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Abstract

This paper introduces VORM, an unsupervised
morphological segmentation system, leverag-
ing translation data to infer highly accurate
morphological transformations, including less-
frequently modeled processes such as infixation
and reduplication. The system is evaluated on
standard benchmark data, as well as on a novel
dataset of 37 typologically diverse languages.
In both cases, its results compare favourably to
other unsupervised systems.

1 Introduction

While supervised neural models achieve near-
ceiling performance on morphological segmenta-
tion (Batsuren et al., 2022), unsupervised systems
leave ample room for improvement, despite sub-
stantial progress over the years (Virpioja et al.,
2013; Narasimhan et al., 2015; Eskander et al.,
2020; Xu et al., 2020). While supervised tech-
niques can be used for several dozen languages,
corpus data and word lists are available for many
more — progress on unsupervised learning is thus
desirable to improve the cross-linguistic applica-
bility of such systems. The downstream benefit
of morphological segmentation for training lan-
guage models has been debated (Silevi and Lig-
nos, 2023), but good morphological segmenta-
tion can also support linguistic insight: training
and applying a good unsupervised morphologi-
cal segmentation procedure to study patterns in
massively parallel corpora (Liu et al., 2023) can
help identify functional morphemes, such as tense
and case, across languages, and may be a compo-
nent of semi-automated interlinear-glossing meth-
ods (McMillan-Major, 2020).

Especially with the latter, practical, goals in
mind, Contribution #1 of this paper is an unsu-
pervised morphological segmentation system that
leverages parallel translation data and best-first
heuristics inspired by Lignos (2010) to severely

constrain the hypothesis space. This allows it to
infer the applicability of a broader array of morpho-
logical processes (infixation, stem change, redu-
plication) while maintaining high precision. The
system outperforms, for some metrics that more
closely reflect canonical than surface segmentation,
state-of-the-art unsupervised morphological mod-
els on canonical segmentation across two bench-
mark tests, Morphochallenge 2010 (Kurimo et al.,
2010) and the SIGMORPHON 2022 task on mor-
phological segmentation (Batsuren et al., 2022).

With those linguistic goals in mind, evaluation
on a more diverse set of languages is further de-
sirable. The two benchmark testsets reflect only
a small part of the diversity in morphological ty-
pology, with extremely common processes, like
reduplication (Todd et al., 2022), not represented
among them. Furthermore, all languages come
from the Eurasian continent, thus reflecting an are-
ally narrow set of languages. Contribution #2 of
this paper is to present a method of using a corpus
of interlinearly-glossed fieldwork data in 37 typo-
logically and areally more diverse languages (Sei-
fart et al., 2024) to generate (both supervised and
unsupervised) training data as well as evaluation
data with a reproducible training/development/test
split.

Materials for the project are at
https://osf.io/bew3q/?view only=
259303d2¢7814c4b9566f997dcbbldTe. Af-
ter further introducing the backgrounds to this
work (§2), I will introduce the novel system
(§3) and the cross-linguistic data (§4). The
experimentation will be set out in §5, with its
empirical results in §6.

2 Background

2.1 Unsupervised morphological segmentation

The Morfessor model (Virpioja et al., 2013) is the
de facto baseline for unsupervised morphological
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segmentation. It leverages word-internal statisti-
cal patterns of character sequences, similarly to
Byte Pair Encoding (Gage, 1994), commonly used
to preprocess text for training language models.
Both techniques lead to surface segmentations of
the input string. A recent, linguistically inspired,
model that leads to surface segmentations is (Es-
kander et al., 2020), which trains Adaptor Gram-
mars (Johnson et al., 2006) on surface strings, rep-
resenting morphological segmentation as a context-
free grammar parsing problem.

Other unsupervised models leverage the insight
that morphological processes do not merely carve
up a surface string, but transform base forms into
derived forms, that are often not just superstrings of
the base form — transforming believe into believing
requires dropping the e. Modeling such processes
accurately would allow us to represent the canon-
ical segmentation (Kann et al., 2016) of a surface
string, i.e., recognizing that believe in the (surface
segmented form) believ+ing is the same canonical
morpheme as in believe+s.

An early exponent of this class of models is
Morsel (Lignos, 2010), which uses a best-first
heuristic that maximizes the data coverage of the in-
ferred transformations, leading to derivations con-
sisting of chains of transformations. A similar idea,
but leveraging more global optimization over the
search space of transformations can be found in
Morphochains (Narasimhan et al., 2015) and Mor-
phoforests (Luo et al., 2017). Like Morphoforests,
ParaMA2 (Xu et al., 2020) explicitly considers
paradigms, groups of transformations that co-occur
as a further building block to their model, on top
of using the idea that transformations form chains.

Here, I adopt many of the premises of the cited
works: leveraging heuristics, considering word
pairs and paradigms as ways to constrain the search
space, and representing morphological processes
as transformations.

2.2 Leveraging translations

Parallel translation data has, in several domains,
been proven to help guide (otherwise) unsupervised
models towards the right sectors of the hypothe-
sis space. Most pertinently, Rice et al. (2024) use
translations of a target language to a reference lan-
guage to provide an additional semantic signal in a
supervised system, in similar ways to (Narasimhan
et al., 2015) and Schone and Jurafsky (2001), to
determine morphological segmentation: formally
overlapping words in the target language translat-

ing to the same or semantically similar words in
the reference language are thus more likely to be
segmented similarly.

Beyond morphology, translation data has been
used to project structure of a better-resourced ref-
erence language to a target language — examples
are PoS tagging and grammatical structure (Jo-
hannsen et al., 2016). Word-sense disambiguation
has been shown to benefit from using translation
data, given that distinct senses often translate dif-
ferently (Apidianaki, 2008; Hauer and Kondrak,
2023). Shared between all cases, is the idea that
a reference language provides insight in the latent
structure (semantic distinctions, grammatical re-
lations, shared morphological material) of the tar-
get language, either through the projection of that
structure or through the variation in the patterns of
translation themselves. My approach leverages this
latter type of signal.

2.3 Morphological typology

When we approach unsupervised morphological
segmentation as a task of being able to induce for
any language the morphological segments, canon-
ical or superficial, without having access to the
correct segments to train on, considering the vari-
ation in morphological processes is of relevance.
A typologically-oriented overview is (Haspelmath
and Sims, 2010), who draws on the distinction be-
tween free morphemes (which can occur as a word
by themselves) and bound morphemes (which can-
not) to list the following basic processes.
First,affixation involves concatenating bound
morphemes to a free morpheme, such as believe
+ -ing. This includes infixation, whereby a bound
morpheme is located inside the free morpheme —
such as the Tagalog ‘agent trigger’” morpheme -
um- forming s-um-alat ‘wrote’ out of salat ‘write’.
Next, compounding involves concatenating two or
more free morphemes, like boathouse from boat
and house. Third, reduplication means reproduc-
ing a part of a free morpheme on either end of
that morpheme — marginal in English house house
‘a real house’, but widely productive in other lan-
guages, e.g. duhp ‘dive’ — du-duhp ‘be diving’
(Ponapean). Fourth, base modification involves
changing the string ‘inside of” the free morpheme,
like Germanic ablaut — gave as the past tense of
give. Finally, conversion: leaving the form unal-
tered but changing e.g., the grammatical category,
e.g., hammer as a noun, converted into a verb;
Given this diversity, the focus on (non-



reduplicative) affixation is narrow. Reduplication
is, for instance, extremely common: >80% of lan-
guages are described to have some form of redu-
plication (Rubino, 2013). A smaller proportion
of languages has stem-internal modifications such
as ablaut (vowel change) or tone change (Bickel
and Nichols, 2013). (Yu, 2007) finds infixation
in 111 languages of 26 language families. Vari-
ous forms of base modification similarly happen
across the world’s languages: Standard Arabic
has stem-internal gemination as the morphological
causative (waqafa ‘stop (intransitive)” — waqqafa
‘stop (transitive)’).

Surface segmentation models such as Morfessor
and MorphAGram inherently rule out infixation
and base modification, and typically don’t provide
ways of identifying reduplication as distinct from
regular affixation (but see Todd et al., 2022 for an
extention of Morfessor doing exactly that). Most
models of canonical segmentation do not consider
processes of reduplication and base modification,
with notable exceptions being ParaMA?2 (Xu et al.,
2020). The present work intends to develop this
line of research.

3 The VORM model

The proposed model, VORM (“Vertaling Onderste-
unt Redelijke Morphologie’ — Dutch for ‘Transla-
tion supports reasonable morphology’) is a heuris-
tic system that leverages translation equivalency
in a reference corpus to find an initial set of mor-
phological transformations, which it then applies
more broadly. The model consists of three steps:
Determining potential morphological families,
which guide the Learning of productive mor-
phological transformations. Third, the learned
transformations are applied beyond the potential
morphological families in a Propagation to the
full word list step.

3.1 S1: Determining morphological families

One recurrent challenge in unsupervised systems
that use word pairs (Narasimhan et al., 2015; Xu
et al., 2020) is to avoid oversegmentation. Recur-
rent phonotactic/orthographical patterns may give
the suggestion of a morphological transformation
where there isn’t one. (Narasimhan et al., 2015)
use distributional semantic information to nudge
the model away from unrelated pairs and towards
related pairs, building on the insight of (Schone
and Jurafsky, 2001) that distributional semantic

representations link morphological variants. Here,
I propose to use another way to constrain the com-
parison: translations, available for many languages.

The general procedure is as follows: we
consider a bitext B of translations between ¢
and a reference language r, defined as B =
[(ul,ub), (u2,u?), ... (u? u})], meaning that B
consists of an ordered list of paired utterances
(u,,u;) that are translation equivalent utterances.
Let further the utterances ul1 ... up for a language
[ be made up of words from some vocabulary V;.

The objective is to retrieve sets of word types
in ¢ that are likely morphologically related to each
other, to feed into the next step. We call such a set a
‘morphological family’ (cf. Nagy et al., 1989), de-
noted m € M where M is the set of morphological
families found. Several functions could be defined
mapping the bitext B onto the set of morpholog-
ical families M — standard alignment procedures
might be used, were it not for the fact that morpho-
logically rich target languages have a long tail of
morphologically complex hapax legomena which
risk not getting accurately aligned.

Instead, I designed this procedure by integrat-
ing the forward step of the LIU Conceptualizer
model, which, given a seed word w, in r itera-
tively finds character substrings [c},c?,...c}] of
words in ¢ whose distribution across the utterances
in B is statistically most strongly associated with
the distribution of w,. Each such substring ¢; de-
fines a morphological family m as all word types
w},w?, ... wP that (1) contain ¢; as a substring,
and (2) occur in an utterance u;ﬁ whose aligned
counterpart in r, u®. contains the seed word w;.

Examples of families for two languages, using
the seed language (Vietnamese) and corpora in-
troduced below, are given in Table 1. Vietnamese
cam ‘feel” has two ¢;: $danke$ (where $ denotes
a word boundary) and fuehl. The former has an
m containing only danke itself, whereas the latter
matches several dozens words in the bitext lines
it co-occurs in with cdm, all containing the fuehl
stem. Vietnamese cdn ‘need’, similarly has two as-
sociated substrings in Turkish, $ihtiya and $gerek,
each with large, and mostly morphologically re-
lated, morphological families.

3.2 S2: Learning productive transformations

The morphological families are next used to learn
productive generalizations. This procedure closely
follows Morsel (Lignos, 2010). Step 2 starts with
initializing a set I’ of candidate transformations



language w, ct m

German cam  $danke$ danke

cam fuehl  bauchgefuehl ehrgefuehl f fuehl fuehle fuehlen fuehlich fuehlst fuehlt fuehlte
fuehlten gefuehl gefuehle gefuehlen gefuehllos (40 more)
Turkish can  $ihtiya ihtiyaC ihtiyaClar ihtiyaClarl ihtiyaClarInI ihtiyaClarInIn ihtiyaClarInlz

ihtiyaClarIna ihtiyaCtan ihtiyac ihtiyacl ihtiyacIm ihtiyacImlz (30 more)

can  $gerek

gerek gerekCe gerekCelerle gerekCemi gerekebilecek gerekebilir gerekecek

gerekecektir gereken gerekenden gerekenler gerekenlerden (100 more)

Table 1: Examples of extracted morphological families. Orthography follows the Morphochallenge 2010 format.

f1, fo, - ., fn. The procedure iterates over all m €
M. For each m, each 2-permutations of words
(wi, w}) in m is considered. All transformations
build from a set of allowed transformation Fy that
transform w} into w; are added to F.

Fy is defined to represent the typological di-
versity of morphological processes. The following
are the allowed transformations on the right edge
of the string; symmetrical counterparts are defined
for the left edge (prefixation (with assimilation),
full/partial-V/partial-C left reduplication, resp.
left infixation):

Sufixation: add characters to the right edge of w!
so that the result is w . For instance: belief-beliefs
is modeled by -s suffixation;

Suffixation with assimilation: remove 1 or 2 char-
acters from the right edge of w! and then add any
string of characters to the (new) right edge, so that
the result is w}: believe-believing is modeled by
-e/ing suffixation;

Full right reduplication; a string of length n on
the right edge of w} is suffixed to w} to form wy:
Fanbyak ini-inini ‘to shoot’ are modeled by full
right reduplication of 7i;

Partial-V right reduplication; all strings of one
or more vowels' in w} and w] are replaced by a
wildcard symbol ’@’, forming the new strings w%l

and wt Next a string s of the length n on the right

edge of wt is suffixed to wt to form wt, Gorwaa
guus-guusas are modeled this way, reduplicating
the final consonant, preceded by an ’a’)]

Partial-C right reduplication; all strings of one or
more consonants in w} and w{ are replaced by the
rlghtmost consonant in the string, forming the new
strings w} and wt Next, a string s of the length n
on the right edge of w}:/ 1s suffixed to wé/ to form

"Vowels are defined as all characters that through the

55591559!9

Python library unidecode become one of "a’, ’¢’, o, ’u,
’y’. Consonants are defined as any other character.

w{ . Partial-C left reduplication is more common:
Pangasinan (Rubino, 2001) transforms plato ‘plate’
into paplato ‘plates’ by taking the leftmost single
consonant and vowel of a string and adding them
to the left edge of that string.

Right infixation; for a pair of words w} and w{ ,
removing a string s° of length n from an anchor
a in w results in a new string th/, and removing
a string s7 of length m from the same anchor a
in w{ results in a string wt If wt is identical to
w] , the pair of words is modeled by a-anchored
right infixation. Anchors are structural positions
in the orthographic string constraining where the
infix is combined (Yu, 2007), and I use 4 here: be-
fore vs. after the last consonant cluster, and before
vs. after the last vowel cluster English gzve gave
are modeled by replacing s’ =i’ for s/ =’j’, given
that w} =w] ="gve’, anchored on a = before-last-
consonant-cluster.

Next, a best-first heuristic extracts a set of pro-
ductive transformations £}, from F'. The intuition
here is that a productive morphological transfor-
mation is one that models many word pairs. Let P
be the set of all word pairs (w!, w?) such that there
is at least one morphological family m for which
w; € m A w] € m, and Py all such word pairs
modeled by a transformation f. We then define the
best transformation fpes = arg maxy ]Pf\.Z Once
Jfoest 1 found, the word pairs in Py, are removed
from P, as are all other word pairs whose second
word is modeld by fyes. The procedure is repeated
until | Py, | falls below a threshold 6.

The derivations found through the best-first
heuristic afford two sources of constraints on the
application of £}, in the full vocabulary. First,
derivations form chains: bookings may have been

“Ties are broken first by morphological type, where the
ordering given above is followed, then by affix length (longer
affixes are preferred).



derived from booking with -s suffixation, after
which booking was derived from book through -ing
suffixation. We denote the chain or derivation d
as (-ing, -s), and we collect all attested chains of
transformations. Secondly, chains co-occur with
other chains — this can similarly help prevent over-
segmentation in ways set out below. For now, we
define a pair of chains of transformations d;, d; to
co-occur if there is at least one base form that mod-
els some w; through d; and some other w; through
d;.

Finally, an orthogonal procedure allows us to
find compounds, using the morphological fam-
ilies. We do so by inferring a set of compound
templates, strings of n elements. The template
consists of n — 1 fixed elements, and a blank spot
where another word wy € V; can go. We find
the set of reliable compound templates by iter-
ating over all m € M. For each word w € m,
we find all of its exhaustive splits w?, w’ for which
w' € V,Aw? € Vyandw® € mVw’! € m. The lat-
ter constraint provides evidence that this is indeed
a compound. For example, bauchgefuehl in Table
1 yields two potential compound patterns (bauch
+ _) and (_ + gefuehl), as both bauch ‘belly’ € V;
and gefuehl € V, with the latter moreover being
part of m as well (as can be seen in the table). If
a pair w’, w’ is found that forms a reliable com-
pound template, we recursively apply the procedure
to each element of the pair to see if further splits
can be found. The count of the reliable compound
templates is tracked across M, and all reliable com-
pound templates with a frequency of 6, or greater
are kept to constrain compounding in Step 3.

3.3 S3: Propagation to the full word list

The derivations obtained in Step 2 are typically
accurate, but only capture a small part of a lan-
guage’s vocabulary. First, not all morphologically
related words in the bitext are found in the same
morphological family m, but perhaps more impor-
tantly, we would like the unsupervised model to be
able to generalize beyond the bitext itself. As such,
Step 3 models the propagation of the productive
transformations F),, constrained by the set of chains
and chain co-occurrences, to a wordlist L, where
L may consist of all words in B, or some external
source.

First, for each word w € L, all transformations
chains that can apply to it are extracted and added
to a set of potential analyses A(w) of w. A chain
d = {(f1, f2,-.., fn) is applicable to a word w if,

for every transformation f, a new string w’ can be
derived by removing the string added by f from
the previously derived string w, where new strings
do not have to be in V;. The resulting new string
after successfully applying d to w is denoted s for
stem, and is added to a list of potential stems 5.

Every stem s € S now defines a set of words
D(s) = {w;,...,w,}, each of which derives s
through the application of a chain d. However,
some s with very large M (s) did not reflect co-
herent morphologically related groups of words.
For that reason, we impose a further constraint,
such that every derivational chain d modeling the
relation between a word w € D(s) and s has to be
found to co-occur, as defined in Step 2, with the
derivational chains of > |D(s)—1|x 3 other words
w' € D(s). If this is not the case, the word whose
derivation co-occurs with the fewest derivations of
the other words of D(s) is removed from D(s).
This procedure is repeated until the set consists
of one member, or the derivations of all words in
D(s) co-occur with > |D(s) — 1| x 1 other words
w' € D(s).

The central mechanism of this step is a best first
pass, similar to Step 2, except the model now iter-
atively finds the stem speq that models the largest
D(s) (with ties broken by stem length, preferring
shorter stems). Once found, all words in D (Spes)
are removed from D(s') for all stems s’ € S, and a
NEW Speg 18 determined.

After this pass is done, compounds are extracted
over all extracted spesy by applying the reliable
compound templates from Step 2. If the substring
s filling the blank is a word in V;, compounding
applies, and the new derivation has more than one
stem (potentially each with their own derivations).

4 DORECO-MORPH: crosslinguistic data

The representational potential of VORM, includ-
ing reduplication and infixation, exceeds the set of
morphological phenomena present in the datasets
typically used. Reduplication and infixation are
absent from widely used benchmark sets such as
Morphochallenge 2010 (Kurimo et al., 2010). One
dataset that can be fill this gap is DoReCo (https://
doreco.huma-num.fr/; Seifart et al., 2024), con-
sisting of 52 collections of transcribed fieldwork
materials in the same number of languages. Much
of these materials have interlinear glosses, exem-
plified in Table 2, where for each word, the mor-
phological analysis is given. Such data allow us to
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w melo bo lo
m melo bo lo

ghavilighue.
ghavi -li -ghu =e

g tuna go 3SG.M paddle -3SG.M.O -
NMLZ =EMPH
f “he went and fished bonito with it.”

Table 2: Interlinear Gloss; Savosavo (Wegener, 2024)

automatically derive a list of words with their mor-
phological analyses, which in turn can be used to
train (un)supervised morphological segmentation
systems and evaluate them.

The Supplemental Materials for this paper con-
tain a script for deterministically transforming the
corpus data into a dataset in the same format as
the Morphochallenge data, with word types linked
to their canonical and surface segmentation(s). In
particular, the unique words (the w layer in Table
2) are linked to all their morphological analyses,
represented as combinations of the morphemes (m)
and the glosses (g). An analysis of Savosavo ghav-
ilighue would thus be: ‘ghavi:paddle -1i:3SG.M.O
-ghu:NMLZ =e:EMPH’. Some preprocessing to
normalize orthography and glossing was applied.

These data can be readily used for computa-
tional morphology (and perhaps tasks such as
inter-linear gloss induction (?) and other multi-
lingually oriented tasks). The script also generates
a train/development/test split over the data to fa-
cilitate testing. While the derived data cannot be
reproduced, their generation is exactly reproducible
as long as the corpus remains public. The datasets
used, along with relevant statistics on the derived
data, are presented in Table 7 in the Appendices.
This table also gives the citation for each individual
language, required as part of the user agreement of
the corpus.

Furthermore, the table presents information on
the morphological profile of the 38 languages. Av-
erage word lengths across languages range from
4.98 to 14.20 in characters and 1.17 to 3.26 in
morphemes, thus representing a broad variety of
morphological complexity. While little evidence of
(the annotation of) infixation or base modification
was found among the languages, reduplication is
extensively represented in the corpus: a majority
of languages displays reduplication, with some lan-
guages having it in over 10% of their word types,
underscoring the point of Todd et al. (2022) that
reduplication is a phenomenon worth modeling.

5 Evaluation

5.1 Evaluation data and metrics

First, VORM is compared with other models on
two extant benchmark sets: Morphochallenge 2010
(MC10; Kurimo et al., 2010), with gold standard
data for English, Finnish, Turkish, and German
canonical and surface (for all but German) segmen-
tation, and the SIGMORPHON 2022 task on mor-
phological segmentation (SGM22; Batsuren et al.,
2022) involving Czech, English, French, Hungar-
ian, Italian, Latin, Mongolian, Russian, and Span-
ish surface segmentation. Third, we consider the
novel DORECO-MORPH dataset of 37 languages.

The standard metrics were applied: EMMA-2
(Virpioja et al., 2011) and Boundary Precision and
Recall (BPR) for the MC10 and DORECO-MORPH,
and the measure capturing morpheme identity in-
stead of boundaries released by Batsuren et al.
(2022) for SGM22.

5.2 Experimental set-up

The bitexts used in the experiments varied; for
the first two datasets, up to a million words of
bitext from Opus2018 (Lison and Tiedemann,
2016) subtitles from television and movies gathered
from http://www.opensubtitles.org/ were used.
Vietnamese was chosen as the reference language
for this experiment as it has little morphology, mak-
ing the word forms seed items with a broad scope.
Bitexts for German and Turkish were orthographi-
cally normalized to bring them in line with the test
data. For the DORECO-MORPH experiment, bitexts
based on the corpora themselves were generated,
using the words as well as the free translations (the
f layer in Table 2). Most free translations were in
English, but other languages were found as well —
the free translations were tokenized but otherwise
used as-is.

The model was tuned on the development
split (12% of the data for each language) in the
DORECO-MORPH data, the training split for MC10
and the development split for SGM22, to find op-
timal values for the free parameters ¢y (minimum
number of word pairs modeled by a transformation
in Step 2) and 6, (minimum number of compound
template occurrences for it to be used in Step 3)
using a grid search over a set of reasonable val-
ues, arriving at 6y = 60, 0. = 10 for the first two
datasets and 0 = 10, 0. = 10 for the DORECO-
MORPH data.
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EMMA-2 BPR
morf AG VORM | morf AG VORM
eng | 859 88.7 89.1 | 752 80.0 529
fin | 734 7777 958 | 62.8 71.1 125
ger | 80.9 859 95.7 n/a
tur | 61.3 69.3 95.6 | 64.6 789 16.1

Table 3: Model comparison on the development sets
for Morphochallenge 2010 [MC10] (eng = English, fin
= Finnish, ger = German, and tur = Turkish), compar-
ing Morfessor (Morf) and the best MorphAGram (AG)
model against VORM on EMMA-2 and BPR F1 scores.
The best result per language and per metric is boldfaced.

5.3 Comparison models

For the MC10 and SGM?22, I compare VORM
against published results. For DORECO-MORPH, I
use published software to run Morfessor2 (Virpioja
et al., 2013), ParaMA2 (Xu et al., 2020), Mor-
phAGram (Eskander et al., 2020) (in the language-
independent setting) as unsupervised models, and
Chipmunk (Cotterell et al., 2015), a supervised sta-
tistical model as a popular instance of the class of
supervised models. The unsupervised models were
trained on the full wordlists, and Chipmunk on the
training split (48% of the data), and were tested
on the test split (40% of the data). For all models,
off-the-shelf parameter settings were used.

6 Results

MorphoChallenge 2010 results. Table 3 presents
the results for MC10. On EMMA-2, the VORM
model presents an improvement over the best Mor-
phAGram variant for all four languages, with the
improvement being substantial for Finnish, Ger-
man, and Turkish. On BPR, conversely, VORM is
substantially outperformed by both Morfessor and
MorphAGram. This effect may be due to the dif-
ferences in what the two measures are picking up
on. EMMA-2 favours canonical morpheme iden-
tity, but, crucially, does not penalize allomorphy,
which is indistinguishable from undersegmentation
to the model. The same undersegmentation leads to
extremely low (often single digit) recall scores on
the BPR measure, thus suppressing the reported F1
scores. To be sure, VORM does segment — Finnish
elinalueeltaan ‘from their habitat’ is analyzed as
‘elinaluei + -i/en + -n/lta + -an’, with the reference
analysis giving ‘elin_N alue_N +ABL +3SGPL.
The model correctly identifies the Ablative case
and possessive marker, while missegmenting the

DeepSPIN-3  Morfessor2 VORM

ces 93.8 294 37.3
eng 93.6 37.7 35.2
fra 95.7 224 19.1
hun 98.7 41.0 40.7
ita 97.4 9.0 12.9
lat 99.4 14.5 22.2
rus 99.4 17.7 15.8
spa 99.0 20.6 15.6
avg 97.3 25.6 249

Table 4: Model comparison on the tests sets for the
SIGMORPHON 2022 challenge, for (ces = Czech, eng
= English, fra = French, hun = Hungarian, ), compar-
ing Morfessor2 and the best overall supervised model
(DeepSPIN-3) model against VORM on the Batsuren
et al. (2022) evaluation measure. The best unsupervised
result per language and per metric is boldfaced.

location of the morpheme boundary, and underseg-
menting the compound ‘elin + alue’.

SIGMORPHON 2022 results. For the SGM22,
the results are presented in Table 4. While no unsu-
pervised model comes anywhere near the results of
the supervised models (here, the best-performing
supervised model, DeepSPIN-3 (Peters and Mar-
tins, 2022) is given as a reference point), VORM oc-
casionally outranks Morfessor?2 in its performance.
Like with the BPR measure for the Morphochal-
lenge data, surface segmentation is not the model’s
strongest suit.

DORECO-MORPH. Finally, let us consider the
results on the novel dataset, the DORECO-MORPH
data. Table 5 present the aggregated results for
VORM and its comparison models over the 37 lan-
guages, with Table 8 presenting the F1-scores per
language. For the EMMA-2 F1-scores, we see that
VORM outperforms the other unsupervised models
for 21/37 languages. MorphAGram (AG in the ta-
ble) is the optimal model for 10 languages. While
the supervised Chipmunk model is the best overall
model in all but 7 languages, it is notable that it
is the VORM model has a higher EMMA-2 score
in 6 of those. This result lines up with the find-
ings for MC10, where we found VORM performing
well on this metric as well. For surface segmenta-
tion, measured with BPR, the performance is more
mixed: here, Chipmunk is consistently the best
overall model, with Morfessor2, ParaMA?2, and
VORM each being the best model for a similarly
sized set of languages.



EMMA-2 BPR
chip morf para AG vorm | chip morf para AG vorm
max? 5 1 10 21 7 18 12
avg. | 914 846 803 847 872|869 568 570 347 556
Ql 89.8 83.1 782 804 858|835 489 518 305 459
worst | 69.9 748 675 716 678|655 313 357 144 337

Table 5: Aggregated EMMA-2 & BPR F1 scores for the DoReCo dataset for [chip]munk (supervised), [Morf]essor2,
[Para]MA2 , Morph[AG]ram, and VORM. Best unsupervised results in bold; best overall results underlined.

6.1 Reduplication and base modification

word | babarak vivirigém
gold | ba:RED bara:long vi :RED virigé:rush
-k:TAM1 m:TAM1
chip | babarak vivirig + €ém
morf2 | babara + k vivi + rig + ém
para | babara + -k vi_rig + -vi- + -em
AG | babara +k vivi + rig + ém
vorm | ba +bara+-k  vi + virigé + -m

Table 6: Examples of reduplication in Vera’a (Schnell,
2024) and their analysis across models. Underscores
mark the infix slot; tildes mark reduplicative affixes.

To demonstrate the model’s capacity to analyze
reduplication, consider the examples in Table 6
with their analyses in the five models. We see that
only VORM gets the analysis correct, both in its sur-
face segmentations as well as in its canonical anal-
ysis, i.e., recognizing ba and vi as reduplicative
morphemes. Other models either undersegment
the left edge of the words, or missegment the word
(paraMA, morfessor2).

None of our languages has productive base modi-
fication processwa, but German has some, in nom-
inal plurals and past tense. Given the low type
frequency of these processes, the tuned model for
the Morphochallenge dataset did not learn these
patterns, but a model considered during the tuning
phase, with 0 = 30, did analyze huehnerbesitzer
‘chicken owner’ correctly as ‘hu_hn + -e- + -er +
besitz + -er’ and geldbetraege ‘sums of money’ as
‘geldbetra_g -e- + -€’

7 Discussion

This paper introduces a novel unsupervised mor-
phological segmentation system, VORM, which
uses translation-equivalency to narrow down the set
of word pairs on which the inferred morphological
transformations are based. Along with affixation,

the model has the representational capactity for
base-modifying transformations as well as redupli-
cation. The grammar induction takes place through
a pair of heuristic, best-first processes. In doing
s0, the model stands in a tradition of unsupervised
morphological segmentation that does not consider
very large parts of the hypothesis space (Lignos,
2010; Xu et al., 2020). Rather than an imperfect
approximation of some more global optimization, I
believe the fact that these models consistently do so
well reflects the nature of the induction problem,
whereby aspects of the usage of morphological
transformations (how many words they model, how
large the groups of morphologically related words
are modeled by the same stem) that are known to
affect learning and processing in humans guide the
model to fairly correct answers.

This paper forms the first attempt at using the
translation signal; while the morphological fami-
lies that are inferred through it seem accurate, the
heuristic procedure of Steps 2 and 3 introduces
error, mostly by undersegmenting, but also, less
frequently, by over or missegmenting. We have
seem in the experiments that this may lead to an ex-
tremely low recall on metrics where the exact mor-
pheme identity (and their boundaries) is at stake,
like BPR and the measure of (Batsuren et al., 2022).
This seems like the main obstacle for the model to
be overcome. Conversely, it’s superior performance
on the EMMA-2 metric suggests that the model has
good potential in identifying, with a high accuracy,
the morphemes that linguists would recognize.

Further exploration on the DORECO-MORPH
dataset can prove fruitful in identifying more spe-
cific morphological challenges to be modeled.
Through such exploration, and more detailed anal-
ysis of model performance on different challenges,
the landscape of what unsupervised learners have
to contend with might become more clear. With
this paper, I hope to have made a first move in that
direction.
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A Detailed data table for
DORECO-MORPH

This Appendix contains the information on the
components of the DoReCo corpus used, presented
in Table 7

B Results by language for
DORECO-MORPH
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sults broken down per language.
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glottocode language family area reference n types nC oM % rdp
apah1238  Yali Nuclear Trans PNS Riesberg (2024) 2474 6.26 1.82
New Guinea
arapl274  Arapaho Algic NAM  Cowell (2024) 4483 14.20 2.37 9.32
bain1259  Bainounk Atlantic- AFR  Cobbinah (2024) 3598 6.59 2.74 0.33
Gubéeher Congo
bejal238  Beja Afro-Asiatic AFR  Vanhove (2024) 7280 7.40 2.51 1.22
boral263  Bora Boran SAM  Seifart (2024) 10723  9.39 2.52
cabel245  Cabécar Chibchan NAM  Quesada et al. (2024) 2852  6.24 1.66
cash1254  Cashinahua Pano-Tacanan SAM  Reiter (2024) 2221 7.63 222
dolg1241  Dolgan Turkic ERS Dibritz et al. (2024) 5579 8.04 243  0.02
evenl259  Evenki Tungusic ERS Kazakevich and Klyachko 5124 7.37 1.17
(2024)
goem1240 Goemai Afro-Asiatic AFR Hellwig (2024) 1327 5.14 1.40 0.23
gorol270  Gorwaa Afro-Asiatic AFR  Harvey (2024) 3652 643 1.96 2.11
hoch1243  Hoocak Siouan NAM  Hartmann (2024) 2630 8.66 2.35 0.34
jehal242 Jahai Austroasiatic  ERS Burenhult (2024) 913 571 1.56 6.57
jejul234 Jejuan Koreanic ERS Kim (2024) 3624  6.85 2.07
kakal265 Kakabe Mande AFR Vydrina (2024) 4338 5.64 1.52
kamal351 Kamas Uralic ERS Gusev et al. (2024) 4952 749 227
komn1238 Komnzo Yam PNS Dohler (2024) 6182 8.06 2.35 1.36
movil243  Movima Isolate SAM  Haude (2024) 2088  8.16 2.37 4.69
ngal1292  Dalabon Gunwinyguan AUS Ponsonnet (2024) 865 10.74 3.20 7.28
nisvl234  Nisvai Austronesian ~ PNS Aznar (2024) 2436  6.00 1.78 5.99
nnggl234  Niing Tuu AFR  Giildemann et al. (2024) 1819 540 1.32 0.16
nort2641 Northern Indo- ERS Haig et al. (2024) 2186 542 1.72 0.14
Kurdish European
nort2875 Northern Austronesian ~ PNS Garcia-Laguia (2024) 2046  6.95 191 4.64
Alta
orko1234  Fanbyak Austronesian ~ PNS Franjieh (2024) 1298 5.09 1.35 0.15
pnar1238  Pnar Austroasiatic  ERS Ring (2024) 2560 590 1.68
port1286 Daakie Austronesian ~ PNS Krifka (2024) 962 5.10 1.18 1.35
ruul1235 Ruuli Atlantic- AFR  Witzlack-Makarevich 4094  8.27 2.80 0.68
Congo et al. (2024)
sanz1248  Sanzhi Nakh- ERS Forker and Schiborr 1612 7.20 2.57
Dargwa Daghestanian (2024)
savol255  Savosavo Isolate PNS Wegener (2024) 1872  6.61 1.87 3.21
sout2856 Nafsan Austronesian ~ PNS Thieberger (2024) 3046 5.69 1.59 0.36
sumil235  Siimi Sino-Tibetan =~ ERS Teo (2024) 3252 6.38 242
tabal259 Tabasaran Nakh- ERS Bogomolova et al. (2024) 1861 629 235
Daghestanian
teop1238  Teop Austronesian ~ PNS Mosel (2024) 1093 545 141 9.06
texil237 Texistepec ~ Mixe-Zoque NAM  Wichmann (2024) 1833  7.59 2.57 3.27
Popoluca
trin1278 Mojeno Arawakan SAM  Rose (2024) 5113 9.23 3.26 1.10
Trinitario
urum1249  Urum Turkic ERS Skopeteas et al. (2024) 5675 747 217
veral241 Vera’a Austronesian ~ PNS Schnell (2024) 1771 498 145 11.80

Table 7: Languages in the DORECO-MORPH dataset. ‘nC’ = average number of characters; ‘nM’ = average number
of morpheme per word type. % rdp gives the percentage of tokens containing reduplication. The macroareas are:
PNS = Papunesia, NAM = North America, SAM = South America, AFR = Africa, ERS = Eurasia, AUS = Australia.
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EMMA-2 BPR
chip morf para AG vorm|chip morf para AG vorm

apah |90.2 83.7 83.8 80.4 82.8|88.2 62.4 53.0 32.2 68.5
arap |92.9 89.8 70.2 90.5 87.7|65.5 31.3 35.7 15.8 36.7
bain [95.8 74.8 80.2 93.3 89.3|87.8 40.5 46.8 37.4 364
beja [89.8 81.9 80.9 89.5 94.8/78.9 43.6 47.5 30.5 33.8
bora [87.3 76.7 67.5 86.6 92.7|82.8 47.2 51.4 32.7 33.7
cabe |94.2 83.2 82.7 77.6 89.2192.7 59.7 63.5 35.8 74.4
cash |95.0 86.1 81.9 87.5 90.1/90.7 48.9 51.8 34.2 36.6
dolg [95.9 84.9 81.6 88.4 89.9(88.9 50.6 53.0 28.7 45.2
even [69.9 81.8 81.4 78.6 79.3/94.2 48.2 75.2 144 68.8
goem |95.5 90.2 84.1 80.2 93.9|95.1 77.7 65.5 42.6 80.1
goro (82.6 81.0 79.3 81.1 86.3|82.7 57.8 57.2 24.4 60.8
hoch {904 87.5 78.8 87.5 80.7|81.9 52.9 58.0 37.4 58.4
jeha 934 91.5 90.0 84.1 89.9|89.5 67.7 69.1 32.9 69.7
jeju [93.8 86.1 82.0 86.6 86.3|87.3 51.7 56.2 39.8 53.1
kaka [82.7 82.4 82.5 79.8 87.6/89.9 68.1 68.3 26.7 63.1
kama [95.3 85.0 87.6 91.5 94.7|87.3 45.6 47.9 29.8 459
komn|92.5 829 78.8 91.6 92.7|82.7 47.8 49.2 34.4 36.2
movi |89.8 854 76.2 86.1 81.085.7 51.4 57.7 31.6 47.8
ngal |94.8 87.3 67.9 884 67.8|187.2 48.9 50.2 32.4 425
nisv [94.7 87.4 85.7 87.4 90.5|91.2 64.5 60.3 47.2 60.5
nngg [91.6 88.5 80.4 71.6 87.5|91.7 75.8 61.5 247 69.8
nort [93.6 83.1 85.5 85.1 90.4|89.7 60.1 64.0 39.0 56.7
nort |86.8 83.3 79.6 85.5 78.7|76.0 58.8 62.1 32.0 64.8
orko |88.9 83.8 78.2 77.0 87.7|85.3 67.9 59.4 35.2 76.7
pnar [95.1 88.3 84.0 85.6 89.8/94.5 68.6 59.4 454 75.8
port [90.3 86.7 83.6 75.1 89.6|94.6 77.0 74.1 40.5 89.9
ruul [91.9 84.0 73.9 87.6 87.7|78.4 43.0 50.6 289 51.1
sanz |94.4 85.8 76.4 85.7 74.6|87.7 51.3 59.4 28.2 56.8
savo |90.9 879 83.8 87.3 90.4/854 60.0 52.7 48.1 46.5
sout [92.7 86.3 84.7 83.9 91.2/89.4 68.2 60.0 40.2 61.3
sumi (94.2 85.1 85.1 86.7 92.4(92.7 57.1 54.1 47.1 50.0
taba [91.8 79.5 81.2 86.1 83.1|83.2 50.5 55.6 36.5 50.8
teop [89.5 85.0 77.2 76.5 84.2|88.2 75.4 58.3 443 544
texi [92.2 77.0 76.1 86.0 85.8|83.5 50.6 53.9 34.5 53.6
trin |96.7 83.9 73.1 91.0 86.0|87.7 44.7 47.9 35.0 40.7
urum [95.8 87.1 86.0 87.0 91.3|92.4 59.4 60.9 39.0 514
vera |87.3 83.8 78.8 78.1 87.4|84.6 68.1 59.0 43.2 53.7

avg. |91.4 84.6 80.3 84.7 87.2186.9 56.8 57.0 34.7 55.6
Q1 |89.8 83.1 78.2 80.4 85.8/83.5 48.9 51.8 30.5 459
worst |69.9 74.8 67.5 71.6 67.8|65.5 31.3 35.7 144 33.7

Table 8: EMMA-2 and BPR F1 scores for the DoReCo dataset for [chip]munk (supervised), Morfessor2 [morf2],
ParaMA?2 [para], MorphAGram [AG], and VORM. Best unsupervised results per language are in bold. Best overall
results per language are underlined
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