
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRANSFORMER ENCODER SATISFIABILITY: COM-
PLEXITY AND IMPACT ON FORMAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

We analyse the complexity of the satisfiability problem, or similarly feasibility
problem, (trSAT) for transformer encoders (TE), which naturally occurs in formal
verification or interpretation, collectively referred to as formal reasoning. We find
that trSAT is undecidable when considering TE as they are commonly studied
in the expressiveness community. Furthermore, we identify practical scenarios
where trSAT is decidable and establish corresponding complexity bounds. Be-
yond trivial cases, we find that quantized TE, those restricted by fixed-width arith-
metic, lead to the decidability of trSAT due to their limited attention capabilities.
However, the problem remains difficult, as we establish scenarios where trSAT
is NEXPTIME-hard and others where it is solvable in NEXPTIME for quantized
TE. To complement our complexity results, we place our findings and their impli-
cations in the broader context of formal reasoning.

1 INTRODUCTION

Natural language processing (NLP) models, processing and computing human language, are gate-
ways for modern applications aiming to interact with human users in a natural way. Although NLP
is a traditional field of research, the use of deep learning techniques has undoubtedly revolutionised
the field in recent years (Otter et al. (2021)). In this revolution, models such as Recurrent Neural
Networks (RNN) or more specific Long Short-term Memory Networks (LSTM) (Yu et al. (2019))
have long been the driving force, but for a few years now NLP has a new figurehead: transformers
(Vaswani et al. (2017)).

Transformers are a deep learning model using (multiple) self-attention mechanisms to process se-
quential input data, usually natural language. The efficient trainability of transformers, for example
in contrast to LSTM, while achieving top-tier performance led to numerous heavy-impact implemen-
tations such as BERT (Devlin et al. (2019)), GPT-3 (Brown et al. (2020)) or GPT-4 (OpenAI (2023)),
sparking widespread use of the transformer architecture. However, the foreseeable omnipresence of
transformer-based applications leads to serious security concerns.

In general, there are two approaches to establishing trustworthiness of learning-based models: first,
certifying specific, application-dependent safety properties, called verification, and second, inter-
preting the behaviour of such models and giving explanations for it, called interpretation. In both
approaches, the holy grail is to develop automatic methods that are sound and complete: algorithm A
given some model T and (verification or interpretation) specification φ outputs true if T satisfies φ
(soundness) and for every given pair T, φ where T satisfies φ algorithm A outputs true (complete-
ness). We refer to such sound and complete methods and tasks for verification and interpretation
collectively using the term formal reasoning.

We lay out a framework for the possibilities and challenges of formal reasoning for transformers by
establishing fundamental complexity (and computability) results in this work. Thereby, we focus
on the so-called satisfiability (TRSAT) problem of sequence-classifying transformers: given a trans-
former T , decide whether there is some input word w such that T (w) = 1, which can be interpreted
as T accepts w. Although this may seem like an artificial problem at first glance, it is a natural
abstraction of problems that commonly occur in almost all non-trivial formal reasoning tasks. Ad-
ditionally, since it is detached from the specifics of particular reasoning specifications like safety
properties for instance, uncomputability results and complexity-theoretic hardness results immedi-
ately transfer to more complex formal reasoning tasks. This also keeps the focus on the transformer

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

architecture under consideration. Here, we exclusively consider transformer encoders (TE), which
are encoder-only. This is mainly due to the fact that the known high expressive power of encoder-
decoder transformers (Pérez et al. (2021)) makes formal reasoning trivially impossible.

Our work is structured as follows. We define necessary preliminaries in Section 2. In Section 3, we
give an overview on our complexity results and take a comprehensive look at their implications for
formal reasoning for transformers. In Section 4 and Section 5 we present our theoretical results: we
show that TRSAT is undecidable for classes of TE commonly considered in research on transformer
expressiveness, we show that a bounded version BTRSAT of the satisfiability problem is decidable,
for any class of (computable) TE, and give corresponding complexity bounds and we show that
considering quantized TE, meaning TE whose parameters and internal computations are limited
by some fixed-width arithmetic, leads to decidability of TRSAT and give corresponding complexity
bounds. Finally, we discuss limitations, open problems and future research in Section 6.

Related work. We establish basic computability and complexity results about transformer-related
formal reasoning problems, like formal verification or interpretation. This places our work in the
intersection between research on verification and interpretation of transformers and transformer
expressiveness.

There is a limited amount of work concerned with methods for the verification of safety properties of
transformers (Hsieh et al. (2019); Shi et al. (2020); Bonaert et al. (2021); Dong et al. (2021)). How-
ever, all those methods do not fall in the category of formal reasoning, as they are non-complete.
This means, the rigorous computability and complexity bound established in this work cannot be ap-
plied without further considerations. The same applies for so far considered interpretability methods
(Zhao et al. (2024)). We remark that a lot of these approaches are not sound methods either.

In contrast, there is an uprise in theoretical investigations of transformer expressiveness. Initial work
dealt with encoder-decoder models and showed that such models are Turing-complete (Pérez et al.
(2021); Bhattamishra et al. (2020)). Note that these are different models than the ones we consider,
which are encoder-only. Encoder-only models have so far been analysed in connection with circuit
complexity (Hahn (2020); Hao et al. (2022); Merrill et al. (2022); Merrill & Sabharwal (2023b)),
logics (Chiang et al. (2023); Merrill & Sabharwal (2023a)) and programming languages (Weiss
et al. (2021)). A recently published survey (Strobl et al. (2024)) provides an overview of these
results. This work is adjacent as some of the here considered classes of TE, mainly those considered
in Section 4, are motivated by these results and some of the constructions we use in corresponding
proofs are similar.

2 FUNDAMENTALS

Mathematical basics. Let Σ be a finite set of symbols, called alphabet. A (finite) word w over Σ
is a finite sequence a1 · · · ak where ai ∈ Σ. We define |w| = k. As usual, we denote the set of all
non-empty words by Σ+. A language is a set of words. We also extend the notion of an alphabet to
vectors xi ∈ Rd, meaning that a sequence x1 · · ·xk is a word over some subset of Rd. Usually, we
denote vectors using bold symbols like x,y or z.

Transformer encoders (TE). We consider the transformer encoders (TE), based on the trans-
former architecture originally introduced in (Vaswani et al. (2017)). We take a look at TE from a
computability and complexity perspective, making a formal definition of the considered architecture
necessary. Thereby, we follow the lines of works concerned with formal aspects of transformers like
(Hahn (2020); Pérez et al. (2021); Hao et al. (2022)). From a syntax point of view, our definition is
most near to (Hao et al. (2022)).1

An TE T with L layers and hi attention heads in layer i is a tuple (emb, {att i,j | 1 ≤ i ≤ L, 1 ≤
j ≤ hi}, {combi | 1 ≤ i ≤ L}, out) where

• emb : Σ× N → Rd0 for some d0 ∈ N is the positional embedding,
1As of now, no single definition of Transformer encoders (TE) has been universally adopted in research on

their formal aspects, particularly concerning syntax (see the recent survey (Strobl et al. (2024)) for an overview
of different notions of TE). The definition we use here is sufficiently general and provides a parameterized
template for the classes of TE considered in our main results.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

li

l1

lL

out

emb

a1 an

att i,1 att i,hi

comb1

xi−1
1 xi−1

nxi−1
m

xi
m

Figure 1: Schematic depiction of an TE T with embedding emb and k (encoder) layers li. Each layer
li consists of some hi attention heads att i,j , whose output is combined by combi. Additionally, for
some layer li, the computational flow of T regarding input position m is schematically depicted in
detail.

• each attention head is a tuple att i,j = (scorei,j , pool i,j) where scorei,j : Rdi−1×Rdi−1 →
R is a function called scoring and pool i,j : (Rdi−1)+×R+ → Rdi is a function called pool-
ing, computing (x1, . . . ,xn, s1, . . . , sn) 7→

∑n
i′=1 norm(i′, s1, . . . , sn)(Wxi′) where W

is a linear map represented by a matrix and norm : N× R+ → R is a normalisation,

• each combi : Rdi,1 × · · · × Rdi,h1+1 → Rdi is called a combination and out : RdL → R is
called the output.

For given i ≤ L we call the tuple (att i,1, . . . , att i,hi
, combi) the i-th layer of T . The TE

T computes a function Σ+ → R as follows, also schematically depicted in Figure 1. Let
w = a1, . . . , an ∈ Σ+ be a word. First, T computes an embedding of w by emb(w) =
x0
1 · · ·x0

n where x0
i = emb(ai, i). Next, each layer 1 ≤ i ≤ L computes a sequence

xi
1 · · ·xi

n as follows: for each input xi−1
m and attention head att i,j , layer i computes yi

m,j =

pool i,j(x
i−1
1 , . . . ,xi−1

n , scorei,j(x
i−1
m ,xi−1

1), . . . , scorei,j(x
i−1
m ,xi−1

n)). Then, xi
m is given by

combi(x
i−1
m ,yi

m,1, . . . ,y
i
m,hi

). In the end, the output T (w) is computed by out(xk
n), thus the

value of the output function for the last symbol of w after being transformed by the embedding and
L layers of T . We say that T accepts w if T (w) = 1, and we say that T rejects w otherwise. We call
L the depth of T and the maximal hi the (maximum) width of T . Furthermore, we call the maximal
di the (maximum) dimensionality of T . Let T , T ′ be some classes of TE. We sometimes say that T ′

is at least as expressive as T or T is at most as expressive as T ′, meaning that for each T ∈ T there
is T ′ ∈ T ′ such that T and T ′ compute the same function. The decision problem TRSAT[T] is given
T ∈ T over alphabet Σ, decide whether there is w ∈ Σ+ such that T (w) = 1. We refer to this as
the satisfiability problem of T . 2

Fixed-width arithmetics. We consider commonly used fixed-width arithmetics (FA) that repre-
sent numbers using a fixed amount of bits, like floating- or fixed-point arithmetic in this work. See
(Baranowski et al. (2020)) (fixed-point) or (Constantinides et al. (2021)) (floating-point) for rigor-
ous mathematical definitions of such FA. In this work, however, we only make use of a high-level
view on different FA. Namely, given some FA F we assume that all values are represented in binary
using b ∈ N bits for representing its numbers. Thus, there are 2b different rational numbers repre-
sentable in F . Furthermore, we assume that the considered FA can handle overflow situations using
either saturation or wrap-around and rounding situations by rounding up or off. We consider TE in

2We observe that we can equivalently define TRSAT as requiring T (w) ≥ c for arbitrary c ∈ Q without
changing any of the results detailed in this work.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the context of F . We say that T works over F , assuming that all computations as well as values
occurring in a computation T (w) are carried out in the arithmetic defined by F .

3 OVERVIEW OF COMPLEXITY RESULTS AND CONNECTION TO FORMAL
REASONING

We address elementary problems arising in formal reasoning for transformers in this work. In doing
so, we pursue the goal of establishing basic computability and complexity results for corresponding
problems in order to frame possibilities and challenges.

We want our results to be detached from any intricacies of specific transformer architectures: first,
we focus on transformer encoders (TE), so leaving any decoder mechanism unconsidered. The
primary reason for this is that encoder-decoder architectures are of such high expressive power
(Pérez et al. (2021)) that almost all formal reasoning problems are easily seen to be undecidable. The
secondary reason for this is that encoder-decoder architectures subsume encoder-only architectures.
So any lower complexity bound, established in this work, is also a lower bound for encoder-decoder
transformers.

SATISFIABILITY AS A BASELINE FORMAL RESONING PROBLEM

To achieve widespread implications of our results, we focus our considerations on a fundamental
problem arising in formal verification and interpretation tasks: given a TE T , decide whether there is
some input w leading to some specific output T (w), as defined formally in terms of the satisfiability
problem TRSAT[T] for a class T of specific TE, see Section 2.

To see that this captures the essence of formal reasoning problems occurring in practice, consider
the following formal verification task: Given a TE T , verify that T only accepts inputs where every
occurrence of a specific key from a set K is accompanied by a particular pattern—for example, a
key from K must be immediately followed by a value from a set V . Such tasks are important to
ensure syntactic correctness or adherence to some protocol specification. Formally, this is called a
robustness property (Shi et al. (2020); Huang et al. (2023)). We can phrase this example task as a
satisfiability problem by considering the property’s negation, namely, to verify that there exists some
input w in which a key from K is not properly followed by a value from V , yet we have T (w) = 1.

Similarly, consider a formal interpretation task where we aim to find the minimal subset E′ ⊆ E
of some set of error symbols E such that all inputs w containing all errors in E′ are rejected by T .
For instance, in a spam detection system powered by a transformer encoder, E could represent a set
of spam indicators or malicious keywords. We might want to determine the minimal combination
of these indicators that will cause the system to classify an input as spam. This is understood as
an abductive explanation in formal explainable AI (Marques-Silva & Ignatiev (2022)). Given a
candidate subset E′, we can certify this by checking that there is some w which contains all errors
E′, but is accepted by T . This scenario is a special case of the satisfiability problem TRSAT[T] for
some transformer class T .

OVERVIEW OF RESULTS ON THE COMPLEXITY OF TRANSFORMER ENCODER SATISFIABILITY

We start by considering the class Tudec of TE, motivated by commonly considered architectures
in the theoretical expressiveness community (Pérez et al. (2021); Hao et al. (2022); Hahn (2020)):
Tudec consists of those TE that use a positional embedding, expressive enough to compute a sum,
hardmax hardmax as normalisation functions and a scalar-product based scoring, enriched with a
nonlinear map represented by an FNN.

Theorem 1 (Section 4). The satisfiability problem TRSAT[Tudec] is undecidable.

Essentially, this result implies that even for TE the combination of hardmax normalizations and
expressive scoring is enough to make satisfiability undecidable. Generally, this makes formal rea-
soning, like verifying robustness properties or giving formal explanations, impossible for classes
of TE that subsume Tudec . Specifically, no such methods exist that are fully automatic, sound and
complete. Theorem 1 does not preclude the existence of incomplete methods for instance.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

decidable

NEXPTIME

NP

undecidable

BTRSATbin[T]

BTRSATun[T]

(Theorem 3)

TRSAT[T log
udec

](Theorem 2)

TRSAT[T fix
◦](Theorem 4)

TRSAT[Tudec] (Theorem 1)

TRSAT[T fix] (Theorem 5)

Figure 2: Schematic overview of the computability and complexity results, established in this work.
The classes of TE are described in the pretext of the respective theorem. Note that T refers to an
arbitrary class of (computable) TE. The small subset in the classes NP and NEXPTIME refers to the
complete problems. The NEXPTIME-hardness result of TRSAT[T FIX] is not visualized

Recently, so-called log-precision transformers have been studied (Merrill & Sabharwal (2023a)).
These transformers are defined as usual, but given a word length n it is assumed that a log-precision
transformer T uses at most O(log(n)) bits in its internal computations. To complement these the-
oretical considerations, we consider the class T LOG

udec of TE from Tudec that work with log-precision.
Unfortunately, this restriction is not enough to circumvent general undecidability.
Theorem 2 (Section 4). The satisfiability problem TRSAT[T LOG

udec] is undecidable.

Given such impossibility results, we turn our attention to the search for decidable cases. We make
the reasonable assumption that all considered TE are computable, meaning that their components
like scoring, normalisation, pooling, combination and output functions are computable functions.
Moreover, we assume that each TE T computes its output T (w) for a given input w within polyno-
mial time relative to the size of T and the length of w. This assumption is reasonable, as the output
is computed in a layer-wise manner where each layer involves a quadratic amount of calculations
per attention head. In combination, the computation depends on the depth and width of T , as well
as the word length of w polynomially.

First, we consider a natural restriction of the satisfiability problem by bounding the length of valid
inputs. Then satisfiability becomes decidable, regardless of the respective class of TE, but it is
difficult from a complexity-theoretic perspective. To formalize this, we introduce the bounded sat-
isfiability problem BTRSAT[T] for a class T : given an TE T ∈ T and a bound n ∈ N on its input
length, decide whether there is word w with |w| ≤ n s.t. T (w) = 1.
Theorem 3 (Section 5, informal restatement). The bounded satisfiability problem BTRSAT[T] is
decidable for all classes T of (computable) TE. Depending on whether n is given in binary or unary
coding, BTRSAT[T] is NEXPTIME-, resp. NP-complete assuming T ⊇ Tudec .

Informally, this result implies that bounding the word length is a method to enable formal reasoning.
However, it does not change the fact that satisfiability is an essentially hard problem. As hardness is
a lower bound, this also translates to subsuming formal reasoning tasks.

Imposing a bound on the input length may not be a viable restriction for various formal reasoning
tasks. We therefore study other ways of obtaining decidability. We address the unbounded satisfia-
bility problem for practically motivated classes of TE. We consider the class T FIX

◦ of TE that use a
positional embedding with some periodicity in their positional encoding, commonly seen in practice
(Vaswani et al. (2017); Dufter et al. (2022)), use softmax or hardmax as normalisation and which
work over some fixed-width arithmetic (FA). This last restriction is motivated by recent popular
ways to handle ever increasing TE sizes, for example via quantization or using low-bit arithmetics

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0

1

2

0 1 2

a a b d c d Lemma 1

Lemma 2

dcd

ba

a

Figure 3: Schematic depiction of the expressive capabilities of TE from Tudec in context of the
OTWP∗ proven in Lemma 1 and Lemma 2.

(Bondarenko et al. (2021)). From a complexity-theoretic perspective, the use of fixed-width arith-
metic has a similar effect to bounding the input length.
Theorem 4 (Section 5). The satisfiability problem TRSAT[T FIX

◦] is in NEXPTIME.

So automatic, sound and complete formal reasoning for periodical TE in a fixed-width arithmetic
environment is generally possible with potentially high complexity. Note that formal reasoning tasks
with more complex safety or interpretability specifications than simple satisfiability may even lead
to higher complexities.

We then aim to show that this is optimal by providing a matching lower bound. However, we need
to relax these restrictions again, namely considering the class T FIX allowing for TE that use arbitrary
embeddings and work over some fixed-width arithmetic. However, due to the fixed-witdth arith-
metic assumption, which consequently applies to positional informations as well, every embedding
must necessarily witness a periodic behaviour. Thus, decidability is implied by the same arguments
as used in Theorem 4. Additionally, we show that high complexity is unavoidable, making sound
and complete automatic formal reasoning for fixed-width arithmetic transformers with arbitrary po-
sitional embeddings practically intractable.
Theorem 5 (Section 5). The satisfiability problem TRSAT[T FIX] is decidable and NEXPTIME-hard.

Figure 2 provides a schematic illustration of the computability and complexity results summarized
in this section. This figure is intended purely for technical clarity, summarizing our findings without
delving into the formal reasoning implications discussed earlier.

4 TRANSFORMER ENCODER SATISFIABILITY IS GENERALLY UNDECIDABLE

We consider a class of TE, denoted by Tudec , which we design with the aim of minimising its
expressive power, but having an undecidable satisfiability problem. We define Tudec by giving min-
imum requirements: positional-embeddings can be of the form emb(ak, 0) = (1, 1, 0, 0, k) and
emb(ak, i) = (0, 1, i,

∑i
j=0 j, k) where we assume some order on the alphabet symbols a1, a2,

For scoring functions we allow for N(⟨Qx,Ky⟩) where N is a classical Feedforward Neural Net-
work (FNN) with relu activations, Q and K are linear maps and ⟨· · · ⟩ denotes the usual scalar
product, for normalisations we allow for hardmax hardmax(i, x1, . . . , xn) = 1

m if xi ≥ xj for
all j ≤ n and there are m distinct xj such that xi = xj otherwise hardmax(i, x1, . . . , xn) = 0.
Combinations as well as output functions can be classical FNN with relu activation. Aside from
technical reasons, we motivate the choice of Tudec in Section 3. To ease our notation, we exploit the
fact that using hardmax as normalisation implies a clearly defined subset of positions M that are
effective in the computation of some attention head att given some position i, namely those that are
weighted non-zero. In this case, we say that att attends to M given position i.

We prove that TRSAT[Tudec] is undecidable by establishing a reduction from the (unbounded)
octant tiling-word problem (OTWP∗). For details on tiling problems, see Appendix A. The
OTWP∗ is defined as follows: given a tiling system S = (S,H, V, tI , tF) where S is some fi-
nite set of tiles, H,V ⊆ S2 and tI , tF ∈ S we have to decide whether there is a word (a)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

t0,0, t1,0, t1,1, t2,0, t2,1, t2,2, t3,0, . . . , tk,k ∈ S+ such that (b) t0,0 = tI , tk,k = tF , (c) for all i ≤ k
and 0 ≤ j < i holds (ti,j , ti,j+1) ∈ H and (d) for all i ≤ k − 1 and j ≤ i holds (ti,j , ti+1,j) ∈ V .
We call a word w which satisfies (a) an encoded tiling and if (b)-(d) are satisfied as well then we call
w a valid encoded tiling. Our proof strategy is easily described: given a tiling system S, we build an
TE TS ∈ Tudec which accepts a word w if it fulfils conditions (a) to (d) and otherwise TS rejects w.
We derive most technical proofs of the following lemmas and theorems to Appendix B and instead
provide intuitions and proof sketches in this section.

We start with the first observation: the expressiveness of TE in Tudec is sufficient to decode the octant
tiling potentially represented by a given word w, as depicted by the arrows in Figure 3. In detail,
two encoder layers in combination with a positional embedding definable in Tudec are expressive
enough to compute for a given symbol t in w to which position in an octant tiling it corresponds, if
we interpret w as an encoded tiling.

Lemma 1. Let S be a tiling system with tiles S = {a1, . . . , ak}. There is an embed-
ding function emb and there are encoder layers l1 and l2 definable in Tudec such that for
each word w = t0,0t1,0t1,1t2,0 · · · tm,n ∈ S+ holds that l2(l1(emb(w))) = x2

1 . . .x
2
|w|

where x2
i = (1, i, r(i), c(i), ki) such that aki

is equal to the symbol at position i in w and
(r(1), c(1)), (r(2), c(2)), . . . , (r(|w|), c(|w|)) is equal to (0, 0), (1, 0) . . . , (m,n).

Assume that w ∈ S+. Lemma 1 implies that a TE T ∈ Tudec is generally able to recognize whether
w is an encoded tiling as soon as T is able to check whether r(|w|) and c(|w|) of the last symbol of
w processed by l2(l1(emb(· · ·))) are equal. Therefore, property (a) and also (b) can be checked by
TE in Tudec using the residual connection in the combination functions together with the expressive
power of FNN.

Property (c) can be ensured if it is possible to build an attention head that is able to attend to position
k + 1 given position k. Let w = t0,0t1,0t1,1t2,0 · · · tm,m with ti,j ∈ S. To verify whether property
(d) holds, a TE must be able to attend to position k + (i + 1) given position k corresponding to
symbol ti,j . This is depicted in Figure 3 by the bold lines between horizontal and vertical tiles. In
summary, to check properties (a) – (d) it is left to argue that there are attention heads in Tudec that
can attend to positions depending linearly on the values of the currently considered position.

Lemma 2. Let f(x1, . . . , xk) = a1x1+· · ·+akxk+b with ai, b ∈ R be some linear function. There
is attention head attf in Tudec such that for all sequences x1, . . . ,xm where all xi = (1, i,yi) for
some yi ∈ Rk−2 attention head attf attends to {xj ,xj+1} given position i if f(xi) = j + 1

2 with
j ≤ m− 1 and otherwise to {xj} where j is the value nearest to f(xi).

In combination, the previous lemmas indicate that TE from Tudec are able to verify whether a given
word is a valid encoded tiling. This expressive power is enough, to lead to an undecidable satisfia-
bility problem for TE from Tudec .

Theorem 1. The decision problem TRSAT[Tudec] is undecidable.

Proof Sketch. We establish a reduction from OTWP∗ to TRSAT[Tudec] by constructing for each
instance S = (S,H, V, tI , tF) of OTWP∗ an TE TS accepting exactly those w corresponding to a
valid encoded-tiling for S.

TS uses the positional embedding described in the beginning of Section 4 and has four layers. Layers
l1 and l2 are given by Lemma 1 and are used to decode the row and column indexes corresponding to
a potential octant tiling for each symbol in a given word w. Layer l3 uses the informations encoded
by the embedding and the decoded row and column indexes to check whether properties (a) to (d)
described above hold for w. The necessary informations are aggregated using three attention heads
attprev , attnext and attstep , each built according to Lemma 2.Thereby, attprev attends each position
to its predecessor, but the first position attends to itself. This allows to clearly identify the vector
corresponding to the first position in w and check whether this is equal to tile tI . Attention head
attnext attends each position to its successor, but the last position attends to itself. This allows to
clearly identify the vector corresponding to the last position in w, in order to check whether this is
equal to tF , and to check conditions given by H . Attention head attstep attends each position to the
position with the same column index but the successive row index. If there is no such successive row
it attends to the last position. This allows to check whether conditions given by V holds. Each of
these conditions is checked in the combination function of l3, using specifically built feed-forward

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

neural networks outputting 0 to some predefined vector dimension if and only if the condition is
met. Finally, layer l4 aggregates the information of all positions in the vector corresponding to the
last position using attention head att leq, again given by Lemma 2.

The correctness of this reduction follows from the detailed construction of TS , which is technically
extensive and given in Appendix B.

Next, we consider the class T LOG
udec which is defined exactly like Tudec but for all T ∈ T LOG

udec working
over alphabet Σ and all words w with |w| = n we assume that T (w) is carried out in some fixed-
width arithmetic F using O(log(max(|Σ|, n))) bits.
Theorem 2. The decision problem TRSAT[T LOG

udec] is undecidable.

Proof sketch. This proof follows the exact same line as the proof of Theorem 1. Additionally, we
need to argue that TS works as intended, despite the fact that it is limited by some log-precision F .

Looking at the proof of Theorem 1, it is imminent that the magnitude and precision of all values
used and produced in the computation TS(w) depend polynomially on n and, thus, we can choose
the representation of F to be linear in log(n), which avoids any overflow or rounding situations and
ensures that TS works as intended. A formal proof is given in Appendix B.

5 HOW TO MAKE TRANSFORMER ENCODER SATISFIABILITY DECIDABLE

In this section we investigate classes of TE leading to decidable TRSAT problems or decidable re-
strictions of it. Additionally, we establish corresponding complexity bounds.

In order to establish clearly delineated upper complexity bounds, we need to bound the represen-
tation size of a TE T . Instead of tediously analyzing the space needed to represent embedding,
scoring, pooling, combination and normalisation functions, we note that it suffices to estimate the
size up to polynomials only. The complexity of a TE T with L layers and hi attention heads in layer
i, working on inputs over alphabet Σ, is |T | := |Σ|+L+H+D where H := max{hi | 1 ≤ i ≤ L}
and D is the maximal dimensionality of vectors occurring in a computation of T . Note that one can
reasonably assume the size of a syntactic representation of T to be polynomial in |T |, and that TE
have the polynomial evaluation property: given a word w ∈ Σ+, T (w) can be computed in time that
is polynomial in |T |+ |w|. Section 3 discusses why this assumption is reasonable.

We start with a natural restriction: bounding the word length. Let T be a class of TE. The bounded
satisfiability problem, denoted by BTRSAT[T] is: given T ∈ T and some n ∈ N, decide whether
there is a word w with |w| ≤ n such that T (w) = 1. It is not hard to see that BTRSAT[T] is decid-
able. However, its complexity depends on the value of n, and we therefore distinguish whether n is
represented in binary or unary encoding. We denote the corresponding problems as BTRSATbin[T]
and BTRSATun[T].
Theorem 3. Let T be a class of TE. Then

1. BTRSATun[T] is decidable in NP and if Tudec ⊆ T then BTRSATun[T] is NP-complete,

2. BTRSATbin[T] is decidable in NEXPTIME and if Tudec ⊆ T then BTRSATbin[T] is
NEXPTIME-complete.

Proof Sketch. The decidability result of statement (1) can be shown using a simple guess-and-check
argument: given n ∈ N, guess a word w ∈ Σ+ with |w| ≤ n, compute T (w) and check that
the result is 1. This is possible in time polynomial in |T | + n using the polynomial evaluation
property. Note that |T | depends on |Σ|, thus this also respects the actual representation size of w.
Moreover, the value of |T | + n is polynomial in the size needed to represent n in unary encoding.
The decidability result of statement (2) is shown along the same lines. However, if the value n is
encoded binarily then this part of the input is of size log n, and |T |+n becomes exponential in this.
Hence, the guess-and-check procedure only proves that BTRSATbin[T] ∈ NEXPTIME.

For the completeness result in (1) it suffices to argue that the problem is NP-hard. We make use of
the fact that TE in Tudec are expressive enough to accept a given word w if and only if it is a valid
encoded tiling, cf. Section 4 for details. It is possible to establish NP-hardness of a corresponding

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

restriction of the octant word-tiling problem, namely the bounded octant word-tiling problem (for
unarily encoded input values). See Appendix A for details on tiling problems. It then only remains to
observe that the construction in Theorem 1 is in fact a polynomial-time reduction, and that it reduces
the bounded octant word-tiling problem to the bounded satisfiability problem. The argument for
NEXPTIME-hardness in statement (2) is done along the same lines with, again, the bounded octant-
word tiling problem shown to be NEXPTIME-hard when the input parameter n is given in binary
coding. A formal proof for Theorem 3 is given in Appendix C.

We turn our attention to classes of TE that naturally arise in practical contexts. We consider TE that
work over some fixed-width arithmetic, like fixed- or floating-point numbers, and which have an em-
bedding relying on a periodical encoding of positions. We start with establishing a scenario where
TRSAT is decidable in NEXPTIME. Regardless of the underlying TE class T , our proof strategy
always relies on a certifier-based understanding of NEXPTIME: given T ∈ T , we nondeterministi-
cally guess a word w, followed by a deterministic certification whether T (w) = 1 holds. For this to
show TRSAT[T] ∈ NEXPTIME, we need to argue that the overall running time of such a procedure
is at most exponential, in particular that whenever there is a word w with T (w) = 1 then there is
also some w′ with T (w′) = 1 and |w′| ≤ 2poly(|T |). Again, we rely on the polynomial evaluation
property of TE in T , i.e. the fact that T (w′) can be computed in time polynomial in |T |+ |w′|.
We consider the class of TE T FIX

◦ , defined by placing restrictions on the positional embedding of
an TE T to be additive-periodical which means that emb(a, i) = emb′(a) + pos(i) where pos
is periodical, i.e. there is p ≥ 1 such that pos(i) = pos(i + p) for all i ∈ N. Additionally, all
normalisation functions are realised by either the softmax function softmax or the hardmax func-
tion hardmax. Moreover, we assume that all computations occurring in T are carried out in some
fixed-width arithmetic, encoding values in binary using a fixed number b ∈ N of bits. Aside from
technical reasons, we motivate the choice of T FIX

◦ in Section 3. Given these restrictions, we ad-
just the definition of the complexity of T ∈ T FIX

◦ as a measure of the size (up to polynomials) as
|T | := |Σ|+ L+H +D + p+ b.

Lemma 3. There is a polynomial function poly : N → N such that for all T ∈ T FIX
◦ and all words

w with T (w) = 1 there is word w′ with T (w′) = 1 and |w′| ≤ 2poly(|T |).

Proof Sketch. The polynomial poly can be chosen uniformly for all T ∈ T FIX
◦ because for all po-

sitional embeddings of TE in T FIX
◦ there is an upper bound on the period and on the bit-width in

the underlying arithmetic. The small-word property stated by the lemma is then shown by arguing,
given polynomial poly , TE T and |w| > 2poly(|T |), that w contains unnecessary subwords u that can
be cut out without changing the output in T . Here, we exploit the fact T has some periodicity p and
only consider those u whose length is a multitude of p. This ensures that the resulting word w′, given
by w without u, is embedded the same way as w by the positional embedding of T . The existence of
such subwords follows from T ’s limited distinguishing capabilities, especially in its normalisations,
due to the bounded representation size of numerical values possible in the underlying fixed-width
arithmetic. A formal proof relies on basic combinatorial arguments and given in Appendix C.

Based on this preliminary result, we immediately get an upper complexity bound on TRSAT[T FIX
◦].

Theorem 4. The problem TRSAT[T FIX
◦] for TE over fixed-width arithmetic using additive-periodical

embeddings is in NEXPTIME.

Proof. Let T ∈ T FIX
◦ working over alphabet Σ. We use a certifier-based understanding of a nonde-

terministic exponential-time algorithm as follows: We (a) guess an input w ∈ Σ+ and (b) compute
T (w) to check whether T (w) = 1. For correctness, we need to argue that the length of w is at most
exponential in |T |. This argument is given by Lemma 3. Note that via assumption we have that
T (w) can be computed in polynomial time regarding |T | and |w|.

Next, we address the goal of obtaining a matching lower bound, i.e. NEXPTIME-hardness. An
obvious way to do so would be to follow Theorem 3.2 and form a reduction from the bounded
octant word-tiling problem. Hence, given a tiling system S and n ∈ N encoded binarily, we would
have to construct – in time polynomial in |S| + log n – an TE TS,n ∈ T FIX

◦ such that TS,n(w) = 1
for some w ∈ Σ+ iff there is a word w = t1,1, t2,1, t2,2, t3,1, . . . , tn,n representing a valid S-tiling.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

In particular, TS,n would have to be able to recognise the correct word length and reject input that is
longer than |w| = n(n+1)

2 . This poses a problem for TE with periodical embeddings. To recognize
whether a word is too long, an TE T must ultimately rely on its positional embedding, which seems
to make a periodicity of p ≥ n(n+1)

2 necessary. Since the size of periodical TE is linear in p, we get
an exponential blow-up in a potential reduction of OTWPbin to TRSAT[T FIX

◦], given that the values
of n(n+1)

2 and already n are exponential in the size of a binary representation of n. This problem
vanishes when the requirement of the underyling positional embedding to be periodical is lifted:
allowing for arbitrary TE, working over some fixed-width arithmetic, leads to an NEXPTIME-hard
satisfiability problem. Let T FIX be defined similar to T FIX

◦ , but we allow for arbitrary embeddings.
Furthermore, we assume that the considered fixed-width arithmetics can handle overflow situations
using saturation.
Theorem 5. The problem TRSAT[T FIX] for TE over fixed-width arithmetic is decidable and
NEXPTIME-hard.

Proof sketch. The decidability follows from the same arguments as in Theorem 4, with the insight
that even though T ∈ T FIX uses an arbitrary embedding, a fixed-width setting with b bits enforces
a periodicity of size at most 2b, assuming overflow is handled by wrap-around, or a periodicity
of size 1 after a finite prefix of length up to 2b, assuming overflow is handled by saturation, in the
embedding. For the hardness, we establish a reduction from OTPbin to TRSAT[T FIX] by constructing,
for each instance (S, n) of OTPbin, an TE TS,n working over some fixed-width arithmetic F , which
accepts exactly those w with |w| = n(n+1)

2 corresponding to a valid word-encoded tiling for S. See
Appendix A for details on tiling problems. The construction is similar to the one given for TS in the
proof of Theorem 4, but we need to enable TS,n to reject words that are too long corresponding a
polynomial bound dependent on n. This implies that TS,n, based on the positional embedding emb
specified in Section 4, is able to check for all symbols if their respective position is less than or equal
to a predefined bound. This can be achieved with similar tools as used in Lemma 2. Furthermore, we
need to ensure that TS,n works as intended, despite the fact that it is limited by F . The arguments
follow the same line as the proof of Theorem 2. A formal proof is given in Appendix C.

6 SUMMARY, LIMITATIONS AND OUTLOOK

We investigated the satisfiability problem of transformer encoders (TE) through the lens of for-
mal reasoning. In particular, we considered the computability and complexity of the satisfiability
problem TRSAT of TE in context of different classes of TE, forming a baseline for understanding
possibilities and challenges of formal reasoning of transformers. We showed that TRSAT is undecid-
able for classes of TE recently considered in research on the expressiveness of different transformer
models (Theorem 1 and Theorem 2). This implies that formal reasoning is impossible as soon as
we consider classes of TE that are at least as expressive as the classes considered in these results.
We remark that this result also translates to encoder-decoder architectures, whose encoder part is as
expressive as the here considered TE. Additionally, we identified two ways to enable formal reason-
ing for TE: by bounding the length of inputs (Theorem 3) or by considering quantized TE, where
computations and parameters are limited by fixed-width arithmetic (Theorem 4). These imply that
formal reasoning is possible for TE classes that are at most as expressive as those in our results.
Thereby, we assume that TE expressiveness is the primary factor influencing computability or com-
plexity bounds, rather than specific safety or interpretability assumptions. However, in both cases,
TRSAT remains computationally difficult (Theorems 3 and 5). Again, these results apply only to
TE classes at least as expressive as those we considered. While our results provide an initial frame-
work for understanding the possibilities and challenges of formal reasoning for transformers, there
is room for more detailed investigations. Our undecidability and hardness results rely on normaliza-
tions realized by the hardmax function, and it’s unclear whether similar results hold when using the
commonly employed softmax function. Additionally, further exploration of the interplay between
the embedding function and the internal structure of the TE is of interest. We expect that less expres-
sive embeddings require a richer attention mechanism, but it’s unclear where the limits lie regarding
the undecidability of the satisfiability problem. Regarding our decidability and upper complexity
bounds, examining the specifics of particular fixed-width arithmetics could be practically beneficial.
While this wouldn’t change our overall results, it could provide tighter time-complexity estimates
valuable for certain formal reasoning applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marek S. Baranowski, Shaobo He, Mathias Lechner, Thanh Son Nguyen, and Zvonimir Rakamaric.
An SMT theory of fixed-point arithmetic. In Nicolas Peltier and Viorica Sofronie-Stokkermans
(eds.), Automated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France,
July 1-4, 2020, Proceedings, Part I, volume 12166 of Lecture Notes in Computer Science, pp.
13–31. Springer, 2020. doi: 10.1007/978-3-030-51074-9\ 2.

Robert Berger. The undecidability of the domino problem. Mem. Amer. Math. Soc., 66:72, 1966.

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of transformers
and its implications in sequence modeling. In Raquel Fernández and Tal Linzen (eds.), Pro-
ceedings of the 24th Conference on Computational Natural Language Learning, CoNLL 2020,
Online, November 19-20, 2020, pp. 455–475. Association for Computational Linguistics, 2020.
doi: 10.18653/V1/2020.CONLL-1.37.

Gregory Bonaert, Dimitar I. Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise cer-
tification of transformers. In Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2021, pp. 466–481. Association
for Computing Machinery, 2021. ISBN 978-1-4503-8391-2. doi: 10.1145/3453483.3454056.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming the
challenges of efficient transformer quantization. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 7-11 November, 2021, pp. 7947–7969. Association for Computational Linguistics,
2021. doi: 10.18653/V1/2021.EMNLP-MAIN.627.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-
shot learners. In Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity of transformer
encoders. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Re-
search, pp. 5544–5562. PMLR, 2023. URL https://proceedings.mlr.press/v202/
chiang23a.html.

George A. Constantinides, Fredrik Dahlqvist, Zvonimir Rakamaric, and Rocco Salvia. Rigorous
roundoff error analysis of probabilistic floating-point computations. In Alexandra Silva and
K. Rustan M. Leino (eds.), Computer Aided Verification - 33rd International Conference, CAV
2021, Virtual Event, July 20-23, 2021, Proceedings, Part II, volume 12760 of Lecture Notes in
Computer Science, pp. 626–650. Springer, 2021. doi: 10.1007/978-3-030-81688-9\ 29.

S. Demri, V. Goranko, and M. Lange. Temporal Logics in Computer Science. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2016. ISBN 9781107028364. URL
http://www.cambridge.org/core_title/gb/434611.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pp. 4171–4186. Association for Computational Linguistics, 2019. doi: 10.18653/
V1/N19-1423.

11

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.mlr.press/v202/chiang23a.html
https://proceedings.mlr.press/v202/chiang23a.html
http://www.cambridge.org/core_title/gb/434611

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and Hong Liu. Towards robustness against natu-
ral language word substitutions. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=ks5nebunVn_.

Philipp Dufter, Martin Schmitt, and Hinrich Schütze. Position information in transformers: An
overview. Comput. Linguistics, 48(3):733–763, 2022. doi: 10.1162/COLI\ A\ 00445.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Trans. Assoc.
Comput. Linguistics, 8:156–171, 2020. doi: 10.1162/TACL\ A\ 00306.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention
transformers: Perspectives from circuit complexity. Trans. Assoc. Comput. Linguistics, 10:800–
810, 2022. URL https://transacl.org/ojs/index.php/tacl/article/view/
3765.

Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei Wei, Wen-Lian Hsu, and Cho-Jui Hsieh. On
the robustness of self-attentive models. In Anna Korhonen, David R. Traum, and Lluı́s Màrquez
(eds.), Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 1520–1529. Associa-
tion for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1147.

Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem,
Ronghui Mu, Yi Qi, Xingyu Zhao, Kaiwen Cai, Yanghao Zhang, Sihao Wu, Peipei Xu, Dengyu
Wu, André Freitas, and Mustafa A. Mustafa. A survey of safety and trustworthiness of large
language models through the lens of verification and validation. CoRR, abs/2305.11391, 2023.
doi: 10.48550/ARXIV.2305.11391.

João Marques-Silva and Alexey Ignatiev. Delivering trustworthy AI through formal XAI. In Thirty-
Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Inno-
vative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pp.
12342–12350. AAAI Press, 2022. doi: 10.1609/AAAI.V36I11.21499.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. In Alice
Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023a. URL http://papers.nips.cc/paper_files/paper/2023/hash/
a48e5877c7bf86a513950ab23b360498-Abstract-Conference.html.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision trans-
formers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023b. doi:
10.1162/tacl a 00562.

William Merrill, Ashish Sabharwal, and Noah A. Smith. Saturated transformers are constant-
depth threshold circuits. Trans. Assoc. Comput. Linguistics, 10:843–856, 2022. URL https:
//transacl.org/ojs/index.php/tacl/article/view/3465.

OpenAI. Gpt-4 technical report, 2023.

Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. A survey of the usages of deep learning for
natural language processing. IEEE Trans. Neural Networks Learn. Syst., 32(2):604–624, 2021.
doi: 10.1109/TNNLS.2020.2979670.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. J. Mach. Learn.
Res., 22:75:1–75:35, 2021. URL http://jmlr.org/papers/v22/20-302.html.

Marco Sälzer and Martin Lange. Fundamental limits in formal verification of message-passing
neural networks. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.
net/pdf?id=WlbG820mRH-.

12

https://openreview.net/forum?id=ks5nebunVn_
https://openreview.net/forum?id=ks5nebunVn_
https://transacl.org/ojs/index.php/tacl/article/view/3765
https://transacl.org/ojs/index.php/tacl/article/view/3765
http://papers.nips.cc/paper_files/paper/2023/hash/a48e5877c7bf86a513950ab23b360498-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a48e5877c7bf86a513950ab23b360498-Abstract-Conference.html
https://transacl.org/ojs/index.php/tacl/article/view/3465
https://transacl.org/ojs/index.php/tacl/article/view/3465
http://jmlr.org/papers/v22/20-302.html
https://openreview.net/pdf?id=WlbG820mRH-
https://openreview.net/pdf?id=WlbG820mRH-

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie Huang, and Cho-Jui Hsieh. Robustness
verification for transformers. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=BJxwPJHFwS.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What Formal Lan-
guages Can Transformers Express? A Survey. Transactions of the Association for Computational
Linguistics, 12:543–561, 05 2024. ISSN 2307-387X. doi: 10.1162/tacl a 00663.

P. van Emde Boas. The convenience of tilings. In A. Sorbi (ed.), Complexity, Logic, and Recursion
Theory, volume 187 of Lecture notes in pure and applied mathematics, pp. 331–363. Marcel
Dekker, Inc., 1997.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Re-
search, pp. 11080–11090. PMLR, 2021. URL http://proceedings.mlr.press/v139/
weiss21a.html.

Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recurrent neural networks:
LSTM cells and network architectures. Neural Comput., 31(7):1235–1270, 2019. doi: 10.1162/
NECO\ A\ 01199.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaiqiang Wang,
Dawei Yin, and Mengnan Du. Explainability for large language models: A survey. ACM Trans.
Intell. Syst. Technol., 15(2):20:1–20:38, 2024. doi: 10.1145/3639372.

A TILING PROBLEMS

We make use of particular tiling problems in order to prove lower bounds on the complexity and
decidability of TRSAT[T] for different classes T .

A tiling system is an S = (S,H, V, tI , tF) where S is a finite set; its elements are called tiles.
H,V ⊆ S × S define a horizontal, resp. vertical matching relation between tiles, and tI , tF are two
designated initial, resp. final tiles in S.

Problems associated with tiling systems are typically of the following form: given a discrete convex
plain consisting of cells with horizontal and vertical neighbors, is it possible to cover the plane with
tiles from S in a way that horizontally adjacent tiles respect the relation H and vertically adjacent
tiles respect the relation V , together with some additional constraints about where to put the initial
and final tile tI , tF . Such tiling problems, in particular for rectangular planes, have proved to be
extremely useful in computational complexity, cf. (Berger (1966); van Emde Boas (1997)), since
they can be seen as abstract versions of halting problems.

We need a variant in which the plane to be tiled is of triangular shape. The n-th triangle is On =
{(i, j) ∈ N× N | j ≤ i ≤ n} for n > 0. An (S)-tiling of On is a function τ : On → S s.t.

• (τ(i, j), τ(i, j + 1)) ∈ H for all (i, j) ∈ O with j < i ≤ n,
• (τ(i, j), τ(i+ 1, j)) ∈ V for all (i, j) ∈ O with j ≤ i < n.

Such a tiling a successful, if additionally τ(0, 0) = tI and τ(i, i) = tF for some (i, i) ∈ On.

The unbounded octant tiling problem (OTP∗) is: given a tiling system S, decide whether a success-
ful S-tiling of On exists for some n ∈ N. The bounded octant tiling problem (OTP) is: given a

13

https://openreview.net/forum?id=BJxwPJHFwS
https://openreview.net/forum?id=BJxwPJHFwS
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://proceedings.mlr.press/v139/weiss21a.html
http://proceedings.mlr.press/v139/weiss21a.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

tiling system S and an n ≥ 1, decide whether a successful S-tiling of On exists. Note that here,
n is part of the input, and that it can be represented differently, for example in binary or in unary
encoding. We distinguish these two cases by referring to OTPbin and OTPun.

It is well-known that OTP∗ is undecidable (van Emde Boas (1997)). It is also not hard to imagine
that OTPun is NP-complete while OTPun is NEXPTIME-complete. In fact, this is well-known for
the variants in which the underlying plane is not a triangle of height n but a square of height n (van
Emde Boas (1997)). The exponential difference incurred by the more compact binary representation
of the input parameter n is best seen when regarding the upper complexity bound for these problems:
given n, a nondeterministic algorithm can simply guess all the n2 many tiles of the underlying square
and verify the horizontal and vertical matchings in time O(n2). If n is encoded unarily, i.e. the space
needed to write it down is s := n, then the time needed for this is polynomial in the input size s; if
n is encoded binarily with space s := ⌈log n⌉ then the time needed for this is exponential in s.

It then remains to argue that the tiling problems based on triangular planes are also NP- resp.
NEXPTIME-complete. Clearly, the upper bounds can be established with the same guess-and-check
procedure. For the lower bounds it suffices to observe that hardness of the tiling problems for the
squares is established by a reduction from the halting problem for Turing machines (TM) such that
a square of size n × n represents a run of the TM of length n as a sequence of rows, and each row
represents a configuration of the TM using at most n tape cells. This makes use of the observation
that the space consumption of a TM can never exceed the time consumption. Likewise, assuming
that a TM always starts a computation with its head on the very left end of a tape, one can easily
observe that after i time steps, it can change at most the i leftmost tape cells. Hence, a run of a TM
can therefore also be represented as a triangle with its first configuration of length 1 in row 1, the
second of length 2 in row 2 etc.

At last, we consider two slight modifications of these two problems which are easily seen to
preserve undecidability resp. NP- and NEXPTIME-completeness. The unbounded octant tiling-
word problem (OTWP∗) is: given some S = (S,H, V, tI , tF), decide whether there is a word
t0,0, t1,0, t1,1, t2,0, t2,1, t2,2, . . . , tn,n ∈ S∗ for some n ∈ N, s.t. the tiling τ defined by τ(i, j) := ti,j
comprises a successful tiling of On. The two variants of the bounded octant tiling-word problem
are both: given some S as above and n, decide whether such a word exists. Note that, again, here n
is an input parameter, and so its representation may affect the complexity of the problem, leading to
the distinction between OTWPbin with binary encoding and OTWPun with unary encoding.

Theorem 6.

a) OTWP∗ is undecidable (Σ1
0-complete).

b) OTWPbin is NEXPTIME-complete.

c) OTWPun is NP-complete.

Proof. (a) It should be clear that a tiling problem and its tiling-word variant (like OTP∗ and
OTWP∗) are interreducible since they only differ in the formulation of how the witness for a suc-
cessful tiling should be presented. So they are essentially the same problems. Undecidability of
OTP∗ and, thus, OTWP∗ is known from (van Emde Boas (1997)), the Σ1

0-upper bound can be ob-
tained through a semi-decision procedure that searches through the infinite space of On-tiling for
any n > 1. This justifies the statement in part (a) of Thm. 6.

(b) With the same argument as in (a) t suffices to consider OTPbin instead of OTWPbin. The upper
bound is easy to see: a nondeterministic procedure can easily guess a tiling for On and verify
the horizontal and vertical matching conditions, as well as the use of the initial and final tile in
appropriate places. This is possible in time O(n2), resp. O(22 logn) which is therefore exponential
in the input size ⌈log n⌉ for binarily encoded parameters n. This shows inclusion in NEXPTIME.

For the lower bound we argue that the halting problem for nondeterministic, exponentially-time
bounded TM can be reduced to OTPbin: given a nondeterministic TM M over input alphabet Σ
and tape alphabet Γ that halts after at most time 2p(n) steps on input words of length n for some
polynomial n, and a word w ∈ Σ∗, we first construct a TM Mw that is started in on the empty tape
and begins by writing w onto the tape and then simulates M on it. This is a standard construction
in complexity theory, and it is easy to see that the running time of Mw is bounded by a function

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

2p
′(|w|) for some polynomial p′. With the observation made above, a computation of Mw can be

seen as a sequence of configurations C1, . . . , Cp′(|w|), with |Ci| = i. This does not directly define
a tiling system, instead and again by a standard trick, cf. (van Emde Boas (1997)) or (Demri et al.,
2016, Chp. 11), one compresses three adjacent tape cells into one tile in order to naturally derive
a horizontal matching relation from overlaps between such triples and a vertical matching relation
from the TM’s transition function. At last, let n′ := p′(|w|). It is then a simple exercise to verify
that a valid tiling of the triangle ∆n′ corresponds to an accepting run of M on w and vice-versa,
which establishes NEXPTIME-hardness.

(c) This is down exactly along the same lines as part (b), but instead making use of the fact that, when
n is given in unary encoding, p(n) is polynomial in the size of the representation of n, and hence,
the time needed for the guess-and-check procedure in the upper bound is only polynomial, and for
the lower bound we need to assume that the running time of the TM is polynomially bounded. Thus,
we get NP-completeness instead of NEXPTIME-completeness.

B PROOFS OF SECTION 4

In the following, we give formal proof for the undecidability results of Section 4. To do so, we make
use of classical Feed-Forward Neural Networks.

Feed-Forward Neural Network A neuron v is a computational unit computing a function Rm →
R by v(x1, . . . , xm) = σ(b +

∑m
i=1 wixi) where σ is a function called activation and b, wi are

parameters called bias resp. weight. A layer l is a tuple of nodes (v1, . . . , vn) where we assume that
all nodes have the same input dimensionality m. Therefore, l computes a function Rm → Rn. We
call n the size of layer l. Let l1 be a layer with input dimensionality m and lk a layer of size n. A
Feed-Forward Neural Network (FNN) N is a tuple (l1, . . . , lk) of layers where we assume that for
all i ≤ k−1 holds that the size of li equals the input dimensionality of li+1. Therefore, N computes
a function Rm → Rn by processing an input layer by layer.

In particular, we use specific FNN with relu(x) = max(0, x) activations, called gadgets, to derive
lower bounds in connection with the expressibility of transformers. We denote the class of all FNN
with relu activations by N (relu).
Lemma 4. Let k ∈ R>0. There are basic gadgets

1. N|·| ∈ N (relu) computing N|·|(x) = |x|,

2. N< ∈ N (relu) computing a function R2 → R such that N<(x1, x2) = 0 if (x1+1)−x2 ≤
0, N<(x1, x2) = (x1 + 1)− x2 if (x1 + 1)− x2 ∈ (0; 1) and N<(x1, x2) = 1 otherwise,

3. N= ∈ N (relu) computing a function R2 → R such that N=(x1, x2) = 0 if x1 − x2 = 0,
N=(x1, x2) = |x2 − x1| if |x2 − x1| ∈ (0; 1) and N=(x1, x2) = 1 otherwise,

4. N→ ∈ N (relu) computing a function R2 → R such for all inputs x1, x2 with x1 ∈ {0, 1}
and x2 ∈ [0; k] holds N→(x1, x2) = 0 if x1 = x2 = 0 or x1 = 1 and N→(x1, x2) =
relu(x2) otherwise.

Proof. Let N|·| be the minimal FNN computing relu(relu(−x) + relu(x)), let N< be the minimal
FNN computing relu(f<(x1, x2)−f<(x1, x2+1)) where f<(y1, y2) = relu(y1−y2+1) and let N=

be the minimal FNN computing relu(f=(x1, x2)− f=(x1 +1, x2)+ f=(x2, x1)− f=(x2 +1, x1))
where f=(y1, y2) = relu(y2 − y1). The claims of the lemma regarding these gadgets are straight-
forward given their functional form. Let N→ be the minimal FNN computing relu(relu(x2) − k ·
relu(x1)). As stated in the lemma, we assume that x1 ∈ {0, 1} and x2 ∈ [0; k]. Then, −k · relu(x1)
is −k if x1 = 1 and 0 if x1 = 0. Thus, N→ is guaranteed to be 0 if x1 = 1 and otherwise it depends
on x2. This gives the claim regarding gadget N→.

We will combine gadgets in different ways. Let N1 and N2 be FNN with the same input di-
mensionality m and output dimensionality n1 respectively n2. We extend the computation of
N1 to functions Rm′ → Rn1 with m < m′ by weighting additional dimensions with 0 in the
input layer. Given a set of input dimensions x1, . . . , xm′ , we denote the effective dimensions

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

xi1 , . . . , xim with pairwise different ij ∈ {1, . . . ,m′} by N
xi1

,...,xim

1 . Formally, this means that
N

xi1 ,...,xim

1 (x1, . . . , xm′) = N1(xi1 , . . . , xim) for all inputs. We denote the FNN consisting of
N1 and N2 placed next to each other by N1||N2. Formally, this is done by combining N1 and N2

layer by layer using 0 weights in intersecting connections. Then, N1||N2 computes Rm → Rn1+n2

given by N1||N2(x) = (N1(x), N2(x)). We generalize this operation to k FNN N1|| · · · ||Nk in the
obvious sense. Let N3 be an FNN with input dimensionality n1 and output dimensionality n3. We
denote the FNN consisting of N1 and N3 placed sequentially by N3 ◦N1. Formally, this is done by
connecting the output layer of N1 with the input layer of N3. Then, N3 ◦N1 computes Rm → Rn3

given by N3 ◦N1(x) = N3(N1(x)).

We also consider specific gadgets needed in the context of tiling problems.
Lemma 5. Let S ⊆ N be a finite set and R ⊆ S2. There is FNN NR ∈ N (relu) computing R2 → R
such that NR(x1, x2) ∈ {0, 1} if (x1, x2) ∈ S2 and NR(x1, x2) = 0 iff (x1, x2) ∈ R and there is
N=t ∈ N (relu) for each t ∈ S computing R → R such that N=t(x) ∈ {0, 1} for each x ∈ N and
N=t(x) = 0 iff x = t.

Proof. Let S ⊆ N be finite, R ⊆ S2 and t ∈ S. First, consider N=t. Let Nt be the minimal
FNN computing relu(0 · x + t) and Nid be the minimal FNN computing (relu(x),−relu(−x)).
Obviously, Nt computes the constant t function and Nid computes the identity in the form of two
dimensional vectors. Let N=t be given by the minimal FNN computing N= ◦ (Nid ||Nt) with the
slight alteration that the two output dimensions of Nid are connected to the first dimension of N=.
Then, the claim of the lemma regarding N=t follows from Lemma 4 and the operations on FNN
described in Appendix B.

Now, consider NR. Given some s ∈ S let R[s] = {r | (s, r) ∈ R}. Let Nk
∧ be the mini-

mal FNN computing relu(x1 + · · · + xk). Furthermore, let N∈T for some set T ⊆ S be the
minimal FNN such that N∈T (x) = 0 if x ∈ T and N∈T (x) = 1 if x ∈ S \ T . A con-
struction for N∈T is given in Theorem 4 in (Sälzer & Lange (2023)). According to this con-
struction, N∈T consists of three layers and is polynomial in T . In the case that T = ∅ we as-
sume that N∈∅ is the constant 1 function represented by a suitable FNN. Then, NR is given by
N

|S|
∧ ◦((N→◦(N=s1 ||N∈R[s1]))|| · · · ||(N→◦(N=s|S| ||N∈R[s|S|]))) for some arbitrary order on S with

the slight alteration that NR has two input dimensions, meaning that each subnet (N=si ||N∈R[si]) is
connected to the same two input dimensions. Again, the claim of the lemma regarding NR follows
from Lemma 4 and the operations on FNN described in Appendix B.

Given these understandings of gadgets, we are set to formally prove the results of Section 4.

Proof of Lemma 1. Let w = t0,0t1,0t1,1t2,0 · · · tm,n ∈ S+ as stated in the lemma and assume some
order ai on S. Furthermore, let emb(ai, 1) = (1, 1, 1, 1, i) and emb(ai, j) = (0, 1, j,

∑j
h=0 h, i)

if j > 1. Let emb(w) = x0
1 · · ·x0

k. In the following, we build two layers l1 and l2 using com-
ponents allowed in Tudec , satisfying the statement of the lemma. Layer l1 consists of a single
attention head att1,1 = (score1,1, pool1,1). The scoring function is given by score1,1(x

0
i ,x

0
j) =

N1,1(⟨Q1,1x
0
i ,K1,1x

0
j ⟩) where Q1,1 = [(0, 0,−1, 0, 0), (0, 1, 0, 0, 0), (0, 1, 0, 0, 0)] and K1,1 =

[(0, 1, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 0, 1, 0)] and N(x) = −relu(x). We have that score1,1(x0
i ,x

0
j) =

−relu((
∑j

h=0 h) − (i − 1)) and it follows that score1,1(x0
i ,x

0
j) = 0 if

∑j
h=0 h ≤ i − 1 and

otherwise we have that score1,1(x0
i ,x

0
j) < 0. The pooling function is specified by the matrix

W1,1 = [(1, 0, 0, 0, 0)] and uses hardmax as normalisation function. The combination comb1 func-
tion is given by the FNN N1(x1, . . . , x5, y) = relu(x2)|| · · · ||relu(x5)||relu(y). Given a position x0

i ,
the attention head att1,1 attends to all positions x0

j satisfying
∑j

h=0 h ≤ i−1. This is due to the way
score1,1 is build. Then, att1,1 computes 1

l using pool1,1 where l is the number of positions att1,1
attends to. Here, we exploit the fact that only the first position x0

1 has a non-zero entry in the its first
dimension and that for all i head att1,1 attends to x0

1. Finally, comb1 simply stacks the old vector
x0
i onto the value 1

l , but leaves out the first dimension of x0
i . Let l1(emb(w)) = x1

1 · · ·x1
k. Layer

l2 consists of a single attention head att2,1 = (score2,1, pool2,1). The scoring function score2,1
is given by N2,1(⟨Q2,1x

1
i ,K2,1x

1
j ⟩) where Q2,1 = [(0, 0, 0, 0, 1)], K2,1 = [(0, 1, 0, 0, 0)] and

N2,1(x) = −relu(relu(x−1)+ relu(1−x)). We have that score2,1(x1
i ,x

1
j) = 0 if 1

l · j = 1 where

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

1
l is the fifth dimension of x1

i and otherwise score2,1(x
1
i ,x

1
j) < 0. The pooling function pool2,1 is

specified by W2,1 = [(0, 1, 0, 0, 0), (0, 0, 1, 0, 0)] and uses hardmax as normalisation. The combi-
nation comb2 is given by the FNN N2(x1, . . . , x5, y1, y2) = relu(x1)||relu(x2)||relu(y1)||relu(x2−
y2 − 1)||relu(x4). Given a position x1

i , the attention head att2,1 attends to the position j, where
1
l · j = 1. Relying on our arguments regarding the computation of l1, this is the position j satisfying
maxj(

∑j
h=0 h ≤ i − 1). However, this j is equal to the row index r(i) of the decomposition of i

based on the inversion of Cantor’s pairing function. Thus, we have that r(i) = j. Furthermore, we
have that c(i) = (i− 1)− (

∑j
h=0 h), which is computed by relu(x2 − y2 − 1) in the combination

function comb2. Overall, we see that l2(l1(emb(w))) gives the desired result.

Proof of Lemma 2. Let f be as stated in the lemma. By definition of Tudec , the scoring func-
tion of attf is of the form N(⟨Qxi,Kxj⟩) and the normalisation is hardmax. Let Q =
[(a1, . . . , ak), (b, 0, . . . , 0), (1, 0, . . . , 0)], K = [(1, 0, . . . , 0), (1, 0, . . . , 0), (0,−1, 0, . . . , 0)] and N
be the minimal FNN computing N(x) = −relu(N|·|(x)) = −|x| where N|·| is given by Lemma 4.
Overall, this ensures that the scoring is given by score(xi,xj) = −|f(xi)− j|. Then, the statement
of the lemma follows from the fact that hardmax attends to the maximum, which is 0 given this
scoring, and that j ∈ N is unique for each xj .

Lemma 6. There is attention head att≤ in Tudec such that for all sequences x1, . . . ,xm where all
xi = (1, i,yi) the head att≤ attends to {x1, . . . ,xi} given i.

Proof. By definition of Tudec , the scoring function of attf is of the form N(⟨Qxi,Kxj⟩) and
the normalisation is hardmax. Let Q = [(0, 1, 0, . . . , 0), (1, 0, . . . , 0)] and let K be equal to
[(1, 0 . . . , 0), (0,−1, 0, . . . , 0)]. Furthermore, let N(x) = −relu(x). We observe that N outputs
0 if j ≤ i and otherwise N(x) < 0. In combination with hardmax, this ensures that att≤ behaves
as stated by the lemma.

Proof of Theorem 1. We prove the statement via reduction from OTWP∗. Let S = (S,H, V, tI , tF)
be an instance of OTWP∗ with |S| = k. W.l.o.g we assume that S ⊆ N. Let TS ∈ Tudec be built
the following way. TS uses the embedding emb of transformer in Tudec specified in the beginning
of Section 4. Furthermore, it has four layers. Layers l1, l2 are as in Lemma 1. Layer l3 is given
by l3 = (attprev , attnext , attstep , comb3) where attprev, attnext and att step are of Lemma 2 whereby
prev(x1, . . . , x5) = x2 − 1, next(x1, . . . , x5) = x2 + 1 and step(x1, . . . , x5) = x2 + x3 + 1. We
assume that all three attention heads use the identity matrix as linear maps in their respective pooling
function. comb3 is given by an FNN N3 computing R4·5 → R. Let the input dimensions of N3 be
x1,1, . . . , x1,5, x2,1, . . . , x4,5. Then, N3 is equal to

relu(x1,1)||relu(x1,2)||Na||Nb1 ||Nb2 ||Nc||Nd

where Na = N→ ◦ (N
x1,2,x3,2
= ||Nx1,3,x1,4

=), Nb1 = N→ ◦ (N
x1,2,x2,2
= ||Nx1,5

=tI), Nb2 = N→ ◦
(N

x1,2,x3,2
= ||Nx1,5

=tF), Nc = N→ ◦ (Nx1,4,x1,3

< ||Nx1,5,x3,5

H) and Nd = N→ ◦ (Nx1,3,x4,3

< ||Nx1,5,x4,5

V) us-
ing the gadgets and constructions described in Appendix B. Layer l4 is given by l4 = (att leq, comb4)
where att leq attends to {x1, . . . ,xi} given i and comb4 is given by the minimal FNN N4 com-
puting relu(x3 + · · · + x7). A formal proof for the existence of att leq in Tudec is given in
Lemma 6. Furthermore, the output function out of TS is given by the minimal FNN Nout com-
puting N(x1) = relu(1− x1).

Let w = t1 · · · tl ∈ S∗ be some word over alphabet S. As defined above, we have that emb(ti, i) =

(1, i,
∑i

j=0 j, ki) where ki ∈ {1, . . . , |S|}. Consider x2
1 · · ·x2

m, namely the sequence of vectors
after propagating w through the embedding emb and layers l1, l2 of TS . As stated by Lemma 1, we
have that x2

i = (1, i, r(i), c(i), ki) where r(i) and c(i) are the row respectively column of tile ti if
we interpret w as an encoded tiling. Note that all vectors x3

i are non-negative due to the way N3 is
built. In the following, we argue that all x3

i = 0 if and only if w is a valid encoded tiling. Given this
equivalence, the statement of the lemma follows immediately as l4 simply sums up all vectors and
dimensions (except for the first and second) of x3

1, . . . ,x
3
m in x4

m and the output of N4 indicates
whether there was some non-zero value. We fix some arbitrary x2

i = (1, i, r(i), c(i), ki). Then,
x3
i = N3(x

2
i ,x

2
iprev

,x2
inext

,x2
istep

) where inext = i + 1 if i < m and m otherwise, iprev = i − 1 if
i > 1 and 1 otherwise and istep = i+ r(i) + 1 if i < m− r(i)− 1 and m otherwise.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Consider property (a) and subnetwork Na. With the understanding gained in Appendix B, Nx1,2,x3,2
=

outputs 0 iff x1,2 = x3,2. These dimensions correspond to positions i and inext , which are only equal
if i = m (Lemma 2). Furthermore, the property of N→ stated by Lemma 4 is given as the output
of N= is guaranteed to be in [0; 1] and the values of x1,2 and x3,2 are guaranteed to be in N. In
summary, this ensures that the third dimension of x3

m is 0 iff r(m) = c(m). For other positions
the third dimension is always 0 since N→ outputs 0 in these cases due to the fact that Nx1,2,x3,2

=

equals 1. Analogously, Nb1 and Nb2 ensure that t1 = tI and tm = tF and, thus, property (b) iff the
fourth and fifth dimensions in all positions are equal to 0. Consider properties (c) and (d) described
above and assume that property (a) holds. These two properties are non-local in the sense that they
depend on at least two positions in x2

1 · · ·x2
m. Consider the subnet Nc. By construction and the

gadgets described in Appendix B, we have that Nc outputs 0 if c(i) < r(i) and (ti, ti+1) ∈ H or
if c(i) = r(i), which means that tile ti is rightmost in its corresponding row. Otherwise the value
computed by Nc is greater than 0. Analogously, subnet Nd checks whether vertically stacked tiles
do match. In summary, this ensures that the sixth and seventh dimension of each x3

i is equal to 0 if
and only if properties (c) and (d) hold.

Proof of Theorem 2. In the same manner as in the proof of Theorem 1, we prove the statement via
reduction from OTWP∗. The reduction is exactly the same, namely given an OTWP∗ instance
S = (S,H, V, tI , tF) we build TE TS which recognizes exactly those words w representing a valid
encoded tiling of S. For details, see the proof of Theorem 1.

Given the correctness arguments for TS in Theorem 1, it is left to argue that TS works as intended,
despite the fact that it works over some FA F using at most O(log(max(|S|, n))) bits where n is the
length of an input word. We choose F such that overflow situations do not occur in any computation
TS(w) and rounding is handled such that TS works as intended. Throughout this proof, we use
log(n) Namely, given a word w with |w| = n assume that F uses m = ⌊4 log(max(|S|, n))⌋ + 2
bits and rounds values off to the nearest representable number. We denote the value resulting from
rounding x off in arithmetic F by ⌊x⌋F . We assume that there is an extra bit that is used as a sign
bit and that at least ⌊3 log(n)⌋ + 1 bits can be used to represent integer and at least ⌊log(n)⌋ + 1
bits can be used to represent fractional parts. Note that this is a reasonable assumption for all
common FA, like fixed-point or floating-point arithmetic. Furthermore, it is clearly the case that
m ∈ O(log(max(|S|, n))). To ease our arguments and notation from here on, we assume w.l.o.g.
that we represent n using log(n) instead of ⌊log(n)⌋+ 1.

Per definition, TS uses the embedding function emb(ak, 0) = (1, 1, 0, 0, k) and emb(ak, i) =

(0, 1, i,
∑i

j=0 j, k). First, we assume that each k, namely the value representing a specific tile from
S, is a unique, positive value. This is possible as F uses m > log(|S|) bits. Furthermore, we see
that emb, especially the sum

∑i
j=0 j = i(i+1)

2 ≤ i2, works as intended up to i = n due to the fact
that F uses more than m > 2 log(n) bits to represent integer parts. Next, consider layer l1 and l2
of Lemma 1. Layer l1 consists of a single attention head att1,1. Here, the only crucial parts are the
computation of value 1

l in pool1,1 for a position i. Per definition, l corresponds to the number of
positions j such that

∑j
h=0 h ≤ i − 1. As i is bounded by n, this inequality can only be satisfied

by positions j for which j ≤
√
n holds. As TS uses hardmax to count the positions for which this

inequality holds, l is bounded by
√
n. Next, we observe that ⌊ 1

l ⌋F =
⌊2log(n) 1

l ⌋
2log(n) =

⌊n
l ⌋
n , namely the

general understanding of rounding off where we use log(n) bits to represent fractions. However, this
gives that for all 1 ≤ l1 < l2 ≤

√
n that ⌊ 1

l1
⌋F ̸= ⌊ 1

l2
⌋F as ⌊ n

l1
⌋ ≠ ⌊ n

l2
⌋ holds for all l1 < l2 ≤

√
n.

This means, that it is ensured by F that 1
l is uniquely representable.

Next, the only crucial part in l2 is the computation of the product 1
l · j, which is used to determine

the position j for which 1
l ·j = 1 in score2,1, which is obviously given by position l. This equality is

no longer guaranteed to exist if we consider ⌊ 1
l ⌋F · j. However, due to the monotonicity of ⌊ 1

l ⌋F for
l ≤

√
n and that the maximum round of error is given by 1

2log(n) , we have that the j = l produces the
value closest to 1 in the product 1

l ·j. Taking a look at score2,1, this ensures that l is still the position
that att2,1 attends to. Therefore, the statement of Lemma 1 is still valid for TS working over F .
We observe that all values of some vector x2

j after layer l2 are positive integers whose magnitude is
bounded by n2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Now, consider layer l3 and l4. From the proof of Theorem 1 we see that the gadgets at most sum
up two values or compute a fraction of the form i+j

2 and i−j
2 (in gadgets NH or NV). Both can

safely be done with at least 3 log(n) bits for integer and log(n) for fractional parts, as all previously
computed values, up to layer l2, in a computation of TS(w) are representable using 2 log(n) bits.
We observe that the values of the third to seventh dimension of some x3

j are either 0 or 1. This is
due to the fact that all values after layer l2 are guaranteed to be integers. Next, consider layer l4.
The computation done by att≤ is safe (see Lemma 6) and the crucial step here is the computation
of comb4 given by relu(x3 + · · ·+ x7). The values xi are all of the form i

j where i is guaranteed to
be 0 or 1 and j is the normalisation induced by att≤ from perspective of position j. However, this
means j is bounded by n and, thus, ⌊ i

j ⌋F > 0 if and only if i = 1 for all j due to the fact that F
allows for log(n) bits to represent fractional parts. Finally, out is trivially computable in F , which
finishes the proof.

C PROOFS OF SECTION 5

Proof of Theorem 3. The decidability and membership results of statements (1) and (2)are suffi-
ciently argued in the proof sketch given in Section 5.

To prove the hardness results of statements (1) and (2), we establish a reduction from OTWPun re-
spectively OTWPbin: given some bounded word-tiling instance (S, n) we build an instance (TS , n)
of BTRSATun respectively BTRSATbin where TS is build as described in Theorem 1. The only miss-
ing argument is that these reductions are polynomial. In particular, this means that TS must be built
in polynomial time regarding the size of (S, n). Therefore, we recall the proof of Theorem 1.

First, we see that the embedding function emb and the amount of layers of TS is independent of S
and n. The first two layers l1 and l2 of TS are specified in Lemma 1. Recalling the proof of Lemma 1,
we see that l1 and l2 each consist of a single attention head, whose internal parameters like scoring,
pooling or combination are independent of (S, n) as well. Next, consider layer l3. This layer
consists of three attention heads attprev , attnext and attstep each given by the template described in
Lemma 2, which again is independent of (S, n). Additionally, l3 contains the combination function
comb3. This combination function is represented by a FNN N3, using smaller FNN Na, Nb1 , Nb2 ,
Nc and Nd as building blocks. These are dependent on S, as they are built using gadgets N=tI ,
N=tF , NH and NV where tI , tF , H and V are components of S. However, in the proof of Lemma 5
we see that these gadgets are at most polynomial in their respective parameter. Layer l4 and the
output function, specified by FNN Nout , are again independent of (S, n). In summary, the TE TS is
polynomial in (S, n), which makes the reductions from OTWPexp und OTWPpoly polynomial.

Next, we address the proof of Lemma 3. We need some preliminary, rather technical result first. Let
T be an TE and w ∈ Σ+ be a word and consider the computation T (w). Let X0

T (w) = emb(w)

and Xi
T (w) be the sequence of vectors occurring after the computation of layer li of T . Let x

and x′ be two vectors matching the dimensionality of scorei,j of T . Overloading some notation,
let Nw(x,x

′, i, j) = normi,j(scorei,j(x,x
′), scorei,j(x, X

i−1
T (w))) where scorei,j(x, Xi−1

T (w)) is the

vector of all scorings of x with sequence Xi−1
T (w). We remark that it is not necessary that x or x′

must occur in Xi−1
T (w) for this to be well defined. Again overloading some notation, let Pw(x, i, j) =

pool i,j(X
i−1
T (w), scorei,j(x, X

i−1
T (w))).

Lemma 7. Let T be a additive-periodical TE of depth L, maximum width H and periodicity
p with normi,j ∈ {softmax,hardmax} for all i ≤ L, j ≤ H , let w = u1uj1 · · ·ujhu2 ∈
Σ+ where u1, u2 ∈ Σ+, all uji ∈ Σp and all uji also occur in u1 or u2 and let X be
the set of all vectors occurring in any of the sequences Xi

T (w). If there are indexes h1 <

h2 ≤ h such that for all x,x′ ∈ X , i ≤ L, j ≤ H holds that Nu1uj1
···ujh1

(x,x′, i, j) =

Nu1uj1 ···ujh2
(x,x′, i, j) and Pu1uj1 ···ujh1

(x, i, j) = Pu1uj1 ···ujh2
(x, i, j) then it holds that

Nu1uj1
···ujh1

ujh2+1
···u2

(x,x′, i, j) = Nu1···u2
(x,x′, i, j) and Pu1uj1

···ujh1
ujh2+1

···u2
(x, i, j) =

Pu1···u2(x, i, j).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof. Let T , w, X , h1 and h2 be as stated above. We prove the statement via induction
on the layers li. First, consider layer l1 and fix some tuple (x,x′, 1, j). We first show that
Nu1uj1 ···ujh1

ujh2+1
···u2

(x,x′, 1, j) = Nu1···u2
(x,x′, 1, j). Assume that norm1,j is given by

softmax. Then, norm1,j computes escore1,j(x,x′)∑
score1,j(x,X0

T (w′)
)
esi′

for all words w′. Obviously, the

numerator in Nu1···uh1
uh2+1···u2(x,x

′, 1, j) and Nu1···u2(x,x
′, 1, j) is equal. By definition, we

have that scorei,j is local in the sense that it compares vectors pairwise, producing the different
scoring values si′ independent of the overall word. Furthermore, due to the fact that emb is
additive-periodical, we have X0

T (u1uj1
···ujh1

ujh2+1
···u2)

and X0
T (u1···u2)

are equal in the sense

that the vectors corresponding to ujh2+1
· · ·u2 are equal. We refer to this property (*) later on.

Using these observations and that Nu1uj1
···ujh1

(x,x′, 1, j) = Nu1uj1
···ujh2

(x,x′, 1, j), we have
that the denominator is equal as well. Now, assume that norm1,j is given by hardmax. Then,

norm1,j computes
f(score1,j(x,x

′),score1,j(x,X
0
T (w′)))∑

score1,j(x,X0
T (w′)

)
f(si′ ,score1,j(x,X0

T (w′)))
where f(s, S) = 1 if s is maximal in

S and 0 otherwise for any word w′. In contrast to softmax, we have that the values of f(· · ·) are
dependent of the overall context, namely the vector of all scorings score1,j(x, X

0
T (w′)). Compare

X0
T (u1uj1 ···ujh1

ujh2+1
···u2)

and X0
T (u1···u2)

, both given by the additive-periodical embedding emb.

Via assumption, we have that each uji block also occurs in u1 or u2. In particular, this means
every vector that occurs in emb(u1 · · ·u2) does also occur in emb(u1uj1 · · ·ujh1

ujh2+1
· · ·u2)

and vice-versa. This implies that f(score1,j(x,x
′), score1,j(x, X

0
T (u1uj1

···ujh1
ujh2+1

···u2)
)) =

f(score1,j(x,x
′), score1,j(x, X

0
T (u1···u2)

)) for any scoring value score1,j(x,x
′). In com-

bination with the assumption that Nu1uj1 ···ujh1
(x,x′, 1, j) = Nu1uj1 ···ujh2

(x,x′, 1, j)

and the observations above, we also get Nu1uj1
···ujh1

ujh2+1
···u2

(x,x′, 1, j) =

Nu1···u2
(x,x′, 1, j) in the hardmax case. Next, consider the pooling func-

tions. By definition, we have that pool1,j(X
0
T (w′), score1,j(x, X

0
T (w′))) computes∑

X0
T (w′)

norm1,j(x,xi′ , scorei,j(x, X
0
T (w′)))(Wxi′) for any word w′. Our previous ar-

guments give that Nu1uj1
···ujh1

ujh2+1
···u2(x,x

′, 1, j) = Nu1···u2(x,x
′, 1, j). In combina-

tion with Pu1uj1 ···ujh1
(x, i, j) = Pu1uj1 ···ujh2

(x, i, j) and (*), we immediately get that
Pu1uj1 ···ujh1

ujh2+1
···u2

(x, i, j) = Pu1···u2
(x, i, j) holds as well. Next, consider layer li. The

arguments are exactly the same as in the base case. However, we need to rely on the induction
hypothesis. Namely, we assume that all pool i−1,j produce the same output in computation
T (u1uj1 · · ·ujh1

ujh2+1
· · ·u2) and computation T (u1 · · ·u2). This implies that all vectors present

in Xi−1
T (u1uj1

···ujh1
ujh2+1

···u2)
are also present in Xi−1

T (u1···u2)
and vice-versa and that the vectors

corresponding to ujh2+1
· · ·u2 are equal in both computations.

Proof of Lemma 3. Let T ∈ T FIX
◦ be an additive-periodical TE working over alphabet Σ, having

periodicity p, depth L, maximum width H , maximum dimensionality D and working over an FA
F using b bits for binary encoding. We use V to denote the set of values representable in the fixed
arithmetic that T works over. Note that |V | ≤ 2b. Let w ∈ Σ+ be a word such that T (w) = 1. We
observe that there is m ∈ N such that w = u1 · · ·umu where ui ∈ Σp are blocks of symbols of
length p and u ∈ Σ≤p. Our goal is to prove that a not necessarily connected subsequence of at most
2(|T |)6 many p-blocks ui from u1 · · ·um is sufficient to ensure the same computation of T . In the
case that pm+ p ≤ 2(|T |)6 we are done. Therefore, assume that m > 2(|T |)6 .

Let U be the set of all unique ui. We observe that |U | ≤ |Σ|p. Next, we fix some not necessarily
connected but ordered subsequence S = uj0uj1 · · ·ujnujn+1 with uj0 = u1, ji ∈ {2, . . . ,m} and
ujn+1 = u of w such that each u′ ∈ U occurs exactly once. For the case that u1 = u we allow
this specific block to occur twice in S. The assumption m > 2poly(|T |) implies that S ̸= w. This
means that there are pairs (ujh , ujh+1

) in S with some non-empty sequence of p-blocks uj′1
· · ·uj′l

in
between. W.lo.g. assume uj0 and uj1 is such a pair. Our goal is to argue that there are at most 2(|T |)5

blocks from uj′1
· · ·uj′l

needed to ensure the same computation of T . Given that this argument works
for all |Σ|p adjacent pairs in S, we are done.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Consider the computation T (w). The additive-periodical embedding emb of T implies
that emb(w) includes at most Σp different vectors. Furthermore, from layer to layer
equal vectors are mapped equally, which means that each X1

w, . . . , X
L
w contains at most

Σp different vectors as well. This implies that the computation T (w) induces at most
(LΣp)2 × L × H ≤ (ΣpL2H)2 ≤ (ΣpLH)4 different tuples (x,x′, i, j) where x,x′ are
vectors induced by T (w) and i ≤ L, j ≤ H . Additionally, we have that for each value
Nw(x,x

′, i, j) and Pw(x, i, j), as defined in the beginning of this section, there are at most
|V D| ≤ 2bD possibilities. Simple combinatorics, namely the pigeon hole principle, states that in the
increasing sequence uj′1

, uj′2
, . . . there must be points h1 and h2 with h1 ≤ 2bD(ΣpLH)4 ≤ 2(|T |)5

such that for all tuples (x,x′, i, j) induced by T (w) we have that Nuj0
uj′1

···uj′
h1

(x,x′, i, j) =

Nuj0
uj′1

···uj′
h2

(x,x′, i, j) and Puj0
uj′1

···uj′
h1

(x, i, j) = Puj0
uj′1

···uj′
h2

(x, i, j). Now, Lemma 7

states that this implies Nuj0
uj′1

···uj′
h1

uj′
h2+1

···uj1
···u(x,x

′, i, j) = Nw(x,x
′, i, j) and

Puj0
uj′1

···uj′
h1

uj′
h2+1

···uj1
···u(x, i, j) = Pw(x, i, j). However, this implies that the subsequence

uj′h1+1
· · ·uj′h2

has no influence in the computation of T on w and, thus, can be left out. As we can

argue this for every such cycle occurring in uj′1
· · ·uj′l

, we get the desired bound of 2(|T |)5 .

Proof of Theorem 5. First, we argue the decidability of TRSAT[T FIX]. Assume that T ∈ T FIX with
an arbitrary embedding emb is given that operates in a fixed-width arithmetic using b bits for rep-
resenting numbers and wrap-around to handle overflow. Then, emb is periodic with periodicity
p ≤ 2b, simply due to the fact that positions i in some word w can only be exactly represented up to
magnitude 2b. Therefore, the same arguments as used in Theorem 4 apply here. Note that this does
not imply NEXPTIME-membership of TRSAT[T FIX], due to the fact that the period is exponential
in b. Analogously, in a saturating scenario, we have that emb has a finite prefix of length at most
2b and is periodic with periodicity 1 afterwards. Here, the small-word property used in Theorem 4
follows the same line of reasoning, with the difference that either the finite prefix is sufficient as a
witness, or the finite prefix followed by an exponentially bounded suffix, whose existence follows
from the same arguments as in Lemma 3 with periodicity p = 1.

Second, we argue the NEXPTIME-hardness. We prove the statement via reduction from OTWPbin.
Let S = (S,H, V, tI , tF) and n ≥ 1 be an instance of OTWPbin. We construct an TE TS,n ∈ T FIX

working over some FA F with TS,n(w) = 1 if and only if w ∈ S+ witnesses the validity of the
OTWPbin instance (S, n).
Next, let TS,n be built exactly like TS in the proof of Theorem 4, but with the following structural
adjustments. In layer l3 we adjust comb3 to be comb3 = N3||Ne||Nf where N3 is specified as in
the proof of Theorem 4, Ne = N→ ◦ (Nx1,2,x3,2

= ||Nx1,3
=n) and Nf = N

x1,2

̸= (n+1)((n+1)+1)
2 +1

where N̸=t

is analogous to the construction of N=t given in Lemma 5. Furthermore, we adjust comb4 in layer
l4 to be represented by the FNN relu(x3 + · · · + x8 + x9). We refer to the gadgets described in
Lemma 4 and Lemma 5 as well as the proof of Theorem 1 for further details.

Consider the adjustment in l3. FNN Ne in comb3 ensures that TS,n(w) = 1 only if the row index
corresponding to the last symbol is equal to n. Note that N3 checks whether row and column
index corresponding to the last symbol are equal. Additionally, Nf checks if there is no id equal to
(n+1)((n+1)+1)

2 + 1. This corresponds to the position id of the successor of the vector representing
tile (n, n). Furthermore, the adjustment of comb4 considers the output of Ne and Nf in addition to
the outputs of N3. In summary, we have that TS,n only outputs 1 given w if the word length is such
that the row index corresponding to the position of the last symbol of w in a respective octant tiling
is equal to n (ensured by Ne), that w is at most of length (n+1)((n+1)+1)

2 (ensured by Nf) and if w
represents a valid encoded tiling (the remaining parts of TS,n).

Additionally, we need to argue that TS,n works as intended, despite the fact that it is limited by some
FA F using a representation size that is at most logarithmic in n. These arguments follow the exact
same line as in the proof of Theorem 2, but using FA F that uses m = ⌊6 log(max(|S|, n))⌋+2 bits
and handles overflow using saturation. The reason for the larger representation size is that words w
representing a valid encoded tiling ending at position (n, n) are of length |w| = (n+1)((n+1)+1)

2 ≤
n2. Thus, we use ⌊4 log(n)⌋ + 1 integer bits to be able to represent a sum

∑i
j=0 j = i(i+1)

2 ≤ i2

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

for all i ≤ n2 and ⌊2 log(n)⌋ + 1 fractional bits to uniquely represent fraction 1
l for l ≤ n. For

detail see the proof of Theorem 2. Furthermore, the fact that we use ⌊4 log(n)⌋ + 1 bits to encode
integers and that F handles overflow using saturation ensures that Nf works as intended: we have
that (n+1)((n+1)+1)

2 + 1 < n4 and, thus, we have that the id (n+1)((n+1)+1)
2 + 1 occurs at most

once, independent of the length of w as it is not the point where F enforces saturation on the
positional embedding. Thus, att self works for this position as intended and then Nf checks the
property described above correctly.

The argument that TS,n can be built in polynomial time is a straightforward implication from the
arguments for Theorem 3 and the fact that Ne and Nf are a small gadgets with maximum parameter
quadratic in n, which can be represented using a logarithmic amount of bits.

22

	Introduction
	Fundamentals
	Overview of complexity results and connection to formal reasoning
	Transformer encoder satisfiability is generally undecidable
	How to make transformer encoder satisfiability decidable
	Summary, limitations and outlook
	Tiling Problems
	Proofs of Section 4
	Proofs of Section 5

