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ABSTRACT

Large Language Models (LLMs) have achieved widespread adoption, yet our
understanding of their behavior remains limited, particularly in detecting data
contamination and hallucinations. While recently proposed probing techniques
provide insights through activation analysis, they require “white-box” access to
model internals, often unavailable. Current “gray-box” approaches typically an-
alyze only the probability of the actual tokens in the sequence with simple task-
specific heuristics. Importantly, these methods overlook the rich information con-
tained in the full token distribution at each processing step. To address these
limitations, we propose that gray-box analysis should leverage the complete ob-
servable output of LLMs, consisting of both the previously used token probabili-
ties as well as the complete token distribution sequences - a unified data type we
term LOS (LLM Output Signature). To this end, we develop a transformer-based
approach to process LOS that theoretically guarantees approximation of existing
techniques while enabling more nuanced analysis. Our approach achieves superior
performance on hallucination and data contamination detection in gray-box set-
tings, significantly outperforming existing baselines. Furthermore, it demonstrates
strong transfer capabilities across datasets and LLMs, suggesting that LOS cap-
tures fundamental patterns in LLM behavior. Our code is available at: https:
//github.com/BarSGuy/LLM-Output-Signatures-Network.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse applica-
tions, yet their internal mechanisms remain poorly understood. This gap in understanding is partic-
ularly relevant in critical tasks like Hallucination Detection (HD) Tonmoy et al. (2024); Liu et al.
(2021); Huang et al. (2023a); Ji et al. (2023); Rawte et al. (2023) and Data Contamination Detection
(DCD) Brown et al. (2020); Shi et al. (2023); Zhang et al. (2024): in these contexts, determining
whether an LLM is fabricating information or has been exposed to specific training data is crucial
for deployment safety and reliability.

Previous work on LLM analysis has relied heavily on probing techniques that require restrictive
white-box access to model internals (Belinkov, 2022; Orgad et al., 2024; Hewitt & Manning, 2019;
Hewitt & Liang, 2019; Rateike et al., 2023). Gray-box methods relax these assumptions by oper-
ating only on LLM outputs. Existing gray-box approaches typically analyze just the sequence of
probabilities assigned to tokens that appear in the relevant input or output token sequence – a vector
we term Actual Token Probabilities (ATP) (Guerreiro et al., 2022; Kadavath et al., 2022; Varshney
et al., 2023; Huang et al., 2023b). However, these methods, often based on heuristics, overlook the
information contained in the complete Token Distribution Sequence (TDS) – a matrix holding the
next-token probability distribution at each generation step, see Figure 1. This limitation can mask
crucial differences in model behavior even at the level of a single time step. E.g., consider a model
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Figure 1: A visualization of the LLM Output
Signature (LOS). Left: The LLM processes the
input “What does the cat chase?” and gener-
ates the output “A big mouse”. Right: The cor-
responding query/response Token Distribution
Sequence (TDS) – full next-token distributions
over the sequence – and Actual Token Proba-
bilities (ATP), which represent the probabilities
of tokens in the actual sequence (for the query)
and the sampled token probabilities (for the re-
sponse). We propose learning directly from this
unified LOS representation to analyze LLM be-
havior.

generating a token with probability 0.5 in two scenarios: in one case, the remaining next-token
probability mass is concentrated on a single alternative (0.5, 0.5, 0, ..., 0), while in the other it is
spread across many tokens: (0.5, 0.01, ..., 0.01). These distributions suggest very different levels of
model uncertainty, yet ATP-based approaches would treat them identically. Similarly, an ATP value
of 0.1 at a certain time step could indicate either high uncertainty (if it is the highest probability in
a diffused distribution) or strong evidence against the token (if it is a low-ranking probability in a
peaked distribution). A recent promising approach Zhang et al. (2024) used some TDS information
through heuristics, but a principled framework to utilize this data lacks.

Our approach. We argue that a successful gray-box approach should leverage both ATP and
TDS, together forming what we term the LLM Output Signature (LOS) (Figure 1) – the complete
observable representation of LLM behavior in the gray-box setup. Instead of relying on heuristics,
we treat LOS as a sequential, high-dimensional and structured data modality on which we apply
principled deep learning techniques. We propose LOS-NET, a lightweight transformer encoder1

that operates on an effective encoding of ATP, TDS, and their interactions. From a theoretical
perspective, we show that LOS-NET can provably approximate a broad class of functions applied
to the LOS of any LLM, subsuming many recent approaches (Guerreiro et al., 2022; Kadavath et al.,
2022; Varshney et al., 2023; Huang et al., 2023b; Shi et al., 2023; Zhang et al., 2024). Through a
comprehensive empirical study on the tasks of DCD and HD, we demonstrate that the information
gap between using the complete LOS and relying solely on ATP is substantial. We improve over all
considered baselines across both tasks – often by a significant margin. Notably, LOS-NET exhibits
promising dataset-level transfer and strong cross-model generalization, suggesting it can capture
universal patterns in LLM behavior. Importantly, the cross-model transfer abilities of LOS-NET
suggest its viable application to impactful real-world tasks such as copyright-infringement detection
over closed-source LLMs, as indicated by our results on the BookMIA benchmark (Shi et al., 2023).

Contributions are summarized as follows: (1) we introduce LOS as a suitable representation for
analyzing LLM behavior, (2) we develop an effective learning framework for the LOS data modality,
(3) we show this unifies and generalizes previous approaches, (4) we demonstrate it achieves supe-
rior performance across models, datasets, and tasks, and (5) exhibits strong empirical evidence for
cross-model generalization and promising cross-dataset transfer abilities. The proposed LOS-NET
proves effective for both HD and DCD, and its flexibility suggests broader potential for similar tasks
while paving the way for foundational approaches to modeling LLM behaviors.

2 RELATED WORK

We review background and related work on DCD and HD, focusing on studies leveraging logits or
output probabilities. Given the breadth of research, we highlight the most relevant works for our
setup and refer interested readers to Appendix D for further details on these tasks.

Data Contamination Detection. Early methods leveraged model loss Yeom et al. (2018); Car-
lini et al. (2019) for DCD, assuming that models overfit their training data. Later refinements
introduced reference models—independent LLMs trained on disjoint datasets from a similar dis-
tribution—comparing their scores with the target model Carlini et al. (2021; 2022). However, this
approach depends on the availability of a well-matched reference model (similar in its architecture),
which is often impractical. Recently, Shi et al. (2023) introduced Min-K%, which flags an input as
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contaminated if the log probability of its bottom K tokens exceeds a predefined threshold. Building
on this approach, Zhang et al. (2024) proposed Min-K%++, which refines contamination detection
by calibrating the next-token log-likelihood using the mean and standard deviation of log-likelihoods
across all candidate tokens in the vocabulary.

Hallucination Detection. Hallucination detection has been studied as a means of enabling selec-
tive intervention, allowing LLMs to prevent fabricated outputs only when necessary Snyder et al.
(2024); Yin et al. (2024); Valentin et al. (2024). Recently, Orgad et al. (2024) showed that training a
classifier on top of LLMs’ hidden states (intermediate activations) is highly effective for hallucina-
tion detection. However, this method operates under the white-box assumption, requiring full access
to the model’s internal components. In contrast, our paper explores a more constrained (gray-box)
setting.

Output probability-Based Analysis. Previous works showed that using log probabilities or raw
logits as decision thresholds can be effective for various tasks, including HD in LLMs Guerreiro
et al. (2022); Varshney et al. (2023), correctness self-evaluation Kadavath et al. (2022), uncertainty
estimation Huang et al. (2023b), and zero shot learning Atzmon & Chechik (2019). However, these
approaches often rely on naive handcrafted thresholding. Other approaches feed probabilities or
logits into classifiers to get a more refined signal. Mosca et al. (2022) computes logit differences
for texts with and without a given word, training a classifier to detect adversarial attacks. Wu et al.
(2023) introduced LLMDet, which quantifies perplexity scores across models by analyzing next-
token probabilities for selected n-grams, feeding these into a classifier to detect machine-generated
content. Similarly, Verma et al. (2024) presented Ghostbuster, which extracts token probabilities
using simpler models and trains a linear classifier for the same aforementioned task. Both rely on
linear classifiers and overlook the LLM’s TDS, limiting contextual understanding. In contrast, our
method fully leverages textual context via the LOS for a more nuanced analysis.

3 LEARNING ON LLM OUTPUT SIGNATURES

3.1 NOTATION AND PROBLEM FORMULATION

X ⃗s

Input sequence

(prompt)

⃗s

V

n

LLM  f

m

V

X ⃗g ⃗g

Output sequence

(response)

Figure 2: LLM processing pipeline. A
token sequence s⃗ is processed by an
LLM f and generates full TDSs Xs,Xg

corresponding to the input s⃗ and the re-
sponse g⃗.

Let f denote a pretrained LLM, and s⃗ refer to a text in-
put to f consisting of n tokens. When queried with s⃗,
the LLM f produces outputs Xs = f(s⃗), i.e., a matrix
in Rn×V of next-token probabilities for each token in s⃗,
where V is the size of the token vocabulary. We define the
LLM response to be g⃗ consisting of m tokens generated
using f ’s outputs in Xg ∈ Rm×V (and Xs). We refer
to Xs or Xg as Token Distribution Sequences (TDS). See
Figure 2.

We also define ps ∈ Rn,pg ∈ Rm, which holds the prob-
abilities associated with the actual tokens appearing in s⃗, g⃗ respectively. We denote these as the
Actual Token Probabilities (ATP). Specifically, (ps)i := Xi,v where v ∈ {1, . . . , V } is the token
used in the i+ 1 place in the sequence s⃗ and similarly for g⃗. See Figure 1 for an illustration.

We call the pairs (Xs,ps) or (Xg,pg) the LLM Output Signature (LOS). For DCD, we analyze
input sequences using (Xs,ps) since our interest lies in how the model processes the input text s⃗.
In contrast, for HD, we use (Xg,pg) as we need to analyze the model’s generated response. We will
sometimes use (X,p) if the distinction between the tasks is irrelevant, and use N as the sequence
length.

Problem Statement. LOS elements, along with their associated annotations depending on the task
of interest, can be gathered into datasets D = {

(
(X,p)i, yi

)
}ℓi=1 where supervised learning prob-

lems can be instantiated. Our goal in this paper is to propose a neural architecture that can effectively
utilize the complete LOS to solve tasks such as DCD, HD, or any other classification problem de-
fined thereon.

3.2 OUR APPROACH

Our approach consists of three main steps. Given an input (X,p): (1) The probability distributions
in TDS (X) are sorted independently and sliced to only include the top K ones at each time step,
obtaining X′ ; (2) A learnable Rank Encoding RE(X,p) is concatenated to X′ to capture relative
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probability information; (3) The resulting representation is processed by a lightweight transformer
architecture, yielding the desired output. In the remainder of this section, we provide a detailed
explanation of each component.

Preprocessing the token distribution sequences. Utilizing X may pose significant challenges
due to three key factors. (1) Complexity: The vocabulary tensor can be extremely large in real-world
scenarios. For instance, Liang et al. (2023) (XLM-V) reported a vocabulary size of 1M tokens,
which, for a small batch of documents and popular context sizes, would already entail processing a
tensor of tens (or hundreds) of GBs. (2) Transferability: Vocabulary size and order may significantly
vary between LLMs, something which can complicate transfer learning – e.g., training on one LLM
and testing on another with a different vocabulary size; (3) Limited Access: In certain LLMs, such as
those released by OpenAI, the output tensor X is only partially accessible, with APIs only exposing
the (log-) probabilities for a small number of most likely tokens.

To tackle these challenges, we propose selecting, for each row of X, a fixed number of elements.
Specifically, we preprocess X by sorting each row independently and selecting the top K probabili-
ties, as follows:

X′ = row-sort(X):,:K , (1)

resulting in X′ ∈ RN×K . This approach not only reduces computational complexity but also pro-
vides a standardized representation that is independent of the vocabulary size (for an appropriate
choice of K). Later, in Section 5, we will show how our approach can achieve strong empirical
performance even for small values of K. Nevertheless, it is important to note that this preprocessing
step removes the alignment of words across the vocabulary dimension. Exploring methods to retain
or effectively utilize this alignment remains an avenue for future work.

Learnable Rank Encoding. The tensor X′ provides a comprehensive description of the LLM’s
output, but does not encode an important source of information: the probability p of the actual to-
kens appearing in the sequence, i.e, the ATP. The importance of this feature both in DCD and HD
has already been demonstrated by a large body of prior work that operated only on this informa-
tion Shi et al. (2023); Guerreiro et al. (2022); Kadavath et al. (2022); Varshney et al. (2023); Huang
et al. (2023b). Taking inspiration from these, we do also include ATPs as inputs to our architecture.
However, we further complement these probabilities with additional information which allows us to
contextualize them with respect to the whole TDS, i.e., X. Specifically, we argue that valuable infor-
mation is encoded in the rank (position) of the ATP within the vocabulary-wide (sorted) sequence of
token probabilities. This information reveals both the model’s generation patterns and potential mis-
matches between predicted and actual tokens. The rank of the i-th token in the sequence is defined
as: ri(X,p) =

∑V
v=1 I(Xi,v > pi), where I(·) is the indicator function.

We encode the rank in a way to make this feature more amenable for learning, while still maintaining
enough expressivity. Specifically, we first scale the rank between [−1, 1], obtaining rscaled. Then, we
construct the following learnable rank encoding2,

RE(X,p) = p⊗
(
rscaled ·w1 +w2

)
, (2)

where ⊗ is an outer product, and w1,w2 are learnable parameters in Rd. As a result, RE(X,p) is
in RN×d. Importantly, the multiplication by p makes sure that the rank encoding and the TDS are
in similar scales, especially when using log probabilities or logits.

Architecture. Given the preprocessed TDS X′, and the developed rank encodings RE(X,p), our
approach applies an encoder-only transformer model T with learnable positional encodings in the
temporal dimension (Vaswani, 2017), on the token-wise linear projection of X′, concatenated to the
rank encodings RE(X′,p),

hθ(X,p) = T
(
X′W

∥∥∥∥RE(X,p)

)
. (3)

Here, W ∈ RK×K′
, ∥ denotes concatenation along the feature dimension, and θ includes all param-

eters, w1,w2,W and the parameters of T . We use a [CLS] token pooling mechanism at the end,
followed by a linear projection for classification with standard binary cross-entropy loss. We dub
the resulting model LOS-NET.

2For certain DC datasets, we used a lookup table for Rank encoding, where the index corresponds to ri and
the value is an embedding.
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4 GENERALIZATION OF PREVIOUS APPROACHES

In this section, we demonstrate that LOS-NET generalizes several leading existing methods through
specific weight configurations. This ensures that our architecture can theoretically match these meth-
ods, while in practice significantly outperforming them, as demonstrated in our experiments. As al-
ready mentioned, prior research has introduced various methods for analyzing LLMs based on their
output probabilities Guerreiro et al. (2022); Kadavath et al. (2022); Varshney et al. (2023); Huang
et al. (2023b), with many approaches focusing on the ATPs. We note that many of these methods as-
sume the form of statistics calculated over the whole sequence processed by the LLM. Recent, more
sophisticated approaches aggregate these probabilities only for some of the tokens in the sequence,
dynamically chosen based on features computed on the set of ATPs (Shi et al., 2023; Zhang et al.,
2024), as we illustrate below.

Motivating example: Min-K% Shi et al. (2023). Min-K% makes predictions on an in-
put text s⃗ based on a score R calculated as the average of the smallest K% log-probs: R(s⃗) =
1

|M |
∑

i∈M log(pi), with M = {i | pi < perc(p,K)} being the set of token indices whose probabil-
ities are in the first K-th percentile of p. We note that it is instructive to rewrite the scoring equation
as:

R(s⃗) =

|s⃗|∑
i=1

token-wise score︷ ︸︸ ︷
log(pi)⌈
K
100 · |s⃗|

⌉ · I
( confidence︷︸︸︷

pi <

adaptive threshold︷ ︸︸ ︷
perc(p,K)

)︸ ︷︷ ︸
gating

. (4)

This highlights a general pattern: that of computing a global score by aggregating token-wise val-
ues meeting a (dynamic) “acceptance” condition, a form of ‘gating’. To unify the aforementioned
baselines under a common framework, we formalize this pattern in a family of functions, defined
next.

Gated Scoring Functions (GSFs). We define the family of ‘Gated Scoring Functions’ (GSF) as
the set of functions that score LOSs by aggregating token-wise scores across the input sequence
whenever their confidence values exceed a (possibly adaptive) threshold. GSFs are described in
terms of the following three components: (1) A confidence function κ : RN×k × RN → RN that
assigns confidence values to each token in the sequence; (2) A threshold function T : RN×k×RN →
R that determines an acceptance criterion; and (3) A weight function g : RN×k × RN → RN that
assigns importance scores to tokens. Given a LOS (X,p), a GSF computes a global score R(X,p)
as follows:

F (X,p)i =

{
g(X′,p)i, if κ(X′,p)i ≥ T (X′,p),

0, otherwise,
(5)

R(X,p) =

N∑
i=1

F (X,p)i, (6)

Where X′ is the sorted version of X, as per Equation (1). The family of GSF is flexible enough to
capture previously proposed gray-box methods, as we show in the following:
Proposition 4.1 (GSFs capture known baselines). Let B be the set of scoring functions implemented
by the Min/Max/Mean aggregated probability methods (Guerreiro et al., 2022; Kadavath et al.,
2022; Varshney et al., 2023; Huang et al., 2023b) for HD, as well as the MinK% (Shi et al., 2023)
and MinK%++ (Zhang et al., 2024) methods for DCD. For any scoring function f ∈ B, there exists
a choice of functions κ, T, g such that the GSF R in Equation (6), implements f .

It is easy to see, e.g., how MinK% is implemented as a GSF. For a sequence length of N , it suffices
to choose: T (X′,p) = −perc(p,K) = −

(
sort(p)⌈ K

100 ·N⌉
)
,

κ(X′,p) = −p, g(X′,p) =
logp⌈
K
100 ·N

⌉ .
We refer readers to Appendix B for a proof of Proposition 4.1 and more details on how other base-
lines are implemented.

LOS-NET can approximate GSFs and implement known baselines. As the following results
show, our LOS-NET architecture is theoretically justified from an expressiveness standpoint. We
start by showing that it can, in fact, approximate virtually all GSFs of interest.
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Proposition 4.2 (Our model can approximate Equation (6)). Assume a maximal possible vocabulary
size Vmax and a maximal context size Nmax. Let X ×M ⊆ RNmax×Vmax × RNmax represent a compact
subset in the LOS. For any measurable κ : X × M → RNmax , measurable T : X × M → R,
measurable and integrable weight function g : X ×M → RNmax , and for any ϵ > 0, there exists a
set of parameters θ such that our model hθ : X ×M → R satisfies ∥hθ −R∥L1

< ϵ where ∥·∥L1

denotes the L1 norm.

The complete proof is given in Appendix B. To prove this result, we build on existing universality
results for approximating continuous functions with Transformers (Yun et al., 2019), by showing
that our (generally non-continuous) target functions can be approximated by continuous functions.
The implications of this proposition are interesting: as long as the LOS space of interest lies within
a compact domain – an assumption inherently satisfied when using, e.g., probabilities3 – our model
can approximate the general GSF given in Equation (6) of LOSs of any LLM under mild conditions
on κ, T , and g, potentially generalizing across LLMs as our approximation result considers a prede-
fined LOS domain. In Section 5 we show that our trained models can indeed be applied successfully
out-of-the-box on LOSs from different LLMs. We note that Proposition 4.2 cannot be generally
extended to L∞ due to the discontinuity of GSFs. The practical relevance of Proposition 4.2, is
underscored by the following corollary:
Corollary 4.3 (Approximation of Baselines by LOS-NET). Our architecture, as defined in Equa-
tion (3), can arbitrarily well approximate, in the L1 sense, any of the baseline methods in B when
operating on context and token-vocabulary of, resp., maximal sizes Nmax and Vmax.

The above states that well-established, successful baselines from the literature (see class B in Propo-
sition 4.1) can be approximated by LOS-NET. The proof for Corollary 4.3 follows from Proposi-
tions 4.1 and 4.2, see Appendix B for the complete proof.

5 EXPERIMENTS

We assess various aspects of learning with LOS via the following questions: (Q1) Is learning on
LOS an effective approach for addressing key tasks such as DCD and HD? Does it outperform
baselines? (Sections 5.1 and 5.2); (Q2) Does our model exhibit transfer capabilities across LLMs
and across datasets, suggesting the emergence of universal patterns in LLM behavior from the LOS
perspective? (Section 5.3, and Appendix C.7); (Q3) How important is X in the pair (X,p), as it
is often overlooked? And how impactful is the choice of the slicing parameter K in Equation (1)
(Appendix C.6). In the following, we present our main results, and refer to Appendix C for additional
experiments, and experimental details.

General setup. Our experiments focus on the two tasks of DCD and HD, with hyperparameter K
fixed at 1000 unless stated otherwise (see Equation (1)). In Appendix C.6, we show that our model
is robust to variations in K. To align with prior work, we use datasets and LLMs from Shi et al.
(2023); Zhang et al. (2024) for DCD and Orgad et al. (2024) for HD, totaling six datasets – three
for DCD and three for HD – and seven LLMs, five for DCD and two for HD. Further details are
in subsequent sections. We use the area under the ROC curve (AUC) to evaluate HD and DCD,
a standard metric in this domain Orgad et al. (2024); Shi et al. (2023); Zhang et al. (2024), which
measures the balance between sensitivity and specificity. We conduct each experiment across three
different random seeds (when applicable) and report the mean along with the standard deviation of
the results.

Newly introduced learning-based baselines. In addition to task-specific baselines, detailed in
the following, we also introduce two novel learning-based baselines to appreciate the contribution
of TDS. In these baselines, which we call ATP+Rank-MLP and ATP+Rank-Transformer (dubbed
ATP+R-MLP, ATP+R-TRANSF., respectively), we ablate information about the TDS: they only
process Rank Encodings (Equation (2)), thus accessing the ATP and rank information only. Formal
definitions are in Appendix C.4.

5.1 HALLUCINATION DETECTION

We follow the setup of Orgad et al. (2024). The objective is to predict whether an LLM-generated
response to a given input prompt is correct or not. We frame the task within a gray-box setting,

3For logits or log probabilities, clamping ensures the compactness assumption.

6



Table 1: Comparison of AUC over Mis-7b and L3-8b on HD, across the discussed baseline methods.
The best-performing method is in bold, and the second best is underlined.

Method HotpotQA IMDB Movies HotpotQA IMDB Movies

Mistral-7b-instruct Llama3-8b-instruct

Logits-mean 61.00 ± 0.20 57.00 ± 0.60 63.00 ± 0.50 65.00 ± 0.20 59.00 ± 1.70 75.00 ± 0.50
Logits-min 61.00 ± 0.30 52.00 ± 0.70 66.00 ± 0.80 67.00 ± 0.80 55.00 ± 1.60 71.00 ± 0.50
Logits-max 53.00 ± 0.80 47.00 ± 0.40 54.00 ± 0.40 59.00 ± 0.50 51.00 ± 0.90 67.00 ± 0.30
Probas-mean 63.00 ± 0.30 54.00 ± 0.80 61.00 ± 0.20 61.00 ± 0.20 73.00 ± 1.50 73.00 ± 0.60
Probas-min 58.00 ± 0.30 51.00 ± 1.00 60.00 ± 0.80 60.00 ± 0.40 57.00 ± 1.60 65.00 ± 0.40
Probas-max 50.00 ± 0.50 48.00 ± 0.40 51.00 ± 0.50 56.00 ± 0.50 49.00 ± 0.80 64.00 ± 0.60
P(True) 54.00 ± 0.60 62.00 ± 0.90 62.00 ± 0.50 55.00 ± 0.50 60.00 ± 0.60 66.00 ± 0.40

ATP+R-MLP 61.36 ± 0.33 88.95 ± 0.40 60.63 ± 0.16 60.09 ± 0.24 85.28 ± 0.49 67.19 ± 0.25
ATP+R-TRANSF. 63.78 ± 0.98 92.30 ± 1.66 62.41 ± 0.22 61.39 ± 1.24 82.56 ± 0.63 64.95 ± 0.68
LOS-NET 73.24 ± 0.28 96.11 ± 0.03 68.59 ± 1.08 72.97 ± 0.41 89.44 ± 0.32 77.04 ± 0.77

Method / LLM P-6.9b P-12b L-13b L-30b

Loss 67.40 76.27 76.23 89.18
MinK 68.78 77.32 75.36 89.61
MinK++ 66.73 71.76 72.87 80.60

Zlib 50.01 60.84 61.94 80.83
Lowercase 74.97 81.64 67.80 82.18
Ref 89.52 91.93 84.58 94.93

ATP+R-MLP 56.31 ± 1.48 57.18 ± 1.06 66.60 ± 1.05 83.89 ± 0.41
ATP+R-TRANSF. 79.59 ± 0.61 74.77 ± 0.57 74.65 ± 0.79 87.62 ± 0.68
LOS-NET 90.71 ± 0.90 89.43 ± 0.59 91.02 ± 0.15 95.60 ± 0.41

Table 2: Test AUC on BookMIA.
‘P’: Pythia, ‘L’: LLaMa-1. Best
result is in Bold, second best is
underlined. Reference-based ap-
proaches are shaded in pink.

i.e., we assume no access to the LLM’s internals. We also assume no access to external resources,
e.g., other LLMs, auxiliary, repeated prompting, or any additional contextual information, such as
pointers to specific answer tokens. This makes methods like Orgad et al. (2024); Kuhn et al. (2023)
not directly comparable. Note, however, that these additional sources of information could easily
be incorporated into LOS-NET, e.g., using a one-hot vector to flag specific answer tokens or by
extending the LOS to account for additional prompting. We defer investigating these more relaxed
settings to future research.

Datasets and LLMs. Following Orgad et al. (2024), we use three datasets spanning various do-
mains and tasks: HotpotQA without context Yang et al. (2018), IMDB sentiment analysis Maas
et al. (2011), and movie roles Orgad et al. (2024). Further details, regarding annotations’ collection
process, the splits and dataset sizes are in Appendix C.5.1. As the target LLMs, coherently with
Orgad et al. (2024), we use Mistral-7b-instruct-v0.2 Jiang et al. (2023) (Mis-7b), and LLaMa3-8b-
instruct Touvron et al. (2023) (L-3-8b).

HD Baselines. As baselines for hallucination detection, we consider the following, (1) Aggregated
probabilities/logits: Previous studies Guerreiro et al. (2022); Kadavath et al. (2022); Varshney et al.
(2023); Huang et al. (2023b) simply aggregate output token probabilities or logits to score LLM
confidence for error detection. Such simple aggregations include mean/max/min over the ATP. We
refer to them as Logit/Probas-mean/min/max; (2) P(True): Kadavath et al. (2022) found that LLMs
show reasonable calibration in assessing their own output correctness.

Results. Table 1 presents a comprehensive summary of our main results, which clearly demonstrate
that LOS-NET outperforms all baselines across all six dataset/LLM combinations, often by a sig-
nificant margin. For instance, on the IMDB dataset, LOS-NET achieves an AUC improvement of
around 34 units over the best baseline for Mis-7b and 16 over the best baseline for L-3-8b-instruct.
Our results further indicate that ATP learning-based baselines consistently underperform compared
to LOS-NET, underscoring the critical role of the TDS, X, in achieving superior results. However,
our ATP-based learnable baselines outperform Probas/Logits-based baselines in 3 out of 6 cases,
suggesting that a learning approach relying exclusively on ATP can still be a viable solution in
certain scenarios.

5.2 DATA CONTAMINATION DETECTION

The goal in DCD is to determine if an LLM was trained on specific data. The raw dataset D =
{qi, yi}ℓi=1 contains ℓ text samples, where qi represents the text and yi indicates whether it was part
of the training data. DCD is often framed as a Membership Inference Attack (MIA) (Shokri et al.,
2017; Mattern et al., 2023; Shi et al., 2023).
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Table 3: Comparison of AUC over four different LLMs, on DCD, over the discussed baselines meth-
ods. The best-performing method is in bold, and the second best is underlined. Reference-based
approaches are shaded in pink.

Dataset → WikiMIA - 32 WikiMIA - 64

LLM → P-6.9b L-13b L-30b M-1.4b P-6.9b L-13b L-30b M-1.4b

Loss 63.82 ±2.22 67.45 ±1.57 69.37 ±2.66 60.89 ±1.35 60.59 ±3.50 63.68 ±5.57 66.18 ±4.64 58.46 ±3.69
MinK 66.39 ±2.56 68.08 ±1.45 70.02 ±2.92 63.27 ±1.85 65.07 ±1.80 66.24 ±5.01 68.45 ±4.11 62.46 ±2.75
MinK++ 70.60 ±3.58 84.93 ±1.76 84.46 ±1.43 67.06 ±2.78 71.82 ±3.73 85.66 ±2.25 85.02 ±2.79 67.24 ±4.06

Zlib 64.35 ±3.46 67.70 ±2.25 69.81 ±3.17 62.07 ±3.35 62.59 ±3.38 65.40 ±5.35 67.61 ±4.21 60.59 ±3.73
Lowercase 62.09 ±4.22 64.03 ±6.97 64.31 ±5.18 60.59 ±3.24 58.34 ±4.21 62.63 ±5.05 61.54 ±7.81 57.03 ±2.83
Ref 63.45 ±6.03 57.77 ±5.94 63.55 ±6.69 62.05 ±5.43 62.35 ±4.84 63.07 ±5.09 68.94 ±5.83 60.29 ±4.62

LOS-NET 76.98 ±3.36 93.46 ±1.31 93.76 ±1.56 71.04 ±9.07 76.00 ±5.48 87.86 ±3.73 93.04 ±2.51 79.39 ±2.61

Datasets and LLMs. We use three datasets to assess DCD, specifically: WikiMIA-32 and
WikiMIA-64 Shi et al. (2023), as well as BookMIA Shi et al. (2023). The WikiMIA-32 and -64
datasets contain excerpts from Wikipedia articles, consisting of, resp., 32 and 64 words. The distinc-
tion between contaminated and uncontaminated data is determined by timestamps. As in (Shi et al.,
2023; Zhang et al., 2024), we attack Mamba-1.4b Gu & Dao (2023) (M-1.4b), LLaMa-13b/30b Tou-
vron et al. (2023) (L-13b/30b), Pythia-6.9b Biderman et al. (2023) (P-6.9b). BookMIA is a dataset
of book excerpts. Positive members correspond to books known to be well memorized by certain
OpenAI models (Chang et al., 2023), or otherwise known to (partly) be in pretraining corpus of other
open-source LLMs (Antebi et al., 2025). Non-members include excerpts from books released after
2023, necessarily absent from the pretraining corpus of the these last ones. Interestingly, this dataset
allows us to test LOS-NET’s DCD capability in a realistic scenario akin to copyright-infringement
detection. We thus propose a new split that ensures all excerpts from the same book always appear
either in the training or test split (and never in both). Details are enclosed in Appendix C.5.2. We at-
tack LLMs considered in (Antebi et al., 2025): LLaMa-13b/30b Touvron et al. (2023) (L-13b/30b),
Pythia-6.9b/12bBiderman et al. (2023) (P-6.9b/12b).

DCD Baselines. We evaluate six recent methods as our baselines. The Loss approach Yeom et al.
(2018) directly uses the loss value as the detection score. The Reference (Ref) method Carlini
et al. (2021) calibrates the target LLM’s perplexity leveraging a similar reference model known or
supposed not to have memorized text of interest4. Both Zlib and Lowercase Carlini et al. (2021) are
also reference-based methods: they utilize zlib compression entropy and lowercased text perplexity
as reference for normalization. Lastly, Min-K% Shi et al. (2023) and Min-K%++ Zhang et al.
(2024) are reference-free methods, which examine token probabilities and average a subset of the
minimum token scores, or a function thereof, over the input. Min-K%++ is currently the best-
performing method on the WikiMIA dataset. For these baselines, we select their hyperparameters
by maximizing performance on the validation set(s).

Results on BookMIA. Results are reported in Table 2. On this benchmark, our method attains
exceptional results, largely surpassing other reference-free approaches. Among these last ones, ours
is the only method that can match or outperform the reference-LLM-based baselines. Additionally,
our experimental results suggest that instrumental to achieve such strong reference-free performance
is to access, even partially, the TDS, as our ATP-based learnable baselines, which only process
features for the actual sequence tokens, incur significant performance degradations.

Results on WikiMIA. Since WikiMIA does not provide an official training split and our method
requires labeled data, we perform 5-fold cross-validation with training, validation, and testing splits5

and rerun all baselines under the same protocol for a fair comparison. Results are reported as
the mean and standard deviation across folds. For these datasets only, setting the hyperparame-
ter K = 1000 (recall Equation (1)) led to suboptimal performance in preliminary experiments,
thus, we set K = “Full-Vocabulary”. As shown in Table 3, LOS-NET consistently surpasses all
baseline methods across all eight combinations of LLMs and datasets. Notably, for L-30b, our
model achieves an AUC score that is more than 8 points higher than the best-performing baseline,
MinK%++ for both datasets, demonstrating a substantial improvement. Similarly, for P-6.9b, our
model maintains a steady advantage of approximately 5 AUC for both datasets, further underscor-

4For example for Pythia-12b, a valid reference LLM would be the smaller Pythia-70M.
5We use { 3

5
, 1
5
, 1
5
} as the ratios for training, validation, and testing, respectively.
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ing its robustness. Overall, the second-best method is MinK%++, followed by MinK%, consistently
with the findings of Zhang et al. (2024).

5.3 GENERALIZATION TO OTHER LLMS AND DATASETS

P-6.9b P-12b L-13b L-30b
Test

P-
6.

9b
P-

12
b

L-
13

b
L-

30
b

Tr
ai

n

90.71 *
± 0.9

87.36
± 1.4

78.70
± 1.4

77.28
± 1.9

89.86 *
± 0.21

89.43
± 0.59

83.36
± 1.4

85.06
± 3.5

78.31
± 2.2

78.26
± 1.4

91.03 *
± 0.15

95.60 *
± 0.33

86.27
± 0.63

83.61
± 1.5

90.48 *
± 0.56

95.60 *
± 0.41

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

Figure 3: BookMIA zero-shot
generalization. Bold: high-
est score among reference-
free baselines; superscript
∗: LOS-NET also surpasses
reference-based methods.

Here, we further study the possibility to apply our models to set-
tings different from those they were originally trained on. We focus
on two variables: datasets and LLMs. Generalization across differ-
ent datasets was originally studied in (Orgad et al., 2024) within the
scope of HD, and in the context of white-box setups; their relevance
lies in the fact that non-trivial dataset generalization would poten-
tially suggest a ‘universal truthfulness’ representation encoded in
the internal states and/or outputs of an LLM (Orgad et al., 2024;
Marks & Tegmark, 2023; Slobodkin et al., 2023). On the other
hand, inspecting transfer across LLMs is, to the best of our knowl-
edge, still unexplored. This study would be important for learning
based approaches for applications such as copyright-infringement
detection, where ground-truth labels may be scarce.

Zero Shot Cross-LLM Generalization Capabilities in DCD. We assess our model’s ability to
detect DC in target LLMs that were unseen during training. Using the BookMIA benchmark and
the setup described in Section 5.2, we evaluate our model directly across different LLMs without
any fine-tuning. This setup is relevant in cases where contamination information is not yet available
for newly released LLMs. The results are presented in the heatmap shown in Figure 3. We observe
strong transferability: in 10/12 cases, our model achieves the best performance among reference-
free approaches, highlighted in bold in Figure 3. Interestingly, in 3/12 cases, LOS-Net (which is
reference-free) even surpasses reference-based baselines, as indicated via a superscript of ∗. We
also observe particularly strong transfer across differently sized LLM architectures within the same
family and highlight the surprising positive transfer from the largest LLaMa to Pythia models.

Discussion. We observe several key findings. First, LOS-NET exhibits solid transferability in both
scenarios. The finetuned models consistently outperform their counterparts trained from scratch:
6/6 cases in the cross-LLM setup (Figure 6), 11/12 cases in the cross-dataset one (Figure 7), as
indicated via ∗ on the off-diagonal entries; the full results for training from scratch are presented
in Figures 8 and 9 in the Appendix. This highlights the effectiveness of LOS as a data type in
capturing universal patterns in LLM behavior. Second, from a practical perspective, we find that
LOS-NET outperforms the best baseline in 4/6 cases for the cross-LLM scenario (Figure 6) and in
9/12 cases for the cross-dataset scenario (Figure 7), as indicated in bold on the off-diagonal entries.
Focusing on the IMDB dataset, when training on L-3-8b and testing on Mis-7b (Figure 6), our model
achieves a substantial gain of around 29 AUC units over the best baseline. This result underscores
the possibility of transferring across LLMs. A similar trend is observed in the cross-dataset setup
(Figure 7): on Mis-7b, when training on HotpotQA or Movies and testing on IMDB, our model
achieves a notable improvement of around 31, 27 AUC units, respectively, compared to the best
baseline.

6 CONCLUSION

We proposed LOS-NET, an efficient method for Data Contamination and Hallucinations Detection
(DCD, HD) in Large Language Models (LLMs) by leveraging their output signatures (LOS). LOS-
NET processes the Token Distribution Sequence (TDS) and Actual Token Probabilities (ATP) using
a lightweight transformer with learnable rank encoding, capturing richer contextual information. We
theoretically showed that LOS-NET unifies and extends existing gray-box methods under a general
framework. Experiments across datasets and LLMs show LOS-NET outperforms state-of-the-art
gray-box baselines in HD and DCD. We demonstrated strong generalization capabilities of LOS-
NET, both across datasets and across LLMs, where the latter suggests that LOS-NET can effectively
capture universal patterns in LLM behavior. Several avenues for future research remain open. Our
framework could extend beyond DCD and HD to other tasks, such as detecting LLM-generated
content. Exploring more complex architectures than LOS-NET is also interesting, for example,
we note that sorting the TDS tensor removes word alignment across the vocabulary, which may be
limiting in some cases.
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A APPENDIX

B PROOFS

Proposition B.1 (Our model can approximate Equation (6)). Assume a maximal possible vocabulary
size Vmax and a maximal context size Nmax. Let X ×M ⊆ RNmax×Vmax × RNmax represent a compact
subset in the LOS. For any measurable κ : X × M → RNmax , measurable T : X × M → R,
measurable and integrable weight function g : X ×M → RNmax , and for any ϵ > 0, there exists a
set of parameters θ such that our model hθ : X ×M → R satisfies ∥hθ −R∥L1

< ϵ where ∥·∥L1

denotes the L1 norm.

Proof. We define D := X ×M. Recall that the target function we want to approximate is the gated
scoring function R as defined in Equation (6), which can be written as follows:

R(x) =

Nmax∑
i=1

I(κ(x)i ≥ T (x)) · g(x)i, (7)

for x ∈ D.

Define f (1) : D → RNmax to be the components of the sum in Equation (7):

f (1)(x)i = I(κ(x)i ≥ T (x)) · g(x)i. (8)

It follows that R(x) =
∑Nmax

i=1 f (1)(x)i.

Step 1: We begin by selecting K = Vmax as a hyperparameter6 and initializing the parameters p1,
p2, and W as follows:

p1 = 0, (9)
p2 = 1, (10)
W = IK×K . (11)

As a result, the input to the transformer encoder in our architecture (see Equation (3)) becomes
X′||p ∈ RNmax×(Vmax+1).

This simplifies our architecture in Equation (3) to:
hθ(X,p) = T (X′||p). (12)

Step 2: f (1) ∈ L1(D). Define the L1(D) norm for a field F : D → Rn2 as:

∥F∥L1 =

∫
x∈D

∥F(x)∥1 dx =

∫
x∈D

n2∑
i=1

|F(x)i| dx =

n2∑
i=1

∫
x∈D

|F(x)i| dx =

n2∑
i=1

∥F(x)i∥L1 ,

(13)
6For LLMs with a vocabulary size smaller than Vmax, appropriate padding can be applied.
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where ∥v∥1 =
∑n2

i=1 |vi| is the l1 norm of the vector v.

Next, observe that f (1) ∈ L1(D). To see this, first note that f (1) is measurable. The indicator
function is measurable because the indicator set is the preimage of the measurable function κ(x)−
T (x) on the closed set [0,∞). Thus, f (1), being a product of measurable functions, is measurable.
Next, we show that the L1 norm is finite. This is true because f (1) is a product of the integrable
function g and the bounded function 1 on the compact domain D.

Step 3: Approximating f (1) by a continuous field f̃ (1). We need to approximate the field f (1) :
D → RNmax by a continuous field, so that we can apply existing results on approximating continuous
functions with Transformers. We state the following Lemma, saying the continuous fields are dense
in L1(D).

Lemma B.2. For any g ∈ L1(D) and any ϵ > 0, there exists a continuous g̃ ∈ L1(D) such that
∥g − g̃∥L1 < ϵ.

Proof. Consider the coordinate functions gi : D → R. Since continuous functions are dense in L1

for scalar valued functions, we can choose continuous g̃i such that ∥g − g̃∥L1 < ϵ/N . Thus, letting
g̃(x) = [g1(x), . . . , gN (x)] ∈ RN , it holds that ∥g − g̃∥ =

∑N
i=1 ∥gi − g̃i∥ < ϵ.

Thus, we can choose a function f̃ (1) such that,∥∥∥f (1) − f̃ (1)
∥∥∥ <

ϵ

2Nmax
. (14)

Step 4: Approximating the continuous field f̃ (1) by a transformer model h(1)
θ . We start by

restating the following from Yun et al. (2019) in our context,

Theorem B.3. Let 1 ≤ p < ∞ and ϵ > 0, then for any given f ∈ FCD, where FCD is the set of
all continuous functions that map a compact domain in Rn×d to Rn×d, there exists a Transformer
network (with positional encodings) g : Rn×d → Rn×d such that we have ∥f − g∥Lp ≤ ϵ.

To apply this theorem in our context, we observe that in our case d := Vmax + 1 and n := Nmax

for the input space, and the domain D ⊆ RNmax×(Vmax+1) is compact. Thus f̃ (1) ∈ FCD (note that
the output space dimension in our case is RNmax×1 instead of RNmax×d, but this can be handled using
zero-padding). Using p = 1, it holds that there exists a transformer h(1)

θ s.t.,
∥∥∥h(1)

θ − f̃ (1)
∥∥∥ < ϵ

2Nmax
.

Step 5: Pooling. Our model concludes with a [CLS] token pooling mechanism, which is equivalent
in expressiveness to the standard sum pooling method. Thus, assuming that the final layer of our
model is given by h

(1)
θ (x), our model can be written as follows,

hθ(x) =

Nmax∑
i=1

(
h
(1)
θ (x)i

)
. (15)

Step 6: Approximating the objective function. Intuitively, hθ(x) approximates R(x) because
h
(1)
θ (x)i approximates f (1)(x)i.

We demonstrate this as follows.
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∥hθ −R∥L1
=

∥∥∥∥∥
Nmax∑
i=1

(
h
(1)
θ;i

)
−

Nmax∑
i=1

f
(1)
i

∥∥∥∥∥
L1

(16)

≤
Nmax∑
i=1

∥∥∥h(1)
θ;i − f

(1)
i

∥∥∥ (17)

=

Nmax∑
i=1

∥∥∥h(1)
θ;i + (f̃

(1)
i − f̃

(1)
i )− f

(1)
i

∥∥∥ (18)

≤
Nmax∑
i=1

∥∥∥h(1)
θ;i − f̃

(1)
i

∥∥∥+

Nmax∑
i=1

∥∥∥f̃ (1)
i − f

(1)
i

∥∥∥ (19)

We applied the triangle inequality to obtain the two inequalities. Next, note that for a field F :
Rn1 → Rn2 , the L1 norm of any coordinate function is less than the L1 norm of F : ∥Fj∥L1 ≤
∥F∥L1 for any j ∈ {1, . . . , n2}. This can be seen directly from the definition of the L1 norm of F .
Combining this with our choices of f̃ and hθ shows that:

N∑
i=1

∥∥∥h(1)
θ;i − f̃

(1)
i

∥∥∥+

Nmax∑
i=1

∥∥∥f̃ (1)
i − f

(1)
i

∥∥∥ (20)

<

Nmax∑
i=1

ϵ

2Nmax
+

Nmax∑
i=1

ϵ

2Nmax
(21)

= ϵ. (22)
In total, this means that ∥hθ −R∥L1

< ϵ, so we are done.

Proposition B.4 (GSFs capture known baselines). Let B be the set of scoring functions implemented
by the Min/Max/Mean aggregated probability methods (Guerreiro et al., 2022; Kadavath et al.,
2022; Varshney et al., 2023; Huang et al., 2023b) for HD, as well as the MinK% (Shi et al., 2023)
and MinK%++ (Zhang et al., 2024) methods for DCD. For any scoring function f ∈ B, there exists
a choice of functions κ, T, g such that the GSF R in Equation (6), implements f .

Proof. We will prove the Proposition by defining, for each baseline, the functions implementing
components κ, T, g, assuming no ties in the ATP values p.

Mean Aggregated Probability. This baseline simply outputs the mean across the ATPs p. The
following selection of functions implements it as a GFS:

κ(X′,p) = 1 T (X′,p) = 0 g(X′,p) =
1

N
p

Min Aggregated Probability outputs the min value across the ATPs p. The following selection of
functions implements it as a GFS:

κ(X′,p) = −p T (X′,p) = −min(p) g(X′,p) = p

Max Aggregated Probability outputs the max value across the ATPs p. We simply pick:
κ(X′,p) = p T (X′,p) = max(p) g(X′,p) = p

MinK%. Please refer to Section 4.

MinK%++. Let p̄ = log(p)−µ
σ , be the normalized version of p, with:

µi = EX′
i
[log(X′

i)] =

V∑
v=1

X′
i,v · log(X′

i,v),

σi =
√
EX′

i
[(log(X′

i)− µi)2] =

√√√√ V∑
v=1

X′
i,v ·

(
log(X′

i,v)− µi

)2
, (23)
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Where X′ is given from Equation (1).

The baseline is implemented by setting:

T (X′,p) = −perc(p̄,K) = −
(
sort(p̄)⌈ K

100 ·N⌉
)
,

κ(X′,p) = −p̄, g(X′,p) =
p̄⌈

K
100 ·N

⌉ .
Loss as a Privacy Proxy Yeom et al. (2018). This method uses the model’s negated loss as a proxy
for contamination, which can be defined as the average of the log ATPs. The method can thus be
implemented with:

κ(X′,p) = 1, T (X′,p) = 0, g(X′,p) =
1

N
log(p). (24)

Corollary B.5 (Approximation of Baselines by LOS-NET). Our architecture, as defined in Equa-
tion (3), can arbitrarily well approximate, in the L1 sense, any of the baseline methods in B when
operating on context and token-vocabulary of, resp., maximal sizes Nmax and Vmax.

Proof. To prove Corollary 4.3, it suffices to show the following. First (i), that the baselines can
be implemented as in Equation (6), given their sequence length and vocabulary size satisfy, N ≤
Nmax, V ≤ Vmax, where values in the inputs for indices larger than N,V are ‘padded’ with e.g.,
−1. Second (ii), that their implementations are realized with κ, T , and g which are all measurable,
and with g also integrable.

(i) Let us slightly modify the implementations provided in the Proof for Proposition 4.1 to correctly
account for padding values. Let us conveniently define:

α : R → R, α(x) = 1− ReLU(−x) =

{
1 x ≥ 0

1 + x x < 0

Neff =

Nmax∑
i=1

α(pi) Veff =

Vmax∑
v=1

α(X1,v) (25)

as well as the following function, which will help us ‘manipulate’ the padding value in order not to
interfere with the effective computations required by baselines:

β : R → R, β(x;M,f) =

{
f(x) x ≥ 0

M x = −1
,M > 0. (26)

Mean Aggregated Probability.

κ(X′,p) = 1 T (X′,p) = 0 g(X′,p) =
1

Neff
p ◦ α(p),

where ◦ denotes the hadamard (element-wise) product.

Min Aggregated Probability.

κ(X′,p) = −β(p) T (X′,p) = −min(β(p)) g(X′,p) = p M = 2, f ≡ id.

Max Aggregated Probability.

κ(X′,p) = p T (X′,p) = max(p) g(X′,p) = p

MinK%.

κ(X′,p) = −β(p) T (X′,p) = −
(
sort(β(p))⌈ K

100 ·Neff⌉
)

g(X′,p) =
log(β(p))⌈
K
100 ·Neff

⌉ M = 2, f ≡ id.

where the note the application of β inside the log prevents negative inputs.
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MinK%++. Before illustrating how this baseline is implemented, we note the following. In order
for the normalization of log-probs to be well-defined, it is required that: (1) µ is finite, (2) the
denominator is greater than 0. As for (1), we note that null probability values (Xi,v = 0) would be
problematic, as they would cause the log function to output −∞. We assume, in this case, that all
probability values lie in [ϵ1, 1], with ϵ1 being a small value such that 0 < ϵ1 < 1. Regarding (2), we
see that the problematic situation would occur in cases where the probability distribution is uniform.
We assume to handle this case by adding a small positive constant ϵ2 > 0 in the denominator, so
that the normalization would take the form: p̄ = log(p)−µ

σ+ϵ2
.

Under these assumptions, we define the following β functions:

β1 = β(·; 2, id.) βi
2 = β(·;−2 log(ϵ1)

ϵ2
, fi), fi(x) =

log(x)− µi⌈
K
100 ·Neff

⌉
σi + ϵ2

where we note that − 2 log(ϵ1)
ϵ2

upper-bounds all the possible values that can be attained by fi’s under
our assumptions.

At this point, we observe that the values µi,σi can be correctly obtained as follows, in a way that is
not influenced by our padding scheme:

µi =
∑
v

α(X′
i,v) ·X′

i,v log (β1(X
′
iv)) (27)

σi =

√∑
v

α(X′
i,v) ·X′

i,v (log(β1(X′)i,v)− µi)
2 (28)

At this point, let β2(p)i = βi
2(pi). We set:

κ(X′,p) = −β2(p) T (X′,p) = −
(
sort(β2(p))⌈ K

100 ·Neff⌉
)

g(X′,p) =
β2(p)⌈
K
100 ·Neff

⌉
and note that the K-th percentile in T is correctly computed despite the padding values due to the
specific choice of M in β2’s.

Loss as a Privacy Proxy Yeom et al. (2018).

κ(X′,p) = 1, T (X′,p) = 0, g(X′,p) =
1

Neff
log(p). (29)

(ii) We now proceed to show that the implementations above are obtained via measurable functions
κ, T , and a measurable and integrable function g, which completes the proof.

Step 1: Consider a fixed sequence length N ′ ∈ [Nmax] and a fixed vocabulary size V ∈ [Vmax].
When restricted to these parameters, all relevant functions are continuous. This follows from the
fact that each function, when restricted in this manner, is composed of continuous functions.

Step 2: The input domain for each combination of sequence length N ′ ∈ [Nmax] and vocabulary
size V ∈ [Vmax] forms a compact set, and the union of all of this domains is also compact (as a
finite union of compact sets). Moreover, for any two distinct pairs (N1, V1) and (N2, V2), if either
N1 ̸= N2 or V1 ̸= V2, then the corresponding domains are disjoint.

In most of our cases of interest, this follows from the fact that probabilities lie within [0, 1] and that
padding is represented by −1. In other cases, e.g., the application of β, the sets might be different,
but remain disjoint and compact.

Thus, by the following lemma, all functions κ, T, g for all baselines are continuous, completing the
proof.

Lemma B.6. Let X be a subset of a metric space, which is compact, and can be expressed as a
finite disjoint union of compact subsets Xi indexed by a finite set I , i.e.,

X =
⊔
i∈I

Xi.
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Suppose a function f : X → Rn is defined such that for each i ∈ I , there is a continuous function

g(i) : Xi → Rn

satisfying f |Xi = g(i). Then, f is continuous on X .

The finite disjoint union of compact subsets correspond to all possible sequence lengths (N ′ ∈ Nmax)
and vocabulary sizes (V ′ ∈ Vmax). Below we provide the proof for Lemma B.6.

Proof. Consider any point x ∈ X , and let (x(m)) be a sequence converging to x, in X . We need to
show that

f(x(m)) → f(x) as m → ∞.

Since X is a finite disjoint union of compact subsets Xi, there exists an index i∗ such that x ∈ Xi∗ .

Since the subsets Xi are disjoint and compact, there exists a positive minimum separation distance
between distinct subsets, defined as,

δ∗ =
1

2
min
i ̸=j

inf
x∈Xi,y∈Xj

∥x− y∥.

Since each Xi is compact and the index set is finite7, this minimum distance is well-defined and
strictly positive.

Because x(m) → x, there exists an integer M such that for all m > M , we have

∥x(m) − x∥ < δ∗.

By the definition of δ∗, this ensures that for sufficiently large m, the sequence x(m) remains in Xi∗ ,
i.e., x(m) ∈ Xi∗ for all m > M .

Since f coincides with g(i
∗) on Xi∗ , we have

f(x(m)) = g(i
∗)(x(m)), for all m > M.

By assumption, g(i
∗) is continuous on Xi∗ , so

g(i
∗)(x(m)) → g(i

∗)(x) as m → ∞.

Since f(x) = g(i
∗)(x), it follows that

f(x(m)) → f(x),

which proves that f is continuous at x. Since x was arbitrary, f is continuous on X .

C EXTENDED EXPERIMENTAL SECTION

C.1 EXPERIMENTAL DETAILS

Our experiments were conducted using the PyTorch Paszke et al. (2019) framework, using NVIDIA
L40 GPUs. We use a fixed batch size of 64 for all the tasks and datasets, and a fixed value of 8
heads (except for the MoviesOrgad et al. (2024) dataset) in our light-weight transformer encoder
for LOS-NET. Hyperparameter tuning was performed utilizing the Weight and Biases framework
Biewald (2020) – see Table 4.

C.2 HYPERPARAMETERS

In this section, we detail the hyperparameter search conducted for our experiments. We use the
same hyperparameter grid for our main model, LOS-NET, and our proposed learning-based base-
lines, namely, ATP+R-MLP, ATP+R-TRANSF.. Additionally, we note that for a given dataset, we
maintained the same grid search approach for all LLMs’ LOSs that we have trained on. The hyper-
parameter search configurations for all datasets are presented in Table 4. The grid search optimizes
for the AUC calculated on the validation set.

7https://proofwiki.org/wiki/Distance_between_Disjoint_Compact_Set_and_
Closed_Set_in_Metric_Space_is_Positive#google_vignette
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Table 4: Hyperparameter search grid for LOS-NET.

Dataset Num. layers Learning rate Embedding size Epochs Dropout Weight Decay

HOTPOTQA {1, 2} {0.0001} {128, 256} {300} {0, 0.3} {0, 0.001}
IMDB {1, 2} {0.0001} {128, 256} {300} {0, 0.3} {0, 0.001}
MOVIES {1, 2} {0.0001} {128, 256} {300, 500} {0.0, 0.3, 0.5} {0, , 0.001, 0.005}
WIKIMIA (32/64) {1, 2} {0.0001} {128, 256} {100, 500, 1000} {0, 0.3} {0, 0.001}
BOOKMIA {1, 2} {0.0001} {64, 128} {500} {0, 0.3, 0.5} {0, 0.001}

C.3 OPTIMIZERS AND SCHEDULERS

For all datasets we employ the AdamW optimizer Loshchilov (2017) paired with a Linear sched-
uler, using a warm up of 10% of the epochs. We apply an early stopping criterion if there is no
improvement in validation performance for 30 consecutive epochs.

C.4 OUR BASELINES AND RANK ENCODING

ATP+R-Transf. This baseline is implemented as described in Equation (3), but without incorporat-
ing the TDS (X), as follows:

hθ(X,p) = T (RE(X,p)) , (30)

where T represents an encoder-only transformer architecture Vaswani (2017).

ATP+R-MLP. This baseline is similar to ATP+R-Transf. but replaces the transformer with an
MLP. Formally:

hθ(X,p) = MLP (RE(X,p)) , (31)

C.5 DATASET DESCRIPTION

C.5.1 DATASETS FOR HALLUCINATION DETECTION

In this section, we provide an overview of the three datasets used in our hallucination detection
analysis; we mostly follow the framework given in Orgad et al. (2024) in constructing the datasets.
Our aim was to ensure coverage of a wide variety of tasks, required reasoning skills, and dataset
diversity. For each dataset, we highlight its unique contributions and how it complements the others.

For all datasets, we used a consistent split of 10,000 training samples and 10,000 test samples.

1. HotpotQA Yang et al. (2018): This dataset is specifically designed for multi-hop question
answering and includes diverse questions that require reasoning across multiple pieces of
information. Each entry comprises supporting Wikipedia documents that aid in answering
the questions. For our analysis, we utilized the “without context” setting, where questions
are posed directly. This setup demands both factual knowledge and reasoning skills to
generate accurate answers.

2. Movies Orgad et al. (2024): To evaluate generalization in scenarios regarding movies in-
volving factual inaccuracies (i.e., hallucinations), we employed the dataset introduced by
Orgad et al. (2024).

3. IMDB Maas et al. (2011): This dataset contains movie reviews designed for sentiment
classification tasks. Following the approach outlined in Orgad et al. (2024), we applied a
one-shot prompt to guide the large language model (LLM) in using the predefined senti-
ment labels effectively.

Annotation collection for HD. Specifically, following Orgad et al. (2024), the dataset D =
{(qi, zi)}ℓi=1 contains ℓ question-answer pairs, where qi are questions and zi are ground-truth an-
swers. For each qi, the model generates a response ẑi, with predicted answers {ẑi}ℓi=1. The LOS for
each response, {(X,p)i}ℓi=1, is saved. Correctness labels yi ∈ {0, 1} are assigned by comparing ẑi
to zi, resulting in the error-detection dataset {(X,p)i, yi}ℓi=1.
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C.5.2 DATASETS FOR DATA CONTAMINATION DETECTION

BookMIA. The original BookMIA data have been obtained from the Hugging Face dataset
swj0419/BookMIA8, accessed via the Hugging Face python datasets API. The dataset to-
tals 9, 870 excerpts from a total of 100 books, of which 50 are labeled as members (positives) and
50 are labeled as non-members (negatives).

Throughout all experiments on BookMIA, including the evaluation of baselines, we process only
the first 128 words from each excerpt, originally 512-word long. This expedient allowed for faster
LLM inference and lighter data storage at the time of dataset creation, i.e., the extraction and saving
of LLM outputs.

As no standard split is available for this dataset, we proceed by randomly forming training and test
sets in the proportions of, resp., 80% and 20%. To ensure that all excerpts from the same book are
in either one of the two sets (and never in both), we first separate books into two separate lists based
on their label, shuffle the obtained lists using a random seed of 42, and then, for each of the two
lists, take the first 80% of books as training books, and the remaining 20% as test books. Training
and test sets are obtained by taking the corresponding excerpts from, respectively, training and test
books. After this, we verified that the obtained sets are both approximately class-balanced (≈ 50%
of excerpts in both the training and test sets are labeled as positives).

In the case of the reference-based baseline, we consider the smallest-sized available counter-
parts for the respectively attacked LLMs, namely: Pythia 70M for Pythia models and Llama-
1 7B for Llama models. All LLMs are accessed through the Hugging Face python inter-
face, specifically: EleutherAI/pythia-70m, EleutherAI/pythia-{6.9,12}b9 and
huggyllama/llama-{7,13,30}b10.

WikiMIA. WikiMIAShi et al. (2023) is the first benchmark for pre-training data detection, com-
prising texts from Wikipedia events. The distinction between training and non-training data is de-
termined by timestamps. WikiMIA organizes data into splits based on sentence length, enabling
fine-grained evaluation. It also considers two settings: original and paraphrased. The original set-
ting evaluates the detection of verbatim training texts, while the paraphrased setting, where training
texts are rewritten using ChatGPT, assesses detection on paraphrased inputs. In this paper, we con-
sider the original (non-paraphrased) split and focus on the 32 and 64 split sizes, as they contain the
largest number of samples, approximately 750 and 550, respectively.

C.6 ABLATION STUDY

Existing methods often overlook a critical aspect of LOS. Specifically, they primarily rely on the
ATP, p, while neglecting the TDS, X. In this subsection, we conduct an ablation study to evaluate
the significance of the TDS in general, as well as its size, namely the hyperparameter K introduced
in Equation (1).

The Role of the TDS (X). As a case study, we examine both the DCD task on the BookMIA dataset
and the HD task across the three datasets: HotpotQA, IMDB, and Movies. Our analysis involves
six LLMs. To examine to role of the TDS, we benchmark LOS-NET against our two proposed
baselines, which focus on the ATP, namely, ATP+R-TRANSF. and ATP+R-MLP.

The results, summarized in Figure 5, consistently demonstrate that the best-performing model is
LOS-NET. In many cases, LOS-NET outperforms the alternatives by a significant margin, indicat-
ing that the information encoded in the TDS (X) is crucial for both tasks.

When comparing the two ATP-based baselines, ATP+R-TRANSF. and ATP+R-MLP, we find that
in 8 out of 10 cases, ATP+R-TRANSF. achieves better performance. This suggests that treating
ATP (p) as sequential data - the more natural approach - is more effective than using an MLP.

8https://huggingface.co/datasets/swj0419/BookMIA.
9https://huggingface.co/EleutherAI/pythia-70m, https://huggingface.co/

EleutherAI/pythia-6.9b, https://huggingface.co/EleutherAI/pythia-12b.
10https://huggingface.co/huggyllama/llama-7b, https://huggingface.co/

huggyllama/llama-13b, https://huggingface.co/huggyllama/llama-30b.
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The hyperparameter K. To evaluate the impact of the hyperparameter K introduced in Equa-
tion (1), we conduct a comprehensive case study focusing on the task of HD. This analysis is
performed across two LLMs, Llama3-8b-instruct and Mistral-7b-instruct, as well as two diverse
datasets, HotpotQA and IMDB.

We experiment with various values of K, specifically K ∈
{10, 20, 50, 100, 300, 500, 800, “Full Vocabulary”}, and applied the exact same hyperparame-
ters grid search over the other hyperparameters (i.e., number of layers, learning rate) for all of those
values. The corresponding results are presented in Figure 4.
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Figure 4: Ablation study analyzing the effect of the hyperparameter K introduced in Equation (1).
The gap between the highest and lowest bin is indicated on the top right of each histogram.

It is evident that the hyperparameter K has little impact on the final results. Specifically, three out of
the four gaps are less than 2 AUC, and the largest gap is below 5 AUC. Surprisingly, using the full
vocabulary (the rightmost bin in all histograms) does not show any clear performance improvement
but significantly slows down training compared to K ≤ 1000. Thus, as an optimal balance be-
tween training time and performance, we select K = 1000 for all the experiments unless otherwise
specified.

C.7 EXTENDED RESULTS FOR TRANSFERABILITY

Transfer Learning across LLMs and Datasets for HD. Differently than DCD, where zero-shot
application of LOS-NET was successful, for HD we observed non-trivial generalization in the zero-
shot setup, however, not sufficient to surpass the simple probability-based techniques. This led us
to investigate LOS-NET capabilities in a transfer learning setting, in which we conduct a rapid fine-
tuning procedure on all possible LLM/datasets combinations. Specifically, we perform a 10-epoch
fine-tuning on the target LLM/dataset (as opposed to 300+ epochs in our standard setting). This
process was measured to take less than a minute. We benchmark the fine-tuned model against two
baselines. First, to test for successful transfer, we compare with a LOS-NET trained from scratch
under an identical setup (i.e., 10 epochs). Second, we contrast the fine-tuned model with the best-
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Figure 5: Ablation study evaluating the role of the TDS (X) and the ATP (p). Results are shown for
the four LLMs: L-3-8b , Pythia-12b , Mis-7b , and LLaMa-13b .
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Figure 6: Cross-LLM transfer learning performance (AUC). Y-axis: source LLMs (train), X-axis:
target LLMs (test). Results better than the best baseline are in Bold; results surpassing training from
scratch are marked with ∗.

reported baseline; this is crucial, as generalization scores above 0.5 AUC are only useful if they
surpass non-learnable baselines relying solely on probas/logit outputs.

The test AUC of our fine-tuned LOS-NET’s are reported in Figures 6 and 7. A superscript (∗) indi-
cates that the fine-tuned LOS-NET achieves better performance compared to training from scratch.
Bold text highlights cases where the fine-tuned LOS-NET outperforms the best (non-learnable)
baseline methods.
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We also present the complementary results for Figures 6 and 7, for the case where we trained from
scratch. The results are presented in Figures 8 and 9.

D ADDITIONAL TASKS BACKGROUND

In this section, we provide some additional background and motivation for the DCD and HD tasks.

Data Contamination Detection. Large-scale pre-training of LLMs typically involves crawling
vast amounts of online data, a common practice to meet their substantial data requirements. How-
ever, this approach risks exposing models to evaluation datasets, potentially compromising our abil-
ity to assess their generalization performance accurately Brown et al. (2020), or, taking a different
perspective, can pose legal and ethical issues when models are accidentally exposed to copyrighted
or sensitive data during training. This phenomenon is typically referred to as Data Contamination.
Recently, Li et al. (2024b) demonstrated that LLMs from the widely used LLaMA Touvron et al.
(2023) and Mistral Jiang et al. (2023) model families exhibit significant data contamination, partic-
ularly concerning frequently used evaluation datasets.

Hallucination Detection. LLMs’ tendency to generate untrustworthy outputs, commonly known
as ”hallucinations,” remains a significant challenge to their widespread adoption in real-world appli-
cations Tonmoy et al. (2024). To address this issue, various hallucination mitigation techniques have
been proposed, including retrieval-augmented generation Lewis et al. (2020); Izacard et al. (2023);
Gao et al. (2023), customized fine-tuning Maynez et al. (2020); Cao et al. (2022); Qiu et al. (2023),
and, inference-time manipulation Li et al. (2024a); Qiu et al. (2024); Zhao et al. (2024), to name
a few. However, applying these methods to all user-LLM interactions can be computationally ex-
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pensive. As a more targeted approach, hallucination detection has been explored to enable selective
intervention only when necessary.

General Considerations on Annotations. We consider access to a set of annotations y’s, which
we naturally associate with the corresponding LOS elements. These encode ground-truth labels
pertaining to problems of interest, e.g., whether the input text s⃗ is in the pretraining corpus of f , or
whether f hallucinated when generating g⃗ from prompt s⃗. Collecting these annotations is generally
possible, and various strategies could be adopted. For example, for DCD, labels can be gathered with
collaborative efforts testing for text memorization, as studied e.g. in (Chang et al., 2023). We also
note that annotations are immediately (and trivially) available for open-source LLMs with disclosed
pretraining corpora such as Pythia (Biderman et al., 2023). As we demonstrated in Section 5, models
trained on annotations available for one LLM can, in some cases, be transferred and applied to
another LLM.

For HD, ground-truth labels can be collected by providing the target LLM with inputs prompting for
completion or question answering on known facts and/or reasoning tasks. Hallucinations or error
annotations are derived by comparing the consistency of the model’s response with known, factually
true, or logically correct answers. For further details, refer to Appendix C.5.1.

25


	Introduction
	Related Work
	Learning on LLM Output Signatures
	Notation and Problem Formulation
	Our Approach

	Generalization of Previous Approaches
	Experiments
	Hallucination Detection
	Data Contamination Detection
	Generalization to other LLMs and datasets

	Conclusion
	Appendix
	Proofs
	Extended Experimental Section
	Experimental Details
	HyperParameters
	Optimizers and Schedulers
	Our Baselines and Rank Encoding
	Dataset Description
	Datasets for Hallucination Detection
	Datasets for Data Contamination Detection

	Ablation Study
	Extended Results for Transferability

	Additional Tasks Background

