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Abstract

The increasing size of the Key-Value (KV)
cache during the Large Language Models long-
context inference is the main obstacle for its
balance between the deployment cost and task
accuracy. To reduce the KV cache size in such
scenarios, most previous efforts leveraged on
the attention weight to evict non-critical cache
tokens. But there is a trade-off in those meth-
ods, they usually require major modifiation
of the inference infrastructure and significant
computation overhead. Base on the fact that
the Large Lanuage models are autoregresssive
models, we propose LagKV, a KV compres-
sion strategy only relying on straight forward
comparison among KV themself. It is a totally
attention free method which offers easy integra-
tion to the main stream inference platform and
comparable performance comparing to other
complicated KV compression methods. Results
on LongBench and PasskeyRetrieval show that,
our approach achieves nearly zero loss when
the ratio is 2x and ~ 90% of the original model
performance for 8 x. Especially in the 64-digit
passkey retrieval task, our mehod outperforms
the attention weight based method H5O over
50% with same compression ratios.

1 Introduction

Large Language Models (LLMs) have recently
demonstrated remarkable success across diverse
text processing tasks, including document re-
trieval (Laban et al., 2023), code generation (Gu,
2023), and mathematical reasoning (like R1
model (DeepSeek-Al et al., 2025)). The Scaling
law (Kaplan et al., 2020) suggests that larger mod-
els generally achieve superior performance. The
R1-like models further indicates that longer gener-
ation sequences with additional "thinking tokens’
can enhance reasoning capabilities. However, these
improvements comes at a significant cost: the grow-
ing KV cache size poses a major challenge for effi-
cient LLM inference. Many efforts try to mitigate
this challenge.

Most of LLMs are totally relying on Self-
Attention mechanism (Vaswani et al., 2023) to de-
termine which historical tokens are important in the
next token prediction. Therefore, many KV com-
pression approaches are based on it to drop unim-
portant ones (Zhang et al., 2024; Liu et al., 2024b;
Li et al., 2024; NVIDIA, 2024). This kind of algo-
rithms keeps a remarkable performance even when
the compression ratio is high. However, most of
these importance-based token-dropping approaches
depend on the ending query question (Instruction
Dependence) to achieve such a performance (Li
et al., 2025; Feng et al., 2024; Tang et al., 2024).
And aslo, they are incompatible with Flash Atten-
tion(FA) (Dao, 2023) because they require com-
puting attention weights to determine token impor-
tance. This limitation makes them impractical for
deployment, given FA’s critical role in long-context
inference.

Another prominent direction in KV cache opti-
mization involves quantization techniques (Yang
et al., 2024; Liu et al., 2024c¢), which aim to com-
press the memory footprint of KV states by repre-
senting them with reduced precision. These meth-
ods achieve significant memory savings—often by
4x or more—while preserving model performance
through careful error mitigation strategies. Be-
yond memory efficiency, quantization also reduces
the bandwidth overhead of transferring KV cache
across devices in distributed inference scenarios,
accelerating multi-GPU or memory-bound work-
loads. However, a critical limitation of pure quanti-
zation approaches is that they retain all historical
tokens, leaving the computational cost of attention
unchanged. For long-context tasks, this means the
quadratic complexity of attention persists despite
the reduced memory usage.

The simple but with limited performance meth-
ods are usually based on the sliding window tokens
eviction. Sliding window-based eviction meth-
ods—such as those used in Infinite-LLLM (Han



et al., 2024) and StreamingLL.M (Xiao et al.,
2023)—retain only the initial cache tokens and
those within a fixed sliding window, discarding the
rest. However, this indiscriminate eviction strategy
often leads to a notable degradation in generation
quality.

Recent work by (Liu et al., 2024a,c) addresses
the statistical properties of KV states, revealing dis-
tinct distribution patterns for keys and values. Their
findings suggest that per-channel quantization for
keys (which exhibit consistent variance across fea-
ture dimensions) and per-token quantization for
values (which vary more significantly across se-
quence positions) yield better fidelity. This obser-
vation motivates our key insight: token importance
for eviction—traditionally derived from attention
weights—can instead be inferred from token- and
channel-wise distribution patterns in the KV space.
By leveraging these structural properties, we can
design a pruning criterion, LagKV, that is both
hardware-friendly (compatible with FA) and in-
struction independent, enabling compute savings
alongside memory reduction.

2 Methodology

In this section, we formally introduce our KV com-
pression method, LagKV. We begin by looking at
the autoregressive process of the LL.Ms. Inspired
by this, we propose a simple yet effective strat-
egy to use the subsequent tokens to compress the
previous ones.

2.1 Preliminaries

LLMs’ next token prediction relies on the previous
tokens. First, in the prefill stage, the model uses its
tokenizer to convert the words to n indices of the
embedding metrics E € RY*9 of the model and
collects the representations to form a input matrix,
X € R™*?. This matrix is the initial tokens of
the first layer of LLM and then each layer will
output a same shape matrix as next layer’s input.
To depict the operations in each layer, we follow
the notation system from (Liu et al., 2023) with

h attention heads. For each head i € [1,h] and
head dimension dj, we focus on the Query, Key,
and Value states, which are converted from tokens

by three linear transformation matrices WiQ, Wk,
WY € Ré*dn gperately:

Qi=XW2 K, = XWE V; = xw) )

The output Y € R™*< is computed using the attention weights
A; € R™ ™ and the final output matrix W° € R**¢:
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Y = Concatiep,p (A; Vi)W where A; = softmax(

When the new tokens are generated subsequently
in the autoregressive inference, which named as
decode stage, the embedding of generated token x
is mapped to its respective Query, Key, and Value
states for each head, and the previous KV cache is
updated accordingly:

qi = xWiQ, ki = :UWiK, vy = IWZ-V 3)
aK!

K; = Cat|K; : ki], Vi = Cat[V; : v;], A; = softmax(
Y@

Since ¢; € R the computation will be much
faster because of the KV cache.

2.2 LagKV

Since the intrinsic property of autoregressive
model, the next token representation will not
change abruptly from the previous one. As ob-
served in (Liu et al., 2024a), the called token-wise
locality will show that the tokens in closer proxim-
ity have more similar K/V tensor values compared
to tokens that are further apart.

And also, the Streamingl.LM method (Xiao
et al., 2023) has demonstrated that the head por-
tion and sliding window of the KV cache are cru-
cial. This suggests that cache compression should
use subsequent tokens to assess whether prior to-
kens remain in the cache, rather than relying on
the competition between them—as done in many
attention-weight-based methods.

Inspired by above insights, we proposed our
LagKV method as:

» After the prefill is done, start to apply the
compression dynamically.

* Always keep the attention sink with size .S and
the already compressed part if had unchanged.

 Skip the compression if the length of the rest
KV after the static part is less than 2L, where
we denote the lag size as L.

* Partition the rest KV with L. If it’s not divisi-
ble by L, the modulo of it will be added to the
sliding window.

* Recursively compute the KV cache score. Use
the next partition as a reference, calculate
token-wise max and min from the reference
then use max-min to normalize the Key and
Value states respectly. After the KV are nor-
malized, calculate the channel-wise standard
deviation then softmax. The equations are
formally like:

0z
min?’

D= minseq(ZPH)
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Figure 1: LagKV recursively compression process: partition the KV cache and use the next joint chunk as reference
to compress the current one. Keep the rest of them as the sliding winow.
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max;” = maacseq(ZfH) (6)
_ 7P — minP?

7 — ! mez . o
maa:f’ — minf’

score(Z;) = Softmax(Std.(Z;))  (8)

where Z is one of { K, V'}, p denotes the parti-
tion index, ¢ represents the head index and seq
for the sequence axis. Since the last partition
has no reference can be used, our method will
naturely have a sliding window with at least
size L.

Sum the scores of Key and Value to get the
final score of each token:

score; = score(K;) + score(V;) (9)
Base on the score;, use the top-K strategy to

select tokens in each partition and each head
and add them to the compressed part.

The max-min normalization is applied along the
sequence dimension, meaning each channel is nor-
malized using statistics from lag-L tokens. Due
to token-wise locality, the channel-specific norms
of K; and V; are largely eliminated. The result-
ing normalized representations, K; and V;, retain
the original channel-wise variance, allowing the
standard deviation to serve as a measure of token
importance. The softmax operation then identifies
and separates outliers, while the summed scores
score(K;) and score(V;) determine their relative
contributions.

As showed in Fig. 1, our method is recursively
compressing KV cache in both prefill and decode
parts, which is essential for the token-wise locality
as mentioned above. It requires relative short dis-
tance to keep the similarity among the KV states.
Subsequently, another benefit, it also avoids the

bias from the long context with length much larger
than L and the case when the question is at the end
of the prompt.

We do not compare the LagKV score to the atten-
tion weights here. The attention weights vary on
different incoming queries. But our scoring method
does not depend on the query states or the tokens
after the next joint chunk. It mainly finds the tokens
that are not coherent to the next chunk and keep
them in the cache. As in KIVI (Liu et al., 2024c)
qunatization method, we need a rightful mean to
find the correct variance and then prune the small
ones. However, we use this strategy to evict tokens
instead of quantizing them.

To caculate the compresstion ratio, we set the
retained token ratio as r in each partition. In the
partition chunk, only 7L tokens will be kept and
others are evicted. Therefore, the compression ratio
C for the token sequence length L > S 4 2L can
be expressed as:

s —

L= S+rL(| 7 |—1)+L+Mod(Ls—S, L)
(10)
C-1- % (11)

Where Lp, is the length of the KV cache after com-
pression. For the case Ly < .S + 2L, the compres-
sion ratio is zero.

3 Experiments

3.1 Settings

Base Models. We employ two open-source base
models: Llama-3.1-8B-Instruct (Grattafiori et al.,
2024) and Qwen2.5-7B-Instruct (Qwen et al.,
2025). These models are main stream LLMs with
moderate size and both leverage the GQA (Ainslie
et al., 2023) technique to reduce the KV cache size.



Datasets. We use the facility in (Yuan et al.,
2024) to extensively test our method. It con-
tains two benchmarks: LongBench (Bai et al.,
2024) and Needle-in-a-HaystackTest with Passkey-
Retrieval (Kamradt, 2023; Mohtashami and Jaggi,
2023). We only test the 64-digit passkey retrieval
task which is much more challenging. And because
we are using a recursive and evicting compression
strategy, it’s easier to illustrate some insights with
the partial match score other than the exact one in
their report. Therefore, the default needle score
will be the partial one across the whole work unless
specified.

Parameter Spaces. Across the whole paper, we
fix the sink size to .S = 16 and vary the lag size L
and ratio r. The values of L will be L = 128, 512
and 1024. The values of r will be 2x, 4%, 6x and
8x which correspond to » = 0.5, 0.25, 0.167, and
0.125 respectly.

Prefill stage. By default, like many other com-
pression methods, compression begins after prefill
completes for each layer. This is an efficient and
accurate approach—preserving both the KV cache
values and the first generated token (FGT) while
reducing KV cache size. However, since we lack
a reliable benchmark for long-context and long-
generation scenarios, we will extend the passkey
retrieval task by enabling chunk-by-chunk compres-
sion during prefill. This will help us evaluate how
compression impacts long-generation performance,
especially the FGT. Also, this chunked prefilling
method will be useful for extreme long context
processing.

Main results. The main results of this work is
Table 1.

3.2 LongBench

For the LongBench dataset, the LagKV method
performs very well across different ratios and lag
sizes. When r = 2x, for different L, it shows
nearly zero loss (< 5%) compared to the base-
line in both models. When L = 1024,r = 8x,
the method still retains approximate 90% of the
baseline performance. Since the compression ratio
will increase when L decreases, the worse case is
L = 128, r = 8x for both models but the method
maintains at least 85% of the baseline performance.

3.3 Passkey Retrieval

The 64-digit passkey retrieval task is a challenging
one for most token eviction strategies. As discussed
in (Yuan et al., 2024), the most succesful eviction

strategy HoO (Zhang et al., 2024) performs well
in 7-digit task (scoring 100% for all compression
ratios) but degrades a lot in the 64-digit one (for
4x in Llama-3, exact match score is 35% and par-
tial match score is 70.8%). It happens because the
strategy applies its compression after the prefill is
done which means the FGT is not affected by the
compression and the 7-digit passkey usually takes
only 2 or 3 tokens. When the passkey size increases
to 64, much more generated tokens are impacted
by the compression. Many token-evict algorithms
are struggling to maintain their performance in this
case. In contrast, our method performs very well
when the product of r and L is sufficient large
enough (for L = 1024, = 4x in Llama model,
exact math score is 89% and partial match score
is 96.57%). In this comparison, it should be no-
ticed that H>O is compressing with question-aware
which will boost its performance significantly as
discussed in (Feng et al., 2024; NVIDIA, 2024)
while our method is totally instruction free.

Our recursive compression strategy will not per-
form well for the setups with small L due to the
fact that when the recursive window size is com-
pressed to be close to or less than the length of
the queried content, it’s highly possible that only
a small portion of the wanted information will be
kept. In the task of 64-digit passkey retrieval, be-
cause digitals usually require more tokens to be rep-
resented than the same length words, the number
of expected tokens is much larger than the similar
tasks in LongBench sub tasks like Document QA,
that leads to its results are more sensitive to small
rL. As shown in Fig. 2, the Qwen model which
uses one token for one digit degenerates faster than
the Llama model which represents three digits by
one token with smaller L. It hints us that we
must choose the compression ratio and the lag size
carefully in considering the length of the expected
content and the tokenizer of the LLM. A.l shows
all the details of the needle results.

3.4 Chunk-by-Chunk Compression in Prefill
Stage

To enable chunk-by-chunk compression during pre-
fill, we have to split the retrieval tokens like our
recursive compression for long context with prefill-
ing the first S 4+ 2L tokens and then L each time
until all input tokens are prefilled. In such a way,
the hidden values after the first chunk will be dif-
ferent from default prefill ones since less tokens



Table 1: Performance of LagKV.

Model Method ‘ Single. QA Multi. QA'° Summ. Few-shot Synthetic Code | LB Avg. Needle
Baseline 40.71 37.90 28.29 68.49 68.00 58.70 | 47.44 99.44
L=1024,r=2x 39.42 37.12 27.38 67.71 68.50 58.83 | 46.74 99.27
L=1024,r=4x 37.06 36.77 26.79 66.96 63.50 5842 | 45.54 96.57
§ L=1024,r=6x 35.74 36.08 26.33 66.33 60.50 5791 | 44.65 91.77
‘2 L=1024,r=8x 35.49 35.99 25.90 65.21 61.00 57.95 | 4431 86.26
5 L=512,r=2x 39.43 37.45 27.35 67.82 67.50 58.66 | 46.73 97.02
Q0 L=512r=4x 37.39 36.27 26.19 66.56 62.50 57.86 | 45.16 85.73
:." L=512,r=6x 34.95 35.62 25.52 65.87 59.50 58.14 | 44.11 75.67
g L=512,r=8x 34.03 36.12 25.25 64.94 56.00 57.50 | 43.47 68.25
‘5" L=128,r=2x 38.56 36.80 27.20 67.64 68.00 59.27 | 46.48 92.76
L=128,r=4x 36.66 36.58 25.62 66.78 66.50 5790 | 45.28 73.41
L=128,r=6x 34.57 35.41 24.59 63.59 64.00 56.97 | 43.49 38.48
L=128,r=8x 33.78 34.60 2391 62.21 61.50 55.68 | 42.42 25.01
Baseline 41.62 45.00 26.41 68.91 100.00  63.60 | 51.53 100.00
L=1024,r=2x 39.80 42.85 26.11 67.66 99.50 63.12 | 50.33 99.75
L=1024,r=4x 36.92 40.39 24.81 65.91 95.00 61.60 | 48.15 96.98
§ L=1024,r=6x 35.77 39.74 24.68 65.28 93.50 61.45 | 47.52 77.47
‘Z L=1024,r=8x 34.60 39.10 24.18 64.74 90.50 61.30 | 46.73 66.88
; L=512,r=2x 38.72 42.79 2591 67.98 98.50 62.00 | 49.91 97.07
= L=512,r=4x 3542 39.12 24.49 64.59 94.00 60.16 | 47.01 75.89
pt L=512,r=6x 34.00 38.04 23.72 64.31 87.50 58.80 | 45.69 42.70
§ L=512,r=8x 32.14 37.83 23.11 63.48 82.50 58.71 | 44.64 30.00
5 L=128,r=2x 38.67 42.49 25.69 67.75 99.00 60.64 | 49.61 65.93
L=128,r=4x 34.47 39.78 24.07 65.13 96.00 58.67 | 4691 20.83
L=128,r=6x 32.83 38.15 22.95 62.23 90.50 56.25 | 44.76 16.18
L=128,r=8x 32.47 37.10 22.20 60.24 88.50 56.10 | 43.78 15.07

are seen in the forwarding. Then, the FGT may be
different too. With the chunk-by-chunk prefill com-
pression, we calcullated the FGT accuracy which is
defined as the ratio of FGT same as the default pre-
fill ones and also the overall needle scores, shown
in Fig. 3.

The chunked prefill definitely diminishs the FGT
accuracy as it drops from 100% to around 80% for
r = 8x in both models. But we do not see it has a
strong dependence on sequence lengths or needle
depths in Fig. 4. These confirm that our method
is able to retain the major part of the baseline ca-
pabilities in the case with long sequence hidden
values impacted by the compression. It ensures
that LagKV will deliver a good performance in the
long generation scenarios.

Meanwhile, we also notice that the FGT accu-
racy and overall needle scores suffer more degra-
dation in Llama model with chunked prefill. It
is mainly because different models exhibit vari-
ous abilities of stable long generation (Quan et al.,
2024).

3.5 Efficiency

To evaluate the efficiency and memory saving
of our algorithm, we test setups with L =
1024 and varying r in different context lengths
4K,8K,12K,16K, 20K with the additional sink
size. Two metrics, Time to First Token(TTFT)
and Time Per Output Token(TPOT), are measured
only with Llama-3.1-8B-Instruct and batch size
1 in a NVIDIA A800 GPU. By the default pre-
filling method, we see no difference in the TTFT
measurements across all context lengths and ra-
tios compared to the baseline ones which means
the computation overhead is negligible. Instead,
we measure TTFT by chunk-by-chunk prefilling in
Fig. 5. The TPOT measurements which are aver-
aged over 30 new generated tokens are present in
Fig. 6. The overhead memory size' is in Fig. 7. For
other L, see Appendix A.3.

In the longest context 20K tests, we observe
~ 1.5 times speedup for TTFT and ~ 2 times

"Measured by memory usage after model loaded subtract-
ing from memory usage after prefill. Memory usage is cal-

culated by calling function torch.cuda.memory_allocated
after empty cache.
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Figure 2: The needle score vs different setups of rL. The
horizontal dash-dot line is the baseline for each model.
The x-axis is in log scale. We put two vertical lines
rL = 64 (solid blue) and 7L = 128 (dash green) for
guidelines.

for TPOT (the baseline TTFT/TPOT devided by
the compressed ones) in the highest compression
ratio 8 x. Meanwhile, the overhead memory usage
drops to ~ 17% of the baseline with full KV cache,
which aligns with the compression ratio formula
Eq. 11.

4 Related Works

The Lo Norm-Based KV compression (Devoto
et al., 2024) is an existing eviction approach that
relies solely on KV information to compress the
KV cache. This method computes token scores us-
ing the negative norm of key states. In contrast to
our derivation from the autoregressive process and
the token-wise locality, their method is formed by
comparing the attention loss. Also, unlike our ap-
proach, it does not employ recursive compression
during the prefill stage. As discussed in A.2, this
method shows limitations in the 64-digit passkey
retrieval task when the method is adapted to a re-
cursive framework.

100
90
(]
S
o
=z 80
Baseline & Default Prefill FGT Acc
70| - e Default Prefil
== Chunk-by-Chunk Prefill
—m— FGT Accuracy
60
2X 4x 6Xx 8x
ratio
(a) Llama-3.1-8B
100
90
[}
©
o
z 80 A
N
Baseline & Default Prefill FGT Acc
701 - e Default Prefill
== Chunk-by-Chunk Prefill
- FGT Accuracy
60

2X 4x 6X 8x

ratio

(b) Qwen-2.5-7B

Figure 3: The needle score and FGT accuracy for differ-
ent prefill methods with L = 1024 only. The horizontal
dash-dot line is the baseline for both needle scores and
FGT accuracy since they are overlapping.

FINCH (Corallo and Papotti, 2024) introduces a
prompt-guided KV compression method for the
prefill stage, employing a chunk-by-chunk ap-
proach with instruction tokens appended to each
document chunk. This design ensures the computa-
tion of attention submatrices between instructions
and document chunks, enabling subsequent KV
cache filtering. In contrast, our proposed chun-
ked prefilling method operates without instructions,
making it compatible with multi-turn queries. In
other words, our approach transforms a causal
LLM into a compressor capable of condensing long
documents into compressed KV sequences, which
can later be decompressed under varying instruc-
tions without reconstruction.

5 Conclusion

In this study, we propose LagKV, an attention-
weight-free token eviction method. It achieves com-
parable performance on long-context tasks while
significantly outperforming mainstream eviction
strategies in 64-digit passkey retrieval tasks. These



20K words = 27K tokens

o iENEEEEEE ooNEEENEEEEE
0111 Bl ounfl 1]
0.221 0.220
0331 0331

04400 504400

qJoss. ‘1’056.
0.6711 0.6711
0.78 [N BE  o7sEEEE T[]
ow.lllllllll ow.lllllllll

—
OISO
Word Count

L =1024,r = 2x

e L

Word Count

L =1024,r = 4x

20K words = 27K tokens

bbbt bk
IOCIRNOAS ORI

20K words = 27K tokens

0. OIIIIIIIIII
|| LT

20K words = 27K tokens

. Ollllllllll
| EEEEEN

AEEEEEEEE

0. 89Illlllllll

LANENENEEEN

S b S et
Word Count

L =1024,r = 8x

(L
0. 89Illllllll
LANNNENEEER
S b S st
Word Count

L =1024,r = 6x

(a) Llama-3.1-8B-Instruct

20K words = 27K tokens 20K words = 27K tokens

ol iENEEEEEE ooNEEENEEEEE
ol NNNNEEEEN o EEEEEEEEEN
0.221] 0.2211]
0330 0331
0440 04400
<v 0.56 1] w 0.56 1]
0.67. 0.67.
0. 78. 0. 78.
0.890] 0.89 1]
o ANNNENENE o EEEEEENENN

GRS
Word Count

L =1024,r = 2x

Word Count

L =1024,r = 4x

RN AN ORI AN

20K words = 27K tokens 20K words = 27K tokens

OANNNENEEEE occENNEEEEEEN
pony | [ L LTI eley [ [ [ [ [ [ []]
0.2241] 0.224
0.331] 0.331]

504400 504400
w 0.56 0] w 0.56 0]
0.67. 0.67.
0. 78. 0. 78.

0.891

L °llllllllll

S b S et
Word Count

L =1024,r = 6x

0.891

RN
L °llllllllll

~{-~(—~l—'{— B RORCOROR
ROCIENE SO
WordCount

L =1024,r = 8x

(b) Qwen-2.5-7B-Instruct

Figure 4: First Generated Token Accuracy for different setups, sequence lengths and needle depths with chunked

prefill. It tests three trials on each depth.

—— 4K

6 —t— G K

—— ] 2K
5 — 16K
) 20K
t 4 \/\
E
<3 -
T e
1
Baseline 2X 4x 6Xx 8x
ratio

Figure 5: Chunked Prefilling Average TTFT (s) vs r
for different context lengths with Llama-3.1-8B-Instruct
and L = 1024.

results demonstrate that our method maintains ro-
bust long-text retrieval capabilities even at high
compression ratios.

Unlike existing approaches, LagKV employs a re-
cursive attention-weight-free strategy in both prefill
and decode stages to determine token importance
for future processing. It’s indepent from query
states and the rest part of the long prompt. There-
fore our method offers a novel perspective on LLM
mechanisms, shedding light on their inner work-
ings in a fundamentally different way.
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Figure 6: Average TPOT (ms) vs r for different context
lengths with Llama-3.1-8B-Instruct and L = 1024.

Limitations

Models: Our work tests only two popular mod-
els with median sizes. It’s supposed to work on
other models with different sizes but that is absent
in this work due to the limitted computing power
resources.

Methodology: With the significant results by
the proposed framework, we still need a compre-
hensive theorectical explanation for the final form
meanwhile the attention-weight based methods usu-
ally have a clear and straight one. Our method is
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Figure 7: Overhead Memory (GB) vs r for different
context lengths with Llama-3.1-8B-Instruct and L =
1024.

more intuitive and emprical which may vary on dif-

ferent models or tasks. The lag information in the

next token partition used in this work still has many
details to be explored, such as the lag size, weights

between the key and value states, other variants of
the scoring methods, etc.

Quantization: Apprently, our approach is totally

compatible with KV quantization methods, like

KIVI. With them, the memory size can be furthur

reduced. We do not present here because we want

to focus on the novellity of the recursive partition,

lag reference and scoring method in KV cache.

Compression Budget: Now, our approach is
evenly allocating KV cache in each head. As many

methods proposed, different heads with different
compression budgets can improve performance.
This may be achieved in our method simply by set-

ting a score threshold since the score is completely

normalized and comparable among all heads, even
layers. But it will take more work to handle the

irregular shapes.
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Figure 8: The 64-digit Passkey Retrieval of Llama-3.1-8B-Instruct for different setups with partial matching.

A Appendix

A.1 Detail Rresults of Passkey Retrieval

Here, we present all the Needle-in-a-Haystack results with 64-digit Passkey Retrieval for different setups.

The partial matching results are in Fig.8 and 9 while Fig.10 and 11 with exact matching. Overall accuracies

are noted within parentheses on the top-right corner of each sub graph.

A.2 Variants From LagKV Framework

Here we present two variants from LagKV. Both of them will only change the scoring methods but keep the
attention sink and sliding window unchanged. And we only use the 64-digits passkey retrieval task which
can easily distinguish eviction strategies as the detector. Among these tests, we keep S = 16, L = 1024

as constant.

The first one is called LocalKV which only skips using the reference from the next joint chunk tokens

but replacing the equation Eq. 5 and 6 by the following equations:
minf’z = Mingeq(Z7)

maxf’z = MaZseq(ZF)

Therefore, the min-max is totally from the local chunk instead of the remote one.

11

12)

13)

687

688

689
690
691

692

693
694
695
696
697
698

699

700
701

702



20K words = 27K tokens(99.8%) 20K words = 27K tokens(97.0%) 20K words = 27K tokens(77.5%) 20K words = 27K tokens(66.9%)

O.]:l. | ]
0.2201 B
0333 ]
So0.44 e
Zosef N
0.6711 ||
0.78. ||
O CES EEEN
ENEENEREEE o EEESEREEEE
R N e I
Word Count Word Count Word Count Word Count
L =1024,r = 2x L =1024,r = 4x L =1024,r = 6x L =1024,r = 8x
20K words = 27K tokens(97.1%) 20K words = 27K tokens(75.9%) 20K words = 27K tokens(42.7%) 20K words = 27K tokens(30.0%)

(S BEAE S et T P S AE S SR S AE S SR
Word Count Word Count Word Count Word Count
L =512,r =2x L =512,r =4x L =512,r =6x L =512,r = 8x
20K words = 27K tokens(64.9%) 20K words = 27K tokens(20.8%) 20K words = 27K tokens(16.2%) 20K words = 27K tokens(15.1%)
0. 0IIIIIIIIII 0. 0IIIII EEEE ocoEEENEEEEEE
N L[ mEE o1l H
]
o N
|| |
[ N
] I
|| ]
n n
651;{— ‘;‘l-«'{—q{— {—,,;l— N '{'6{' %1;{— '{—,\{—Q{— %,5{-6{—%(719{— %.l;{— {—,\i—q{— {—,,;l-ﬁ{— {—6{— %i{— {—,\{-q{— {—,,;l- N {—6{—
Word Count Word Count Word Count Word Count
L =128, =2x L =128, =4x L =128, = 6x L =128,r =8x
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Figure 10: The 64-digit Passkey Retrieval of Llama-3.1-8B-Instruct for different setups with exact matching.
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Figure 11: The 64-digit Passkey Retrieval of Qwen-2.5-7B-Instruct for different setups with exact matching.
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Figure 13: The 64-digit Passkey Retrieval exact match scores of different variants and compression ratios.

The second one is Lo norm from (Devoto et al., 2024). We adapt the low key states norm method into
the recursive framework by replacing Eq.9 by:

score; = —Norm(Kj;) (14)
As suggested in their work, we skip the compression of the first two layers in this variant too.

The results of the 64-digit passkey retrieval task are present in Fig. 12 and 13 with partial match scores
and exact match scores. As we can see, the LagKV method is always the best one especially in the high
compression ratios and the exact match cases.

The LocalKV variant performs closely to LagKV at low compression ratios but degrades significantly
at higher ones. This behavior stems from the similarity between local and remote max-min statistical
values, which aligns with the token-wise locality. Meanwhile, since all values of channels are strictly
normalized to the range [0, 1], the intrinsic property of each channel will be dropped with only token-wise
information kept, resulting in the significant degradations in the high compression ratios.

Since the setup of L = 1024 will have a chunk fully coverring the passkey when the context is shorter
than 2K or the passkey is at 100% depth, the bottom line of the exact match score will be about 27%
if the selected tokens did not mess up the output. That means the Lo norm variant shows very limited
performance with a constant exact match score 27% for all compression ratios and models.

A.3 Efficiency and Memory Usage

The measurements of other L are present in Fig. 14. The fluctuations of TTFT/TPOT in the ratio 6x are
likely related to the issue of pruned tensor shapes not being powers of 2.
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Figure 14: Efficiency Measurement and Overhead Memory of Llama-3.1-8B-Instruct.
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