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ABSTRACT

Cross-domain generalization is very important in Time Series Forecasting be-
cause similar historical information may lead to distinct future trends due to the
domain-specific characteristics. Recent works focus on building unimodal time
series foundation models and end-to-end multimodal supervised models. Since
domain-specific knowledge is often contained in modalities like texts, the former
lacks the explicit utilization of them, thus hindering the performance. The latter
is tailored for end-to-end scenarios and does not support zero-shot inference for
cross-domain scenarios. In this work, we introduce Aurora, a Multimodal Time
Series Foundation Model, which supports multimodal inputs and zero-shot infer-
ence. Pretrained on Corss-domain Multimodal Time Series Corpus, Aurora can
adaptively extract and focus on key domain knowledge contained in corrspond-
ing text or image modalities, thus possessing strong Cross-domain generalization
capability. Through tokenization, encoding, and distillation, Aurora can extract
multimodal domain knowledge as guidance and then utilizes a Modality-Guided
Multi-head Self-Attention to inject them into the modeling of temporal repre-
sentations. In the decoding phase, the multimodal representations are used to
generate the conditions and prototypes of future tokens, contributing to a novel
Prototype-Guided Flow Matching for generative probabilistic forecasting. Com-
prehensive experiments on 5 well-recognized benchmarks, including TimeMMD,
TSFM-Bench, ProbTS, TFB, and EPF, demonstrate the consistent state-of-the-art
performance of Aurora on both unimodal and multimodal scenarios.

Resources: https://anonymous.4open.science/r/Aurora-40AB.

1 INTRODUCTION

Time series forecasting has gained sustained attention for decades of years due to its significant
values in multiple domains, including economy, transportation, meteorology, and public health.
In recent years, the key pivot comes with the surge of deep learning, which brings the boom of
merticulously-designed deep forecasting models (Cirstea et al., 2022; Nie et al., 2023; Qiu et al.,
2025b; Wu et al., 2025). Through learning the inherent dynamics within the raw data, deep learning
models can outperform classic statistical methods (Box & Pierce, 1970; Mei et al., 2014) and obey
the scaling law (Shi et al., 2024a; Yao et al.). Due to the success, it also brings the most commonly-
used forecasting paradigm, which utilizes the past information to infer how the series goes in the
coming horizon. Although this paradigm contributes to impressive performance under the domain-
specific scenarios, its effectiveness is suspicious when facing cross-domain inference, where similar
historical information may lead to different futures due to domain differences.

As shown in Figure 1, current research of time series forecasting explores the cross-domain
adaption problem in two main perspectives: 1) pre-training on cross-domain time series cor-
pus for unimodal time series foundation models, which partially possess cross-domain gen-
eralization capablities; 2) utilizing cross-modality information in training end-to-end mul-
timodal supervised models, which effectively integrates domain knowledge in forecasting.
For time series foundation models, the cross-domain generalization capabilities mainly come
from the sensitivity to subtle differences in historical information from different domains.
Some of them (Shi et al., 2024b; Liu et al., 2025b) are pretrained on trillion-scale cor-
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pus with hevay backbones, thus possessing certain cross-domain adaption capabilities. Oth-
ers (Wang et al., 2025; Woo et al., 2024; Ekambaram et al., 2024) have specific structures,
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Figure 1: Aurora is pretrained on cross-domain
multimodal time series corpus, supporting both
text and image information to enhance zero-shot
time series forecasting.

which excels at capturing cross-domain fea-
tures. However, their capabilites come from
single time modality and lack explict domain
knowledge guidance, thus hindering the per-
formance. For end-to-end multimodal super-
vised models (Jin et al., 2024; Liu et al., 2025a),
though they consider the multimodal knowl-
edge to enhance the domain-specific forecast-
ing, they lack the ability to support zero-shot
forecasting in cross-domain scenarios. In our
view, the aurora of next-generation time series
foundation model lies in pretraining a cross-
modality model on cross-domain time series
corpus, which can utilize the domain knowledge
within modalities and serve as a versatile out-
of-box forecaster in complex scenarios.

See Figure 1, we propose Aurora by pionner-
ing the exploration of multimodal time series
foundation model. Specifically, we pretrain
Aurora on Cross-Domain Multimodal Time Se-
ries Corpus, with time series data and sample-
wise domain-specific text descriptions. Since
previous works (Chen et al., 2024a; Yu et al.,
2025) point out the endogenous images of time
series contain additional geometric information, we also consider them into cross-modality learn-
ing. Considering the model architecture, Aurora adopts a novel cross-modality Encoder. Taking
pretrained Bert (Devlin et al., 2019) and ViT (Liu et al., 2021) as modality encoders, Aurora then
adopts token distillation to extract the key information in different modalities. To effectively model
the cross-modality interaction, we propose a novel Modality-Guided Self-Attention Mechanism to
utilize the external domain knowledge to adjust the attention of internal information within the time
series data to obtain temporal features, and then fuse them with text and image features.

In the Aurora Decoder, we devise a novel flow-matching to fully utilize the fused cross-modality
features to support multimodal cross-domain generative probabilistic forecasting. First, we use a
ConditionDecoder to generate multimodal conditions for flow matching. Since the future trend of
time series is often implied by external text information, and the inherent periodicity of time series
is often contained in the endogenous images, we then design a Prototype Bank initialized by Period
and Trend prototypes, and leverage a PrototypeRetriever to retrieve the “future prototypes” based
on the inherent domain knowledge from texts and images. Compared with DDPM (Ho et al., 2020),
Flow Matching (Lipman et al., 2023) serves as a stochastic interpolant, which can start from a
random distribution instead of a gaussian noise, with more flexibilities. So we take the generated
future prototypes as starting points, which contains the rudiments of periodicity and trend for future
tokens, thus can simplify the flow matching process. Our contributions are summarized as:

• We propose a multimodal time series foundation model, called Aurora, which is pretrained on
cross-domain multimodal time series corpus and supports generative probabilistic forecasting.
Through effectively fusing multimodal information during pretraining, Aurora serves as a strong
zero-shot forecaster, and can make accurate cross-domain inference.

• We devise a novel cross-modality encoder in Aurora, consisting of token distillation and modal-
ity guiding, implemented by merticulously-designed attention structures. It can enhance the
temporal representations while effectively fusing representations from texts and images.

• We design a novel flow-matching process in the Aurora Decoder. It obtains multimodal condi-
tions through a Transformer, and obtains future prototypes containing periodic and trend infor-
mation as the starting points, thus enhancing the ability of flow-matching.

• Experimentally, Aurora achieves state-of-the-art performance on 5 well-recognized bench-
marks, including datasets from TimeMMD (Liu et al., 2024b), TSFM-Bench (Li et al., 2025a),
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ProbTS (Zhang et al., 2024), TFB (Qiu et al., 2024), and EPF (Olivares et al., 2023), covering
comprehensive scenarios, thus demonstrating a strong out-of-box tool of decision intelligence.

2 RELATED WORKS

2.1 TIME SERIES FORECASTING

Time Series Forecasting is vital in decision-making and has fascinated people for decades of years,
which facilitates the emergence of a series of works. In recent years, deep-learning models are
widely studied, among them, Autoformer (Wu et al., 2021), Triformer (Cirstea et al., 2022), Times-
Net (Wu et al., 2023), Pathformer (Chen et al., 2024b), PatchTST (Nie et al., 2023), Dlinear (Zeng
et al., 2023), FiTS (Xu et al., 2024), SparseTSF (Lin et al., 2024), PDF (Dai et al., 2024), DUET (Qiu
et al., 2025b), and TimeMixer++ (Wang et al.), continuously advancing the state-of-the-arts. How-
ever, though they possess the capabilities to extract the inherent dynamics in raw time series data,
they only adapt to unimodal end-to-end forecasting scenarios, and often fall short in multimodal
forecasting scenarios where the domain knowledge is widely contained in the text modality.

Recently, some works are proposed to explore the multimodal end-to-end supervised models. In
summary, they utilize Large Language Models’ strong reasoning capabilities to integrate textual
domain knowledge to prompt temporal modeling. Among them, Unitime (Liu et al., 2024c), Time-
LLM (Jin et al., 2024) and CALF (Liu et al., 2025a) utilize the endogenous textual descriptions as
prompts, GTP4MTS (Jia et al., 2024), TATS (Li et al., 2025b) and TimeMMD (Liu et al., 2024b)
supports exogenous textual domain knowledge. However, they do not possess generalization capa-
bilities in zero-shot scenarios.

2.2 TIME SERIES FOUNDATION MODELS

To support cross-domain generalization, unimodal Time Series Foundation Models are widely stud-
ied. The majority of them adopt Tranformer-based architectures, which are pretrained on time series
corpus of billion- or trillion- scale to obtain the strong generalization capabilities. Among them, Sun-
dial (Liu et al., 2025b), VisionTS (Chen et al., 2024a), ROSE (Wang et al., 2025), Time-MoE (Shi
et al., 2024b), MOIRAI (Woo et al., 2024), TTM (Ekambaram et al., 2024), Chronos (Ansari et al.),
UniTS (Gao et al., 2024), Timer (Liu et al., 2024e), and TimesFM (Das et al., 2024) demonstrate
strong zero-shot forecasting performance on unimodal tasks, even outperforming those full-shot su-
pervised models in many cases. Considering the forecasting paradigm, Sundial, MOIRAI, Chronos,
and Lag-Llama (Rasul et al., 2023) also support probabilistic forecasting, which provides additional
robustness and versatility for decision-making. Despite their endeavors to enhance cross-domain
generalization capabilities, when historical series exhibit similarities, the forecasts they generate re-
main static. This lack of adaptability renders them unable to accommodate the diverse and changing
real-world domains.

In this work, we propose Aurora to pioneer the exploration of multimodal time series foundation
models. Through pretraining on Cross-Domain Multimodal Time Series Corpus, Aurora can extract
the key domain knowledge within the text and image modalities to enhance the modeling of temporal
features. Aurora also supports generative probabilistic forecasting, thus covering versatile tasks,
including unimodal, multimodal, deterministic and probabilstic forecasting.

3 AURORA

In this work, we pretrain Aurora in a cross-modality paradigm, which adopts Channel-
Independence (Nie et al., 2023) on time series data, and models corresponding multimodal inter-
action to inject domain knowledge. Note that each variable of time series is first normalized through
Instance Normalization (Ulyanov et al., 2016) to mitigate the value discrepancy. See Figure 2, Au-
rora mainly consists of two phases: 1) in Aurora Encoder, we tokenize and encode each modality
into modal features, then fuse them to form multimodal representations; 2) in Aurora Decoder, we
utilize a Condition Decoder to obtain the multimodal conditions of future tokens, leverage a Proto-
type Retreiver to retrieve the future prototypes based on the domain knowledge, and conduct flow
matching on them to make generative probabilistic forecasts.
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Here’s the stock price series of NVIDIA. 
In 9:00 a.m,  the NVIDIA announces a 
partnership with OpenAI to integrate its 
next-generation GPUs into large-scale AI 
training infrastructure.
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Figure 2: The overview of Aurora.

3.1 ENCODING

3.1.1 MULTIMODAL TOKENIZATION

Our proposed Aurora inherits the strong encoding capabilities from ViT (Liu et al., 2021) and
Bert (Devlin et al., 2019) to extract the representations from images and texts, and adopts a tem-
poral Channel-Independent Transformer as the main backbone. Therefore, inputs of all modalities
are required to be tokenized first.

Given a univariate time series X ∈ RT , we adopt RevIN (Kim et al., 2021) technique to mitigate
the inherent non-stationarity of time series. The time series tokens Xtime are formed through non-
overlapped Patching and Embedding (Cirstea et al., 2022; Nie et al., 2023):

X ′ = LeftPad(X), XP = Patching(X ′) ∈ Rntime×ptime

, (1)

Xtime = Embedding(XP ) ∈ Rntime×dtime

, (2)

where Embedding is a linear projection, Xtime ∈ Rntime×dtime

are the embeded time series tokens,
with ntime representations of dimension dtime.

To obtain the endogenous image tokens, we utilize the rendering techniques (Chen et al., 2024a) to
make the transformation:

A = Amp(FFT(X)),F = argmax(A),P = ⌈T/F ⌉ , (3)

X̃ = LeftPeriodPad(X,P), X2D = Reshape(X̃) ∈ Rm×P, (4)

X3D = Resize(Repeat(X2D)) ∈ R3×w×h, (5)

X̃3D = ImagePatching(X3D) ∈ Rnimage×3× w

pimage × h

pimage (6)

Ximage = Embedding(Flatten((X̃3D)) ∈ Rnimage×dimage

, (7)

where the time series is first processed into 2D structure X2D ∈ Rm×P based on the period P.
Then the endogenous image X3D ∈ R3×w×h is rendered through repeating X2D along channel
dimension, and resizing into the standard input size of ViT. Finally, the image tokens Ximage ∈
Rnimage×dimage

are obtained through ImagePatching and Embedding.

4
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For the corresponding texts, the text tokens Xtext ∈ Rntext×dtext

can be easily obtained through
tokenization, and retrievement from the vocabulary of Bert.

3.1.2 TOKEN DISTILLATION

After obtaining the tokens from all the modalities, the hidden representations of texts and images
are then generated through the pretrained VisionEncoder (ViT) and TextEncoder (Bert):

X̃image = VisionEncoder(Ximage) ∈ Rnimage×dimage

, (8)

X̃text = TextEncoder(Xtext) ∈ Rntext×dtext

(9)

Inituitively, there exists informative redundancy in texts and images for multimodal time series fore-
casting. For texts as additional domain knowledge, key descriptions which can affect the future
trend of time series often deserve only several words. For the endogenous image, we consider it as
a technique to extract the varying inherent periodic information in time series data from multiple
domains, where the information is also sparse. Therefore, we distill the tokens from text and image
modalties to extract the key information and improve the efficiency:

Ximage = VisionDistiller(Rimage, X̃image) ∈ RKimage×dimage

, (10)

Xtext = TextDistiller(Rtext, X̃text) ∈ RKtext×dtext

, (11)

where VisionDistiller and TextDistiller are based on the Multi-head Cross-Attention Mechanism.
The Rimage ∈ RKimage×dimage

and Rtext ∈ RKtext×dtext

are learnable vectors, which are the
queries and can serve as semantic clustering centriods (Zhang & Yan, 2022) to help compress the
information in X̃image and X̃text. And Ximage and Xtext are the distilled image and text tokens.

3.1.3 MULTIMODAL ALIGNMENT

In multimodal time series forecasting, the time modality occupies the dominant position and in-
formation from other modalities can serve as domain-specific knowledge to guide the extraction
of temporal representations, thus enhancing the cross-domain generalization capability. In Au-
rora, we explicitly implement the above informative flow through a Modality-Guided Multi-head
Self-Attention mechanism. First, we capture the correlations between the time modality and others
through Cross-Attention based VisionGuider and TextGuider:

VAttn = VisionGuider(Xtime,Ximage) ∈ Rntime×Kimage

, (12)

TAttn = TextGuider(Xtime,Xtext) ∈ Rntime×Ktext

, (13)

Corr = VAttn ·W · TAttnT ∈ Rntime×ntime

, (14)

where VAttn and TAttn are unnormalized attention scores, separately denoting the correlations
between time modality and image or text modality. Corr ∈ Rntime×ntime

denotes the inher-
ent temporal correlations bridged through the cross-modality correlations. We also introduce
W ∈ RKimage×Ktext

as a learnable metric (Qiu et al., 2025b) to further tune the semantic distances.
This process can help bridge the correlations between time series tokens through multimodal infor-
mation, capable of leveraging domain knowledege to guided the modeling of temporal dynamics.
We then inject Corr into the temporal encoding process:

Q = X time ·WQ, K = X time ·WK , V = X time ·WV (15)

S = (Q ·KT + Corr)/
√
dtime, O = Softmax(S) · V, (16)

Onorm = LayerNorm(Xtime +O), (17)

Xtime = LayerNorm(FeedForward(Onorm) +Onorm), (18)

where WQ,WK ,WV ∈ Rdtime×dtime

. Xtime ∈ Rntime×dtime

denotes the generated temporal rep-
resentations. The Corr matrix contains domain knowledge, which can guide the attention scores to
focus on the appropriate time series tokens. Finally, we fuse the representations from three modali-
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ties through a Cross-Attention based modality fuser:

X̃image = CrossAttn(Xtime,Ximage) ∈ Rntime×dtime

, (19)

X̃text = CrossAttn(Xtime,Xtext) ∈ Rntime×dtime

, (20)

Xfuse = Xtime + X̃image + X̃text, (21)

where Xfuse ∈ Rntime×dtime

are the fused multimodal representations.

3.2 DECODING

3.2.1 CONDITION DECODING

Inspired by DiT (Peebles & Xie, 2023), we utilize an L-stacked Transformer to decode the condi-
tions of future tokens, which helps construct the stable Flow Matching process. Specifically, the
ConditionDecoder consists of a Causal-Transformer and a Cross-Transformer:

Xcond = Causal-Transformer(Repeat(Xfuse[−1], F )), (22)

Xcond = Cross-Transformer(Xcond,Xfuse), (23)

where F denotes the number of future tokens. The last token of Xfuse is first copied F times and
fed to the Causal-Transformer to generate the future conditions Xcond ∈ RF×dtime

, then we adopt
a Cross-Transformer integrated with RoPE (Su et al., 2024) to further refine them into Xcond ∈
RF×dtime

, where Xfuse is set as Key and Value embeddings. Therefore, the ConditionDecoder can
efficiently output all F conditions.

3.2.2 PROTOTYPE-GUIDED FLOW MATCHING

ODE

 Prototype
Token

Target
Token

Figure 3: Prototype-Guided Flow Matching. The
starting point is set as a prototype instead of a ran-
dom gaussian noise, which provides an intuitive
guidance in generation process.

Different from DDPM (Ho et al., 2020), which
can be treated as an SDE solver to trans-
form data from fixed Gaussian distributions
to realistic target distributions, Flow Match-
ing (Lipman et al., 2023) serves as a more in-
tuitive and smooth ODE solver, which learns
the Velocity Field between a random ini-
tial distribution and the target distribution.
However, current methods (Liu et al., 2025b;
Kollovieh et al.) still set the initial distributions
as Standard Gaussian, which neglects the capa-
bility of Flow Matching to work like a stochas-
tic interpolant. Obviously, constructing a propriate prototype as the inital starting point can enhance
the intuitiveness and stability of Flow Matching.

Algorithm 1 Prototype-Guided Flow Matching

1: Given condition Xcond
i , steps J ,

and Prototype P̃i.
2: Sample a noise ϵi ∼ N (0, I).
3: ∆t = 1/J, hi = Xcond

i , ŷi = P̃i + ϵi
4: for j in {0, 1 . . . , J − 1} do
5: for ŷi ← ŷi + vθj∆t

(
ŷi|hi

)
∆t

6: end for
7: Return: ŷi

Based on the motivation that the future trends
and periodicities of time series mainly rely
on the multimodal domain knowledge in texts
and images, we inituitively devise a Prototype
Bank and a PrototypeRetriever to adaptively
construct initial prototypes for Flow Match-
ing. The Prototype Bank P ∈ RM×ptime

contains M learnable period and trend proto-
types, initialized through trigonometric, expo-
nential, logarithmic, and polynomial bases. The
Transformer-based PrototypeRetriever receives
the text representations X̃text and image repre-
sentations X̃image as inputs, considers the positional information of future tokens through Sinusoidal
Embeddings (Vaswani et al., 2017), and outputs the categorical distributions of the all M prototypes
through Softmax:

D = PrototypeRetriever(X̃text, X̃image) ∈ RF×M , (24)

6
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where D denotes the weights of prototypes, we then generate the new prototypes through: P̃ =

D · P ∈ RF×ptime

, where the generated prototype P̃ contains the approximate future periodicities
and trends. As shown in Figure 3, the motivation of Flow Matching is to fit the velocity field be-
tween the initial prototype y(0)i = P̃i+ ϵi and the target horizon y

(1)
i = yi, where yi ∈ Rptime

is the
groundtruth of the i-th future token, and ϵi ∼ N (0, I) is used to increase the diversity during train-
ing. We design the Flow-Matching Network with an MLP structure and utilize the AdaLN (Peebles
& Xie, 2023) to integrate the multimodal conditions hi = Xcond

i . We adopt the conditional optimal-
transport path, which is energy-optimal and contributes to a uniform velocity field. And the function
of Flow-Matching Network vθt is to predict the velocity based on the current position y

(t)
i and con-

dition hi. To achieve this, the token-wise optimization objective L is designed as:

L(θ, hi) = E
t,y

(0)
i ,y

(1)
i
∥vθt (y

(t)
i |hi)− (y

(1)
i − y

(0)
i )∥2, (25)

where t ∈ [0, 1], y(1)i − y
(0)
i denotes the targeted fixed velocity field. y

(t)
i = ty

(1)
i + (1 − t)y

(0)
i

is the expected position in the uniform velocity field at moment t. The objective is to tutor the
Flow-Matching Network vθt to output the velocity when given the position and condition.

In the inference phase, the sampling process is a discretized integration process–see Algorithm 1.
The gaussian noise ϵi ∼ N (0, I) helps support probabilistic forecasting. Finally, we can obtain
the forecasts ŷi ∈ Rptime

of the i-th future token. And the forecasts of the future horizon are
Ŷ = Concat{ŷi} ∈ RF×ptime

.

4 EXPERIMENTS
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 Rank 1 MSE & MAE

Figure 4: Evaluation summary of Aurora.

We make extensive experiments to evaluate the
performance of Aurora. Specifically, we intro-
duce the experimental settings in Section 4.1.
In Section 4.2, we evaluate the zero-shot and
few-shot performance of Aurora on multimodal
forecasting scenarios. Considering the modal
absence in the realistic world, we also evalu-
ate the zero-shot performance of Aurora on uni-
modal forecasting scenarios–see Section 4.3,
4.4. To analyze the key components in Aurora,
we also make detailed model analyses in Section 4.5. In summary–see Figure 4, our proposed Au-
rora achieves state-of-the-art performance in both unimodal and multimodal forecasting scenarios.

4.1 EXPERIMENTAL SETTINGS

Cross-Domain Multimodal Time Series Corpus. We first collect a substantial number of open-
source time series datasets across diverse domains, then generate the corresponding sample-wise
textual descriptions using Large Language Model (Liu et al., 2024a), which simulates the down-
stream scenarios with domain-specific textual information.

Benchmarks. We evaluate both the multimodal forecasting and unimodal forecasting performance
of Aurora on 5 benchmarks, including TimeMMD (Liu et al., 2024b), TSFM-Bench (Li et al.,
2025a), ProbTS (Zhang et al., 2024), TFB (Qiu et al., 2024), and EPF (Wang et al., 2024b). Note
that these benchmarking datasets are strictly excluded from the pretraining time series corpus.

Baselines. We compare Aurora with 11 well-known unimodal time series foundation models, in-
cluding Sundial (Liu et al., 2025b), VisionTS (Chen et al., 2024a), ROSE (Wang et al., 2025),
Time-MoE (Shi et al., 2024b), MOIRAI (Woo et al., 2024), TTM (Ekambaram et al., 2024),
TimesFM (Das et al., 2024), Timer (Liu et al., 2024e), UniTS (Gao et al., 2024), Chronos (Ansari
et al.), and Lag-Llama (Rasul et al., 2023). We also consider multiple strong end-to-end super-
vised models, including multimodal ones like GPT4MTS (Jia et al., 2024), TATS (Li et al., 2025b),
CALF (Liu et al., 2025a), and Time-VLM (Zhong et al.), and unimodal ones like TimeXer (Wang
et al., 2024b), PatchTST (Nie et al., 2023), iTransformer (Liu et al., 2024d) TSDiff (Kollovieh et al.,
2023), CSDI (Tashiro et al., 2021), TimeGrad (Rasul et al., 2021a), and GRU MAF (Rasul et al.,
2021b). The detailed information is provided in Appendix A.
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4.2 MULTIMODAL FORECASTING

We compare the zero-shot forecasting performance of Aurora with unimodal Foundation Models,
and compare the few-shot (10%) forecasting performance with Full-shot Multimodal End-to-end
Supervised Models. As shown in Table 1, compared with unimodal foundation models, Aurora ob-
viously possesses stronger generalization capability by achieving most 1st counts. Compared with
previous state-of-the-arts Sundial and VisionTS, Aurora achieves average MSE reduction of 27.0%
and 31.2% on TimeMMD. When compared with Full-shot Multimodal End-to-end Supervised Mod-
els, Aurora is trained on only 10% of data and outperforms all baselines in most settings. Compared
with well-known baselines like GPT4MTS and CALF, Aurora achieves average MSE reduction of
12.8% and 24.5%. On some datasets such as Climate and Environment, even the zero-shot perfor-
mance of Aurora has outperformed those full-shot baselines. These empirical evidences can provide
strong support of Aurora’s the multimodal generalization capability.

Table 1: Average results of multimodal zero-shot & few-shot forecasting experiments on datasets
from TimeMMD. Lower MSE or MAE values indicate better predictions. Red: the best, Blue: the
2nd best. All the results are listed in Table 12 of Appendix B.

Type Zero-shot Foundation Models 10% few-shot Full-shot Multimodal End-to-end Supervised Models

Models Aurora Sundial VisionTS ROSE MOIRAI Aurora GPT4MTS TATS CALF Time-VLM
(Ours) (2025) (2025) (2025) (2024) (Ours) (2025) (2025) (2025) (2025)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Agriculture 0.272 0.348 0.373 0.392 0.290 0.336 0.345 0.372 0.272 0.403 0.212 0.293 0.225 0.298 0.215 0.301 0.250 0.315 0.237 0.302

Climate 0.865 0.749 1.154 0.881 1.307 0.930 1.475 0.987 1.921 1.095 0.862 0.746 1.182 0.889 1.180 0.887 1.286 0.922 1.195 0.899

Economy 0.033 0.146 0.291 0.432 0.301 0.442 0.289 0.433 0.405 0.512 0.016 0.099 0.017 0.103 0.017 0.104 0.163 0.307 0.024 0.125

Energy 0.255 0.370 0.272 0.367 0.304 0.420 0.386 0.479 0.324 0.417 0.230 0.329 0.262 0.380 0.255 0.368 0.244 0.365 0.260 0.374

Environment 0.276 0.379 0.336 0.416 0.354 0.436 0.392 0.456 0.351 0.403 0.265 0.372 0.323 0.400 0.319 0.396 0.325 0.387 0.319 0.397

Health 1.553 0.850 1.970 0.992 2.436 1.221 2.598 1.201 2.736 1.241 1.343 0.776 1.464 0.799 1.356 0.767 1.491 0.775 1.489 0.834

Security 72.475 4.084 70.441 4.005 79.598 4.597 84.324 4.765 93.245 5.173 70.062 3.988 71.487 4.068 72.406 4.097 76.376 4.300 73.731 4.181

Social Good 0.838 0.516 1.036 0.573 1.126 0.618 1.141 0.581 1.430 0.651 0.814 0.494 0.920 0.450 0.918 0.428 0.906 0.401 0.868 0.444

Traffic 0.161 0.289 0.271 0.405 0.281 0.407 0.341 0.451 0.406 0.468 0.157 0.290 0.203 0.261 0.179 0.238 0.222 0.293 0.216 0.319

1st Count 31 26 4 7 0 4 0 0 1 0 30 23 1 1 4 4 1 8 0 0

4.3 UNIMODAL FORECASTING

Considering the modalilty absence phenomenon in many downstream scenarios, Aurora also sup-
ports forecasting without textual inputs through random masking in the pretraining phase. And
endogenous images can be always obtained from raw time series. To evaluate the unimodal zero-
shot forecasting performance, we conduct experiments on TSFM-Bench and ProbTS. As shown
in Table 2–3, Aurora achieves state-of-the-art performance on both deterministic and probabilistic
forecasting tasks. Compared with Time-MoE and ROSE, Aurora achieves average MSE reduction
of 15.1% and 22.9% on TSFM-Bench, demonstrating strong deterministic forecasting capability.
When evaluated on probabilistic forecasting benchmark ProbTS, Aurora also outperforms CSDI and
MOIRAI with average CRPS reduction of 21.5% and 38.3%. Aurora is proven the best-performed
unimodal time series foundation model, ensuring the robustness when modality absence occurs.

Table 2: Average results of unimodal zero-shot deterministic forecasting experiments on datasets
from TSFM-Bench. Lower MSE or MAE values indicate better predictions. (’-’) denotes datasets
included in the model’s pretraining and therefore excluded from testing. Red: the best, Blue: the
2nd best. All the results are listed in Table 13 of Appendix B.

Type Zero-shot Foundation Models

Models Aurora Sundial ROSE Timer TimesFM Chronos Time-MoE UniTS MOIRAI TTM
(Ours) (2025) (2025) (2024) (2023) (2024) (2024) (2024) (2024) (2024)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETT (Avg) 0.331 0.376 0.335 0.379 0.393 0.411 0.551 0.478 0.415 0.406 0.442 0.408 0.357 0.390 0.471 0.437 0.382 0.388 0.441 0.430

Weather 0.230 0.267 0.234 0.270 0.265 0.305 0.292 0.313 - - 0.288 0.309 0.256 0.289 0.275 0.298 0.260 0.275 0.265 0.307

Electricity 0.178 0.275 0.169 0.265 0.234 0.320 0.297 0.375 - - - - - - 0.198 0.291 0.188 0.273 0.222 0.317

Traffic 0.524 0.352 - - 0.588 0.412 0.613 0.407 - - 0.615 0.421 - - - - - - 0.564 0.386

Solar 0.203 0.289 0.221 0.252 0.505 0.549 0.771 0.604 0.500 0.397 0.393 0.319 0.411 0.428 0.845 0.669 0.714 0.704 0.815 0.710

PEMS08 0.563 0.552 - - 1.369 0.979 0.866 0.695 1.485 0.907 1.707 1.024 - - 1.253 0.879 - - 1.730 1.066

Wind 1.151 0.763 1.186 0.772 1.251 0.820 1.201 0.783 1.613 0.870 1.478 0.834 - - 1.425 0.848 1.299 0.795 1.337 0.829

NYSE 0.528 0.526 0.880 0.642 - - 0.988 0.704 0.623 0.536 1.129 0.720 - - 1.220 0.820 - - - -

1st Count 27 21 11 13 3 1 0 0 1 2 0 0 2 2 0 0 0 5 0 0
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Table 3: Average results of unimodal zero-shot probabilistic forecasting experiments on datasets
from ProbTS. Lower MSE or MAE values indicate better predictions. (’-’) denotes datasets included
in the model’s pretraining and therefore excluded from testing. Red: the best, Blue: the 2nd best.
All the results are listed in Table 14 of Appendix B.

Type Zero-shot Foundation Models Full-shot Probabilistic End-to-end Supversied Models

Models Aurora Sundial Chronos MOIRAI Lag-Llama TSDiff CSDI TimeGrad GRU MAF
(Ours) (2025) (2024) (2024) (2023) (2023) (2022) (2022) (2021)

Metrics CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE

ETT (Avg) 0.231 0.257 0.231 0.273 0.290 0.316 0.366 0.377 0.273 0.310 0.370 0.465 0.304 0.389 0.493 0.619 0.388 0.475

Weather 0.070 0.076 0.087 0.102 0.142 0.158 0.179 0.143 0.096 0.106 0.132 0.134 0.077 0.093 0.125 0.155 0.133 0.165

Electricity 0.085 0.103 0.081 0.098 - - 0.247 0.290 - - 0.407 0.519 / / 0.102 0.126 0.094 0.122

Traffic 0.220 0.262 - - 0.269 0.295 - - 0.330 0.385 0.327 0.392 / / 0.225 0.264 / /

Exchange 0.044 0.047 0.045 0.049 0.044 0.047 0.045 0.050 0.057 0.069 0.084 0.111 0.069 0.086 0.082 0.095 0.070 0.083

ILI 0.147 0.166 0.148 0.166 0.170 0.197 0.159 0.197 0.156 0.211 0.248 0.259 0.276 0.290 0.284 0.310 0.262 0.288

1st Count 19 24 8 8 1 1 2 1 0 0 0 0 4 1 1 1 0 0

4.4 SHORT-TERM FORECASTING

Though some short-term forecasting settings are included in Section 4.2 and 4.3, we further evaluate
Aurora on more unimodal short-term forecasting scenarios in this section, which are more in line
with daily usage. Specfically, we conduct experiments on EPF (Wang et al., 2024b) and univariate
datasets from TFB (Qiu et al., 2024). As shown in Table 4, Aurora outperforms most-advanced
Foundation Models such as Sundial and VisionTS in most evaluations. Compared with full-shot
supervised models like TimeXer, and iTransformer, Aurora also achieves competitive performance
with them. Focusing on more scenarios, i.e., the 8,068 univariate datasets in TFB–see Figure 5,
we report the mean MASE and msMAPE results, which indicate that Aurora also achieves state-
of-the-art performance against zero-shot Foundation Models, and full-shot supervised models with
versatile neural structures. All of the experiments demonstrate Aurora’s strong capability in short-
term forecasting scenarios.

Table 4: Results of short-term zero-shot forecasting experiments on datasets from EPF. Lower MSE
or MAE values indicate better predictions. (’-’) denotes datasets included in the model’s pretraining
and therefore excluded from testing. Red: the best, Blue: the 2nd best.

Type Zero-shot Foundation Models Full-shot End-to-end Supversied Models

Models Aurora Sundial VisionTS ROSE MOIRAI TimeXer iTransformer PatchTST TimesNet
(Ours) (2025) (2025) (2025) (2024) (2024) (2024) (2023) (2023)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

NP 0.288 0.312 0.256 0.277 0.510 0.461 0.666 0.536 0.660 0.538 0.238 0.268 0.265 0.300 0.267 0.284 0.250 0.289

PJM 0.084 0.183 0.088 0.189 0.251 0.366 0.311 0.402 0.330 0.423 0.088 0.188 0.097 0.197 0.106 0.209 0.097 0.195

BE 0.361 0.257 0.371 0.270 0.679 0.457 0.815 0.514 0.837 0.534 0.374 0.241 0.394 0.270 0.403 0.264 0.419 0.288

FR 0.387 0.206 0.392 0.207 0.625 0.393 0.746 0.447 0.751 0.454 0.381 0.211 0.439 0.233 0.411 0.220 0.431 0.234

DE 0.539 0.475 0.541 0.484 0.961 0.687 1.276 0.778 1.251 0.779 0.440 0.418 0.479 0.433 0.461 0.432 0.502 0.446
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Figure 5: Mean MASE and msMAPE results of 8,068 univariate datasets in TFB. The full results
can be found in Table 10 and 11 of Appendix B. Red: the best.
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4.5 MODEL ANALYSIS

Table 5: Ablation studies on without Modality-
Guided Multi-head Self-Attention (Variant 1),
without Prototype-Guided Flow Matching (Vari-
ant 2), and without both of them (Variant 3).

Models Aurora Variant 1 Variant 2 Variant 3
Metrics MSE MAE MSE MAE MSE MAE MSE MAE

Agriculture 0.272 0.348 0.298 0.351 0.290 0.334 0.324 0.366

Climate 0.865 0.749 1.176 0.868 1.008 0.836 1.447 0.962

Economy 0.033 0.146 0.277 0.419 0.045 0.172 0.296 0.440

Energy 0.255 0.370 0.268 0.383 0.257 0.372 0.272 0.388

Environment 0.276 0.379 0.324 0.398 0.354 0.411 0.388 0.459

Health 1.553 0.850 1.757 0.936 1.588 0.876 2.047 1.174

Security 72.475 4.084 81.982 4.571 79.825 4.482 84.295 4.881

Social Good 0.838 0.516 1.012 0.548 1.425 0.648 1.487 0.663

Traffic 0.161 0.289 0.244 0.378 0.273 0.418 0.335 0.467

Ablation Studies. Based on the Modality-
Guided Multi-head Self-Attention, Aurora can
utilize the domain knowledge contained in
text and image modalities to model the tem-
poral features. To validate its effectiveness,
we make ablations on it by setting Vari-
ant 1, which adopts original Multi-head Self-
Attention. Considering the Prototype-Guided
Flow Matching, which can generate prototypes
of future tokens to simplify the generation pro-
cess, we make Variant 2, which does not uti-
lize the prototype mechanism and sets the ini-
tial distribution as Standard Gaussian. Natu-
rally, we also make Variant 3, which eliminates
both of them. As shown in Table 5, results show
that each above-mentioned module is indispensable, and a cascading effect occurs when both mod-
ules are removed, where the performance crashes when the modules are removed.
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Figure 6: Sampled Predictions.

Inference Scability. Adopting a generative
probabilistic head, Aurora makes forecasts
based on multiple sampling–see Algorithm 1.
So that we study the scability of Prototype-
Guided Flow Matching by exploring the corre-
lations between the sampling number and fore-
casting performance in Figure 6. Specifically,
experiments are conduct on ProbTS, where the
average values of CRPS and NMAE across all
datasets are reported. The results indicate that
both CRPS and NMAE demonstrate a consis-
tent improvement as the sampling number rises. They attain good performance when the sampling
number reaches 100, showing obvious inference scability, and moderate efficiency–see Section A.7.

5 CONCLUSION

In this work, we propose a highly capable multimodal time series foundation model, named Au-
rora. To sum up, Aurora adopts a merticulously-designed modality fusion process, which encodes,
distills, then injects multimodal domain knowledge through a Modality-Guided Self-Attention into
the modeling of temporal dynamics. To enhance the forecasting performance, Aurora utilizes multi-
modal representations to generate conditions and prototypes of future tokens, which contributes to a
novel Prototype-Guided Flow Matching, thus supporting generative probabilistic forecasting. Com-
prehensive experiments on unimodal and multimodal forecasting tasks, including 5 well-recognized
benchmarks, demonstrate that Aurora is a strong out-of-box tool for decision intelligence.
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ETHICS STATEMENT

Our work exclusively uses publicly available benchmark datasets that contain no personally identi-
fiable information. The Cross-Domain Multimodal Time Series Corpus used to pretrain Aurora is
also collected from public datasets, and integrated with LLM-generated textual descriptions, also
containing no personally identifiable information. No human subjects are involved in this research.

REPRODUCIBILITY STATEMENT

The performance of Aurora and datasets used in our work are real, and all experimental re-
sults can be reproduced. We have released our model code in an anonymous repository:
https://anonymous.4open.science/r/Aurora-40AB. Once the paper is accepted, we will release the
checkpoints of Aurora.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we only adopt Large Language Models in our methodology and data generation.
Specifically, we leverage Bert as the TextEncoder of Aurora to extract the textual features. To
generate the textual descriptions for the cross-domain multimodal time series corpus, we provide
domain descriptions and raw time series for GPT4, encouraging it generate the descriptions of data
characteristics, which are only used for pretraining Aurora. Note that we do not use Large Language
Models in writing.

A EXPERIMENTAL DETAILS

A.1 CROSS-DOMAIN MULTIMODAL TIME SERIES CORPUS

Cross-Domain Time Series Corpus. To pretrain Aurora, we initially make use of an extensive
compilation of time series datasets. These datasets are sourced from multiple origins, encompass-
ing specific subsets from repositories such as ERA5 (Liu et al., 2025b), IoT (Liu et al., 2025b),
Monash (Godahewa et al., 2021), UEA (Bagnall et al., 2018), and UCR (Dau et al., 2019), as well
as several well-established benchmarks (Zhang et al., 2017; Wang et al., 2024a; Liu et al., 2022;
McCracken & Ng, 2016; Taieb et al., 2012). A comprehensive list of these datasets is presented in
Figure 7, containing more than 1 billion time series points. We take care to ensure that there is no
overlap between the pre-training datasets and those employed in downstream evaluations. It should
be noted that while both the pre-training and target sets incorporate weather, Energy, Health, and
Economy data, they are from different sources.

Energy
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Economy
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Health
15.9%

Transpor t
5.4%

Web
11.6%

Nature
24.2%

Weather
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Cloud
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Figure 7: Introduction of time series data sources in Cross-domain Multimodal Time Series Corpus.
We list the ratios of different domains and report detailed dataset sources and lengths.

Textual Descriptions. Since multimodal time series data is scarce in the real world, current
works (Liu et al., 2024b; Kong et al., 2025; Xie et al., 2024) often construct corresponding textual
information based on human experiences and Large Language Models, which is proven effective in
training models. Following their paradigm, we provide raw time series data in Figure 7 with domain
descriptions, encouraging GPT4 (Achiam et al., 2023) to heuristically generate textual descriptions
of sample-wise time series, thus obtaining high-quality multimodal time-series data from simula-
tion. Specifically, after a GPT4 agent generates the textual descriptions, we first coarsely check the
quality with another GPT4 agent. If the quality is low, the process will be reset. After a batch of
textual descriptions are generated, we randomly sample from them and check the quality manually,
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then determine whether to regenerate this batch of data and tune the prompts. As shown in Figure 8,
here’s some samples of our prompts for GTP4 and the generated texts:

Prompt: This time series segment records a span of 2000 seconds, reflecting the road flow 
of some Interstate Highway. Here’s an Accident report about this time series,      you can 
refer to it. Please analyze the future trend and characteristics of this time series, and 
output textual descriptions with no more than 200 words. 

Generated Text: The width of the road in the Interstate Highway Accident Report was 
carrying a low traffic volume, with almost 70 percent of the road being affected. 
Corresponding time series has experienced drastic fluctuations. It started with a high value 
of 22.7, then dropped sharply to a low value of 2.3, and after that, it further decreased to 
a low value of 0.1. Overall, this time series shows a sudden change, including a significant 
decline and a continuous downward trend.

(a) Case 1

Prompt: This time series segment records a span of 100 days, reflecting the daily stock 
prices of a well-known tech company. Here’s an economic analysis report      about this time 
series, you can refer to it. Please analyze the future trend and characteristics of this time 
series, and output textual descriptions with no more than 200 words.

Generated Text: According to the economic analysis report, the tech company faced 
strong market competition recently. The time series of its stock prices has been volatile. It 
opened at $150, rose to a peak of $180, then plunged to $120. Currently, it's hovering 
around $130. Considering the industry situation, the future trend might show a slow upward 
recovery as the company launches new products, but short-term fluctuations are still likely 
due to market sentiment.

(b) Case 2

Prompt: This time series segment records a span of 15 minutes, reflecting the real-time 
water level of a river near a city. Here’s a flood-warning report      about this time series, 
you can refer to it. Please analyze the future trend and characteristics of this time series, 
and output textual descriptions with no more than 200 words.

Generated Text: The flood-warning report shows that there has been heavy rainfall 
upstream. The water level time series started at 2 meters, then quickly rose to 3.5 meters 
within 5 minutes. Currently, it stands at 4 meters. Given the continuous rainfall, the water 
level is likely to keep rising in the short term. However, if the rain stops, the water level 
may start to decline gradually as the river discharges water downstream. But until the 
rainfall situation stabilizes, the time series will remain highly volatile.

(c) Case 3

Prompt: This time series segment records a span of 36 months, reflecting the monthly 
electricity consumption of a large industrial park. Here’s an energy consumption assessment       
about this time series, you can refer to it.       Please analyze the future trend and 
characteristics of this time series, and output textual descriptions with no more than 200 
words.
Generated Text: The energy consumption assessment indicates that the industrial park has 
been gradually implementing energy-saving measures. The time series of electricity 
consumption initially showed an upward trend, reaching a high of 500,000 kWh per month. 
Then, after the implementation of energy - saving projects, it started to decline steadily. 
It's now at 350,000 kWh per month. In the future, with the continuous improvement of 
energy-saving technologies and more efficient production processes, the electricity 
consumption is expected to continue to decrease gradually.

(d) Case 4

Figure 8: Some cases of prompt-driven textual descriptions.
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A.2 BASELINES

For zero-shot forecasting, we compare Aurora against 11 advanced foundation models: Sundial (Liu
et al., 2025b), VisionTS (Chen et al., 2024a), ROSE (Wang et al., 2025), Timer (Liu et al., 2024e),
MOIRAI (Woo et al., 2024), TTM (Olivares et al., 2023), Chronos (Ansari et al.), TimesFM (Das
et al., 2024), Time-MoE (Shi et al., 2024b), UniTS (Gao et al., 2024), and Lag-Llama (Rasul et al.,
2023). We also compare Aurora with total multiple End-to-end supervised models: TimeXer (Wang
et al., 2024b), PatchTST (Nie et al., 2023), iTransformer (Liu et al., 2024d), TimesNet (Wu et al.,
2023), GPT4MTS (Jia et al., 2024), TATS (Li et al., 2025b), CALF (Liu et al., 2025a), Time-
VLM (Zhong et al.), TSDiff (Kollovieh et al., 2023), TimeGrad (Rasul et al., 2021a), CSDI (Tashiro
et al., 2021), and GRU MAF (Rasul et al., 2021b). The corresponding codebases and implementation
details are summarized in Table 6.

Table 6: Code repositories for baselines.

Model Types Models Code Repositories

End-to-end

TSDiff https://github.com/amazon-science/unconditional-time-series-diffusion

CSDI https://github.com/ermongroup/CSDI

TimeGrad https://github.com/Zjh152/TimeGrad

GRU MAF https://github.com/microsoft/ProbTS

GPT4MTS https://github.com/Flora-jia-jfr/GPT4MTS-Prompt-based-Large-Language-Model-for-Multimodal-Time-series-Forecasting

TATS https://github.com/iDEA-iSAIL-Lab-UIUC/TaTS

CALF https://github.com/Hank0626/CALF

Time-VLM https://github.com/CityMind-Lab/ICML25-TimeVLM

PatchTST https://github.com/yuqinie98/PatchTST

iTransformer https://github.com/thuml/iTransformer

TimeXer https://github.com/thuml/TimeXer

TimesNet https://github.com/thuml/TimesNet

Foundation

Sundial https://github.com/thuml/Sundial

VisionTS https://github.com/Keytoyze/VisionTS

ROSE https://github.com/decisionintelligence/TSFM-Bench

Timer https://github.com/thuml/Large-Time-Series-Model

MOIRAI https://github.com/redoules/moirai

Chronos https://github.com/amazon-science/chronos-forecasting

TimesFM https://github.com/google-research/timesfm

Time-MoE https://github.com/Time-MoE/Time-MoE

Lag-Llama https://github.com/time-series-foundation-models/lag-llama

UniTS https://github.com/mims-harvard/UniTS

TTM https://huggingface.co/ibm-granite/granite-timeseries-ttm-r1

A.3 BENCHMARKS

To thoroughly assess the effectiveness of Aurora, we conduct comprehensive experiments on
TimeMMD (Liu et al., 2024b), TSFM-Bench (Li et al., 2025a), ProbTS (Zhang et al., 2024),
TFB (Qiu et al., 2024), and EPF (Olivares et al., 2023).

For multimodal forecasting, we use Agriculture, Climate, Economy, Energy, Environment, Health,
Security, Social Good, and Traffic. For most datasets, the prediction length is set to L ∈
{6, 8, 10, 12}, while Energy and Health use L ∈ {12, 24, 36, 48}, and Environment uses L ∈
{48, 96, 192, 336}.
For unimodal forecasting, we adopt ETTm1, ETTm2, ETTh1, ETTh2, Weather, Electricity, Traffic,
Exchange, PEMS08, Solar, and Wind from ProbTS and TSFM-Bench. The prediction length is set
to L ∈ {96, 192, 336, 720}, and the specific evaluation settings are different in ProbTS and TSFM-
Bench.

For more short-term forecasting scenarios, we adopt datasets from EPF and TFB, the prediction
lengths are set as the default settings in these benchmarks.

All models are configured with the contextual length that yields the best performance as recom-
mended in their respective papers. It is crucial to note that, for datasets such as ETTh1 and Traffic,
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which are shared between TSFM-Bench and ProbTS, the evaluation settings, particularly strides,
differ. A summary of the dataset statistics can be found in Table 7.

Table 7: Statistics of benchmark datasets.

Dataset Domain Frequency Length/Num Dim Split Stride Benchmark Description

Agriculture Retail Broiler Composite Monthly 496 1 7:1:2 1 TimeMMD The record of Retail Broiler Composite between 1983 - Present
Climate Drought Level Monthly 496 5 7:1:2 1 TimeMMD The record of Drought Level between 1983 - Present

Economy International Trade Balance Monthly 423 3 7:1:2 1 TimeMMD The record of International Trade between 1989 - Present
Energy Gasoline Prices Weekly 1,479 9 7:1:2 1 TimeMMD The prices of Gasoline between 1996 - Present

Environment Air Quaility Index Daily 11,102 4 7:1:2 1 TimeMMD The indices of Air Quality between 1982 - 2023
Health Influenza Patients Proportion Weekly 1,389 11 7:1:2 1 TimeMMD The record of Influenza Patients Proportion between 1997 - Present

Security Disaster and Emergency Grants Monthly 297 1 7:1:2 1 TimeMMD The record of Disaster and Emergency Grants between 1999 - Present
Social Good Unemployment Rate Monthly 900 1 7:1:2 1 TimeMMD The Unemployment Rate between 1950 - Present

Traffic Travel Volume Monthly 531 1 7:1:2 1 TimeMMD The Travel Volume between 1980 - Present

ETTm1 Electricity 15 mins 57,600 7 6:2:2 1 TSFM-Bench Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTm2 Electricity 15 mins 57,600 7 6:2:2 1 TSFM-Bench Power transformer 2, comprising seven indicators such as oil temperature and useful load
ETTh1 Electricity 1 hour 14,400 7 6:2:2 1 TSFM-Bench Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTh2 Electricity 1 hour 14,400 7 6:2:2 1 TSFM-Bench Power transformer 2, comprising seven indicators such as oil temperature and useful load
Weather Environment 10 mins 52,696 21 7:1:2 1 TSFM-Bench Recorded every for the whole year 2020, which contains 21 meteorological indicators

Electricity Electricity 1 hour 26,304 321 7:1:2 1 TSFM-Bench Electricity records the electricity consumption in kWh every 1 hour from 2012 to 2014
Traffic Traffic 1 hour 17,544 862 7:1:2 1 TSFM-Bench Road occupancy rates measured by 862 sensors on San Francisco Bay area freeways
Solar Energy 10 mins 52,560 137 6:2:2 1 TSFM-Bench Solar production records collected from 137 PV plants in Alabama

PEMS08 Traffic 5 mins 17,856 170 6:2:2 1 TSFM-Bench Traffic flow time series collected from the CalTrans PeMS
Wind Energy 15 mins 48,673 7 7:1:2 1 TSFM-Bench Wind power records from 2020-2021 at 15-minute intervals
NYSE Stock 1 day 1,243 5 7:1:2 1 TSFM-Bench Records opening price, closing price, trading volume, lowest price, and highest price

ETTm1 Electricity 15 mins 57,600 7 6:2:2 96 ProbTS Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTm2 Electricity 15 mins 57,600 7 6:2:2 96 ProbTS Power transformer 2, comprising seven indicators such as oil temperature and useful load
ETTh1 Electricity 1 hour 14,400 7 6:2:2 96 ProbTS Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTh2 Electricity 1 hour 14,400 7 6:2:2 96 ProbTS Power transformer 2, comprising seven indicators such as oil temperature and useful load
Weather Environment 10 mins 52,696 21 7:1:2 96 ProbTS Recorded every for the whole year 2020, which contains 21 meteorological indicators

Electricity Electricity 1 hour 26,304 321 7:1:2 96 ProbTS Electricity records the electricity consumption in kWh every 1 hour from 2012 to 2014
Traffic Traffic 1 hour 17,544 862 7:1:2 96 ProbTS Road occupancy rates measured by 862 sensors on San Francisco Bay area freeways

Exchange Economic 1 day 7,588 8 7:1:2 96 ProbTS ExchangeRate collects the daily exchange rates of eight countries
ILI Health 1 week 966 7 7:1:2 96 ProbTS Recorded indicators of patients data from Centers for Disease Control and Prevention

TFB-Yearly Univariate Yearly 1,500 1 / / TFB Univariate Datasets with yearly frequency in TFB
TFB-Quarterly Univariate Quarterly 1,514 1 / / TFB Univariate Datasets with quarterly frequency in TFB
TFB-Monthly Univariate Monthly 1,674 1 / / TFB Univariate Datasets with monthly frequency in TFB
TFB-Weekly Univariate Weekly 805 1 / / TFB Univariate Datasets with weekly frequency in TFB
TFB-Daily Univariate Daily 1,484 1 / / TFB Univariate Datasets with daily frequency in TFB

TFB-Hourly Univariate Hourly 706 1 / / TFB Univariate Datasets with hourly frequency in TFB
TFB-Other Univariate Other 706 1 / / TFB Univariate Datasets with other frequencies in TFB

NP Electricity Price 1 Hour 52,179 2 7:1:2 1 EPF Using Grid Load and Wind Power to forecast Nord Pool Electricity Price.
PJM Electricity Price 1 Hour 52,179 2 7:1:2 1 EPF Using System Loads to forecast Pennsylvania-New Jersey-Maryland Electricity Price.
BE Electricity Price 1 Hour 52,179 2 7:1:2 1 EPF Using Generation and System Load to forecast Belgium’s Electricity Price.
FR Electricity Price 1 Hour 52,179 2 7:1:2 1 EPF Using Generation and System Load to forecast France’s Electricity Price.
DE Electricity Price 1 Hour 52,179 2 7:1:2 1 EPF Using Wind power and Ampirion zonal load to forecast German’s Electricity Price.

A.4 EXPERIMENTAL SETTINGS

Pretraining In the training of Aurora, we utilize Distributed Data Parallel within the PyTorch
framework, as referenced in (Paszke et al., 2019). Due to the limited computational resources,
all experiments are executed on only 8 NVIDIA A800 GPUs, each equipped with 80GB of GPU
memory, which takes about 30 days to train Aurora from scratch. The model is optimized by the
AdamW optimizer, with an initial learning rate of 5× 10−5. To gradually decrease the learning rate
throughout the training process, we implement a step decay schedule through the StepLR scheduler.
The code bases described above are incorporated into the Huggingface framework. During the pre-
training phase, we utilize 11 historical time series tokens and 4 prediction tokens, with a reference
patch size of p = 48. The batch size is configured to be 8,192.

Downstream Forecasting In the context of downstream forecasting tasks, we implement periodic
patching strategies that are tailored to the temporal characteristics of each dataset. The quantity of
past tokens is maintained at a constant value of 11.

Furthermore, we tackle the “Drop Last” issue, which has been emphasized in recent research
works (Qiu et al., 2024; 2025a; Li et al., 2025a). Specifically, when drop_last is set to True dur-
ing test evaluation, it may yield misleading outcomes because of incomplete batches. To uphold
consistency and fairness, we configure drop_last as False for all baseline models within our exper-
imental setup. In TSFM-Bench and ProbTS, all full-shot end-to-end baselines such as TimeKAN,
TimePro and AMD about deterministic forecasting, and CSDI, TSDiff, and TimeGrad about prob-
abilistic forecasting, follow the commonly-used settings, where the input sequence length equals to
96. In EPF, all baselines follow the setting of input-168-output-24. In TFB, they follow the default
input lengths in short-term forecasting. The multimodal baselines such as TimeVLM, CALF also
follow the default settings in TimeMMD.

A.5 EVALUATION METRICS

With respect to evaluation metrics, in accordance with the experimental setup in TSFM-Bench and
TimeMMD, for deterministic forecasting, we employ the Mean Squared Error (MSE) and Mean Ab-
solute Error (MAE) as evaluation metrics. In the context of probabilistic forecasting, within ProbTS,
we utilize the Continuous Ranked Probability Score (CRPS) and Normalized Mean Absolute Error
(NMAE). Consider the scenario featuring K variates and a forecasting horizon of T .
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Mean Squared Error (MSE) The Mean Squared Error (MSE) serves to quantify the average of
the squared discrepancies between the predicted values and their respective ground truth values.
The squaring operation within the calculation of MSE results in a more substantial penalty for larger
errors. This characteristic renders the MSE highly sensitive to outliers. In a formal sense, the Mean
Squared Error is defined as follows:

MSE =
1

K × T

K∑
k=1

T∑
t=1

(xk
t − x̂k

t )
2, (26)

where K denotes the number of variables, T the prediction horizon, xk
t the true value, and x̂k

t the
predicted value.

Mean Absolute Error (MAE) The Mean Absolute Error computes the average magnitude of
prediction errors, disregarding their direction. By concentrating on the absolute differences, the
MAE offers a robust and interpretable metric of accuracy.

MAE =
1

K × T

K∑
k=1

T∑
t=1

|xk
t − x̂k

t |, (27)

where all terms adhere to the same definition as stated above. In contrast to Mean Squared Er-
ror (MSE), Mean Absolute Error (MAE) accords equal treatment to all errors and exhibits lower
sensitivity to substantial deviations.

Continuous Ranked Probability Score (CRPS) The CRPS evaluates the quality of probabilistic
forecasts by contrasting the predicted cumulative distribution function (CDF) F with the observed
outcome x. The calculation is as follows:

CRPS =

∫
R

(F (z)− I{x ≤ z})2dz, (28)

where I{x ≤ z} represents the indicator function. The Continuous Ranked Probability Score
(CRPS) rewards distributions that assign a high probability to the true value and attains its min-
imum when the predicted distribution coincides with the true distribution. In practical applica-
tions, we approximate the CRPS by utilizing the empirical Cumulative Distribution Function (CDF)
F̂ (z) = 1

n

∑n
i=1 I{Xi ≤ z}, which is based on n = 100 samples drawn from the conditional

predictive distribution pθ(xt|ht).

Normalized Mean Absolute Error (NMAE) The NMAE is an extension of the MAE. It normal-
izes the MAE with respect to the total magnitude of the ground-truth values. This normalization
process facilitates a fair comparison across datasets that have different scales. The formula for
NMAE is as follows:

NMAE =

∑K
k=1

∑T
t=1 |xk

t − x̂k
t |∑K

k=1

∑T
t=1 |xk

t |
(29)

A.6 MODEL CONFIGURATIONS

Table 8: Detailed model configurations of Aurora, including the layers of Encoder, Decoder (Trans-
formers for Time Modality), Flow-Matching Network, TextDistller, VisionDistiller, TextGuider, Vi-
sionGuider, the sizes of Prototype Bank, Model Dimension and FFN Dimension.

Model Encoder Decoder Flow-Net Model Dim FFN Dim Prototype Bank Distiller Guider Parameters
Aurora 1 9 3 256 512 1,000 1 1 418.6M
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A.7 EFFICIENCY ANALYSIS

Table 9: Efficiency analysis of Aurora and other baselines on Environment dataset, evaluated with
the horizon of 336 and batch size of 1. We report the Parameter scale, MACs, Max GPU Memory,
and Inference Time.

Models Parameters MACs GPU (MB) Inference (ms)

TATS 84.0 M 0.015 G 670 30.3

GPT4MTS 167.5 M 1.210 G 1,008 61.2

CALF 211.2 M 0.724 G 839 44.7

Time-VLM 152.2 M 6.2 G 1,773 57.6

Sundial 128.3 M 1.320 G 586 81.3

VisionTS 111.9 M 5.510 G 468 7.4

MOIRAI 311.0 M 4.23 G 1,280 51.0

Time-MoE 453.2 M 19.21 G 1,807 31.4

Aurora 418.6 M 18.329 G 1,265 83.5
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(e) Traffic.

Figure 9: Time cost comparision (seconds) among Aurora (Zero-shot), Aurora (10% few-shot),
TimeXer, iTransformer, PatchTST, and TimesNet, on datasets ETTh1, ETTm2, Weather, Electricity,
and Traffic. The training and inference time are reported with batch size equals 64 in both phases.

B FULL RESULTS

Table 10: Full MASE results of zero-shot forecasting experiments on datasets from TFB. Lower
values indicate better predictions. Red: the best, Blue: the 2nd best.

Type Zero-shot Foundation Models Full-shot End-to-end Supervised Models

Models Aurora Sundial VisionTS Timer TimeKAN Ampilifier iTransformer TimeMixer PatchTST Crossformer TimesNet DLinear N-HITS Stationary FEDformer N-BEATS TCN LR RF
(Ours) (2025) (2025) (2024) (2025) (2025) (2024) (2024) (2023) (2023) (2023) (2023) (2023) (2022) (2022) (2020) (2018) (2005) (2001)

Yearly 3.597 3.579 3.441 4.17 3.982 5.035 4.461 3.559 4.131 24.461 4.276 3.968 5.349 3.776 4.030 6.013 29.205 17.146 4.276

Quarterly 1.932 1.991 1.849 2.259 2.129 1.620 2.155 1.819 2.405 19.335 2.281 2.057 2.013 2.205 2.136 1.943 20.208 1.500 2.026

Monthly 1.451 1.600 1.914 2.275 1.783 1.391 2.093 1.736 1.891 30.604 1.682 2.143 1.736 2.073 2.259 1.722 20.287 1.484 1.675

Weekly 1.962 1.839 1.628 3.47 1.418 1.349 1.765 2.042 1.691 45.160 1.871 1.983 1.762 1.504 2.106 2.252 6.907 1.890 3.466

Daily 1.252 1.364 1.165 1.284 1.193 1.133 1.271 1.313 1.183 21.092 1.170 1.331 1.396 1.260 1.403 1.305 7.928 1.162 1.301

Hourly 2.006 1.699 2.708 4.104 1.515 1.579 3.556 1.585 1.575 31.711 1.824 5.054 1.672 4.294 5.559 1.672 5.028 0.871 1.301

Other 4.200 4.271 3.541 4.142 4.771 2.727 4.250 4.433 4.410 74.249 4.318 4.540 5.007 3.824 4.553 3.930 47.121 2.696 4.624

Avg 2.134 2.158 2.167 2.810 2.232 2.140 2.593 2.159 2.347 29.224 2.340 2.670 2.551 2.353 2.791 2.639 18.274 4.440 2.406

Table 11: Full msMAPE results of zero-shot forecasting experiments on datasets from TFB. Lower
values indicate better predictions. Red: the best, Blue: the 2nd best.

Type Zero-shot Foundation Models Full-shot End-to-end Supervised Models

Models Aurora Sundial VisionTS Timer TimeKAN Ampilifier iTransformer TimeMixer PatchTST Crossformer TimesNet DLinear N-HITS Stationary FEDformer N-BEATS TCN LR RF
(Ours) (2025) (2025) (2024) (2025) (2025) (2024) (2024) (2023) (2023) (2023) (2023) (2023) (2022) (2022) (2020) (2018) (2005) (2001)

Quarterly 17.655 17.852 17.121 19.485 18.920 17.830 19.771 18.257 21.992 199.760 19.914 18.472 20.602 19.995 19.060 19.252 192.593 18.740 18.666

Monthly 15.028 15.461 17.025 18.149 16.563 16.422 18.585 16.315 17.573 197.556 16.317 17.579 17.672 11.932 17.742 16.782 136.592 21.178 15.779

Weekly 18.839 18.908 19.359 32.63 18.873 18.724 20.041 21.595 19.690 170.084 20.506 50.882 35.622 19.704 69.550 61.084 73.372 65.833 47.956

Daily 22.318 22.506 22.331 22.466 21.720 21.010 22.401 22.788 21.709 137.802 21.607 24.269 26.550 24.140 28.350 25.708 78.426 26.779 24.214

Hourly 30.381 29.955 31.82 33.478 29.343 29.171 33.917 30.601 28.604 117.021 30.775 35.895 28.646 36.779 37.903 27.147 38.258 28.237 23.315

Other 16.165 16.531 14.666 15.682 17.223 11.825 15.463 16.477 16.708 178.247 15.755 16.737 14.322 14.876 15.806 12.845 121.324 12.605 13.185

Avg 19.964 20.096 20.317 23.153 20.774 21.048 22.528 21.024 21.866 176.571 21.479 25.089 24.787 21.775 28.061 26.925 132.472 29.787 22.822
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Table 12: Full results of zero-shot & few-shot forecasting experiments on datasets from TimeMMD.
Lower MSE or MAE values indicate better predictions. Red: the best, Blue: the 2nd best.

Type Zero-shot Foundation Models 10% few-shot Full-shot Multimodal End-to-end Supervised Models

Models
Aurora Sundial VisionTS ROSE MOIRAI Aurora GPT4MTS TATS CALF Time-VLM
(Ours) (2025) (2025) (2025) (2024) (Ours) (2025) (2025) (2025) (2025)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

A
gr

ic
ul

tu
re

6 0.184 0.295 0.218 0.304 0.210 0.289 0.220 0.299 0.187 0.342 0.127 0.233 0.161 0.257 0.140 0.251 0.142 0.250 0.143 0.245
8 0.242 0.335 0.319 0.364 0.266 0.323 0.278 0.339 0.245 0.391 0.190 0.289 0.207 0.288 0.187 0.282 0.195 0.285 0.215 0.287
10 0.297 0.365 0.425 0.423 0.307 0.348 0.408 0.406 0.297 0.423 0.236 0.310 0.230 0.305 0.244 0.320 0.350 0.370 0.271 0.320
12 0.365 0.398 0.530 0.477 0.376 0.386 0.474 0.443 0.357 0.455 0.295 0.340 0.301 0.342 0.290 0.350 0.314 0.355 0.322 0.359

Avg 0.272 0.348 0.373 0.392 0.290 0.336 0.345 0.372 0.272 0.403 0.212 0.293 0.225 0.298 0.215 0.301 0.250 0.315 0.237 0.302

C
lim

at
e

6 0.859 0.747 1.180 0.891 1.316 0.932 1.488 0.993 1.624 1.016 0.867 0.744 1.199 0.895 1.194 0.897 1.231 0.910 1.218 0.907
8 0.858 0.746 1.159 0.885 1.312 0.935 1.598 1.031 2.148 1.152 0.858 0.745 1.205 0.899 1.178 0.886 1.227 0.905 1.181 0.914
10 0.868 0.748 1.141 0.876 1.302 0.928 1.401 0.967 1.983 1.112 0.863 0.744 1.173 0.885 1.170 0.881 1.508 0.990 1.179 0.880
12 0.875 0.753 1.134 0.870 1.297 0.925 1.414 0.957 1.929 1.101 0.869 0.749 1.152 0.876 1.179 0.885 1.177 0.883 1.203 0.896

Avg 0.865 0.749 1.154 0.881 1.307 0.930 1.475 0.987 1.921 1.095 0.862 0.746 1.182 0.889 1.180 0.887 1.286 0.922 1.195 0.899

E
co

no
m

y

6 0.035 0.150 0.251 0.401 0.270 0.420 0.258 0.405 0.315 0.460 0.015 0.095 0.016 0.102 0.017 0.102 0.178 0.334 0.024 0.125
8 0.033 0.145 0.277 0.423 0.296 0.440 0.300 0.450 0.431 0.526 0.015 0.099 0.016 0.101 0.017 0.103 0.200 0.353 0.023 0.121
10 0.032 0.143 0.304 0.443 0.307 0.446 0.286 0.432 0.432 0.528 0.016 0.101 0.018 0.104 0.017 0.104 0.039 0.162 0.025 0.128
12 0.032 0.144 0.333 0.460 0.329 0.462 0.310 0.447 0.440 0.535 0.016 0.102 0.017 0.104 0.017 0.106 0.232 0.378 0.024 0.126

Avg 0.033 0.146 0.291 0.432 0.301 0.442 0.289 0.433 0.405 0.512 0.016 0.099 0.017 0.103 0.017 0.104 0.163 0.307 0.024 0.125

E
ne

rg
y

12 0.117 0.245 0.125 0.242 0.173 0.313 0.268 0.401 0.183 0.309 0.097 0.212 0.111 0.244 0.105 0.232 0.102 0.224 0.114 0.253
24 0.226 0.354 0.234 0.345 0.264 0.395 0.363 0.469 0.290 0.396 0.199 0.322 0.232 0.362 0.216 0.344 0.210 0.346 0.227 0.359
36 0.292 0.409 0.318 0.409 0.346 0.454 0.413 0.497 0.367 0.449 0.271 0.352 0.308 0.418 0.309 0.418 0.300 0.420 0.309 0.410
48 0.383 0.472 0.410 0.473 0.434 0.516 0.501 0.549 0.457 0.515 0.352 0.431 0.398 0.496 0.391 0.480 0.365 0.470 0.390 0.475

Avg 0.255 0.370 0.272 0.367 0.304 0.420 0.386 0.479 0.324 0.417 0.230 0.329 0.262 0.380 0.255 0.368 0.244 0.365 0.260 0.374

E
nv

ir
on

m
en

t 48 0.281 0.380 0.330 0.410 0.345 0.426 0.402 0.459 0.352 0.404 0.269 0.372 0.315 0.400 0.307 0.389 0.313 0.382 0.304 0.387
96 0.284 0.382 0.353 0.423 0.370 0.441 0.409 0.465 0.370 0.415 0.271 0.373 0.340 0.401 0.334 0.402 0.335 0.394 0.327 0.405

192 0.270 0.375 0.343 0.419 0.360 0.442 0.389 0.452 0.350 0.402 0.269 0.374 0.336 0.411 0.332 0.401 0.341 0.394 0.328 0.403
336 0.269 0.377 0.317 0.411 0.340 0.436 0.369 0.447 0.332 0.390 0.251 0.368 0.299 0.390 0.302 0.391 0.312 0.377 0.320 0.395

Avg 0.276 0.379 0.336 0.416 0.354 0.436 0.392 0.456 0.351 0.403 0.265 0.372 0.323 0.400 0.319 0.396 0.325 0.387 0.319 0.397

H
ea

lth

12 1.093 0.668 1.531 0.810 2.012 1.093 2.737 1.250 2.230 1.114 0.992 0.641 0.985 0.658 0.899 0.612 0.964 0.609 1.198 0.727
24 1.572 0.849 2.075 1.019 2.594 1.266 2.589 1.189 2.895 1.284 1.332 0.796 1.513 0.802 1.307 0.759 1.451 0.749 1.491 0.839
36 1.688 0.920 2.122 1.058 2.686 1.291 2.629 1.210 2.924 1.289 1.467 0.818 1.601 0.846 1.523 0.827 1.713 0.851 1.567 0.865
48 1.857 0.963 2.153 1.081 2.454 1.236 2.436 1.154 2.895 1.276 1.579 0.847 1.757 0.889 1.693 0.872 1.836 0.889 1.702 0.907

Avg 1.553 0.850 1.970 0.992 2.436 1.221 2.598 1.201 2.736 1.241 1.343 0.776 1.464 0.799 1.356 0.767 1.491 0.775 1.489 0.834

Se
cu

ri
ty

6 67.572 3.909 64.519 3.781 71.453 4.286 78.188 4.574 69.454 4.419 64.513 3.798 65.780 3.906 65.612 3.838 67.427 3.947 67.867 3.992
8 70.576 4.013 68.380 3.934 78.023 4.573 90.703 5.089 97.574 5.316 67.828 3.930 68.914 3.955 71.860 4.146 69.608 3.993 70.928 4.084
10 74.173 4.148 72.290 4.068 81.893 4.669 82.339 4.655 100.900 5.419 72.423 4.092 73.214 4.094 74.494 4.166 93.839 5.146 75.362 4.212
12 77.579 4.264 76.573 4.238 87.023 4.861 86.063 4.741 105.053 5.536 75.482 4.132 78.041 4.316 77.656 4.239 74.631 4.113 80.767 4.438

Avg 72.475 4.084 70.441 4.005 79.598 4.597 84.324 4.765 93.245 5.173 70.062 3.988 71.487 4.068 72.406 4.097 76.376 4.300 73.731 4.181

So
ci

al
G

oo
d 6 0.701 0.442 0.861 0.487 0.957 0.543 0.939 0.499 0.966 0.522 0.689 0.427 0.718 0.378 0.753 0.370 0.782 0.360 0.732 0.379

8 0.804 0.493 0.994 0.549 1.106 0.605 1.168 0.588 1.532 0.653 0.784 0.461 0.942 0.505 0.875 0.409 0.874 0.386 0.822 0.427
10 0.886 0.543 1.100 0.604 1.164 0.636 1.187 0.595 1.551 0.691 0.850 0.532 0.929 0.446 0.991 0.459 0.976 0.420 0.916 0.465
12 0.960 0.587 1.187 0.651 1.278 0.688 1.272 0.642 1.671 0.736 0.931 0.554 1.093 0.470 1.053 0.474 0.991 0.439 1.005 0.505

Avg 0.838 0.516 1.036 0.573 1.126 0.618 1.141 0.581 1.430 0.651 0.814 0.494 0.920 0.450 0.918 0.428 0.906 0.401 0.868 0.444

Tr
af

fic

6 0.154 0.285 0.273 0.410 0.275 0.411 0.331 0.449 0.349 0.448 0.149 0.292 0.192 0.264 0.164 0.226 0.174 0.243 0.210 0.316
8 0.158 0.286 0.275 0.408 0.282 0.410 0.365 0.455 0.461 0.499 0.155 0.284 0.195 0.256 0.178 0.242 0.176 0.232 0.212 0.313
10 0.163 0.289 0.270 0.403 0.286 0.406 0.326 0.443 0.414 0.466 0.160 0.287 0.204 0.257 0.185 0.243 0.345 0.454 0.222 0.328
12 0.168 0.294 0.268 0.401 0.282 0.402 0.342 0.458 0.400 0.458 0.165 0.296 0.218 0.268 0.189 0.242 0.193 0.243 0.222 0.322

Avg 0.161 0.289 0.271 0.405 0.281 0.407 0.341 0.451 0.406 0.468 0.157 0.290 0.203 0.261 0.179 0.238 0.222 0.293 0.216 0.319

1st Count 31 26 4 7 0 4 0 0 1 0 30 23 1 1 4 4 1 8 0 0
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Table 13: Full results of zero-shot deterministic forecasting experiments on datasets from TSFM-
Bench. Lower MSE or MAE values indicate better predictions. (’-’) denotes datasets included in
the model’s pretraining and therefore excluded from testing. Red: the best, Blue: the 2nd best.

Type Zero-shot Foundation Models

Models
Aurora Sundial ROSE Timer TimesFM Chronos Time-MoE UniTS MOIRAI TTM
(Ours) (2025) (2025) (2024) (2024) (2023) (2024) (2024) (2024) (2024)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.294 0.351 0.280 0.334 0.512 0.460 0.817 0.611 0.363 0.369 0.402 0.373 0.281 0.341 0.761 0.530 0.353 0.363 0.738 0.541
192 0.331 0.374 0.321 0.366 0.512 0.462 0.927 0.659 0.417 0.405 0.510 0.435 0.305 0.358 0.777 0.534 0.376 0.380 0.698 0.547
336 0.359 0.391 0.350 0.389 0.523 0.470 1.043 0.704 0.447 0.428 0.590 0.477 0.369 0.395 0.754 0.539 0.399 0.395 0.670 0.533
720 0.398 0.414 0.394 0.418 0.552 0.490 1.044 0.722 0.513 0.470 0.703 0.525 0.469 0.472 0.750 0.569 0.432 0.417 0.660 0.550

Avg 0.346 0.383 0.336 0.377 0.525 0.471 0.958 0.674 0.435 0.418 0.551 0.453 0.356 0.392 0.761 0.543 0.390 0.389 0.692 0.543

E
T

T
m

2

96 0.179 0.270 0.170 0.256 0.224 0.309 0.225 0.300 0.206 0.267 0.192 0.263 0.198 0.288 0.249 0.315 0.189 0.260 0.226 0.309
192 0.232 0.307 0.229 0.300 0.266 0.333 0.286 0.339 0.293 0.320 0.256 0.308 0.235 0.312 0.309 0.353 0.247 0.300 0.311 0.360
336 0.275 0.337 0.281 0.337 0.310 0.358 0.335 0.369 0.411 0.414 0.315 0.346 0.293 0.348 0.353 0.383 0.295 0.334 0.350 0.383
720 0.338 0.380 0.351 0.387 0.395 0.407 0.414 0.416 0.478 0.437 0.409 0.405 0.427 0.428 0.430 0.431 0.372 0.386 0.446 0.435

Avg 0.256 0.324 0.258 0.320 0.299 0.352 0.315 0.356 0.347 0.360 0.293 0.331 0.288 0.344 0.335 0.371 0.276 0.320 0.333 0.372

E
T

T
h1

96 0.340 0.381 0.348 0.385 0.382 0.408 0.454 0.434 0.421 0.401 0.444 0.409 0.349 0.379 0.377 0.392 0.380 0.398 0.364 0.389
192 0.377 0.405 0.393 0.418 0.400 0.420 0.522 0.465 0.472 0.432 0.502 0.443 0.395 0.413 0.398 0.421 0.440 0.434 0.386 0.407
336 0.399 0.422 0.422 0.440 0.404 0.426 0.559 0.484 0.510 0.455 0.580 0.460 0.447 0.453 0.413 0.425 0.514 0.474 0.404 0.422
720 0.428 0.450 0.481 0.493 0.420 0.447 0.714 0.549 0.514 0.481 0.605 0.495 0.457 0.462 0.469 0.463 0.705 0.568 0.424 0.448

Avg 0.386 0.415 0.411 0.434 0.402 0.425 0.562 0.483 0.479 0.442 0.533 0.452 0.412 0.427 0.414 0.425 0.510 0.469 0.395 0.417

E
T

T
h2

96 0.259 0.325 0.271 0.333 0.298 0.362 0.316 0.359 0.326 0.355 0.306 0.338 0.292 0.352 0.323 0.355 0.287 0.325 0.277 0.335
192 0.324 0.370 0.327 0.376 0.336 0.385 0.374 0.398 0.397 0.400 0.396 0.394 0.347 0.379 0.372 0.406 0.347 0.367 0.334 0.373
336 0.360 0.401 0.354 0.402 0.353 0.399 0.381 0.410 0.431 0.413 0.423 0.417 0.406 0.419 0.373 0.413 0.377 0.393 0.362 0.402
720 0.403 0.441 0.381 0.435 0.395 0.432 0.408 0.434 0.446 0.444 0.442 0.439 0.439 0.447 0.429 0.457 0.404 0.421 0.408 0.444

Avg 0.337 0.384 0.333 0.387 0.346 0.395 0.370 0.400 0.400 0.403 0.392 0.397 0.371 0.399 0.374 0.408 0.354 0.377 0.345 0.389

W
ea

th
er

96 0.160 0.207 0.157 0.205 0.200 0.260 0.190 0.236 - - 0.186 0.208 0.157 0.211 0.194 0.234 0.177 0.208 0.183 0.242
192 0.202 0.247 0.205 0.251 0.239 0.288 0.261 0.293 - - 0.238 0.258 0.208 0.256 0.252 0.279 0.219 0.249 0.229 0.285
336 0.252 0.288 0.253 0.289 0.279 0.315 0.332 0.340 - - 0.313 0.353 0.255 0.290 0.299 0.316 0.277 0.292 0.289 0.330
720 0.307 0.327 0.320 0.336 0.340 0.357 0.385 0.381 - - 0.416 0.415 0.405 0.397 0.355 0.361 0.365 0.350 0.359 0.370

Avg 0.230 0.267 0.234 0.270 0.265 0.305 0.292 0.313 - - 0.288 0.309 0.256 0.289 0.275 0.298 0.260 0.275 0.265 0.307

E
le

ct
ri

ci
ty

96 0.134 0.234 0.132 0.229 0.209 0.307 0.210 0.312 - - - - - - 0.175 0.269 0.152 0.242 0.166 0.263
192 0.161 0.258 0.152 0.250 0.219 0.315 0.239 0.337 - - - - - - 0.178 0.273 0.171 0.259 0.191 0.286
336 0.193 0.287 0.173 0.271 0.236 0.330 0.284 0.372 - - - - - - 0.190 0.287 0.192 0.278 0.237 0.336
720 0.224 0.320 0.218 0.311 0.273 0.328 0.456 0.479 - - - - - - 0.248 0.335 0.236 0.313 0.292 0.384

Avg 0.178 0.275 0.169 0.265 0.234 0.320 0.297 0.375 - - - - - - 0.198 0.291 0.188 0.273 0.222 0.317

Tr
af

fic

96 0.435 0.314 - - 0.572 0.407 0.526 0.368 - - 0.562 0.378 - - - - - - 0.514 0.347
192 0.465 0.328 - - 0.575 0.406 0.561 0.385 - - 0.579 0.412 - - - - - - 0.543 0.373
336 0.525 0.355 - - 0.588 0.411 0.614 0.412 - - 0.594 0.420 - - - - - - 0.575 0.389
720 0.670 0.411 - - 0.618 0.422 0.749 0.464 - - 0.723 0.472 - - - - - - 0.622 0.433

Avg 0.524 0.352 - - 0.588 0.412 0.613 0.407 - - 0.615 0.421 - - - - - - 0.564 0.386

So
la

r

96 0.185 0.272 0.204 0.230 0.524 0.557 0.591 0.504 0.408 0.345 0.373 0.304 0.304 0.345 0.771 0.594 0.682 0.688 0.863 0.664
192 0.198 0.282 0.221 0.248 0.507 0.550 0.689 0.567 0.466 0.373 0.363 0.303 0.309 0.342 0.800 0.618 0.694 0.695 0.823 0.695
336 0.211 0.294 0.225 0.260 0.508 0.553 0.831 0.636 0.526 0.407 0.391 0.319 0.433 0.450 0.855 0.672 0.719 0.706 0.835 0.741
720 0.218 0.307 0.233 0.272 0.479 0.534 0.972 0.710 0.601 0.461 0.444 0.349 0.599 0.576 0.952 0.793 0.759 0.725 0.738 0.738

Avg 0.203 0.289 0.221 0.252 0.505 0.549 0.771 0.604 0.500 0.397 0.393 0.319 0.411 0.428 0.845 0.669 0.714 0.704 0.815 0.710

PE
M

S0
8

96 0.463 0.513 - - 1.373 0.995 0.625 0.580 1.131 0.759 1.538 0.983 - - 1.152 0.833 - - 1.284 0.888
192 0.599 0.577 - - 1.365 0.979 0.798 0.661 1.609 0.944 1.719 0.983 - - 1.259 0.875 - - 1.638 1.039
336 0.560 0.546 - - 1.338 0.960 0.910 0.716 1.568 0.939 1.768 0.998 - - 1.309 0.903 - - 1.979 1.160
720 0.629 0.570 - - 1.401 0.980 1.131 0.824 1.632 0.986 1.802 1.133 - - 1.290 0.906 - - 2.020 1.175

Avg 0.563 0.552 - - 1.369 0.979 0.866 0.695 1.485 0.907 1.707 1.024 - - 1.253 0.879 - - 1.730 1.066

W
in

d

96 0.951 0.664 0.931 0.646 1.072 0.747 0.946 0.659 1.229 0.722 1.273 0.738 - - 1.112 0.724 0.992 0.656 1.077 0.701
192 1.115 0.747 1.136 0.751 1.209 0.804 1.142 0.758 1.503 0.835 1.439 0.817 - - 1.295 0.806 1.221 0.765 1.350 0.825
336 1.229 0.799 1.285 0.820 1.318 0.848 1.300 0.830 1.739 0.925 1.550 0.869 - - 1.526 0.890 1.403 0.844 1.473 0.891
720 1.309 0.840 1.390 0.870 1.404 0.881 1.417 0.884 1.982 0.997 1.649 0.914 - - 1.765 0.973 1.581 0.915 1.447 0.899

Avg 1.151 0.763 1.186 0.772 1.251 0.820 1.201 0.783 1.613 0.870 1.478 0.834 - - 1.425 0.848 1.299 0.795 1.337 0.829

N
Y

SE

24 0.267 0.373 0.370 0.393 - - 0.388 0.409 0.235 0.322 0.480 0.449 - - 0.755 0.623 - - - -
36 0.420 0.477 0.681 0.566 - - 0.778 0.613 0.472 0.467 0.912 0.655 - - 1.058 0.763 - - - -
48 0.605 0.574 1.043 0.729 - - 1.200 0.792 0.723 0.591 1.371 0.818 - - 1.353 0.879 - - - -
60 0.820 0.681 1.425 0.880 - - 1.584 1.000 1.061 0.763 1.754 0.958 - - 1.712 1.016 - - - -

Avg 0.528 0.526 0.880 0.642 - - 0.988 0.704 0.623 0.536 1.129 0.720 - - 1.220 0.820 - - - -

1st Count 27 21 11 13 3 1 0 0 1 2 0 0 2 2 0 0 0 5 0 0
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Table 14: Full results of zero-shot probabilistic forecasting experiments on datasets from ProbTS.
Lower CRPS or NMAE values indicate better predictions. (’-’) denotes datasets included in the
model’s pretraining and therefore excluded from testing. (’/’) denotes the excessive time consump-
tion. Red: the best, Blue: the 2nd best.

Type Zero-shot Foundation Models Full-shot Probabilistic End-to-end Supervised Models

Models
Aurora Sundial Chronos MOIRAI Lag-Llama TSDiff CSDI TimeGrad GRU MAF
(Ours) (2025) (2024) (2024) (2023) (2023) (2022) (2022) (2021)

Metrics CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE

E
T

T
m

1

96 0.261 0.278 0.253 0.308 0.360 0.422 0.464 0.522 0.354 0.402 0.344 0.441 0.236 0.308 0.522 0.645 0.295 0.402
192 0.278 0.296 0.279 0.337 0.404 0.450 0.467 0.531 0.368 0.415 0.345 0.441 0.291 0.377 0.603 0.748 0.389 0.476
336 0.292 0.309 0.291 0.350 0.425 0.456 0.524 0.558 0.387 0.436 0.462 0.571 0.322 0.419 0.601 0.759 0.429 0.522
720 0.312 0.330 0.318 0.380 0.461 0.478 0.514 0.535 0.403 0.466 0.478 0.622 0.448 0.578 0.621 0.793 0.536 0.711

Avg 0.286 0.303 0.285 0.344 0.413 0.451 0.492 0.536 0.378 0.430 0.407 0.519 0.324 0.421 0.587 0.736 0.412 0.528

E
T

T
m

2

96 0.131 0.148 0.128 0.153 0.134 0.158 0.176 0.186 0.163 0.192 0.175 0.224 0.115 0.146 0.427 0.525 0.177 0.212
192 0.149 0.168 0.150 0.177 0.163 0.183 0.197 0.207 0.181 0.207 0.255 0.316 0.147 0.189 0.424 0.530 0.411 0.535
336 0.163 0.182 0.167 0.195 0.190 0.204 0.229 0.227 0.206 0.229 0.328 0.397 0.190 0.248 0.469 0.566 0.377 0.407
720 0.182 0.201 0.189 0.217 0.223 0.230 0.321 0.258 0.227 0.249 0.344 0.416 0.239 0.306 0.470 0.561 0.272 0.355

Avg 0.156 0.175 0.158 0.186 0.178 0.194 0.231 0.220 0.194 0.219 0.276 0.338 0.173 0.222 0.448 0.546 0.309 0.377

E
T

T
h1

96 0.277 0.314 0.260 0.307 0.293 0.341 0.469 0.488 0.297 0.340 0.395 0.510 0.437 0.557 0.455 0.585 0.293 0.371
192 0.297 0.336 0.297 0.347 0.348 0.384 0.496 0.492 0.312 0.356 0.467 0.596 0.496 0.625 0.516 0.680 0.348 0.430
336 0.314 0.357 0.314 0.365 0.384 0.409 0.503 0.489 0.326 0.370 0.450 0.581 0.454 0.574 0.512 0.666 0.377 0.462
720 0.334 0.381 0.312 0.366 0.413 0.425 0.526 0.508 0.340 0.405 0.516 0.657 0.528 0.657 0.523 0.672 0.393 0.496

Avg 0.306 0.347 0.296 0.346 0.360 0.390 0.498 0.494 0.319 0.368 0.457 0.586 0.479 0.603 0.502 0.651 0.353 0.440

E
T

T
h2

96 0.148 0.174 0.157 0.186 0.163 0.191 0.212 0.238 0.178 0.204 0.336 0.421 0.164 0.214 0.358 0.448 0.239 0.292
192 0.166 0.193 0.183 0.213 0.195 0.218 0.229 0.250 0.193 0.217 0.265 0.339 0.226 0.294 0.457 0.575 0.313 0.376
336 0.186 0.212 0.203 0.232 0.226 0.241 0.253 0.263 0.211 0.230 0.350 0.427 0.274 0.353 0.481 0.606 0.376 0.454
720 0.208 0.234 0.203 0.233 0.255 0.263 0.279 0.273 0.222 0.238 0.406 0.482 0.302 0.382 0.445 0.550 0.990 1.092

Avg 0.177 0.203 0.186 0.216 0.210 0.228 0.243 0.256 0.201 0.222 0.339 0.417 0.242 0.311 0.435 0.545 0.480 0.554

W
ea

th
er

96 0.064 0.070 0.078 0.091 0.136 0.155 0.161 0.141 0.085 0.094 0.104 0.113 0.068 0.087 0.130 0.164 0.139 0.176
192 0.069 0.075 0.083 0.097 0.145 0.165 0.173 0.139 0.094 0.102 0.134 0.144 0.068 0.086 0.127 0.158 0.143 0.166
336 0.072 0.077 0.090 0.106 0.136 0.151 0.149 0.134 0.098 0.109 0.137 0.138 0.083 0.098 0.130 0.162 0.129 0.168
720 0.076 0.081 0.096 0.113 0.151 0.161 0.233 0.155 0.107 0.120 0.152 0.141 0.087 0.102 0.113 0.136 0.122 0.149

Avg 0.070 0.076 0.087 0.102 0.142 0.158 0.179 0.143 0.096 0.106 0.132 0.134 0.077 0.093 0.125 0.155 0.133 0.165

E
le

ct
ri

ci
ty

96 0.066 0.081 0.068 0.083 - - 0.231 0.275 - - 0.344 0.441 0.153 0.203 0.096 0.119 0.083 0.108
192 0.075 0.091 0.074 0.090 - - 0.236 0.279 - - 0.345 0.441 0.200 0.264 0.100 0.124 0.093 0.120
336 0.087 0.106 0.083 0.100 - - 0.245 0.289 - - 0.462 0.571 / / 0.102 0.126 0.095 0.122
720 0.111 0.134 0.098 0.118 - - 0.274 0.318 - - 0.478 0.622 / / 0.108 0.134 0.106 0.136

Avg 0.085 0.103 0.081 0.098 - - 0.247 0.290 - - 0.407 0.519 / / 0.102 0.126 0.094 0.122

Tr
af

fic

96 0.199 0.241 - - 0.250 0.289 - - 0.255 0.297 0.294 0.342 / / 0.214 0.252 0.215 0.274
192 0.207 0.250 - - 0.249 0.278 - - 0.295 0.343 0.306 0.354 / / 0.223 0.259 / /
336 0.223 0.269 - - 0.269 0.290 - - 0.335 0.384 0.317 0.392 / / 0.229 0.271 / /
720 0.250 0.289 - - 0.310 0.321 - - 0.434 0.517 0.391 0.478 / / 0.233 0.274 / /

Avg 0.220 0.262 - - 0.269 0.295 - - 0.330 0.385 0.327 0.392 / / 0.225 0.264 / /

E
xc

ha
ng

e

96 0.024 0.026 0.024 0.027 0.021 0.025 0.025 0.030 0.042 0.051 0.079 0.090 0.028 0.036 0.068 0.079 0.026 0.033
192 0.032 0.036 0.034 0.038 0.032 0.036 0.034 0.039 0.047 0.058 0.093 0.106 0.045 0.058 0.087 0.100 0.034 0.044
336 0.045 0.048 0.046 0.050 0.045 0.048 0.047 0.052 0.061 0.073 0.081 0.106 0.060 0.076 0.074 0.086 0.058 0.074
720 0.075 0.078 0.076 0.079 0.078 0.080 0.073 0.081 0.078 0.094 0.082 0.142 0.143 0.173 0.099 0.113 0.160 0.182

Avg 0.044 0.047 0.045 0.049 0.044 0.047 0.045 0.050 0.057 0.069 0.084 0.111 0.069 0.086 0.082 0.095 0.070 0.083

IL
I

24 0.110 0.124 0.108 0.123 0.120 0.139 0.150 0.196 0.135 0.173 0.228 0.242 0.250 0.263 0.275 0.296 0.231 0.275
36 0.155 0.176 0.152 0.169 0.179 0.205 0.171 0.222 0.163 0.227 0.235 0.246 0.285 0.298 0.272 0.298 0.242 0.258
48 0.168 0.186 0.164 0.184 0.186 0.215 0.151 0.184 0.171 0.233 0.265 0.275 0.285 0.301 0.295 0.320 0.280 0.303
60 0.156 0.177 0.168 0.190 0.196 0.228 0.163 0.188 0.156 0.211 0.263 0.272 0.283 0.299 0.295 0.325 0.295 0.314

Avg 0.147 0.166 0.148 0.166 0.170 0.197 0.159 0.197 0.156 0.211 0.248 0.259 0.276 0.290 0.284 0.310 0.262 0.288

1st Count 19 24 8 8 1 1 2 1 0 0 0 0 4 1 1 1 0 0
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Table 15: Full results of zero-shot Aurora v.s full-shot end-to-end supervised models. Lower MSE
or MAE values indicate better predictions. Red: the best, Blue: the 2nd best.

Models
Aurora TimeKAN AMD TimePro TimeXer Fredformer iTransformer PatchTST TimesNet
(Ours) (2025) (2025) (2025) (2024) (2024) (2024) (2023) (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.294 0.351 0.327 0.365 0.327 0.361 0.326 0.364 0.309 0.352 0.326 0.361 0.334 0.368 0.329 0.367 0.338 0.375
192 0.331 0.374 0.363 0.387 0.366 0.383 0.367 0.383 0.355 0.378 0.363 0.384 0.377 0.391 0.367 0.385 0.374 0.387
336 0.359 0.391 0.389 0.407 0.398 0.404 0.402 0.409 0.387 0.399 0.395 0.406 0.426 0.420 0.399 0.410 0.410 0.411
720 0.398 0.414 0.457 0.445 0.464 0.437 0.469 0.446 0.448 0.435 0.456 0.441 0.491 0.459 0.454 0.439 0.478 0.450

Avg 0.346 0.383 0.384 0.401 0.389 0.396 0.391 0.401 0.375 0.391 0.385 0.398 0.407 0.410 0.387 0.400 0.400 0.406

E
T

T
m

2

96 0.179 0.270 0.178 0.262 0.176 0.259 0.178 0.260 0.171 0.255 0.177 0.258 0.180 0.264 0.175 0.259 0.187 0.267
192 0.232 0.307 0.244 0.308 0.242 0.302 0.242 0.303 0.238 0.300 0.243 0.301 0.250 0.309 0.241 0.302 0.249 0.309
336 0.275 0.337 0.305 0.346 0.298 0.337 0.303 0.342 0.301 0.340 0.302 0.340 0.311 0.348 0.305 0.343 0.321 0.351
720 0.338 0.380 0.402 0.404 0.396 0.394 0.400 0.399 0.401 0.397 0.404 0.398 0.412 0.407 0.402 0.400 0.408 0.403

Avg 0.256 0.324 0.282 0.330 0.278 0.323 0.281 0.326 0.278 0.323 0.281 0.324 0.288 0.332 0.281 0.326 0.291 0.333

E
T

T
h1

96 0.340 0.381 0.374 0.391 0.375 0.392 0.375 0.398 0.377 0.397 0.378 0.395 0.386 0.405 0.414 0.419 0.384 0.402
192 0.377 0.405 0.421 0.421 0.430 0.422 0.427 0.429 0.425 0.425 0.435 0.424 0.441 0.436 0.460 0.445 0.436 0.429
336 0.399 0.422 0.464 0.440 0.471 0.443 0.472 0.450 0.457 0.441 0.485 0.447 0.487 0.458 0.501 0.466 0.491 0.469
720 0.428 0.450 0.466 0.462 0.478 0.464 0.476 0.474 0.464 0.463 0.496 0.472 0.503 0.491 0.500 0.488 0.521 0.500

Avg 0.386 0.415 0.431 0.429 0.438 0.430 0.438 0.438 0.431 0.432 0.448 0.435 0.454 0.448 0.469 0.455 0.458 0.450

E
T

T
h2

96 0.259 0.325 0.293 0.343 0.287 0.338 0.293 0.345 0.289 0.340 0.291 0.342 0.297 0.349 0.302 0.348 0.340 0.374
192 0.324 0.370 0.375 0.396 0.367 0.388 0.367 0.394 0.370 0.391 0.372 0.390 0.380 0.400 0.388 0.400 0.402 0.414
336 0.360 0.401 0.429 0.441 0.410 0.424 0.419 0.431 0.422 0.434 0.419 0.431 0.428 0.432 0.426 0.433 0.452 0.452
720 0.403 0.441 0.466 0.468 0.421 0.440 0.427 0.445 0.429 0.445 0.431 0.450 0.427 0.445 0.431 0.446 0.462 0.468

Avg 0.337 0.384 0.391 0.412 0.371 0.397 0.377 0.404 0.378 0.403 0.378 0.403 0.383 0.407 0.387 0.407 0.414 0.427

W
ea

th
er

96 0.160 0.207 0.164 0.210 0.174 0.221 0.166 0.207 0.168 0.209 0.163 0.207 0.174 0.214 0.177 0.218 0.172 0.220
192 0.202 0.247 0.209 0.250 0.219 0.259 0.216 0.254 0.220 0.254 0.224 0.258 0.221 0.254 0.255 0.259 0.219 0.261
336 0.252 0.288 0.264 0.290 0.273 0.296 0.273 0.296 0.276 0.296 0.278 0.298 0.278 0.296 0.278 0.297 0.280 0.306
720 0.307 0.327 0.343 0.342 0.349 0.345 0.351 0.346 0.353 0.347 0.357 0.350 0.358 0.349 0.354 0.348 0.365 0.359

Avg 0.230 0.267 0.245 0.273 0.254 0.280 0.252 0.276 0.254 0.277 0.256 0.278 0.258 0.278 0.266 0.281 0.259 0.287

E
le

ct
ri

ci
ty

96 0.134 0.234 0.174 0.266 0.147 0.251 0.139 0.234 0.151 0.247 0.148 0.242 0.148 0.240 0.195 0.285 0.168 0.272
192 0.161 0.258 0.182 0.273 0.176 0.262 0.156 0.249 0.165 0.261 0.165 0.257 0.162 0.253 0.199 0.289 0.184 0.289
336 0.193 0.287 0.197 0.286 0.193 0.281 0.172 0.267 0.183 0.280 0.180 0.274 0.178 0.269 0.215 0.305 0.198 0.300
720 0.224 0.320 0.236 0.320 0.232 0.329 0.209 0.299 0.220 0.309 0.218 0.305 0.225 0.317 0.256 0.337 0.220 0.320

Avg 0.178 0.275 0.197 0.286 0.187 0.281 0.169 0.262 0.180 0.274 0.178 0.270 0.178 0.270 0.216 0.304 0.193 0.295

Tr
af

fic

96 0.435 0.314 0.423 0.286 0.443 0.298 0.426 0.292 0.416 0.280 0.403 0.274 0.395 0.268 0.544 0.359 0.593 0.321
192 0.465 0.328 0.442 0.295 0.496 0.323 0.439 0.298 0.435 0.288 0.429 0.289 0.417 0.276 0.540 0.354 0.617 0.336
336 0.525 0.355 0.473 0.335 0.520 0.330 0.449 0.307 0.451 0.296 0.441 0.295 0.433 0.283 0.551 0.358 0.629 0.336
720 0.670 0.411 0.481 0.357 0.540 0.344 0.475 0.309 0.484 0.314 0.463 0.300 0.467 0.302 0.586 0.375 0.640 0.350

Avg 0.524 0.352 0.455 0.318 0.500 0.324 0.447 0.302 0.447 0.295 0.434 0.289 0.428 0.282 0.555 0.362 0.620 0.336

1st Count 20 18 0 0 0 1 3 3 1 2 1 1 3 3 0 0 0 0
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Table 16: Studies on Aurora (zero-shot) and Aurora (10% few shot) v.s few-shot (10% and 20%)
end-to-end small models, i.e., PatchTST, iTransformer, TimesNet, DLinear. Red: the best, Blue:
the 2nd best.

Models Aurora (Zero) Aurora (10%) PatchTST (10%) iTransformer (10%) TimesNet (10%) DLinear (10%) PatchTST (20%) iTransformer (20%) TimesNet (20%) DLinear (20%)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

A
gr

ic
ul

tu
re

6 0.184 0.295 0.127 0.233 3.738 1.238 4.908 1.396 6.681 1.622 8.882 2.053 0.914 0.700 1.238 0.723 1.363 0.789 3.732 1.442
8 0.242 0.335 0.190 0.289 4.836 1.389 7.042 1.651 4.984 1.514 9.940 2.045 1.484 0.773 1.428 0.773 1.354 0.754 4.484 1.521
10 0.297 0.365 0.236 0.310 6.824 1.645 7.406 1.718 7.026 1.684 11.069 2.199 1.781 0.830 1.822 0.871 2.226 0.930 4.600 1.845
12 0.365 0.398 0.295 0.340 7.773 1.778 9.151 1.938 11.685 2.208 12.634 2.329 2.048 0.912 2.087 0.921 2.606 1.050 6.037 1.721

Avg 0.272 0.348 0.212 0.293 5.793 1.512 7.127 1.676 7.594 1.757 10.631 2.157 1.557 0.804 1.644 0.822 1.887 0.881 4.713 1.632

C
lim

at
e

6 0.859 0.747 0.857 0.744 1.063 0.844 1.153 0.890 1.409 0.956 1.161 0.881 1.515 1.005 1.470 0.990 1.573 1.021 1.445 0.983
8 0.858 0.746 0.858 0.745 1.028 0.829 1.176 0.886 1.128 0.872 1.163 0.882 1.532 1.021 1.437 0.978 1.604 1.034 1.425 0.977
10 0.868 0.748 0.863 0.744 1.021 0.820 1.221 0.905 1.208 0.895 1.129 0.866 1.615 1.035 1.546 1.008 1.479 0.996 1.387 0.959
12 0.875 0.753 0.869 0.749 1.020 0.819 1.477 0.977 1.606 1.029 1.148 0.870 1.505 0.991 1.669 1.043 1.439 0.984 1.412 0.964

Avg 0.865 0.749 0.862 0.746 1.033 0.828 1.257 0.915 1.338 0.938 1.150 0.875 1.542 1.013 1.531 1.005 1.524 1.009 1.417 0.971

E
co

no
m

y

6 0.035 0.150 0.015 0.095 0.224 0.384 0.159 0.320 0.258 0.405 0.750 0.715 0.035 0.150 0.209 0.137 0.045 0.175 0.174 0.330
8 0.033 0.145 0.015 0.099 0.232 0.389 0.183 0.335 0.256 0.427 0.417 0.523 0.041 0.161 0.033 0.144 0.049 0.185 0.136 0.307
10 0.032 0.143 0.016 0.101 0.224 0.382 0.194 0.350 0.359 0.506 0.426 0.531 0.031 0.142 0.034 0.148 0.048 0.174 0.148 0.316
12 0.032 0.144 0.016 0.102 0.247 0.405 0.179 0.349 0.238 0.410 0.499 0.585 0.037 0.155 0.040 0.164 0.045 0.174 0.172 0.349

Avg 0.033 0.146 0.016 0.099 0.232 0.390 0.179 0.339 0.278 0.437 0.523 0.589 0.036 0.152 0.079 0.148 0.047 0.177 0.158 0.326

E
ne

rg
y

12 0.117 0.245 0.097 0.212 0.741 0.648 0.855 0.738 1.458 0.919 0.605 0.593 1.147 0.819 0.583 0.603 0.680 0.622 0.700 0.644
24 0.226 0.354 0.199 0.322 1.381 0.906 1.944 1.010 3.484 1.537 1.013 0.773 1.223 0.843 1.399 0.878 1.127 0.791 1.228 0.852
36 0.292 0.409 0.271 0.352 1.648 0.980 3.012 1.322 4.406 1.563 1.472 0.954 1.749 1.058 1.654 0.967 1.790 1.056 1.541 0.957
48 0.383 0.472 0.352 0.431 1.864 1.038 4.851 1.668 7.460 2.164 1.846 1.110 2.099 1.053 2.097 1.084 2.015 1.168 1.637 0.992

Avg 0.255 0.370 0.230 0.329 1.408 0.893 2.666 1.185 4.202 1.546 1.234 0.858 1.555 0.943 1.433 0.883 1.403 0.909 1.277 0.861

E
nv

ir
on

m
en

t 48 0.281 0.380 0.269 0.372 0.638 0.567 0.538 0.498 0.541 0.502 0.782 0.718 0.437 0.458 0.441 0.468 0.487 0.472 0.752 0.682
96 0.284 0.382 0.271 0.373 0.682 0.560 0.551 0.518 0.548 0.503 0.802 0.732 0.483 0.495 0.462 0.482 0.504 0.486 0.782 0.703

192 0.270 0.375 0.269 0.374 0.664 0.567 0.567 0.528 0.571 0.519 0.828 0.752 0.503 0.506 0.488 0.492 0.518 0.497 0.812 0.743
336 0.269 0.377 0.251 0.368 0.623 0.561 0.591 0.536 0.597 0.529 0.834 0.767 0.516 0.518 0.512 0.510 0.530 0.511 0.858 0.777
Avg 0.276 0.379 0.265 0.372 0.652 0.564 0.562 0.520 0.564 0.513 0.812 0.742 0.485 0.494 0.476 0.488 0.510 0.492 0.801 0.726

H
ea

lth

12 1.093 0.668 0.992 0.641 2.419 1.084 2.121 1.052 2.455 1.060 2.172 1.000 2.139 1.068 1.969 0.965 1.889 0.977 2.319 1.115
24 1.572 0.849 1.332 0.796 2.432 1.076 2.400 1.055 3.306 1.258 2.288 0.986 2.292 1.075 2.467 1.090 2.603 1.120 2.547 1.184
36 1.688 0.920 1.467 0.818 3.117 1.240 2.748 1.178 3.535 1.435 2.416 1.022 2.521 1.091 2.449 1.073 2.600 1.091 2.411 1.125
48 1.857 0.963 1.579 0.847 3.158 1.268 3.112 1.200 3.274 1.281 2.737 1.132 2.727 1.050 2.569 1.150 3.026 1.677 2.386 1.088

Avg 1.553 0.850 1.343 0.776 2.781 1.167 2.595 1.121 3.143 1.259 2.403 1.035 2.420 1.071 2.364 1.070 2.530 1.216 2.416 1.128

Se
cu

ri
ty

6 67.572 3.909 64.513 3.798 77.436 4.474 69.331 4.075 76.943 5.200 78.251 5.482 77.295 4.462 74.295 4.371 75.285 5.023 76.051 4.982
8 70.576 4.013 67.828 3.930 84.319 4.735 70.328 4.582 78.820 5.320 80.295 5.692 82.258 4.629 76.285 4.592 77.256 5.156 79.295 5.292
10 74.173 4.148 72.423 4.092 90.961 5.142 83.843 4.469 84.928 5.721 86.285 6.025 84.256 4.824 78.295 4.825 78.296 5.332 84.285 6.382
12 77.579 4.264 75.482 4.132 89.994 5.079 84.069 4.587 88.295 5.829 89.925 6.325 86.925 4.925 81.256 5.025 80.285 5.425 87.290 6.478

Avg 72.475 4.084 70.062 3.988 85.677 4.858 76.893 4.428 82.246 5.518 83.689 5.881 82.684 4.710 77.533 4.703 77.781 5.234 81.730 5.784

So
ci

al
G

oo
d 6 0.701 0.442 0.689 0.427 10.213 1.301 5.302 0.980 5.159 1.074 5.000 1.037 1.925 0.647 2.194 0.672 1.973 0.586 1.985 0.654

8 0.804 0.493 0.784 0.461 11.077 1.435 6.140 1.121 5.908 1.085 5.458 1.172 2.133 0.659 2.550 0.747 2.076 0.690 2.273 0.780
10 0.886 0.543 0.850 0.532 11.515 1.476 6.810 1.181 7.254 1.228 5.858 1.254 2.894 0.775 2.695 0.733 2.331 0.780 2.389 0.823
12 0.960 0.587 0.931 0.554 13.642 1.788 7.715 1.284 7.816 1.332 6.206 1.332 2.539 0.759 3.033 0.795 2.427 0.811 2.539 0.876

Avg 0.838 0.516 0.814 0.494 11.612 1.500 6.492 1.142 6.534 1.180 5.631 1.199 2.373 0.710 2.618 0.737 2.202 0.717 2.297 0.783

Tr
af

fic

6 0.154 0.285 0.149 0.292 2.391 1.096 2.317 1.096 2.486 1.126 2.790 1.318 2.134 1.004 1.723 0.829 1.798 0.889 2.344 1.205
8 0.158 0.286 0.155 0.284 2.489 1.093 2.166 1.004 2.921 1.334 2.614 1.234 1.924 0.922 1.734 0.816 2.420 1.203 2.148 1.119
10 0.163 0.289 0.160 0.287 2.907 1.180 2.143 0.998 2.779 1.308 2.536 1.209 2.149 1.028 1.943 0.894 2.143 0.935 2.121 1.104
12 0.168 0.294 0.165 0.296 2.664 1.115 2.539 1.030 3.099 1.239 2.627 1.244 1.975 0.955 1.819 0.843 2.230 1.082 2.176 1.129

Avg 0.161 0.289 0.157 0.290 2.613 1.121 2.291 1.032 2.821 1.252 2.642 1.251 2.046 0.977 1.805 0.846 2.148 1.027 2.197 1.139
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C SHOWCASES

C.1 SHOWCASES OF DATASETS WITH SIMILAR HISTORIES BUT DISTINCT FUTURES
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(a) The visualization of dataset tourism_monthly_dataset_275 in TFB.
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(b) The visualization of dataset m4_monthly_dataset_14569 in TFB.

Figure 10: Visual comparisons between datasets tourism_monthly_dataset_275 and
m4_monthly_dataset_14569 from distinct domains. Blue part indicates the historical similar
time series, and purple part indicates the distinct future horizons.
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(a) The visualization of dataset m4_yearly_dataset_1639 in TFB.
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(b) The visualization of dataset finance_87 in TFB.

Figure 11: Visual comparisons between datasets m4_yearly_dataset_1639 and finance_87 from dis-
tinct domains. Blue part indicates the historical similar time series, and purple part indicates the
distinct future horizons.
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(a) The visualization of dataset cif_2016_dataset_10 in TFB.
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(b) The visualization of dataset cif_2016_dataset_8 in TFB.

Figure 12: Visual comparisons between datasets cif_2016_dataset_10 and cif_2016_dataset_8 from
the same domains. Blue part indicates the historical similar time series, and purple part indicates the
distinct future horizons.
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(a) The visualization of dataset bitcoin_dataset_without_missing_values_14 in TFB.

0 500 1000 1500 2000 2500 3000 3500 4000
Time

2

0

2

4

6

8

Va
lu

e

(b) The visualization of dataset bitcoin_dataset_without_missing_values_12 in TFB.

Figure 13: Visual comparisons between datasets bitcoin_dataset_without_missing_values_14 and
bitcoin_dataset_without_missing_values_12 from the same domain. Blue part indicates the histori-
cal similar time series, and purple part indicates the distinct future horizons.
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C.2 VISUALIZATION OF THE PROTOTYPEBANK

Figure 14: The visualization of all 1,000 prototypes in PrototypeBank. Note that though some
prototypes may look similar due to drawing, they actually differ in their magnitutdes and phases.
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C.3 VISUALIZATION OF GENERATED PROTOTYPES FOR PREDICTIONS
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(h) Traffic
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Figure 15: Visualization of TSFM-Bench
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(c) human_32
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(d) kdd_cup_2018_dataset_without_missing_values_20
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(e) m3_quarterly_dataset_385
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(f) m4_daily_dataset_3297
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(g) m4_hourly_dataset_24
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(h) nature_68
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(i) tourism_monthly_dataset_297
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Figure 16: Visualization of Univariate Datasets in TFB
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Figure 17: Visualization of TimeMMD
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C.4 VISUALIZATION OF MODALITY-GUIDED ATTENTION WEIGHTS

0 25 50 75 100 125 150 175 200
Time

0.0

0.5

1.0

1.5

2.0

2.5
Va

lu
e Groundtruth

Prediction w/o Modality Guidance
Prediction w Modality Guidance
80% Confidence Interval
80% Confidence Interval

(a) Predictions on Agriculture, without Modality Guidance v.s with
Modality Guidance. With Patch Size equals 48 (Separated by black
dashed lines in the figure).
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(b) The visualization of attention weights,
without Modality Guidance v.s with
Modality Guidance.

Figure 18: It is observed that the predictions with modality guidance are more accurate. The 4
patches (T1 – T4) of the contextual time series show similar correlations without modality guid-
ance. While with the modality guidance, the correlations between T1 and T2 are further focused on,
because their correlations are similar to the T4 and future values, with a trend of first decreasing and
then increasing. Additionally, the correlations between T4 and T1 are also focused on for prediction.
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(a) Predictions on Climate, without Modality Guidance v.s with
Modality Guidance. With Patch Size equals 48 (Separated by black
dashed lines in the figure).
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(b) The visualization of attention weights,
without Modality Guidance v.s with
Modality Guidance.

Figure 19: It is observed that the predictions with modality guidance are more accurate. The 4
patches (T1 – T4) of the contextual time series show similar correlations without modality guid-
ance. While with the modality guidance, the correlations between T3 and T4 are further focused on,
because their correlations are similar to the T4 and future values, simply copying the trend can lead
to higher accuracy.
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(a) Predictions on Economy, without Modality Guidance v.s with
Modality Guidance. With Patch Size equals 48 (Separated by black
dashed lines in the figure).
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(b) The visualization of attention weights,
without Modality Guidance v.s with
Modality Guidance.

Figure 20: It is observed that the predictions with modality guidance are more accurate. The 4
patches (T1 – T4) of the contextual time series show similar correlations without modality guid-
ance. While with the modality guidance, the correlations between T3 and T4 are further focused on,
because their correlations are similar to the T4 and future values, simply copying the trend can lead
to higher accuracy.
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(a) Predictions on SocialGood, without Modality Guidance v.s
with Modality Guidance. With Patch Size equals 48 (Separated
by black dashed lines in the figure).
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(b) The visualization of attention weights,
without Modality Guidance v.s with
Modality Guidance.

Figure 21: It is observed that the predictions with modality guidance are more accurate. The 3
patches (T1 – T3) of the contextual time series show similar correlations without modality guidance,
and are highly dissimiliar to T4. While with the modality guidance, the correlations between T4
and T2 are further focused on, because their trends share potential similarity, first decreasing then
increasing. And the correlations between T2 and T3 are also focused, which are similar to the
correlations between T4 and future values.

D MORE MODEL ANALYTICS

Table 17: The studies on different sizes of the PrototypeBank.

Models 500 1000 5000

Metrics MSE MAE MSE MAE MSE MAE

Agriculture 0.288 0.364 0.272 0.348 0.269 0.344

Climate 0.893 0.760 0.865 0.749 0.863 0.752

Economy 0.034 0.152 0.033 0.146 0.032 0.144

Energy 0.271 0.391 0.255 0.370 0.260 0.373

Environment 0.302 0.413 0.276 0.379 0.268 0.372

Health 1.587 0.866 1.553 0.850 1.561 0.854

Security 75.017 4.118 72.475 4.084 71.551 4.036

Social Good 0.862 0.547 0.838 0.516 0.833 0.507

Traffic 0.187 0.304 0.161 0.289 0.164 0.296
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Table 18: The ablation studies on modalities.

Models Aurora Time-Only Time + Text Time + Image

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

Agriculture 0.272 0.348 0.337 0.382 0.304 0.355 0.294 0.351

Climate 0.865 0.749 1.287 0.926 1.167 0.904 1.228 0.897

Economy 0.033 0.146 0.064 0.198 0.046 0.167 0.039 0.152

Energy 0.255 0.370 0.324 0.426 0.292 0.413 0.285 0.406

Environment 0.276 0.379 0.352 0.404 0.334 0.397 0.325 0.394

Health 1.553 0.850 2.305 1.147 1.962 0.987 1.874 0.972

Security 72.475 4.084 92.822 5.092 81.294 4.800 77.928 4.628

Social Good 0.838 0.516 1.387 0.692 1.018 0.576 1.037 0.572

Traffic 0.161 0.289 0.345 0.472 0.271 0.418 0.198 0.334

Table 19: Ablation studies on Modality-Guided Attention.

Models Aurora Text-Guidance Image-Guidance w/o W

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

Agriculture 0.272 0.348 0.287 0.350 0.279 0.353 0.274 0.351

Climate 0.865 0.749 0.885 0.767 0.898 0.785 0.876 0.755

Economy 0.033 0.146 0.040 0.157 0.038 0.154 0.034 0.148

Energy 0.255 0.370 0.274 0.387 0.262 0.374 0.265 0.376

Environment 0.276 0.379 0.294 0.386 0.285 0.389 0.280 0.381

Health 1.553 0.850 1.750 0.944 1.688 0.923 1.568 0.859

Security 72.475 4.084 75.742 4.382 76.922 4.482 73.294 4.187

Social Good 0.838 0.516 0.882 0.545 0.868 0.531 0.848 0.522

Traffic 0.161 0.289 0.184 0.296 0.188 0.304 0.166 0.293

Table 20: Zero-shot comparisions among Aurora and other foundation models.

Models Aurora (zero-shot) Sundial (zero-shot) VisionTS (zero-shot) ROSE (zero-shot) MOIRAI (zero-shot)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Agriculture 0.272 0.348 0.373 0.392 0.290 0.336 0.345 0.372 0.272 0.403

Climate 0.865 0.749 1.154 0.881 1.307 0.930 1.475 0.987 1.921 1.095

Economy 0.033 0.146 0.291 0.432 0.301 0.442 0.289 0.433 0.405 0.512

Energy 0.255 0.370 0.272 0.367 0.304 0.420 0.386 0.479 0.324 0.417

Environment 0.276 0.379 0.336 0.416 0.354 0.436 0.392 0.456 0.351 0.403

Health 1.553 0.850 1.970 0.992 2.436 1.221 2.598 1.201 2.736 1.241

Security 72.475 4.084 70.441 4.005 79.598 4.597 84.324 4.765 93.245 5.173

Social Good 0.838 0.516 1.036 0.573 1.126 0.618 1.141 0.581 1.430 0.651

Traffic 0.161 0.289 0.271 0.405 0.281 0.407 0.341 0.451 0.406 0.468
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Table 21: 10% few shot comparisions among Aurora and other end-to-end multimodal models.

Models Aurora (10% few-shot) GPT4MTS (10% few-shot) TATS (10% few-shot) CALF (10% few-shot) TimeVLM (10% few-shot)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Agriculture 0.212 0.293 7.277 1.695 5.793 1.512 0.275 0.344 0.332 0.365

Climate 0.862 0.746 1.015 0.821 1.033 0.828 1.428 0.970 1.477 0.983

Economy 0.016 0.099 0.274 0.424 0.232 0.390 0.034 0.150 0.273 0.414

Energy 0.230 0.329 0.948 0.730 1.408 0.893 0.473 0.536 0.331 0.433

Environment 0.265 0.372 0.738 0.596 0.652 0.564 0.334 0.397 0.437 0.472

Health 1.343 0.776 3.885 1.377 2.781 1.167 1.762 0.939 1.947 0.992

Security 70.062 3.988 81.078 4.670 85.677 4.858 181.619 7.312 103.113 5.344

Social Good 0.814 0.494 10.579 1.716 11.612 1.500 1.037 0.457 1.017 0.527

Traffic 0.157 0.290 3.013 1.340 2.613 1.121 0.334 0.422 0.280 0.397
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