteriorate performance due to the
absence of accurate supervision incurring confirmation bias
towards inaccurate predictions.

Motivated by this, we propose a new TTA method using
proxy of training data without the side effects, i.e., memory
footprint and privacy leakage. Two types of the proxy in our
method are illustrated in Figure 1. The first proxy is a tiny
set of condensed training data for supervised test-time train-
ing. Before TTA, training data are condensed into a small
number of synthetic images that are less domain-specific
and loose private information as well as capturing as much
information of the entire dataset as possible. During TTA,
the condensed images are used as labeled (synthetic) test
data for test-time training, which demands only small com-
putation and memory while alleviating the privacy leakage
issue thanks to the condensation. Furthermore, to close the
domain gap between the condensed and test images, neu-
ral styles of the condensed images are replaced with those
of test images in a feature space on the fly, which gives
illusions of test images with ground-truth labels.

The second proxy is inter-class similarity relations extracted
from training data in advance and transferred to the target
model during TTA. Unlike individual features or classes,
pairwise relations between classes are less sensitive to do-
main shifts and thus well-transferable (Park et al., 2019;
Seo et al., 2021). Based on this observation, we propose a
new variant of knowledge distillation, dubbed class-relation
knowledge distillation (CRKD). CRKD forces inter-class
similarities estimated in the test domain to approximate
those of training data. Since the inter-class similarities are
highly abstract, CRKD demands negligible memory and
does not transfer private information of training data.

It is worthy to note that, thanks to the effective use of train-
ing data through the proxies, our work demands substan-
tially less computation and memory than the state-of-the-art
techniques using no training data (Wang et al., 2022b; Chen
et al., 2022) as well as surpassing their performance as de-
mosntrated in Figure 2. Regarding that models are often
deployed in systems with limited computing power and
memory for testing, such efficiency is of great importance
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Figure 2. Performance comparison in accuracy, computational
cost, and memory requirement. The memory size is either the
size of the momentum network or the amount of condensed data
required by each method. The subscript of ‘Ours’ indicates the
number of condensed images per class. Our method clearly out-
performed the state of the art (AdaContrast and CoTTA) with 4.28
times and 116.7 times less memory footprint on VisDA-C and
CIFAR10-C, respectively.

in practical TTA scenarios. Moreover, the efficiency of our
method suggests that it successfully resolves the main objec-
tion to the use of training data for TTA (Wang et al., 2021).
The major contribution of this paper is four-fold:

• We present the first attempt to utilize lightweight and
informative proxies of training data for TTA without
large memory demand or leaking privacy.

• We design a dataset condensation technique dedicated to
TTA. Unlike conventional methods, it aims to generate
synthetic images which loose privacy information of
training data and whose styles are well replaced with
those of test data on the fly.

• We propose CRKD, a knowledge distillation technique
dedicated to TTA. CRKD extracts and transfers inter-
class relations of training data, which are insensitive to
domain shifts and do not hold private information.

• Our method outperformed every prior art on four TTA
benchmarks. Moreover, it demands less computation
and memory footprint than the state-of-the-art methods.

Limitation: First, it is not straightforward to apply our
method to large-scale datasets due to the complexity of
dataset condensation that quickly increases as the number
of images and that of pretrained classes increas. We an-
ticipate this issue will be resolved by advances in dataset
condensation and development of deep learning hardwares.
Second, ours cannot be applied when training data of the
model in hand are latent. However, we believe this is an
unusual case since most of publicly available models were
trained on public datasets, and commercial providers have
no reason not to distribute proxies of training data that are
cheap and expected to prevent privacy leakage.
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2. Related work
2.1. Test-time adaptation

Early approaches to TTA has been frequently addressed
by self-supervised learning (SSL) on unlabeled test data.
The method of Sun et al. (2020) relies on a proxy task
of predicting the type of image rotation, but this uncon-
strained self-supervised adaptation could be easily overfitted
to the auxiliary task. To resolve this issue, Liu et al. (2021)
aligned test features by minimizing the distance between
feature statistics of training and test domains, and Sarkar
et al. (2022) proposed a consensus prediction strategy. All
of these methods alter training process and/or model archi-
tecture for learning with the auxiliary SSL tasks.

On the other hand, Wang et al. (2021) proposed a fully
test-time adaptation method with no such alteration by min-
imizing the prediction entropy for test data. Also, Iwasawa
& Matsuo (2021) adapted a model to test samples in a do-
main generalization setting through a backpropagation-free
adaptation method. They modify only the linear classi-
fier and classify each sample based on its distance to the
pseudo-prototypes. Also, Boudiaf et al. (2022) employed a
parameter-free method for TTA by modifying output prob-
abilities of the classifier. Meanwhile, recent studies on
TTA for single instance (Khurana et al., 2021; Zou et al.,
2022) have also been proposed, assuming a realistic scenario
where on-demand inference is demanded. Other recent stud-
ies (Chen et al., 2022; Wang et al., 2022b) adopt momentum
encoders for accurate pseudo labeling of test data, but the
encoders require nontrivial memory overhead additionally.

Our method adapts any pretrained model to test data with-
out such heavy auxiliary modules where all test data are
streamed sequentially. More importantly, unlike all the
previous work, it is designed to utilize training data in an
efficient, effective, and privacy-preserving manner.

2.2. Neural style representation

Gatys et al. (2016) demonstrated that statistics of convo-
lutional features capture the style of an image. Ulyanov
et al. (2017) introduced instance normalization (IN) for im-
age stylization, and thereafter IN has been used also for
normalizing image styles (Nam & Kim, 2018; Dumoulin
et al., 2017; Lee et al., 2022a). AdaIN (Huang & Belongie,
2017) transfers channel-wise mean and standard deviation
of convolutional features for neural style transfer. Recent
studies on domain generalization (Nam et al., 2019; Kim
et al., 2021; Zhou et al., 2021; Kang et al., 2022) have used
these style representation schemes under the assumption
that a visual domain is characterized by styles of its images.

Our strategy for test-style injection to condensed training
data is motivated by these methods. It is the first attempt to
exploit test style representation for TTA and to investigate

the impact of style injection on the use of condensed images.

2.3. Dataset condensation

Dataset condensation aims to synthesize a small set of
informative data so that a network trained on them can
achieve comparable performance to one trained with the
original training dataset. Wang et al. (2018) introduced a
meta-learning method considering condensed data as learn-
able parameters and optimize network parameters and the
condensed data alternatively. Recently, gradient match-
ing (Zhao et al., 2021; Cazenavette et al., 2022; Lee et al.,
2022b) and distribution matching (Zhao & Bilen, 2021;
Wang et al., 2022a) have been studied for the purpose.

We for the first time introduce data condensation for TTA
to enable supervised test-time training with a small set of
condensed training data, demanding only affordable compu-
tation and memory footprint.

2.4. Rehearsal-based learning

Catastrophic forgetting has been a chronic issue in continual
learning, and regarding TTA as a combination of continual
learning and unsupervised domain adaptation, it can deteri-
orate TTA performance too. One popular way of alleviating
this issue is to replay memory of a few samples of the previ-
ous task (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017;
Chaudhry et al., 2019; Guo et al., 2020), which is called
rehearsal-based learning. For example, GEM (Lopez-Paz &
Ranzato, 2017) and A-GEM (Chaudhry et al., 2019) keep
losses of examples stored in episodic memory low enough,
and MEGA (Guo et al., 2020) generalizes the memory-based
methods by novel loss-balancing updating rules.

Motivated by these methods, our work stores and replays
condensed training data to prevent the model from being
degraded by unlabeled test data in TTA.

2.5. Knowledge distillation

Knowledge distillation (KD) aims at transferring knowl-
edge of a model (teacher) to another model (student), and
has been employed for model compression and regulariza-
tion (Ba & Caruana, 2014; Romero et al., 2014; Hinton
et al., 2014; Zagoruyko & Komodakis, 2017; Yim et al.,
2017; Polino et al., 2018; Crowley et al., 2018; Park et al.,
2019; Nayak et al., 2019). By mimicking the teacher model,
the student model can effectively learn semantic similarity
between categories from the teacher.

Motivated by these methods, we propose to transfer inter-
class relations as knowledge of training data. Since inter-
class relations are highly abstract and less domain-sensitive,
they are well transferred, demand only a tiny amount of
memory, and do not raise privacy issues.
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3. Method
Our method consists of two parts: (i) dataset condensation
(DC) to synthesize a proxy of the training data in advance
of TTA, and (ii) test-time adaptation (TTA) to adjust the
target model with virtual supervision from converting the
proxy into the test domain style. The synthesized proxy
is lightweight as it consists of only a few synthetic data,
and would raise fewer privacy concerns than raw training
data. Especially, neural styles of test data are injected into
the condensed ones on-the-fly in a feature level so that
they behave like test domain data with ground truth labels.
To this end, our condensation method aims to synthesize
images that are appropriate for style injection as well as
preserving as much information of the entire training dataset
as possible. In addition, our method extracts the inter-class
similarities learned from training data as the second proxy
and forces such similarities estimated in the test domain
to approximate those of training data. These two different
proxies of training data demand only a small amount of
additional memory and prevent privacy leakage.

The remainder of this section presents details of our dataset
condensation method (Section 3.1) and our TTA framework
using the proxies of training data (Section 3.2).

3.1. Style-normalized dataset condensation

Following recent DC approaches (Zhao & Bilen, 2021;
Wang et al., 2022a), we synthesize a tiny set of condensed
images by matching feature distributions of training and
condensed data. In addition, our method has two distinctive
features dedicated to TTA. First, since a pretrained network
is employed and adapted during testing in TTA, we uti-
lize a fixed pretrained network as the feature extractor for
DC unlike conventional methods accompanying randomly
initialized networks. Second, we aim to build condensed
images preserving style-normalized contents of training data
so that the condensed images become less domain-specific
and better simulate test data when test styles are injected.

To be specific, the condensed images are optimized by
minimizing the empirical estimate of the maximum mean
discrepancy (Zhao & Bilen, 2021) between the style-
normalized feature distribution of real training data and
the feature distribution of condensed ones for each class;
the discrepancy is measured on the embedding space of a
pretrained model. Let f := f3 ◦ f2 ◦ f1 be the pretrained
network comprising three parts, lower part of encoder f1,
upper part of encoder f2, and classifier f3, as shown in
Figure 3. We sample a batch of real training data Bc and
that of condensed data B̄c for every class c, and motivated
by recent work on style transfer (Huang & Belongie, 2017;
Gatys et al., 2016), apply instance normalization only for
Bc to the output of f1 to obtain style-normalized features

of training data. Hence, our loss for DC is given by

LDC =

C∑
c=1

∥∥∥∥ 1

|Bc|
∑
x∈Bc

f2 ◦ IN ◦ f1(x)−
1

|B̄c|
∑
x̄∈B̄c

f2 ◦ f1(x̄)
∥∥∥∥2,
(1)

where C indicates the number of classes and IN stands for
the instance normalization.

To be more specific, the instance normalization aims to
remove domain characteristics of an image in a feature
space so that the condensed data simulate a domain-invariant
version of the training set. This approach is motivated by the
fact that a visual domain has been characterized by styles
of images in that domain and global statistics of low-level
features have been widely used as style descriptors (Huang
& Belongie, 2017; Zhou et al., 2021; Kang et al., 2022).

3.2. Test-time adaptation using proxies of training data

Our adaptation framework utilizes knowledge of training
data in two different ways. First, the condensed data whose
neural styles are replaced by those of test samples are used
for supervised learning. Second, inter-class relations learned
from training data are transferred to predictions for test data.
An overview of our framework is illustrated in Figure 3, and
its details are presented in the remainder of this section.

3.2.1. SUPERVISED LEARNING WITH CONDENSED DATA

We propose to use a few condensed training data for facilitat-
ing TTA by preventing confirmation bias due to inaccurate
supervision for unlabeled test data. A challenge lying in
this direction is the distribution gap between training and
test domains; using the condensed training data as-is for
supervised learning may hinder the adaptation towards the
test distribution due to the domain gap.

In order to effectively utilize the condensed data, we propose
to inject neural styles of test data into them during TTA,
which helps mitigate the distribution shift. Specifically,
Huang & Belongie (2017) demonstrated that the style of
an image can be represented by feature statistics of the
image and be transferred to another image by replacing such
statistics. Following previous work (Huang & Belongie,
2017; Zhou et al., 2021), we regard the channel-wise mean
µ(Z) ∈ RC and standard deviation σ(Z) ∈ RC of a low-
layer feature map Z = f1(x) ∈ RC×H×W as the style of
the data point x, and extract them as follows:

µ(Z) =
1

HW

H∑
h=1

W∑
w=1

Z:,h,w, (2)
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Figure 3. The overall architecture and training objectives of the proposed model. Condensed examples of training data are stylized by
input test examples, and used for supervised test-time training with their labels (Lsup). They are also used for contrastive learning so as to
reduce the discrepancy between test-stylized condensed data and test data on a feature space (Lcontra). Meanwhile, inter-class relations of
training data are used to regularize predictions for test examples through class-relation knowledge distillation so that inter-class relations
of the predictions well approximate those of training data (LCRKD). Finally, we apply consistency regularization with augmented test
examples to further boost performance by directly exploiting unlabeled test example for TTA (LFixMatch).

σ(Z) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(Z:,h,w − µ(Z))
2
, (3)

where H and W denote height and width of the feature map,
respectively. After that, the neural styles of the condensed
images are replaced with those of test images through test
stylization function ST(·) inspired by AdaIN (Huang & Be-
longie, 2017). Given the intermediate feature map of a
condensed image denoted by Y = f1(x̄), its test stylization
is conducted by

ST(Y) = σ(Z)
Y − µ(Y)

σ(Y)
+ µ(Z), (4)

where Z is a low-layer feature map of a randomly sampled
test example.

Since it has been known that the content of an image is well
preserved after such a stylization (Huang & Belongie, 2017;
Zhou et al., 2021), the condensed data with styles of test
data are supposed to still preserve their contents (i.e., class
labels). Thus, we use them for learning by minimizing the
cross entropy loss:

Lsup =
∑
i

CE
(
yi, f3 ◦ f2 ◦ ST ◦ f1(x̄i)

)
, (5)

where x̄i is a condensed image and yi is its class label.

In addition to the cross entropy loss, we also adopt con-
trastive learning to reduce the representation discrepancy
between test-stylized condensed data and test data. To
this end, we first get a pseudo label ŷi = argmax f(xi)

for a test sample xi. Then, the supervised contrastive
loss (Khosla et al., 2020) is applied to each test feature
qi = g ◦ f2 ◦ f1(xi) and stylized condensed data features
kj = g ◦ f2 ◦ ST ◦ f1(x̄j), where g stands for a projection
module, by discriminating positives and negatives deter-
mined by ŷi. Specifically, the loss is given by

Lcontra = −
∑
i

1

|K+
i |

∑
kl∈K+

i

log
exp(qi

⊤kl/τ1)∑
j exp(q

⊤
i kj/τ1)

, (6)

where K+
i is the set of positives for i-th test sample and τ1

is a temperature parameter. This loss encourages aligning
features of the same class closely regardless of data types.

3.2.2. CLASS-RELATION KNOWLEDGE DISTILLATION

As another approach to leverage training data, we propose
a knowledge distillation technique encouraging inter-class
relations to be consistent between training and test domains.
We believe that this approach is effective for TTA since, al-
though low-level features or styles of an image such as color
or texture vary substantially by domain shift, high-level se-
mantics like inter-class relations usually remain consistent
across different domains. Our method, called class-relation
knowledge distillation (CRKD), transfers the mutual rela-
tions of classes learned in training domain to test domain.

When estimating inter-class relations of training data, we
consider the k-th row of the weight matrix of the pretrained
classifier as a template of class k. Let tk denotes such a tem-
plate for class k. Then the semantic affinity between classes
k and k′ is estimated as the similarity between their tem-
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plates tk and tk′ . The inter-class relation is thus computed
in a form of a similarity matrix as follows:

[M]k,k′ =
t⊤k tk′

∥tk∥∥tk′∥
. (7)

The k-th row vector of the matrix, Mk,:, represents the
similarities of class k with all the classes. Note that M is
data-free knowledge derived from weight parameters of the
pretrained model without either training data or additional
inference, and thus is secure against privacy leakage.

We also establish class templates of test data to estimate
inter-class relations in test domain. The test-domain tem-
plate for class k, denoted by t′k, is estimated as a representa-
tive feature of test data classified into class k by the model
f . To be specific, since the model learns with test data in an
online manner, t′k is updated progressively by exponential
moving average (EMA) during testing as follows:

t′ŷi = αt′ŷi + (1− α)vi, (8)

where α is the update ratio, vi = f2 ◦ f1(xi) is the feature
of a test example xi, and ŷi is the pseudo label of xi. By
updating the templates through EMA, they change smoothly
and reflect all the observed test data, which stabilizes su-
pervisory signals given by CRKD. Then, we calculate the
cosine similarity scores between input test example xi and
all the test-domain class templates in the form of a similarity
score vector as follows:

[m′
i]k =

t′⊤k vi

∥t′k∥∥vi∥
. (9)

Each element of m′
i represents the similarity between the

test example xi and a particular class. Our objective herein
encourages the similarity scores m′

i to follow the inter-class
similarities of training data through the KL divergence loss:

LCRKD =
∑
i

KL
(

softmax
(
Mŷi,:

τ2

)
, softmax

(
m′

i

τ2

))
,

(10)
where τ2 is a temperature parameter.

3.2.3. TOTAL OBJECTIVE AND DETAILS FOR TRAINING

In addition to the three loss functions in Eq. (5), Eq. (6), and
Eq. (10), we further apply consistency regularization (Berth-
elot et al., 2020; Sohn et al., 2020) that has been known as
an effective way of learning using unlabeled data. To this
end, following FixMatch (Sohn et al., 2020), we perturb
input test sample xi and apply the standard cross entropy
loss with its pseudo label ŷi as follows:

LFixMatch =
∑
i

CE(ŷi, f(a(xi))), (11)

where a(·) is an augmentation operation. The overall objec-
tive of our framework is then given by

L = λLsup + Lcontra + LCRKD + LFixMatch, (12)

where λ is a balancing parameter.

During TTA, we optimize batch normalization layers of
the network as in previous work (Wang et al., 2021) and
projection layers g for contrastive learning. Additionally,
since feature vectors and templates are normalized when
computing LCRKD, we also normalize the trained weights of
the final fully-connected layer and its input feature vectors
when computing Lsup of Eq. (5) for stable optimization; in
other words, we adopt a cosine classifier for f3.

4. Experiments
The proposed method is first evaluated on three benchmarks
for common image corruptions (CIFAR10-C, CIFAR100-
C, and TinyImageNet-C (Hendrycks & Dietterich, 2019))
and one benchmark for synthetic-to-real adaptation (VisDA-
C (Peng et al., 2017)). Images of the corruption datasets
are borrowed from the test sets of CIFAR10, CIFAR100,
and TinyImageNet, and are intentionally degraded by 15
corruption types; each type has five severity levels with level
5 as the most severe condition. In all experiments on these
datasets, our work is compared with previous methods in
an online TTA task, in which a model is evaluated in an on-
line manner. In other words, each test sample is processed
only once, assuming streaming input data in testing. In
addition, we demonstrate the effectiveness of our method
for long-term adaptation in the online continual TTA set-
ting (Wang et al., 2022b) on CIFAR10-C, where the target
domain distribution continually changes over time.

4.1. Baselines

Common image corruptions. Our method is compared
with four different baselines: ‘Source’, BN, PL, Tent (Wang
et al., 2021), and CoTTA (Wang et al., 2022b). ‘Source’
stands for the model trained only on the source (training)
domain and applied to the test domain as-is. BN means
test-time normalization that uses the in-batch normalization
statistics calculated from test data but freezes the other pa-
rameters during testing. PL indicates pseudo labeling, which
optimizes the target model using test data with pseudo labels
obtained by the source-pretrained model. Tent (Wang et al.,
2021) modulates batch normalization layers by minimizing
entropy on test data. Finally, CoTTA (Wang et al., 2022b)
adopts a momentum encoder and diversely augments inputs
to obtain accurate pseudo labels for them.

Synthetic-to-real. In addition to the TTA baselines, we
further compare ours with three TTA methods, AdaCon-
trast (Chen et al., 2022), ConjugatePL (Goyal et al., 2022)

6



Leveraging Proxy of Training Data for Test-Time Adaptation

and TTAC (Su et al., 2022), as well as two unsupervised do-
main adaptation (UDA) methods, CAN (Kang et al., 2019)
and MCC (Jin et al., 2020), on VisDA-C. AdaContrast
adopts self-supervised learning with a momentum encoder
for accurate pseudo labeling of test data, and thus is more
costly than ours in both space and time. TTAC utilizes the
category-wise and global statistics from the training data
as lightweight information to precisely align target domain
features to source counterparts. The UDA methods are eval-
uated as they share a similar feature with ours, i.e., using
training data for test domain adaptation. However, UDA is
substantially more favorable than online TTA since it gives
full access to test data in training. Hence, the UDA methods
are instead evaluated in a setting close to online TTA: They
use as many training data as the condensed ones in our work,
and are adapted to test domain only for a single epoch.1

4.2. Implementation details

We adopt ResNet (He et al., 2016) as the backbone network
of our model, which performs normalization in batch nor-
malization layers using test data (in-batch) statistics instead
of updating batch normalization statistics as in previous
work (Wang et al., 2021). Style normalization and injection
are applied to the output of the second residual block of each
network as previous studies (Zhou et al., 2021; Kang et al.,
2022) have shown that the statistics of the block represent
the style of images. For style-normalized dataset conden-
sation, we set the number of synthetic images per class to
10 for CIFAR and TinyImageNet and to 50 for VisDA-C.
For optimization in condensation, we initialize the synthetic
images by random noise and optimize them with SGD. The
resolution of a synthetic image is 32×32 for CIFAR, 64×64
for TinyImageNet, and 112×112 for VisDA-C, respectively.
For optimization in test time, we adopt Adam (Kingma &
Ba, 2015) for the common image corruption benchmark and
SGD for VisDA-C. The balancing parameter λ is set to 0.1
for the corruption benchmark and 1.0 for the other. For
temperature control, we set τ1 to 0.1 and τ2 to the inverse
of the square root of the number of classes for each dataset.
To apply LFixMatch, we use four augmented images for con-
tinual TTA and one augmented image for synthetic-to-real
adaptation.

4.3. Robustness to common image corruption

Single target domain TTA. Table 1 compares our method
with previous TTA baselines on three datasets for common
image corruption. Following the convention of the previous
online TTA setting (Wang et al., 2021), we report perfor-
mance of our method during 1st epoch on the test set. Note
that our results in the table were obtained without LFixMatch

1This setting is still more favorable since all test data are given
at once unlike online TTA where test data are given sequentially.

Table 1. Results of TTA with ResNet backbones on CIFAR10-
C, CIFAR100-C, and TinyImageNet-C, averaged across all 15
corruptions and 5 severity levels. We report average accuracy (%)
and mark the best performance in bold. RN denotes ResNet. Note
that LFixMatch is not used in Ours for a fair comparison.

Method CIFAR10-C CIFAR100-C TinyImageNet-C
RN26 RN50 RN26 RN50 RN18

Source 71.97 81.75 40.42 53.89 30.93
BN 76.98 88.40 46.87 62.94 44.38
Tent (Wang et al., 2021) 80.95 89.39 52.43 66.03 45.95
Ours 81.96 90.40 52.82 67.91 46.98

for a fair comparison with baselines that do not utilize any
augmentation. Our method consistently achieves the best
average accuracy across all corruptions and severity levels
on CIFAR10-C, CIFAR100-C, and TinyImageNet-C, regard-
less of the type of its backbone network; the records per
corruption type are reported in the supplementary material.
Moreover, considering the experimental setup in Table 1
where the adaptation process is conducted in a relatively
short period of time (with just 10K test samples, compared
to 150K in continual TTA and 55K in synthetic-to-real TTA),
these results demonstrate the effectiveness of our method
for fast adaptation.

Continual TTA. In Table 2, our method consistently im-
proves performance in various corruption types and achieves
the best average accuracy. Compared with CoTTA that re-
fines pseudo labels by forwarding augmented inputs using a
momentum network, our method effectively improves per-
formance by consulting condensed training data without
such additional network. This result suggests that ours not
only adapts quickly to test domains, but also effectively
prevents the model degeneration problem caused by confir-
mation bias with the aid of condensed data.

4.4. Adaptation from synthetic to real

Table 3 presents quantitative results of our method, previ-
ous TTA methods, and UDA methods on VisDA-C with
ResNet50 and ResNet101. Our method outperforms the
all other online TTA methods in average accuracy. Specifi-
cally, our method using ResNet50 surpasses TTAC, which
captures the feature distribution of training data precisely
through running mean and covariance per cluster. While
both TTAC and our method share the same purpose of cap-
turing the distribution of training data, TTAC calculates
feature statistics manually, whereas our method optimizes
the condensed data in a fully data-driven manner. The perfor-
mance improvement over TTAC demonstrates the effective-
ness of our method. Meanwhile, our method outperforms
AdaContrast, the previous state-of-the-art method, when
using ResNet101. This indicates that our method effectively
prevents confirmation bias by using condensed data with no
heavy auxiliary module like momentum encoder. Addition-
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Table 2. Classification accuracy (%) on CIFAR10-to-CIFAR10-C online continual TTA task. Results are evaluated on WideResNet-28
with the highest corruption severity level. We mark the best and second-best performance in bold and underline, respectively. * denotes
the requirement on additional domain information of input data for resetting model.

t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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Source 27.7 34.3 27.1 53.1 45.7 65.2 58.0 74.9 58.7 74.0 90.7 53.3 73.4 41.5 69.7 56.5
BN Stats Adapt 71.9 73.9 63.7 87.2 64.7 85.8 87.9 82.7 82.6 84.7 91.6 87.4 76.2 80.3 72.7 79.6
Pseudo-label 73.3 77.9 68.0 86.2 67.8 84.7 87.3 82.7 82.7 83.5 89.9 86.6 77.6 81.1 74.1 80.2
TENT-online* (Wang et al., 2021) 75.2 76.5 67.0 88.0 68.2 85.3 89.2 84.1 83.8 86.3 92.1 87.9 78.0 82.7 75.8 81.4
TENT-continual (Wang et al., 2021) 75.2 79.4 71.4 85.6 68.9 83.5 85.9 80.9 81.4 81.4 87.8 79.7 74.3 79.2 75.1 79.3
CoTTA (Wang et al., 2022b) 75.7 78.7 73.4 88.4 72.4 87.8 89.7 85.2 85.9 87.6 92.5 89.4 81.7 86.6 82.7 83.8
Ours 76.8 81.6 75.0 86.9 73.5 86.1 89.4 85.6 86.6 87.9 91.7 90.2 80.6 86.1 82.3 84.0

Table 3. Classification accuracy (%) on VisDA-C train → val. All methods use ResNet-101 backbone. We mark the best and second-best
performance in bold and underline, respectively. † denotes offline unsupervised domain adaptation methods where the number of source
images is equal to the number of condensed images in our method.

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.
ResNet50

Source only 43.5 11.3 37.2 69.4 18.1 1.0 82.5 4.2 48.3 22.1 79.6 0.5 34.8
Tent (Wang et al., 2021) 86.6 22.0 79.8 51.9 78.3 17.6 87.6 64.2 78.9 23.6 65.9 1.1 54.8
ConjugatePL (Goyal et al., 2022) - - - - - - - - - - - - 61.6
TTAC(N-O) (Su et al., 2022) 81.5 59.8 64.2 36.9 76.2 60.4 84.5 58.7 77.0 53.4 74.8 32.2 63.3
Ours 92.7 82.5 79.8 65.3 92.7 70.3 80.7 82.6 89.9 62.2 77.2 37.6 76.1

ResNet101
Source only 57.2 11.1 42.4 66.9 55.0 4.4 81.1 27.3 57.9 29.4 86.7 5.8 43.8
CAN† (Kang et al., 2019) 95.7 88.8 6.9 68.6 94.5 94.8 79.2 70.3 88.7 80.6 83.2 51.7 75.2
MCC† (Jin et al., 2020) 93.9 78.4 70.4 74.3 92.5 84.2 84.5 58.2 86.6 36.0 86.1 20.6 72.2
Tent (Wang et al., 2021) 91.1 45.6 86.4 66.4 88.7 75.1 90.3 76.4 84.4 47.1 83.6 13.7 70.7
AdaContrast (Chen et al., 2022) 95.0 68.0 82.7 69.6 94.3 80.8 90.3 79.6 90.6 69.7 87.6 36.0 78.7
Ours 92.5 82.4 85.8 74.2 92.7 88.5 83.9 85.8 92.8 62.5 75.2 32.5 79.1
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Figure 4. Visualization of condensed data where each column
presents 10 images per class of CIFAR10 and VisDA-C.

ally, our method outperformed the UDA methods working
in a more favorable setting, which demonstrates the effi-
cacy of our work and suggests that (online) TTA demands a
dedicated solution even if training data are accessible.

Table 4. Ablation study on combinations of the losses and test
stylization (ST) in online continual TTA on CIFAR10-C and single
target domain online TTA on VisDA-C, respectively.

LCRKD Lsup ST Lcontra LFixMatch CIFAR10-C VisDA-C
✓ 80.6 72.9
✓ ✓ 73.4 73.1
✓ ✓ ✓ 81.8 76.0
✓ ✓ ✓ ✓ 82.1 76.7
✓ ✓ ✓ ✓ ✓ 84.0 79.1

4.5. Ablation study

Contribution of each component. Table 4 demonstrates
the contribution of each proposed module on CIFAR10-C
and VisDA-C. First, using LCRKD only, even with no con-
densed data, clearly surpasses Tent, suggesting the effective-
ness of transferring inter-class similarity for TTA. We then
apply the cross entropy loss for the condensed data without
test stylization, which leads to significant performance drop
in the continual TTA setting. In contrast, the cross entropy
loss applied to test-stylized condensed data improves the
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Table 5. Ablation study on the number of condensed images per
each class and the advantage of condensed images over original
source (training) images. We report classification average accu-
racy (%) on VisDA-C train → val with ResNet-101 backbone, and
mark the superior performance in bold.

Method
The number of data per class
10 25 50 100

Ours with condensed data 76.91 79.17 79.07 79.39
Ours with source data 77.90 77.85 78.40 78.36

Table 6. Impact of the condensed data and that of raw training
data selected through various sampling strategies upon the final
performance of our method. We report classification average accu-
racy (%) on VisDA-C train → val with ResNet-101 backbone.

Random Per-class prototype K-means Condensed data
78.4 77.3 78.4 79.1

performance substantially on both benchmarks. These re-
sults show that the test-stylized condensed data can help
the model adapt to the test domain consistently. In addition,
Lcontra boosts the performance on both benchmarks. Lastly,
adding LFixMatch further improves the performance and the
final model outperforms all existing TTA methods.

Impact of the number of condensed data. As shown in
Table 5, our method achieved outstanding performance and
was not sensitive to the the number of condensed data when
the number is larger than or equal to 25. A sufficient quantity
of condensed data can capture the distribution of the training
data and allow the model to leverage the knowledge of the
distribution during test-time adaptation effectively.

Advantage of condensed data over raw training data.
Table 5 also demonstrates that condensed data enable to
achieve better performance than randomly sampled raw
training data given a moderately large number of the data.
The result suggests that condensed data better provide
knowledge of the entire training set as intended in the data
condensation. Furthermore, we explored two additional
sampling strategies as alternatives of the random sampling
and evaluated their impact on performance in Table 6. The
first is to select a few samples closest to the mean feature
per class (per-class prototype), and the second is to sample
those closest to K-means of the entire source data. Our
method using condensed data also outperforms all the three
variants, highlighting the effectiveness of the condensed
data that allow a model to observe the entire source data
indirectly.

4.6. Visualization

Figure 4 shows the examples of condensed images for CI-
FAR10 and VisDA-C. These images show a large discrep-

ancy visually from the training data and do not look like
real-looking images. Nevertheless, as demonstrated in our
experimental results, they help improve TTA performance
significantly. Moreover, it looses privacy information of
original training data, which is another advantage that alle-
viates the privacy leakage issue.

4.7. Model complexity

Unlike CoTTA (Wang et al., 2022b) and AdaContrast (Chen
et al., 2022), the state-of-the-art TTA methods using mo-
mentum encoders, our work does not rely on such auxiliary
modules costly in computation and memory, but instead
utilizes condensed data for facilitating TTA. The efficacy
and small size of the condensed data allows ours to outper-
form the previous work not only in adaptation performance
but also in space-time complexity substantially. This is
demonstrated in Figure 2, where ours and the two previous
methods are compared in terms of the adaptation perfor-
mance, the additional memory usage of condensed data or
momentum encoder, and the total FLOPs. The superiority
of our method in the trade-off between adaptation perfor-
mance and complexity proves that ours is more suitable for
practical TTA scenarios, e.g., on edge devices such as robots
and surveillance cameras, where reducing memory usage
and computation overhead is crucial.

5. Conclusion
We have proposed a new method that extracts and exploits
lightweight proxies of training data for TTA. The two types
of proxy require only a small amount of additional memory
and alleviate privacy leakage. By utilizing a few condensed
samples stylized by test data and transferring the inter-class
relations across domains, our method outperformed existing
TTA methods on four benchmarks. Especially the proposed
method surpassed the state of the art with fewer operations
and smaller memory demand. The superiority of the pro-
posed method in space-time complexity as well as adapta-
tion performance suggests that it is more suitable to practical
TTA scenarios. We anticipate that our research will inspire
future research harnessing the knowledge of training data
effectively, instead of blindly rejecting the use of training
data in TTA scenarios.
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Supplementary material

This supplementary material presents additional experimen-
tal results (Section 6), detailed results for single domain TTA
(Section 7), high-resolution visualization of condensed data
(Section 8), and implementation details (Section 9) omitted
from the main paper due to space limit.

6. Additional experiments
6.1. Sensitivity analysis

We examined the sensitivity of our method to hyper-
parameters λ, τ1, and α on VisDA-C. Table 7 shows that
our method was insensitive to λ, the balancing weight for
the supervised learning loss, and τ1, the temperature term in
the contrastive learning loss. For the update ratio α in Eq. 8,
the best performance was observed at 0.9995, indicating the
effectiveness of smoothly updating the test template.

6.2. Impact of contrastive learning with additional
memory

To explore the advantages of utilizing a large batch size in
contrastive learning, we introduce additional feature mem-
ory to increase the effective batch size for the contrastive
loss. Table 8 shows the performance of the variants of
our method with varying sizes of additional memory on
VisDA-C using ResNet101 backbone. The use of additional
memory enhances the performance of our method, with
improvements of up to 0.5%p when its size is 1024.

6.3. Impact of the number of condensed data

We provide an ablation study to investigate the effect of
the number of condensed images per each class, denoted as
IPC, on VisDA-C (Peng et al., 2017). The ablation study
is conducted with {1, 5, 10, 25, 50, 100} IPC, respectively.
As shown in Table 9, the proposed method improves perfor-
mance with an increase in the number of condensed data.
Also, ours with 25 IPC instead of 50 (used in the main pa-
per) still achieves the state-of-the-art performance, which
indicates that ours can surpass the other methods with less
overhead.

6.4. Effect of test stylization on condensed data

To empirically investigate the effect of test stylization for
reducing the domain gap between condensed data and test
data, we present an quantitative analysis with the Haus-
dorff distance between condensed data (CD), test-stylized
condensed data (SD), and test data (TD). Since test styl-
ization is applied to the output of the second residual block
of each network, the distance is measured on that features

Table 7. Sensitivity analysis for hyper-parameters, the balancing
loss weight λ, temperature scale τ1, and momentum update ratio
α, on VisDA-C with ResNet101.

λ 0.1 0.25 0.5 1.0
Accuracy(%) 78.5 79.0 79.2 79.1

τ1 0.1 0.25 0.5 1.0
Accuracy(%) 79.1 79.2 79.1 79.0

α 0.5 0.9 0.9995 1.0
Accuracy(%) 75.1 78.3 79.1 76.2

Table 8. Ablation study on the size of additional memory for con-
trastive learning on VisDA-C with ResNet101.

Size of memory 0 (default) 128 256 512 1024 2048
Accuracy(%) 79.1 79.2 79.2 79.4 79.6 79.5

between different sets of data using ResNet50 on CIFAR10-
C. As shown in Table 10, the distance between (SD,TD) is
smaller than the distance between (CD,TD) for each test
domain, which shows that the test stylization can reduce the
domain gap.

7. Detailed results for single domain TTA
Due to the lack of space, we only reported the results av-
eraged over all corruption types for single domain TTA on
image corruption benchmarks in the main paper. Table 11
shows the detailed results for each corruption type on CI-
FAR10C and CIFAR100C with ResNet26 and ResNet50.
Regardless of network type and corruption type, the pro-
posed method consistently improves the adaptation perfor-
mance except for a few cases (e.g.brightness).

8. Visualization of condensed data
Figure 5 and 6 show the high-resolution examples of con-
densed data on VisDA-C. They look like noise images that
do not contain semantic information and the style of original
images, which indicates that they are less domain-specific
and loose private information.

9. Implementation details
For dataset condensation, we used the SGD optimizer with
the learning rate 1.0 and momentum 0.5. During TTA,
the batch size of condensed data is set to the same as that
of test data for each dataset if the number of condensed
data is sufficient. Otherwise, it consists of all condensed
data. For the cosine classifier for f3, we additionally apply
temperature scaling for similarity logits with the value 0.07
for CIFAR10 and 0.05 for the other dataset.
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Table 9. Classification accuracy (%) on VisDA-C train → val with ResNet-101 backbone. We mark the best performance in bold. IPC
denotes the number of condensed images per each class. Gray row indicates the results reported in the main paper. The results of ours
using raw source (training) images instead of condensed images are also reported to demonstrate the advantage of condensed images over
raw source images.

Method IPC plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.
Ours 1 91.2 81.6 82.8 73.0 91.4 91.3 79.5 81.6 90.9 53.6 74.1 21.5 76.1

5 92.3 81.7 84.9 74.2 91.4 89.3 82.3 84.6 92.8 55.2 72.4 24.7 77.1
10 92.9 79.4 86.1 76.0 91.3 88.4 81.4 86.9 93.1 48.1 74.0 26.5 77.0
25 92.9 81.6 85.7 74.4 91.8 90.1 83.3 86.7 92.6 65.5 74.2 31.2 79.2
50 92.5 82.4 85.8 74.2 92.7 88.5 83.9 85.8 92.8 62.5 75.2 32.5 79.1
100 93.2 81.3 87.5 73.7 92.6 88.2 84.7 87.4 92.0 65.7 74.8 31.6 79.4

Ours 10 92.9 80.8 82.9 68.0 91.0 90.3 82.4 81.6 90.5 59.9 78.2 36.2 77.9
with 25 92.6 80.1 83.4 68.6 91.5 90.4 83.3 82.0 90.6 61.1 76.1 34.5 77.9
source 50 92.6 79.4 83.8 68.2 91.8 89.6 83.8 82.2 91.0 66.8 77.7 33.9 78.4
images 100 93.1 79.7 82.7 67.7 91.6 90.1 84.4 82.1 90.9 64.8 78.7 34.6 78.4

Table 10. The Hausdorff distance between condensed data (CD), stylized condensed data (SD) and test data (TD) to empirically measure
the domain gap between them.

Distance gauss shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg AVG
(CD,TD) 0.1535 0.1610 0.1520 0.1652 0.1583 0.1731 0.1626 0.1688 0.1641 0.1675 0.1768 0.1804 0.1604 0.1593 0.1557 0.1639
(SD,TD) 0.1475 0.1530 0.1449 0.1564 0.1478 0.1592 0.1527 0.1548 0.1573 0.1616 0.1629 0.1588 0.1491 0.1505 0.1477 0.1536

Table 11. Test accuracy (%) on CIFAR10C and CIFAR100C for each corruption type averaged over 5 severity levels.
gauss shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg

ResNet26

CIFAR-10
Source-only 54.13 62.20 49.61 80.08 56.53 76.00 72.57 78.88 73.47 84.62 90.89 75.52 81.37 68.54 75.21
BN Adapt 65.73 68.66 66.90 86.46 63.27 82.59 84.11 77.01 76.79 84.00 87.19 84.20 79.21 80.02 68.50
TENT 75.20 78.32 72.70 87.17 68.07 84.16 85.77 79.98 81.27 87.37 87.53 84.00 81.17 83.23 78.30

Ours 76.78 79.09 74.01 87.38 69.41 84.53 86.15 80.25 81.62 87.27 87.44 85.90 81.66 83.43 79.29

CIFAR-100
Source-only 15.48 22.12 20.42 52.22 17.18 45.31 45.00 46.53 39.71 54.44 65.30 46.72 50.32 43.08 42.53
BN Adapt 31.02 34.27 35.96 58.47 34.34 53.55 55.55 46.69 44.79 53.69 59.99 55.24 50.50 52.10 36.92
TENT 41.00 44.52 42.74 61.65 40.02 56.10 59.77 51.57 51.10 59.96 62.15 58.82 53.88 57.13 46.00

Ours 41.40 44.54 43.02 62.39 40.27 57.04 60.01 51.72 51.77 60.06 62.67 59.13 54.06 57.52 46.68

ResNet50

CIFAR-10
Source-only 66.51 73.73 68.37 92.71 57.10 84.78 91.87 82.81 82.74 87.22 94.14 92.28 88.22 79.11 84.59
BN Adapt 86.74 88.26 82.37 92.05 79.90 88.50 92.62 85.98 89.20 88.08 92.57 92.44 87.66 90.99 88.69
TENT 87.72 89.26 84.30 92.60 81.45 89.51 92.93 87.37 89.97 89.63 92.97 93.02 88.38 91.52 90.17

Ours 88.67 90.25 86.14 93.07 83.56 90.89 93.45 89.08 90.85 91.30 93.59 93.60 89.56 92.03 90.01
CIFAR-100
Source-only 33.70 41.94 34.26 70.42 22.94 56.86 67.87 52.31 54.06 59.48 73.89 67.16 61.85 54.89 56.79
BN Adapt 59.02 62.32 53.98 69.44 50.36 63.53 69.46 58.64 63.42 60.83 69.90 69.47 61.87 67.35 64.49
TENT 62.47 65.31 58.37 71.57 54.88 66.74 71.63 62.15 66.11 65.84 72.31 71.37 64.93 69.80 66.94

Ours 64.25 67.03 60.95 73.19 57.15 68.99 73.03 64.75 67.76 68.63 73.75 72.98 66.46 71.46 68.32
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Figure 5. Visualization of condensed data where each row presents 4 images per class of VisDA-C (Part 1).
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Figure 6. Visualization of condensed data where each row presents 4 images per class of VisDA-C (Part 2).
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