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Abstract001

This paper introduces VORM, an unsupervised002
morphological segmentation system, leverag-003
ing translation data to infer highly accurate004
morphological transformations, including less-005
frequently modeled processes such as infixation006
and reduplication. The system is evaluated on007
standard benchmark data, as well as on a novel008
dataset of 37 typologically diverse languages.009
In both cases, its results compare favourably to010
other unsupervised systems.011

1 Introduction012

While supervised neural models achieve near-013

ceiling performance on morphological segmenta-014

tion (Batsuren et al., 2022), unsupervised systems015

leave ample room for improvement, despite sub-016

stantial progress over the years (Virpioja et al.,017

2013; Narasimhan et al., 2015; Eskander et al.,018

2020; Xu et al., 2020). While supervised tech-019

niques can be used for several dozen languages,020

corpus data and word lists are available for many021

more — progress on unsupervised learning is thus022

desirable to improve the cross-linguistic applica-023

bility of such systems. The downstream benefit024

of morphological segmentation for training lan-025

guage models has been debated (Sälevä and Lig-026

nos, 2023), but good morphological segmenta-027

tion can also support linguistic insight: training028

and applying a good unsupervised morphologi-029

cal segmentation procedure to study patterns in030

massively parallel corpora (Liu et al., 2023) can031

help identify functional morphemes, such as tense032

and case, across languages, and may be a compo-033

nent of semi-automated interlinear-glossing meth-034

ods (McMillan-Major, 2020).035

Especially with the latter, practical, goals in036

mind, Contribution #1 of this paper is an unsu-037

pervised morphological segmentation system that038

leverages parallel translation data and best-first039

heuristics inspired by Lignos (2010) to severely040

constrain the hypothesis space. This allows it to 041

infer the applicability of a broader array of morpho- 042

logical processes (infixation, stem change, redu- 043

plication) while maintaining high precision. The 044

system outperforms, for some metrics that more 045

closely reflect canonical than surface segmentation, 046

state-of-the-art unsupervised morphological mod- 047

els on canonical segmentation across two bench- 048

mark tests, Morphochallenge 2010 (Kurimo et al., 049

2010) and the SIGMORPHON 2022 task on mor- 050

phological segmentation (Batsuren et al., 2022). 051

With those linguistic goals in mind, evaluation 052

on a more diverse set of languages is further de- 053

sirable. The two benchmark testsets reflect only 054

a small part of the diversity in morphological ty- 055

pology, with extremely common processes, like 056

reduplication (Todd et al., 2022), not represented 057

among them. Furthermore, all languages come 058

from the Eurasian continent, thus reflecting an are- 059

ally narrow set of languages. Contribution #2 of 060

this paper is to present a method of using a corpus 061

of interlinearly-glossed fieldwork data in 37 typo- 062

logically and areally more diverse languages (Sei- 063

fart et al., 2024) to generate (both supervised and 064

unsupervised) training data as well as evaluation 065

data with a reproducible training/development/test 066

split. 067

Materials for the project are at 068

https://osf.io/bew3q/?view_only= 069

259303d2c7814c4b9566f997dcbb1d7e. Af- 070

ter further introducing the backgrounds to this 071

work (§2), I will introduce the novel system 072

(§3) and the cross-linguistic data (§4). The 073

experimentation will be set out in §5, with its 074

empirical results in §6. 075

2 Background 076

2.1 Unsupervised morphological segmentation 077

The Morfessor model (Virpioja et al., 2013) is the 078

de facto baseline for unsupervised morphological 079
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segmentation. It leverages word-internal statisti-080

cal patterns of character sequences, similarly to081

Byte Pair Encoding (Gage, 1994), commonly used082

to preprocess text for training language models.083

Both techniques lead to surface segmentations of084

the input string. A recent, linguistically inspired,085

model that leads to surface segmentations is (Es-086

kander et al., 2020), which trains Adaptor Gram-087

mars (Johnson et al., 2006) on surface strings, rep-088

resenting morphological segmentation as a context-089

free grammar parsing problem.090

Other unsupervised models leverage the insight091

that morphological processes do not merely carve092

up a surface string, but transform base forms into093

derived forms, that are often not just superstrings of094

the base form – transforming believe into believing095

requires dropping the e. Modeling such processes096

accurately would allow us to represent the canon-097

ical segmentation (Kann et al., 2016) of a surface098

string, i.e., recognizing that believe in the (surface099

segmented form) believ+ing is the same canonical100

morpheme as in believe+s.101

An early exponent of this class of models is102

Morsel (Lignos, 2010), which uses a best-first103

heuristic that maximizes the data coverage of the in-104

ferred transformations, leading to derivations con-105

sisting of chains of transformations. A similar idea,106

but leveraging more global optimization over the107

search space of transformations can be found in108

Morphochains (Narasimhan et al., 2015) and Mor-109

phoforests (Luo et al., 2017). Like Morphoforests,110

ParaMA2 (Xu et al., 2020) explicitly considers111

paradigms, groups of transformations that co-occur112

as a further building block to their model, on top113

of using the idea that transformations form chains.114

Here, I adopt many of the premises of the cited115

works: leveraging heuristics, considering word116

pairs and paradigms as ways to constrain the search117

space, and representing morphological processes118

as transformations.119

2.2 Leveraging translations120

Parallel translation data has, in several domains,121

been proven to help guide (otherwise) unsupervised122

models towards the right sectors of the hypothe-123

sis space. Most pertinently, Rice et al. (2024) use124

translations of a target language to a reference lan-125

guage to provide an additional semantic signal in a126

supervised system, in similar ways to (Narasimhan127

et al., 2015) and Schone and Jurafsky (2001), to128

determine morphological segmentation: formally129

overlapping words in the target language translat-130

ing to the same or semantically similar words in 131

the reference language are thus more likely to be 132

segmented similarly. 133

Beyond morphology, translation data has been 134

used to project structure of a better-resourced ref- 135

erence language to a target language – examples 136

are PoS tagging and grammatical structure (Jo- 137

hannsen et al., 2016). Word-sense disambiguation 138

has been shown to benefit from using translation 139

data, given that distinct senses often translate dif- 140

ferently (Apidianaki, 2008; Hauer and Kondrak, 141

2023). Shared between all cases, is the idea that 142

a reference language provides insight in the latent 143

structure (semantic distinctions, grammatical re- 144

lations, shared morphological material) of the tar- 145

get language, either through the projection of that 146

structure or through the variation in the patterns of 147

translation themselves. My approach leverages this 148

latter type of signal. 149

2.3 Morphological typology 150

When we approach unsupervised morphological 151

segmentation as a task of being able to induce for 152

any language the morphological segments, canon- 153

ical or superficial, without having access to the 154

correct segments to train on, considering the vari- 155

ation in morphological processes is of relevance. 156

A typologically-oriented overview is (Haspelmath 157

and Sims, 2010), who draws on the distinction be- 158

tween free morphemes (which can occur as a word 159

by themselves) and bound morphemes (which can- 160

not) to list the following basic processes. 161

First,affixation involves concatenating bound 162

morphemes to a free morpheme, such as believe 163

+ -ing. This includes infixation, whereby a bound 164

morpheme is located inside the free morpheme – 165

such as the Tagalog ‘agent trigger’ morpheme - 166

um- forming s-um-alat ‘wrote’ out of salat ‘write’. 167

Next, compounding involves concatenating two or 168

more free morphemes, like boathouse from boat 169

and house. Third, reduplication means reproduc- 170

ing a part of a free morpheme on either end of 171

that morpheme – marginal in English house house 172

‘a real house’, but widely productive in other lan- 173

guages, e.g. duhp ‘dive’ → du-duhp ‘be diving’ 174

(Ponapean). Fourth, base modification involves 175

changing the string ‘inside of’ the free morpheme, 176

like Germanic ablaut – gave as the past tense of 177

give. Finally, conversion: leaving the form unal- 178

tered but changing e.g., the grammatical category, 179

e.g., hammer as a noun, converted into a verb; 180

Given this diversity, the focus on (non- 181
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reduplicative) affixation is narrow. Reduplication182

is, for instance, extremely common: >80% of lan-183

guages are described to have some form of redu-184

plication (Rubino, 2013). A smaller proportion185

of languages has stem-internal modifications such186

as ablaut (vowel change) or tone change (Bickel187

and Nichols, 2013). (Yu, 2007) finds infixation188

in 111 languages of 26 language families. Vari-189

ous forms of base modification similarly happen190

across the world’s languages: Standard Arabic191

has stem-internal gemination as the morphological192

causative (waqafa ‘stop (intransitive)’ → waqqafa193

‘stop (transitive)’).194

Surface segmentation models such as Morfessor195

and MorphAGram inherently rule out infixation196

and base modification, and typically don’t provide197

ways of identifying reduplication as distinct from198

regular affixation (but see Todd et al., 2022 for an199

extention of Morfessor doing exactly that). Most200

models of canonical segmentation do not consider201

processes of reduplication and base modification,202

with notable exceptions being ParaMA2 (Xu et al.,203

2020). The present work intends to develop this204

line of research.205

3 The VORM model206

The proposed model, VORM (‘Vertaling Onderste-207

unt Redelijke Morphologie’ – Dutch for ‘Transla-208

tion supports reasonable morphology’) is a heuris-209

tic system that leverages translation equivalency210

in a reference corpus to find an initial set of mor-211

phological transformations, which it then applies212

more broadly. The model consists of three steps:213

Determining potential morphological families,214

which guide the Learning of productive mor-215

phological transformations. Third, the learned216

transformations are applied beyond the potential217

morphological families in a Propagation to the218

full word list step.219

3.1 S1: Determining morphological families220

One recurrent challenge in unsupervised systems221

that use word pairs (Narasimhan et al., 2015; Xu222

et al., 2020) is to avoid oversegmentation. Recur-223

rent phonotactic/orthographical patterns may give224

the suggestion of a morphological transformation225

where there isn’t one. (Narasimhan et al., 2015)226

use distributional semantic information to nudge227

the model away from unrelated pairs and towards228

related pairs, building on the insight of (Schone229

and Jurafsky, 2001) that distributional semantic230

representations link morphological variants. Here, 231

I propose to use another way to constrain the com- 232

parison: translations, available for many languages. 233

The general procedure is as follows: we 234

consider a bitext B of translations between t 235

and a reference language r, defined as B = 236

[⟨u1r , u1t ⟩, ⟨u2r , u2t ⟩, . . . ⟨unr , unt ⟩], meaning that B 237

consists of an ordered list of paired utterances 238

⟨ur, ut⟩ that are translation equivalent utterances. 239

Let further the utterances u1l . . . u
n
l for a language 240

l be made up of words from some vocabulary Vl. 241

The objective is to retrieve sets of word types 242

in t that are likely morphologically related to each 243

other, to feed into the next step. We call such a set a 244

‘morphological family’ (cf. Nagy et al., 1989), de- 245

noted m ∈ M where M is the set of morphological 246

families found. Several functions could be defined 247

mapping the bitext B onto the set of morpholog- 248

ical families M – standard alignment procedures 249

might be used, were it not for the fact that morpho- 250

logically rich target languages have a long tail of 251

morphologically complex hapax legomena which 252

risk not getting accurately aligned. 253

Instead, I designed this procedure by integrat- 254

ing the forward step of the LIU Conceptualizer 255

model, which, given a seed word wr in r itera- 256

tively finds character substrings [c1t , c
2
t , . . . c

n
t ] of 257

words in t whose distribution across the utterances 258

in B is statistically most strongly associated with 259

the distribution of wr. Each such substring ct de- 260

fines a morphological family m as all word types 261

w1
t , w

2
t , . . . w

n
t that (1) contain ct as a substring, 262

and (2) occur in an utterance uit whose aligned 263

counterpart in r, uir contains the seed word wr. 264

Examples of families for two languages, using 265

the seed language (Vietnamese) and corpora in- 266

troduced below, are given in Table 1. Vietnamese 267

cảm ‘feel’ has two ct: $danke$ (where $ denotes 268

a word boundary) and fuehl. The former has an 269

m containing only danke itself, whereas the latter 270

matches several dozens words in the bitext lines 271

it co-occurs in with cảm, all containing the fuehl 272

stem. Vietnamese cần ‘need’, similarly has two as- 273

sociated substrings in Turkish, $ihtiya and $gerek, 274

each with large, and mostly morphologically re- 275

lated, morphological families. 276

3.2 S2: Learning productive transformations 277

The morphological families are next used to learn 278

productive generalizations. This procedure closely 279

follows Morsel (Lignos, 2010). Step 2 starts with 280

initializing a set F of candidate transformations 281
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languagewr ct m

German cảm $danke$ danke
cảm fuehl bauchgefuehl ehrgefuehl f fuehl fuehle fuehlen fuehlich fuehlst fuehlt fuehlte

fuehlten gefuehl gefuehle gefuehlen gefuehllos (40 more)

Turkish cần $ihtiya ihtiyaC ihtiyaClar ihtiyaClarI ihtiyaClarInI ihtiyaClarInIn ihtiyaClarInIz
ihtiyaClarIna ihtiyaCtan ihtiyac ihtiyacI ihtiyacIm ihtiyacImIz (30 more)

cần $gerek gerek gerekCe gerekCelerle gerekCemi gerekebilecek gerekebilir gerekecek
gerekecektir gereken gerekenden gerekenler gerekenlerden (100 more)

Table 1: Examples of extracted morphological families. Orthography follows the Morphochallenge 2010 format.

f1, f2, . . . , fn. The procedure iterates over all m ∈282

M . For each m, each 2-permutations of words283

(wi
t, w

j
t ) in m is considered. All transformations284

build from a set of allowed transformation Fall that285

transform wi
t into wj

t are added to F .286

Fall is defined to represent the typological di-287

versity of morphological processes. The following288

are the allowed transformations on the right edge289

of the string; symmetrical counterparts are defined290

for the left edge (prefixation (with assimilation),291

full/partial-V/partial-C left reduplication, resp.292

left infixation):293

Sufixation: add characters to the right edge of wi
t294

so that the result is wj
t . For instance: belief -beliefs295

is modeled by -s suffixation;296

Suffixation with assimilation: remove 1 or 2 char-297

acters from the right edge of wi
t and then add any298

string of characters to the (new) right edge, so that299

the result is wj
t : believe-believing is modeled by300

-e/ing suffixation;301

Full right reduplication; a string of length n on302

the right edge of wi
t is suffixed to wi

t to form wj
t :303

Fanbyak ini-inini ‘to shoot’ are modeled by full304

right reduplication of ñi;305

Partial-V right reduplication; all strings of one306

or more vowels1 in wi
t and wj

t are replaced by a307

wildcard symbol ’@’, forming the new strings wi′
t308

and wj′

t . Next, a string s of the length n on the right309

edge of wi′
t is suffixed to wi′

t to form wj′

t : Gorwaa310

guus-guusas are modeled this way, reduplicating311

the final consonant, preceded by an ’a’)l312

Partial-C right reduplication; all strings of one or313

more consonants in wi
t and wj

t are replaced by the314

rightmost consonant in the string, forming the new315

strings wi′
t and wj′

t . Next, a string s of the length n316

on the right edge of wi′
t is suffixed to wi′

t to form317

1Vowels are defined as all characters that through the
Python library unidecode become one of ’a’, ’e’, ’i’, ’o’, ’u’,
’y’. Consonants are defined as any other character.

wj′

t . Partial-C left reduplication is more common: 318

Pangasinan (Rubino, 2001) transforms plato ‘plate’ 319

into paplato ‘plates’ by taking the leftmost single 320

consonant and vowel of a string and adding them 321

to the left edge of that string. 322

Right infixation; for a pair of words wi
t and wj

t , 323

removing a string si of length n from an anchor 324

a in wi
t results in a new string wi′

t , and removing 325

a string sj of length m from the same anchor a 326

in wj
t results in a string wj′

t . If wi′
t is identical to 327

wj′

t , the pair of words is modeled by a-anchored 328

right infixation. Anchors are structural positions 329

in the orthographic string constraining where the 330

infix is combined (Yu, 2007), and I use 4 here: be- 331

fore vs. after the last consonant cluster, and before 332

vs. after the last vowel cluster. English give-gave 333

are modeled by replacing si = ’i’ for sj = ’j’, given 334

that wi′
t =wj′

t =’gve’, anchored on a = before-last- 335

consonant-cluster. 336

Next, a best-first heuristic extracts a set of pro- 337

ductive transformations Fp from F . The intuition 338

here is that a productive morphological transfor- 339

mation is one that models many word pairs. Let P 340

be the set of all word pairs (wi
t, w

j
t ) such that there 341

is at least one morphological family m for which 342

wi
t ∈ m ∧ wj

t ∈ m, and Pf all such word pairs 343

modeled by a transformation f . We then define the 344

best transformation fbest = argmaxf |Pf |.2 Once 345

fbest is found, the word pairs in Pfbest are removed 346

from P , as are all other word pairs whose second 347

word is modeld by fbest. The procedure is repeated 348

until |Pfbest | falls below a threshold θf . 349

The derivations found through the best-first 350

heuristic afford two sources of constraints on the 351

application of Fp in the full vocabulary. First, 352

derivations form chains: bookings may have been 353

2Ties are broken first by morphological type, where the
ordering given above is followed, then by affix length (longer
affixes are preferred).
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derived from booking with -s suffixation, after354

which booking was derived from book through -ing355

suffixation. We denote the chain or derivation d356

as ⟨-ing, -s⟩, and we collect all attested chains of357

transformations. Secondly, chains co-occur with358

other chains – this can similarly help prevent over-359

segmentation in ways set out below. For now, we360

define a pair of chains of transformations di, dj to361

co-occur if there is at least one base form that mod-362

els some wi through di and some other wj through363

dj .364

Finally, an orthogonal procedure allows us to365

find compounds, using the morphological fam-366

ilies. We do so by inferring a set of compound367

templates, strings of n elements. The template368

consists of n− 1 fixed elements, and a blank spot369

where another word wt ∈ Vt can go. We find370

the set of reliable compound templates by iter-371

ating over all m ∈ M . For each word w ∈ m,372

we find all of its exhaustive splits wi, wj for which373

wi ∈ Vt∧wj ∈ Vt and wi ∈ m∨wj ∈ m. The lat-374

ter constraint provides evidence that this is indeed375

a compound. For example, bauchgefuehl in Table376

1 yields two potential compound patterns ⟨bauch377

+ _⟩ and ⟨_ + gefuehl⟩, as both bauch ‘belly’ ∈ Vf378

and gefuehl ∈ Vf , with the latter moreover being379

part of m as well (as can be seen in the table). If380

a pair wi, wj is found that forms a reliable com-381

pound template, we recursively apply the procedure382

to each element of the pair to see if further splits383

can be found. The count of the reliable compound384

templates is tracked across M , and all reliable com-385

pound templates with a frequency of θc or greater386

are kept to constrain compounding in Step 3.387

3.3 S3: Propagation to the full word list388

The derivations obtained in Step 2 are typically389

accurate, but only capture a small part of a lan-390

guage’s vocabulary. First, not all morphologically391

related words in the bitext are found in the same392

morphological family m, but perhaps more impor-393

tantly, we would like the unsupervised model to be394

able to generalize beyond the bitext itself. As such,395

Step 3 models the propagation of the productive396

transformations Fp, constrained by the set of chains397

and chain co-occurrences, to a wordlist L, where398

L may consist of all words in B, or some external399

source.400

First, for each word w ∈ L, all transformations401

chains that can apply to it are extracted and added402

to a set of potential analyses A(w) of w. A chain403

d = ⟨f1, f2, . . . , fn⟩ is applicable to a word w if,404

for every transformation f , a new string w′ can be 405

derived by removing the string added by f from 406

the previously derived string w, where new strings 407

do not have to be in Vt. The resulting new string 408

after successfully applying d to w is denoted s for 409

stem, and is added to a list of potential stems S. 410

Every stem s ∈ S now defines a set of words 411

D(s) = {wi, . . . , wn}, each of which derives s 412

through the application of a chain d. However, 413

some s with very large M(s) did not reflect co- 414

herent morphologically related groups of words. 415

For that reason, we impose a further constraint, 416

such that every derivational chain d modeling the 417

relation between a word w ∈ D(s) and s has to be 418

found to co-occur, as defined in Step 2, with the 419

derivational chains of ≥ |D(s)−1|× 1
2 other words 420

w′ ∈ D(s). If this is not the case, the word whose 421

derivation co-occurs with the fewest derivations of 422

the other words of D(s) is removed from D(s). 423

This procedure is repeated until the set consists 424

of one member, or the derivations of all words in 425

D(s) co-occur with ≥ |D(s)− 1| × 1
2 other words 426

w′ ∈ D(s). 427

The central mechanism of this step is a best first 428

pass, similar to Step 2, except the model now iter- 429

atively finds the stem sbest that models the largest 430

D(s) (with ties broken by stem length, preferring 431

shorter stems). Once found, all words in D(sbest) 432

are removed from D(s′) for all stems s′ ∈ S, and a 433

new sbest is determined. 434

After this pass is done, compounds are extracted 435

over all extracted sbest by applying the reliable 436

compound templates from Step 2. If the substring 437

s filling the blank is a word in Vt, compounding 438

applies, and the new derivation has more than one 439

stem (potentially each with their own derivations). 440

4 DORECO-MORPH: crosslinguistic data 441

The representational potential of VORM, includ- 442

ing reduplication and infixation, exceeds the set of 443

morphological phenomena present in the datasets 444

typically used. Reduplication and infixation are 445

absent from widely used benchmark sets such as 446

Morphochallenge 2010 (Kurimo et al., 2010). One 447

dataset that can be fill this gap is DoReCo (https:// 448

doreco.huma-num.fr/; Seifart et al., 2024), con- 449

sisting of 52 collections of transcribed fieldwork 450

materials in the same number of languages. Much 451

of these materials have interlinear glosses, exem- 452

plified in Table 2, where for each word, the mor- 453

phological analysis is given. Such data allow us to 454
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w melo bo lo ghavilighue.
m melo bo lo ghavi -li -ghu =e
g tuna go 3SG.M paddle -3SG.M.O -

NMLZ =EMPH
f “he went and fished bonito with it.”

Table 2: Interlinear Gloss; Savosavo (Wegener, 2024)

automatically derive a list of words with their mor-455

phological analyses, which in turn can be used to456

train (un)supervised morphological segmentation457

systems and evaluate them.458

The Supplemental Materials for this paper con-459

tain a script for deterministically transforming the460

corpus data into a dataset in the same format as461

the Morphochallenge data, with word types linked462

to their canonical and surface segmentation(s). In463

particular, the unique words (the w layer in Table464

2) are linked to all their morphological analyses,465

represented as combinations of the morphemes (m)466

and the glosses (g). An analysis of Savosavo ghav-467

ilighue would thus be: ‘ghavi:paddle -li:3SG.M.O468

-ghu:NMLZ =e:EMPH’. Some preprocessing to469

normalize orthography and glossing was applied.470

These data can be readily used for computa-471

tional morphology (and perhaps tasks such as472

inter-linear gloss induction (?) and other multi-473

lingually oriented tasks). The script also generates474

a train/development/test split over the data to fa-475

cilitate testing. While the derived data cannot be476

reproduced, their generation is exactly reproducible477

as long as the corpus remains public. The datasets478

used, along with relevant statistics on the derived479

data, are presented in Table 7 in the Appendices.480

This table also gives the citation for each individual481

language, required as part of the user agreement of482

the corpus.483

Furthermore, the table presents information on484

the morphological profile of the 38 languages. Av-485

erage word lengths across languages range from486

4.98 to 14.20 in characters and 1.17 to 3.26 in487

morphemes, thus representing a broad variety of488

morphological complexity. While little evidence of489

(the annotation of) infixation or base modification490

was found among the languages, reduplication is491

extensively represented in the corpus: a majority492

of languages displays reduplication, with some lan-493

guages having it in over 10% of their word types,494

underscoring the point of Todd et al. (2022) that495

reduplication is a phenomenon worth modeling.496

5 Evaluation 497

5.1 Evaluation data and metrics 498

First, VORM is compared with other models on 499

two extant benchmark sets: Morphochallenge 2010 500

(MC10; Kurimo et al., 2010), with gold standard 501

data for English, Finnish, Turkish, and German 502

canonical and surface (for all but German) segmen- 503

tation, and the SIGMORPHON 2022 task on mor- 504

phological segmentation (SGM22; Batsuren et al., 505

2022) involving Czech, English, French, Hungar- 506

ian, Italian, Latin, Mongolian, Russian, and Span- 507

ish surface segmentation. Third, we consider the 508

novel DORECO-MORPH dataset of 37 languages. 509

The standard metrics were applied: EMMA-2 510

(Virpioja et al., 2011) and Boundary Precision and 511

Recall (BPR) for the MC10 and DORECO-MORPH, 512

and the measure capturing morpheme identity in- 513

stead of boundaries released by Batsuren et al. 514

(2022) for SGM22. 515

5.2 Experimental set-up 516

The bitexts used in the experiments varied; for 517

the first two datasets, up to a million words of 518

bitext from Opus2018 (Lison and Tiedemann, 519

2016) subtitles from television and movies gathered 520

from http://www.opensubtitles.org/ were used. 521

Vietnamese was chosen as the reference language 522

for this experiment as it has little morphology, mak- 523

ing the word forms seed items with a broad scope. 524

Bitexts for German and Turkish were orthographi- 525

cally normalized to bring them in line with the test 526

data. For the DORECO-MORPH experiment, bitexts 527

based on the corpora themselves were generated, 528

using the words as well as the free translations (the 529

f layer in Table 2). Most free translations were in 530

English, but other languages were found as well – 531

the free translations were tokenized but otherwise 532

used as-is. 533

The model was tuned on the development 534

split (12% of the data for each language) in the 535

DORECO-MORPH data, the training split for MC10 536

and the development split for SGM22, to find op- 537

timal values for the free parameters θf (minimum 538

number of word pairs modeled by a transformation 539

in Step 2) and θc (minimum number of compound 540

template occurrences for it to be used in Step 3) 541

using a grid search over a set of reasonable val- 542

ues, arriving at θf = 60, θc = 10 for the first two 543

datasets and θf = 10, θc = 10 for the DORECO- 544

MORPH data. 545

6

http://www.opensubtitles.org/


EMMA-2 BPR
morf AG VORM morf AG VORM

eng 85.9 88.7 89.1 75.2 80.0 52.9
fin 73.4 77.7 95.8 62.8 71.1 12.5
ger 80.9 85.9 95.7 n/a
tur 61.3 69.3 95.6 64.6 78.9 16.1

Table 3: Model comparison on the development sets
for Morphochallenge 2010 [MC10] (eng = English, fin
= Finnish, ger = German, and tur = Turkish), compar-
ing Morfessor (Morf) and the best MorphAGram (AG)
model against VORM on EMMA-2 and BPR F1 scores.
The best result per language and per metric is boldfaced.

5.3 Comparison models546

For the MC10 and SGM22, I compare VORM547

against published results. For DORECO-MORPH, I548

use published software to run Morfessor2 (Virpioja549

et al., 2013), ParaMA2 (Xu et al., 2020), Mor-550

phAGram (Eskander et al., 2020) (in the language-551

independent setting) as unsupervised models, and552

Chipmunk (Cotterell et al., 2015), a supervised sta-553

tistical model as a popular instance of the class of554

supervised models. The unsupervised models were555

trained on the full wordlists, and Chipmunk on the556

training split (48% of the data), and were tested557

on the test split (40% of the data). For all models,558

off-the-shelf parameter settings were used.559

6 Results560

MorphoChallenge 2010 results. Table 3 presents561

the results for MC10. On EMMA-2, the VORM562

model presents an improvement over the best Mor-563

phAGram variant for all four languages, with the564

improvement being substantial for Finnish, Ger-565

man, and Turkish. On BPR, conversely, VORM is566

substantially outperformed by both Morfessor and567

MorphAGram. This effect may be due to the dif-568

ferences in what the two measures are picking up569

on. EMMA-2 favours canonical morpheme iden-570

tity, but, crucially, does not penalize allomorphy,571

which is indistinguishable from undersegmentation572

to the model. The same undersegmentation leads to573

extremely low (often single digit) recall scores on574

the BPR measure, thus suppressing the reported F1575

scores. To be sure, VORM does segment – Finnish576

elinalueeltaan ‘from their habitat’ is analyzed as577

‘elinaluei + -i/en + -n/lta + -an’, with the reference578

analysis giving ‘elin_N alue_N +ABL +3SGPL’.579

The model correctly identifies the Ablative case580

and possessive marker, while missegmenting the581

DeepSPIN-3 Morfessor2 VORM

ces 93.8 29.4 37.3
eng 93.6 37.7 35.2
fra 95.7 22.4 19.1
hun 98.7 41.0 40.7
ita 97.4 9.0 12.9
lat 99.4 14.5 22.2
rus 99.4 17.7 15.8
spa 99.0 20.6 15.6
avg 97.3 25.6 24.9

Table 4: Model comparison on the tests sets for the
SIGMORPHON 2022 challenge, for (ces = Czech, eng
= English, fra = French, hun = Hungarian, ), compar-
ing Morfessor2 and the best overall supervised model
(DeepSPIN-3) model against VORM on the Batsuren
et al. (2022) evaluation measure. The best unsupervised
result per language and per metric is boldfaced.

location of the morpheme boundary, and underseg- 582

menting the compound ‘elin + alue’. 583

SIGMORPHON 2022 results. For the SGM22, 584

the results are presented in Table 4. While no unsu- 585

pervised model comes anywhere near the results of 586

the supervised models (here, the best-performing 587

supervised model, DeepSPIN-3 (Peters and Mar- 588

tins, 2022) is given as a reference point), VORM oc- 589

casionally outranks Morfessor2 in its performance. 590

Like with the BPR measure for the Morphochal- 591

lenge data, surface segmentation is not the model’s 592

strongest suit. 593

DORECO-MORPH. Finally, let us consider the 594

results on the novel dataset, the DORECO-MORPH 595

data. Table 5 present the aggregated results for 596

VORM and its comparison models over the 37 lan- 597

guages, with Table 8 presenting the F1-scores per 598

language. For the EMMA-2 F1-scores, we see that 599

VORM outperforms the other unsupervised models 600

for 21/37 languages. MorphAGram (AG in the ta- 601

ble) is the optimal model for 10 languages. While 602

the supervised Chipmunk model is the best overall 603

model in all but 7 languages, it is notable that it 604

is the VORM model has a higher EMMA-2 score 605

in 6 of those. This result lines up with the find- 606

ings for MC10, where we found VORM performing 607

well on this metric as well. For surface segmenta- 608

tion, measured with BPR, the performance is more 609

mixed: here, Chipmunk is consistently the best 610

overall model, with Morfessor2, ParaMA2, and 611

VORM each being the best model for a similarly 612

sized set of languages. 613
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EMMA-2 BPR
chip morf para AG vorm chip morf para AG vorm

max? 5 1 10 21 7 18 12
avg. 91.4 84.6 80.3 84.7 87.2 86.9 56.8 57.0 34.7 55.6
Q1 89.8 83.1 78.2 80.4 85.8 83.5 48.9 51.8 30.5 45.9
worst 69.9 74.8 67.5 71.6 67.8 65.5 31.3 35.7 14.4 33.7

Table 5: Aggregated EMMA-2 & BPR F1 scores for the DoReCo dataset for [chip]munk (supervised), [Morf]essor2,
[Para]MA2 , Morph[AG]ram, and VORM. Best unsupervised results in bold; best overall results underlined.

6.1 Reduplication and base modification614

word babarak vivirigĕm
gold ba :RED bara:long

-k:TAM1
vi :RED virigĕ:rush
m:TAM1

chip babarak vivirig + ĕm
morf2 babara + k vivi + rig + ĕm
para babara + -k vi_rig + -vi- + -em
AG babara + k vivi + rig + ĕm

vorm ba + bara + -k vi + virigĕ + -m

Table 6: Examples of reduplication in Vera’a (Schnell,
2024) and their analysis across models. Underscores
mark the infix slot; tildes mark reduplicative affixes.

To demonstrate the model’s capacity to analyze615

reduplication, consider the examples in Table 6616

with their analyses in the five models. We see that617

only VORM gets the analysis correct, both in its sur-618

face segmentations as well as in its canonical anal-619

ysis, i.e., recognizing ba and vi as reduplicative620

morphemes. Other models either undersegment621

the left edge of the words, or missegment the word622

(paraMA, morfessor2).623

None of our languages has productive base modi-624

fication processwa, but German has some, in nom-625

inal plurals and past tense. Given the low type626

frequency of these processes, the tuned model for627

the Morphochallenge dataset did not learn these628

patterns, but a model considered during the tuning629

phase, with θf = 30, did analyze huehnerbesitzer630

‘chicken owner’ correctly as ‘hu_hn + -e- + -er +631

besitz + -er’ and geldbetraege ‘sums of money’ as632

‘geldbetra_g -e- + -e’633

7 Discussion634

This paper introduces a novel unsupervised mor-635

phological segmentation system, VORM, which636

uses translation-equivalency to narrow down the set637

of word pairs on which the inferred morphological638

transformations are based. Along with affixation,639

the model has the representational capactity for 640

base-modifying transformations as well as redupli- 641

cation. The grammar induction takes place through 642

a pair of heuristic, best-first processes. In doing 643

so, the model stands in a tradition of unsupervised 644

morphological segmentation that does not consider 645

very large parts of the hypothesis space (Lignos, 646

2010; Xu et al., 2020). Rather than an imperfect 647

approximation of some more global optimization, I 648

believe the fact that these models consistently do so 649

well reflects the nature of the induction problem, 650

whereby aspects of the usage of morphological 651

transformations (how many words they model, how 652

large the groups of morphologically related words 653

are modeled by the same stem) that are known to 654

affect learning and processing in humans guide the 655

model to fairly correct answers. 656

This paper forms the first attempt at using the 657

translation signal; while the morphological fami- 658

lies that are inferred through it seem accurate, the 659

heuristic procedure of Steps 2 and 3 introduces 660

error, mostly by undersegmenting, but also, less 661

frequently, by over or missegmenting. We have 662

seem in the experiments that this may lead to an ex- 663

tremely low recall on metrics where the exact mor- 664

pheme identity (and their boundaries) is at stake, 665

like BPR and the measure of (Batsuren et al., 2022). 666

This seems like the main obstacle for the model to 667

be overcome. Conversely, it’s superior performance 668

on the EMMA-2 metric suggests that the model has 669

good potential in identifying, with a high accuracy, 670

the morphemes that linguists would recognize. 671

Further exploration on the DORECO-MORPH 672

dataset can prove fruitful in identifying more spe- 673

cific morphological challenges to be modeled. 674

Through such exploration, and more detailed anal- 675

ysis of model performance on different challenges, 676

the landscape of what unsupervised learners have 677

to contend with might become more clear. With 678

this paper, I hope to have made a first move in that 679

direction. 680
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Chris Lasse Däbritz, Nina Kudryakova, Eugénie Stapert,731
and Alexandre Arkhipov. 2024. Dolgan DoReCo732
dataset. In Frank Seifart, Ludger Paschen, and733
Matthew Stave, editors, Language Documentation734
Reference Corpus (DoReCo) 2.0. Laboratoire Dy-735
namique Du Langage (UMR5596, CNRS & Univer-736
sité Lyon 2), Lyon.737
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Tom Güldemann, Martina Ernszt, Sven Siegmund, and 775
Alena Witzlack-Makarevich. 2024. Nng DoReCo 776
dataset. In Frank Seifart, Ludger Paschen, and 777
Matthew Stave, editors, Language Documentation 778
Reference Corpus (DoReCo) 2.0. Laboratoire Dy- 779
namique Du Langage (UMR5596, CNRS & Univer- 780
sité Lyon 2), Lyon. 781

Geoff Haig, Maria Vollmer, and Hanna Thiele. 2024. 782
Northern kurdish (kurmanji) doreco dataset. In Frank 783
Seifart, Ludger Paschen, and Matthew Stave, ed- 784
itors, Language Documentation Reference Corpus 785
(DoReCo) 2.0. Laboratoire Dynamique Du Langage 786
(UMR5596, CNRS & Université Lyon 2), Lyon. 787

Iren Hartmann. 2024. Hoocak DoReCo dataset. In 788
Frank Seifart, Ludger Paschen, and Matthew Stave, 789
editors, Language Documentation Reference Corpus 790
(DoReCo) 2.0. Laboratoire Dynamique Du Langage 791
(UMR5596, CNRS & Université Lyon 2), Lyon. 792

9

https://doi.org/10.34847/nkl.2801565f
https://doi.org/10.5281/zenodo.13950591
https://doi.org/10.5281/zenodo.13950591
https://doi.org/10.5281/zenodo.13950591
https://doi.org/10.34847/nkl.ad7f97xr
https://doi.org/10.34847/nkl.6a71xp0p
https://doi.org/10.34847/nkl.a332abw8
https://doi.org/10.34847/nkl.a332abw8
https://doi.org/10.34847/nkl.a332abw8
https://doi.org/10.34847/nkl.36f5r1b6
https://doi.org/10.34847/nkl.f09eikq3
https://doi.org/10.34847/nkl.f09eikq3
https://doi.org/10.34847/nkl.f09eikq3
https://doi.org/10.34847/nkl.c5e6dudv
https://doi.org/10.34847/nkl.81934177
https://doi.org/10.34847/nkl.81934177
https://doi.org/10.34847/nkl.81934177
https://doi.org/10.34847/nkl.02084446
https://doi.org/10.34847/nkl.efea0b36
https://doi.org/10.34847/nkl.efea0b36
https://doi.org/10.34847/nkl.efea0b36
https://doi.org/10.34847/nkl.cdd8177b
https://doi.org/10.34847/nkl.cdd8177b
https://doi.org/10.34847/nkl.cdd8177b
https://doi.org/10.34847/nkl.f6c37fi0
https://doi.org/10.34847/nkl.f6c37fi0
https://doi.org/10.34847/nkl.f6c37fi0
https://doi.org/10.34847/nkl.ca10ez5t
https://doi.org/10.34847/nkl.b57f5065


Andrew Harvey. 2024. Gorwaa DoReCo dataset. In793
Frank Seifart, Ludger Paschen, and Matthew Stave,794
editors, Language Documentation Reference Corpus795
(DoReCo) 2.0. Laboratoire Dynamique Du Langage796
(UMR5596, CNRS & Université Lyon 2), Lyon.797

Martin Haspelmath and Andrea Sims. 2010. Under-798
standing morphology. Routledge.799

Katharina Haude. 2024. Movima DoReCo dataset. In800
Frank Seifart, Ludger Paschen, and Matthew Stave,801
editors, Language Documentation Reference Corpus802
(DoReCo) 2.0. Laboratoire Dynamique Du Langage803
(UMR5596, CNRS & Université Lyon 2), Lyon.804

Bradley Hauer and Grzegorz Kondrak. 2023. One sense805
per translation. In Proceedings of the 13th Interna-806
tional Joint Conference on Natural Language Pro-807
cessing and the 3rd Conference of the Asia-Pacific808
Chapter of the Association for Computational Lin-809
guistics (Volume 1: Long Papers), pages 442–454.810

Birgit Hellwig. 2024. Goemai DoReCo dataset. In811
Frank Seifart, Ludger Paschen, and Matthew Stave,812
editors, Language Documentation Reference Corpus813
(DoReCo) 2.0. Laboratoire Dynamique Du Langage814
(UMR5596, CNRS & Université Lyon 2), Lyon.815

Anders Johannsen, Željko Agić, and Anders Søgaard.816
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glottocode language family area reference n types nC nM % rdp

apah1238 Yali Nuclear Trans
New Guinea

PNS Riesberg (2024) 2474 6.26 1.82

arap1274 Arapaho Algic NAM Cowell (2024) 4483 14.20 2.37 9.32
bain1259 Baı̈nounk

Gubëeher
Atlantic-
Congo

AFR Cobbinah (2024) 3598 6.59 2.74 0.33

beja1238 Beja Afro-Asiatic AFR Vanhove (2024) 7280 7.40 2.51 1.22
bora1263 Bora Boran SAM Seifart (2024) 10723 9.39 2.52
cabe1245 Cabécar Chibchan NAM Quesada et al. (2024) 2852 6.24 1.66
cash1254 Cashinahua Pano-Tacanan SAM Reiter (2024) 2221 7.63 2.22
dolg1241 Dolgan Turkic ERS Däbritz et al. (2024) 5579 8.04 2.43 0.02
even1259 Evenki Tungusic ERS Kazakevich and Klyachko

(2024)
5124 7.37 1.17

goem1240 Goemai Afro-Asiatic AFR Hellwig (2024) 1327 5.14 1.40 0.23
goro1270 Gorwaa Afro-Asiatic AFR Harvey (2024) 3652 6.43 1.96 2.11
hoch1243 Hoocak Siouan NAM Hartmann (2024) 2630 8.66 2.35 0.34
jeha1242 Jahai Austroasiatic ERS Burenhult (2024) 913 5.71 1.56 6.57
jeju1234 Jejuan Koreanic ERS Kim (2024) 3624 6.85 2.07
kaka1265 Kakabe Mande AFR Vydrina (2024) 4338 5.64 1.52
kama1351 Kamas Uralic ERS Gusev et al. (2024) 4952 7.49 2.27
komn1238 Komnzo Yam PNS Döhler (2024) 6182 8.06 2.35 1.36
movi1243 Movima Isolate SAM Haude (2024) 2088 8.16 2.37 4.69
ngal1292 Dalabon Gunwinyguan AUS Ponsonnet (2024) 865 10.74 3.20 7.28
nisv1234 Nisvai Austronesian PNS Aznar (2024) 2436 6.00 1.78 5.99
nngg1234 N||ng Tuu AFR Güldemann et al. (2024) 1819 5.40 1.32 0.16
nort2641 Northern

Kurdish
Indo-
European

ERS Haig et al. (2024) 2186 5.42 1.72 0.14

nort2875 Northern
Alta

Austronesian PNS Garcia-Laguia (2024) 2046 6.95 1.91 4.64

orko1234 Fanbyak Austronesian PNS Franjieh (2024) 1298 5.09 1.35 0.15
pnar1238 Pnar Austroasiatic ERS Ring (2024) 2560 5.90 1.68
port1286 Daakie Austronesian PNS Krifka (2024) 962 5.10 1.18 1.35
ruul1235 Ruuli Atlantic-

Congo
AFR Witzlack-Makarevich

et al. (2024)
4094 8.27 2.80 0.68

sanz1248 Sanzhi
Dargwa

Nakh-
Daghestanian

ERS Forker and Schiborr
(2024)

1612 7.20 2.57

savo1255 Savosavo Isolate PNS Wegener (2024) 1872 6.61 1.87 3.21
sout2856 Nafsan Austronesian PNS Thieberger (2024) 3046 5.69 1.59 0.36
sumi1235 Sümi Sino-Tibetan ERS Teo (2024) 3252 6.38 2.42
taba1259 Tabasaran Nakh-

Daghestanian
ERS Bogomolova et al. (2024) 1861 6.29 2.35

teop1238 Teop Austronesian PNS Mosel (2024) 1093 5.45 1.41 9.06
texi1237 Texistepec

Popoluca
Mixe-Zoque NAM Wichmann (2024) 1833 7.59 2.57 3.27

trin1278 Mojeño
Trinitario

Arawakan SAM Rose (2024) 5113 9.23 3.26 1.10

urum1249 Urum Turkic ERS Skopeteas et al. (2024) 5675 7.47 2.17
vera1241 Vera’a Austronesian PNS Schnell (2024) 1771 4.98 1.45 11.80

Table 7: Languages in the DORECO-MORPH dataset. ‘nC’ = average number of characters; ‘nM’ = average number
of morpheme per word type. % rdp gives the percentage of tokens containing reduplication. The macroareas are:
PNS = Papunesia, NAM = North America, SAM = South America, AFR = Africa, ERS = Eurasia, AUS = Australia.
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EMMA-2 BPR
chip morf para AG vorm chip morf para AG vorm

apah 90.2 83.7 83.8 80.4 82.8 88.2 62.4 53.0 32.2 68.5
arap 92.9 89.8 70.2 90.5 87.7 65.5 31.3 35.7 15.8 36.7
bain 95.8 74.8 80.2 93.3 89.3 87.8 40.5 46.8 37.4 36.4
beja 89.8 81.9 80.9 89.5 94.8 78.9 43.6 47.5 30.5 33.8
bora 87.3 76.7 67.5 86.6 92.7 82.8 47.2 51.4 32.7 33.7
cabe 94.2 83.2 82.7 77.6 89.2 92.7 59.7 63.5 35.8 74.4
cash 95.0 86.1 81.9 87.5 90.1 90.7 48.9 51.8 34.2 36.6
dolg 95.9 84.9 81.6 88.4 89.9 88.9 50.6 53.0 28.7 45.2
even 69.9 81.8 81.4 78.6 79.3 94.2 48.2 75.2 14.4 68.8
goem 95.5 90.2 84.1 80.2 93.9 95.1 77.7 65.5 42.6 80.1
goro 82.6 81.0 79.3 81.1 86.3 82.7 57.8 57.2 24.4 60.8
hoch 90.4 87.5 78.8 87.5 80.7 81.9 52.9 58.0 37.4 58.4
jeha 93.4 91.5 90.0 84.1 89.9 89.5 67.7 69.1 32.9 69.7
jeju 93.8 86.1 82.0 86.6 86.3 87.3 51.7 56.2 39.8 53.1
kaka 82.7 82.4 82.5 79.8 87.6 89.9 68.1 68.3 26.7 63.1
kama 95.3 85.0 87.6 91.5 94.7 87.3 45.6 47.9 29.8 45.9
komn 92.5 82.9 78.8 91.6 92.7 82.7 47.8 49.2 34.4 36.2
movi 89.8 85.4 76.2 86.1 81.0 85.7 51.4 57.7 31.6 47.8
ngal 94.8 87.3 67.9 88.4 67.8 87.2 48.9 50.2 32.4 42.5
nisv 94.7 87.4 85.7 87.4 90.5 91.2 64.5 60.3 47.2 60.5
nngg 91.6 88.5 80.4 71.6 87.5 91.7 75.8 61.5 24.7 69.8
nort 93.6 83.1 85.5 85.1 90.4 89.7 60.1 64.0 39.0 56.7
nort 86.8 83.3 79.6 85.5 78.7 76.0 58.8 62.1 32.0 64.8
orko 88.9 83.8 78.2 77.0 87.7 85.3 67.9 59.4 35.2 76.7
pnar 95.1 88.3 84.0 85.6 89.8 94.5 68.6 59.4 45.4 75.8
port 90.3 86.7 83.6 75.1 89.6 94.6 77.0 74.1 40.5 89.9
ruul 91.9 84.0 73.9 87.6 87.7 78.4 43.0 50.6 28.9 51.1
sanz 94.4 85.8 76.4 85.7 74.6 87.7 51.3 59.4 28.2 56.8
savo 90.9 87.9 83.8 87.3 90.4 85.4 60.0 52.7 48.1 46.5
sout 92.7 86.3 84.7 83.9 91.2 89.4 68.2 60.0 40.2 61.3
sumi 94.2 85.1 85.1 86.7 92.4 92.7 57.1 54.1 47.1 50.0
taba 91.8 79.5 81.2 86.1 83.1 83.2 50.5 55.6 36.5 50.8
teop 89.5 85.0 77.2 76.5 84.2 88.2 75.4 58.3 44.3 54.4
texi 92.2 77.0 76.1 86.0 85.8 83.5 50.6 53.9 34.5 53.6
trin 96.7 83.9 73.1 91.0 86.0 87.7 44.7 47.9 35.0 40.7
urum 95.8 87.1 86.0 87.0 91.3 92.4 59.4 60.9 39.0 51.4
vera 87.3 83.8 78.8 78.1 87.4 84.6 68.1 59.0 43.2 53.7

avg. 91.4 84.6 80.3 84.7 87.2 86.9 56.8 57.0 34.7 55.6
Q1 89.8 83.1 78.2 80.4 85.8 83.5 48.9 51.8 30.5 45.9
worst 69.9 74.8 67.5 71.6 67.8 65.5 31.3 35.7 14.4 33.7

Table 8: EMMA-2 and BPR F1 scores for the DoReCo dataset for [chip]munk (supervised), Morfessor2 [morf2],
ParaMA2 [para], MorphAGram [AG], and VORM. Best unsupervised results per language are in bold. Best overall
results per language are underlined
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