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Abstract
The increasing size of the Key-Value (KV)001
cache during the Large Language Models long-002
context inference is the main obstacle for its003
balance between the deployment cost and task004
accuracy. To reduce the KV cache size in such005
scenarios, most previous efforts leveraged on006
the attention weight to evict non-critical cache007
tokens. But there is a trade-off in those meth-008
ods, they usually require major modifiation009
of the inference infrastructure and significant010
computation overhead. Base on the fact that011
the Large Lanuage models are autoregresssive012
models, we propose LagKV, a KV compres-013
sion strategy only relying on straight forward014
comparison among KV themself. It is a totally015
attention free method which offers easy integra-016
tion to the main stream inference platform and017
comparable performance comparing to other018
complicated KV compression methods. Results019
on LongBench and PasskeyRetrieval show that,020
our approach achieves nearly zero loss when021
the ratio is 2× and ≈ 90% of the original model022
performance for 8×. Especially in the 64-digit023
passkey retrieval task, our mehod outperforms024
the attention weight based method H2O over025
50% with same compression ratios.026

1 Introduction027

Large Language Models (LLMs) have recently028

demonstrated remarkable success across diverse029

text processing tasks, including document re-030

trieval (Laban et al., 2023), code generation (Gu,031

2023), and mathematical reasoning (like R1032

model (DeepSeek-AI et al., 2025)). The Scaling033

law (Kaplan et al., 2020) suggests that larger mod-034

els generally achieve superior performance. The035

R1-like models further indicates that longer gener-036

ation sequences with additional ’thinking tokens’037

can enhance reasoning capabilities. However, these038

improvements comes at a significant cost: the grow-039

ing KV cache size poses a major challenge for effi-040

cient LLM inference. Many efforts try to mitigate041

this challenge.042

Most of LLMs are totally relying on Self- 043

Attention mechanism (Vaswani et al., 2023) to de- 044

termine which historical tokens are important in the 045

next token prediction. Therefore, many KV com- 046

pression approaches are based on it to drop unim- 047

portant ones (Zhang et al., 2024; Liu et al., 2024b; 048

Li et al., 2024; NVIDIA, 2024). This kind of algo- 049

rithms keeps a remarkable performance even when 050

the compression ratio is high. However, most of 051

these importance-based token-dropping approaches 052

depend on the ending query question (Instruction 053

Dependence) to achieve such a performance (Li 054

et al., 2025; Feng et al., 2024; Tang et al., 2024). 055

And aslo, they are incompatible with Flash Atten- 056

tion(FA) (Dao, 2023) because they require com- 057

puting attention weights to determine token impor- 058

tance. This limitation makes them impractical for 059

deployment, given FA’s critical role in long-context 060

inference. 061

Another prominent direction in KV cache opti- 062

mization involves quantization techniques (Yang 063

et al., 2024; Liu et al., 2024c), which aim to com- 064

press the memory footprint of KV states by repre- 065

senting them with reduced precision. These meth- 066

ods achieve significant memory savings—often by 067

4× or more—while preserving model performance 068

through careful error mitigation strategies. Be- 069

yond memory efficiency, quantization also reduces 070

the bandwidth overhead of transferring KV cache 071

across devices in distributed inference scenarios, 072

accelerating multi-GPU or memory-bound work- 073

loads. However, a critical limitation of pure quanti- 074

zation approaches is that they retain all historical 075

tokens, leaving the computational cost of attention 076

unchanged. For long-context tasks, this means the 077

quadratic complexity of attention persists despite 078

the reduced memory usage. 079

The simple but with limited performance meth- 080

ods are usually based on the sliding window tokens 081

eviction. Sliding window-based eviction meth- 082

ods—such as those used in Infinite-LLM (Han 083
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et al., 2024) and StreamingLLM (Xiao et al.,084

2023)—retain only the initial cache tokens and085

those within a fixed sliding window, discarding the086

rest. However, this indiscriminate eviction strategy087

often leads to a notable degradation in generation088

quality.089

Recent work by (Liu et al., 2024a,c) addresses090

the statistical properties of KV states, revealing dis-091

tinct distribution patterns for keys and values. Their092

findings suggest that per-channel quantization for093

keys (which exhibit consistent variance across fea-094

ture dimensions) and per-token quantization for095

values (which vary more significantly across se-096

quence positions) yield better fidelity. This obser-097

vation motivates our key insight: token importance098

for eviction—traditionally derived from attention099

weights—can instead be inferred from token- and100

channel-wise distribution patterns in the KV space.101

By leveraging these structural properties, we can102

design a pruning criterion, LagKV, that is both103

hardware-friendly (compatible with FA) and in-104

struction independent, enabling compute savings105

alongside memory reduction.106

2 Methodology107

In this section, we formally introduce our KV com-108

pression method, LagKV. We begin by looking at109

the autoregressive process of the LLMs. Inspired110

by this, we propose a simple yet effective strat-111

egy to use the subsequent tokens to compress the112

previous ones.113

2.1 Preliminaries114

LLMs’ next token prediction relies on the previous115
tokens. First, in the prefill stage, the model uses its116
tokenizer to convert the words to n indices of the117
embedding metrics E ∈ RV×d of the model and118
collects the representations to form a input matrix,119

X ∈ Rn×d. This matrix is the initial tokens of120
the first layer of LLM and then each layer will121
output a same shape matrix as next layer’s input.122
To depict the operations in each layer, we follow123
the notation system from (Liu et al., 2023) with124
h attention heads. For each head i ∈ [1, h] and125
head dimension dh, we focus on the Query, Key,126
and Value states, which are converted from tokens127

by three linear transformation matrices WQ
i , WK

i ,128

W V
i ∈ Rd×dh sperately:129

Qi = XWQ
i ,Ki = XWK

i , Vi = XWV
i (1)130

The output Y ∈ Rn×d is computed using the attention weights131
Ai ∈ Rn×n and the final output matrix WO ∈ Rd×d:132

Y = Concati∈[1,h](AiVi)W
OwhereAi = softmax(

QiK
T
i√

dh
)

(2)133

When the new tokens are generated subsequently 134
in the autoregressive inference, which named as 135
decode stage, the embedding of generated token x 136
is mapped to its respective Query, Key, and Value 137
states for each head, and the previous KV cache is 138
updated accordingly: 139

qi = xWQ
i , ki = xWK

i , vi = xWV
i (3) 140

141

Ki = Cat[Ki : ki], Vi = Cat[Vi : vi], Ai = softmax(
qiK

T
i√

dh
)

(4) 142

Since qi ∈ R1×dh , the computation will be much 143

faster because of the KV cache. 144

2.2 LagKV 145

Since the intrinsic property of autoregressive 146

model, the next token representation will not 147

change abruptly from the previous one. As ob- 148

served in (Liu et al., 2024a), the called token-wise 149

locality will show that the tokens in closer proxim- 150

ity have more similar K/V tensor values compared 151

to tokens that are further apart. 152

And also, the StreamingLLM method (Xiao 153

et al., 2023) has demonstrated that the head por- 154

tion and sliding window of the KV cache are cru- 155

cial. This suggests that cache compression should 156

use subsequent tokens to assess whether prior to- 157

kens remain in the cache, rather than relying on 158

the competition between them—as done in many 159

attention-weight-based methods. 160

Inspired by above insights, we proposed our 161

LagKV method as: 162

• After the prefill is done, start to apply the 163

compression dynamically. 164

• Always keep the attention sink with size S and 165

the already compressed part if had unchanged. 166

• Skip the compression if the length of the rest 167

KV after the static part is less than 2L, where 168

we denote the lag size as L. 169

• Partition the rest KV with L. If it’s not divisi- 170

ble by L, the modulo of it will be added to the 171

sliding window. 172

• Recursively compute the KV cache score. Use 173

the next partition as a reference, calculate 174

token-wise max and min from the reference 175

then use max-min to normalize the Key and 176

Value states respectly. After the KV are nor- 177

malized, calculate the channel-wise standard 178

deviation then softmax. The equations are 179

formally like: 180

minp,Z
i = minseq(Z

p+1
i ) (5) 181
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Figure 1: LagKV recursively compression process: partition the KV cache and use the next joint chunk as reference
to compress the current one. Keep the rest of them as the sliding winow.

maxp,Zi = maxseq(Z
p+1
i ) (6)182

183

Z̄p
i =

Zp
i −minp,Z

i

maxp,Zi −minp,Z
i

(7)184

185
score(Zi) = Softmax(Std.(Z̄i)) (8)186

where Z is one of {K,V }, p denotes the parti-187

tion index, i represents the head index and seq188

for the sequence axis. Since the last partition189

has no reference can be used, our method will190

naturely have a sliding window with at least191

size L.192

• Sum the scores of Key and Value to get the193

final score of each token:194

scorei = score(Ki) + score(Vi) (9)195

• Base on the scorei, use the top-K strategy to196

select tokens in each partition and each head197

and add them to the compressed part.198

The max-min normalization is applied along the199

sequence dimension, meaning each channel is nor-200

malized using statistics from lag-L tokens. Due201

to token-wise locality, the channel-specific norms202

of Ki and Vi are largely eliminated. The result-203

ing normalized representations, K̄i and V̄i, retain204

the original channel-wise variance, allowing the205

standard deviation to serve as a measure of token206

importance. The softmax operation then identifies207

and separates outliers, while the summed scores208

score(Ki) and score(Vi) determine their relative209

contributions.210

As showed in Fig. 1, our method is recursively211

compressing KV cache in both prefill and decode212

parts, which is essential for the token-wise locality213

as mentioned above. It requires relative short dis-214

tance to keep the similarity among the KV states.215

Subsequently, another benefit, it also avoids the216

bias from the long context with length much larger 217

than L and the case when the question is at the end 218

of the prompt. 219

We do not compare the LagKV score to the atten- 220

tion weights here. The attention weights vary on 221

different incoming queries. But our scoring method 222

does not depend on the query states or the tokens 223

after the next joint chunk. It mainly finds the tokens 224

that are not coherent to the next chunk and keep 225

them in the cache. As in KIVI (Liu et al., 2024c) 226

qunatization method, we need a rightful mean to 227

find the correct variance and then prune the small 228

ones. However, we use this strategy to evict tokens 229

instead of quantizing them. 230

To caculate the compresstion ratio, we set the 231

retained token ratio as r in each partition. In the 232

partition chunk, only rL tokens will be kept and 233

others are evicted. Therefore, the compression ratio 234

C for the token sequence length Ls ≥ S + 2L can 235

be expressed as: 236

LR = S+rL(⌊Ls − S

L
⌋−1)+L+Mod(Ls−S,L)

(10) 237238

C = 1− LR

Ls
(11) 239

Where LR is the length of the KV cache after com- 240

pression. For the case Ls < S + 2L, the compres- 241

sion ratio is zero. 242

3 Experiments 243

3.1 Settings 244

Base Models. We employ two open-source base 245

models: Llama-3.1-8B-Instruct (Grattafiori et al., 246

2024) and Qwen2.5-7B-Instruct (Qwen et al., 247

2025). These models are main stream LLMs with 248

moderate size and both leverage the GQA (Ainslie 249

et al., 2023) technique to reduce the KV cache size. 250
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Datasets. We use the facility in (Yuan et al.,251

2024) to extensively test our method. It con-252

tains two benchmarks: LongBench (Bai et al.,253

2024) and Needle-in-a-HaystackTest with Passkey-254

Retrieval (Kamradt, 2023; Mohtashami and Jaggi,255

2023). We only test the 64-digit passkey retrieval256

task which is much more challenging. And because257

we are using a recursive and evicting compression258

strategy, it’s easier to illustrate some insights with259

the partial match score other than the exact one in260

their report. Therefore, the default needle score261

will be the partial one across the whole work unless262

specified.263

Parameter Spaces. Across the whole paper, we264

fix the sink size to S = 16 and vary the lag size L265

and ratio r. The values of L will be L = 128, 512266

and 1024. The values of r will be 2×, 4×, 6× and267

8× which correspond to r = 0.5, 0.25, 0.167, and268

0.125 respectly.269

Prefill stage. By default, like many other com-270

pression methods, compression begins after prefill271

completes for each layer. This is an efficient and272

accurate approach—preserving both the KV cache273

values and the first generated token (FGT) while274

reducing KV cache size. However, since we lack275

a reliable benchmark for long-context and long-276

generation scenarios, we will extend the passkey277

retrieval task by enabling chunk-by-chunk compres-278

sion during prefill. This will help us evaluate how279

compression impacts long-generation performance,280

especially the FGT. Also, this chunked prefilling281

method will be useful for extreme long context282

processing.283

Main results. The main results of this work is284

Table 1.285

3.2 LongBench286

For the LongBench dataset, the LagKV method287

performs very well across different ratios and lag288

sizes. When r = 2×, for different L, it shows289

nearly zero loss (< 5%) compared to the base-290

line in both models. When L = 1024, r = 8×,291

the method still retains approximate 90% of the292

baseline performance. Since the compression ratio293

will increase when L decreases, the worse case is294

L = 128, r = 8× for both models but the method295

maintains at least 85% of the baseline performance.296

3.3 Passkey Retrieval297

The 64-digit passkey retrieval task is a challenging298

one for most token eviction strategies. As discussed299

in (Yuan et al., 2024), the most succesful eviction300

strategy H2O (Zhang et al., 2024) performs well 301

in 7-digit task (scoring 100% for all compression 302

ratios) but degrades a lot in the 64-digit one (for 303

4× in Llama-3, exact match score is 35% and par- 304

tial match score is 70.8%). It happens because the 305

strategy applies its compression after the prefill is 306

done which means the FGT is not affected by the 307

compression and the 7-digit passkey usually takes 308

only 2 or 3 tokens. When the passkey size increases 309

to 64, much more generated tokens are impacted 310

by the compression. Many token-evict algorithms 311

are struggling to maintain their performance in this 312

case. In contrast, our method performs very well 313

when the product of r and L is sufficient large 314

enough (for L = 1024, r = 4× in Llama model, 315

exact math score is 89% and partial match score 316

is 96.57%). In this comparison, it should be no- 317

ticed that H2O is compressing with question-aware 318

which will boost its performance significantly as 319

discussed in (Feng et al., 2024; NVIDIA, 2024) 320

while our method is totally instruction free. 321

Our recursive compression strategy will not per- 322

form well for the setups with small rL due to the 323

fact that when the recursive window size is com- 324

pressed to be close to or less than the length of 325

the queried content, it’s highly possible that only 326

a small portion of the wanted information will be 327

kept. In the task of 64-digit passkey retrieval, be- 328

cause digitals usually require more tokens to be rep- 329

resented than the same length words, the number 330

of expected tokens is much larger than the similar 331

tasks in LongBench sub tasks like Document QA, 332

that leads to its results are more sensitive to small 333

rL. As shown in Fig. 2, the Qwen model which 334

uses one token for one digit degenerates faster than 335

the Llama model which represents three digits by 336

one token with smaller rL. It hints us that we 337

must choose the compression ratio and the lag size 338

carefully in considering the length of the expected 339

content and the tokenizer of the LLM. A.1 shows 340

all the details of the needle results. 341

3.4 Chunk-by-Chunk Compression in Prefill 342

Stage 343

To enable chunk-by-chunk compression during pre- 344

fill, we have to split the retrieval tokens like our 345

recursive compression for long context with prefill- 346

ing the first S + 2L tokens and then L each time 347

until all input tokens are prefilled. In such a way, 348

the hidden values after the first chunk will be dif- 349

ferent from default prefill ones since less tokens 350
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Table 1: Performance of LagKV.

Model Method Single. QA Multi. QA Summ. Few-shot Synthetic Code LB Avg. Needle
L

la
m

a-
3.

1-
8B

-I
ns

tr
uc

t

Baseline 40.71 37.90 28.29 68.49 68.00 58.70 47.44 99.44
L=1024,r=2x 39.42 37.12 27.38 67.71 68.50 58.83 46.74 99.27
L=1024,r=4x 37.06 36.77 26.79 66.96 63.50 58.42 45.54 96.57
L=1024,r=6x 35.74 36.08 26.33 66.33 60.50 57.91 44.65 91.77
L=1024,r=8x 35.49 35.99 25.90 65.21 61.00 57.95 44.31 86.26
L=512,r=2x 39.43 37.45 27.35 67.82 67.50 58.66 46.73 97.02
L=512,r=4x 37.39 36.27 26.19 66.56 62.50 57.86 45.16 85.73
L=512,r=6x 34.95 35.62 25.52 65.87 59.50 58.14 44.11 75.67
L=512,r=8x 34.03 36.12 25.25 64.94 56.00 57.50 43.47 68.25
L=128,r=2x 38.56 36.80 27.20 67.64 68.00 59.27 46.48 92.76
L=128,r=4x 36.66 36.58 25.62 66.78 66.50 57.90 45.28 73.41
L=128,r=6x 34.57 35.41 24.59 63.59 64.00 56.97 43.49 38.48
L=128,r=8x 33.78 34.60 23.91 62.21 61.50 55.68 42.42 25.01

Q
w

en
-2

.5
-7

B
-I

ns
tr

uc
t

Baseline 41.62 45.00 26.41 68.91 100.00 63.60 51.53 100.00
L=1024,r=2x 39.80 42.85 26.11 67.66 99.50 63.12 50.33 99.75
L=1024,r=4x 36.92 40.39 24.81 65.91 95.00 61.60 48.15 96.98
L=1024,r=6x 35.77 39.74 24.68 65.28 93.50 61.45 47.52 77.47
L=1024,r=8x 34.60 39.10 24.18 64.74 90.50 61.30 46.73 66.88
L=512,r=2x 38.72 42.79 25.91 67.98 98.50 62.00 49.91 97.07
L=512,r=4x 35.42 39.12 24.49 64.59 94.00 60.16 47.01 75.89
L=512,r=6x 34.00 38.04 23.72 64.31 87.50 58.80 45.69 42.70
L=512,r=8x 32.14 37.83 23.11 63.48 82.50 58.71 44.64 30.00
L=128,r=2x 38.67 42.49 25.69 67.75 99.00 60.64 49.61 65.93
L=128,r=4x 34.47 39.78 24.07 65.13 96.00 58.67 46.91 20.83
L=128,r=6x 32.83 38.15 22.95 62.23 90.50 56.25 44.76 16.18
L=128,r=8x 32.47 37.10 22.20 60.24 88.50 56.10 43.78 15.07

are seen in the forwarding. Then, the FGT may be351

different too. With the chunk-by-chunk prefill com-352

pression, we calcullated the FGT accuracy which is353

defined as the ratio of FGT same as the default pre-354

fill ones and also the overall needle scores, shown355

in Fig. 3.356

The chunked prefill definitely diminishs the FGT357

accuracy as it drops from 100% to around 80% for358

r = 8× in both models. But we do not see it has a359

strong dependence on sequence lengths or needle360

depths in Fig. 4. These confirm that our method361

is able to retain the major part of the baseline ca-362

pabilities in the case with long sequence hidden363

values impacted by the compression. It ensures364

that LagKV will deliver a good performance in the365

long generation scenarios.366

Meanwhile, we also notice that the FGT accu-367

racy and overall needle scores suffer more degra-368

dation in Llama model with chunked prefill. It369

is mainly because different models exhibit vari-370

ous abilities of stable long generation (Quan et al.,371

2024).372

3.5 Efficiency 373

To evaluate the efficiency and memory saving 374

of our algorithm, we test setups with L = 375

1024 and varying r in different context lengths 376

4K, 8K, 12K, 16K, 20K with the additional sink 377

size. Two metrics, Time to First Token(TTFT) 378

and Time Per Output Token(TPOT), are measured 379

only with Llama-3.1-8B-Instruct and batch size 380

1 in a NVIDIA A800 GPU. By the default pre- 381

filling method, we see no difference in the TTFT 382

measurements across all context lengths and ra- 383

tios compared to the baseline ones which means 384

the computation overhead is negligible. Instead, 385

we measure TTFT by chunk-by-chunk prefilling in 386

Fig. 5. The TPOT measurements which are aver- 387

aged over 30 new generated tokens are present in 388

Fig. 6. The overhead memory size1 is in Fig. 7. For 389

other L, see Appendix A.3. 390

In the longest context 20K tests, we observe 391

≈ 1.5 times speedup for TTFT and ≈ 2 times 392

1Measured by memory usage after model loaded subtract-
ing from memory usage after prefill. Memory usage is cal-
culated by calling function torch.cuda.memory_allocated
after empty cache.
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Figure 2: The needle score vs different setups of rL. The
horizontal dash-dot line is the baseline for each model.
The x-axis is in log scale. We put two vertical lines
rL = 64 (solid blue) and rL = 128 (dash green) for
guidelines.

for TPOT (the baseline TTFT/TPOT devided by393

the compressed ones) in the highest compression394

ratio 8×. Meanwhile, the overhead memory usage395

drops to ≈ 17% of the baseline with full KV cache,396

which aligns with the compression ratio formula397

Eq. 11.398

4 Related Works399

The L2 Norm-Based KV compression (Devoto400

et al., 2024) is an existing eviction approach that401

relies solely on KV information to compress the402

KV cache. This method computes token scores us-403

ing the negative norm of key states. In contrast to404

our derivation from the autoregressive process and405

the token-wise locality, their method is formed by406

comparing the attention loss. Also, unlike our ap-407

proach, it does not employ recursive compression408

during the prefill stage. As discussed in A.2, this409

method shows limitations in the 64-digit passkey410

retrieval task when the method is adapted to a re-411

cursive framework.412
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(a) Llama-3.1-8B
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(b) Qwen-2.5-7B

Figure 3: The needle score and FGT accuracy for differ-
ent prefill methods with L = 1024 only. The horizontal
dash-dot line is the baseline for both needle scores and
FGT accuracy since they are overlapping.

FINCH (Corallo and Papotti, 2024) introduces a 413

prompt-guided KV compression method for the 414

prefill stage, employing a chunk-by-chunk ap- 415

proach with instruction tokens appended to each 416

document chunk. This design ensures the computa- 417

tion of attention submatrices between instructions 418

and document chunks, enabling subsequent KV 419

cache filtering. In contrast, our proposed chun- 420

ked prefilling method operates without instructions, 421

making it compatible with multi-turn queries. In 422

other words, our approach transforms a causal 423

LLM into a compressor capable of condensing long 424

documents into compressed KV sequences, which 425

can later be decompressed under varying instruc- 426

tions without reconstruction. 427

5 Conclusion 428

In this study, we propose LagKV, an attention- 429

weight-free token eviction method. It achieves com- 430

parable performance on long-context tasks while 431

significantly outperforming mainstream eviction 432

strategies in 64-digit passkey retrieval tasks. These 433
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Figure 4: First Generated Token Accuracy for different setups, sequence lengths and needle depths with chunked
prefill. It tests three trials on each depth.
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Figure 5: Chunked Prefilling Average TTFT (s) vs r
for different context lengths with Llama-3.1-8B-Instruct
and L = 1024.

results demonstrate that our method maintains ro-434

bust long-text retrieval capabilities even at high435

compression ratios.436

Unlike existing approaches, LagKV employs a re-437

cursive attention-weight-free strategy in both prefill438

and decode stages to determine token importance439

for future processing. It’s indepent from query440

states and the rest part of the long prompt. There-441

fore our method offers a novel perspective on LLM442

mechanisms, shedding light on their inner work-443

ings in a fundamentally different way.444
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ratio

40
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PO

T 
(m

s)

4K
8K
12K
16K
20K

Figure 6: Average TPOT (ms) vs r for different context
lengths with Llama-3.1-8B-Instruct and L = 1024.

Limitations 445

Models: Our work tests only two popular mod- 446

els with median sizes. It’s supposed to work on 447

other models with different sizes but that is absent 448

in this work due to the limitted computing power 449

resources. 450

Methodology: With the significant results by 451

the proposed framework, we still need a compre- 452

hensive theorectical explanation for the final form 453

meanwhile the attention-weight based methods usu- 454

ally have a clear and straight one. Our method is 455
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Figure 7: Overhead Memory (GB) vs r for different
context lengths with Llama-3.1-8B-Instruct and L =
1024.

more intuitive and emprical which may vary on dif-456

ferent models or tasks. The lag information in the457

next token partition used in this work still has many458

details to be explored, such as the lag size, weights459

between the key and value states, other variants of460

the scoring methods, etc.461

Quantization: Apprently, our approach is totally462

compatible with KV quantization methods, like463

KIVI. With them, the memory size can be furthur464

reduced. We do not present here because we want465

to focus on the novellity of the recursive partition,466

lag reference and scoring method in KV cache.467

Compression Budget: Now, our approach is468

evenly allocating KV cache in each head. As many469

methods proposed, different heads with different470

compression budgets can improve performance.471

This may be achieved in our method simply by set-472

ting a score threshold since the score is completely473

normalized and comparable among all heads, even474

layers. But it will take more work to handle the475

irregular shapes.476
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Figure 8: The 64-digit Passkey Retrieval of Llama-3.1-8B-Instruct for different setups with partial matching.

A Appendix 687

A.1 Detail Rresults of Passkey Retrieval 688

Here, we present all the Needle-in-a-Haystack results with 64-digit Passkey Retrieval for different setups. 689

The partial matching results are in Fig.8 and 9 while Fig.10 and 11 with exact matching. Overall accuracies 690

are noted within parentheses on the top-right corner of each sub graph. 691

A.2 Variants From LagKV Framework 692

Here we present two variants from LagKV. Both of them will only change the scoring methods but keep the 693

attention sink and sliding window unchanged. And we only use the 64-digits passkey retrieval task which 694

can easily distinguish eviction strategies as the detector. Among these tests, we keep S = 16, L = 1024 695

as constant. 696

The first one is called LocalKV which only skips using the reference from the next joint chunk tokens 697

but replacing the equation Eq. 5 and 6 by the following equations: 698

minp,Z
i = minseq(Z

p
i ) (12) 699

700

maxp,Zi = maxseq(Z
p
i ) (13) 701

Therefore, the min-max is totally from the local chunk instead of the remote one. 702
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Figure 9: The 64-digit Passkey Retrieval of Qwen-2.5-7B-Instruct for different setups with partial matching.

12



0.5
K2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words  27K tokens(98.0%)

L = 1024, r = 2×

0.5
K2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words  27K tokens(89.0%)

L = 1024, r = 4×

0.5
K2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0
De

pt
h

20K words  27K tokens(75.3%)

L = 1024, r = 6×

0.5
K2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words  27K tokens(59.0%)

L = 1024, r = 8×

0.5
K2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words  27K tokens(93.0%)

L = 512, r = 2×

0.5
K2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words  27K tokens(69.3%)

L = 512, r = 4×

0.5
K2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words  27K tokens(47.0%)

L = 512, r = 6×

0.5
K2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words  27K tokens(38.7%)

L = 512, r = 8×

0.5
K2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words  27K tokens(84.7%)

L = 128, r = 2×

0.5
K2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words  27K tokens(26.7%)

L = 128, r = 4×

0.5
K2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words  27K tokens(11.3%)

L = 128, r = 6×

0.5
K2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words  27K tokens(11.0%)

L = 128, r = 8×

Figure 10: The 64-digit Passkey Retrieval of Llama-3.1-8B-Instruct for different setups with exact matching.
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Figure 11: The 64-digit Passkey Retrieval of Qwen-2.5-7B-Instruct for different setups with exact matching.
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Figure 12: The 64-digit Passkey Retrieval partial match scores of different variants and compression ratios.
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Figure 13: The 64-digit Passkey Retrieval exact match scores of different variants and compression ratios.

The second one is L2 norm from (Devoto et al., 2024). We adapt the low key states norm method into 703

the recursive framework by replacing Eq.9 by: 704

scorei = −Norm(Ki) (14) 705

As suggested in their work, we skip the compression of the first two layers in this variant too. 706

The results of the 64-digit passkey retrieval task are present in Fig. 12 and 13 with partial match scores 707

and exact match scores. As we can see, the LagKV method is always the best one especially in the high 708

compression ratios and the exact match cases. 709

The LocalKV variant performs closely to LagKV at low compression ratios but degrades significantly 710

at higher ones. This behavior stems from the similarity between local and remote max-min statistical 711

values, which aligns with the token-wise locality. Meanwhile, since all values of channels are strictly 712

normalized to the range [0, 1], the intrinsic property of each channel will be dropped with only token-wise 713

information kept, resulting in the significant degradations in the high compression ratios. 714

Since the setup of L = 1024 will have a chunk fully coverring the passkey when the context is shorter 715

than 2K or the passkey is at 100% depth, the bottom line of the exact match score will be about 27% 716

if the selected tokens did not mess up the output. That means the L2 norm variant shows very limited 717

performance with a constant exact match score 27% for all compression ratios and models. 718

A.3 Efficiency and Memory Usage 719

The measurements of other L are present in Fig. 14. The fluctuations of TTFT/TPOT in the ratio 6× are 720

likely related to the issue of pruned tensor shapes not being powers of 2. 721
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Figure 14: Efficiency Measurement and Overhead Memory of Llama-3.1-8B-Instruct.
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