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ABSTRACT

Pre-trained multi-modal Vision-Language Models like CLIP are widely used off-
the-shelf for a variety of applications. In this paper, we show that the common
practice of individually exploiting the text or image encoders of these power-
ful multi-modal models is highly suboptimal for intra-modal tasks like image-
to-image retrieval. We argue that this is inherently due to the CLIP-style inter-
modal contrastive loss that does not enforce any intra-modal constraints, lead-
ing to what we call intra-modal misalignment. To demonstrate this, we lever-
age two optimization-based modality inversion techniques that map represen-
tations from their input modality to the complementary one without any need
for auxiliary data or additional trained adapters. We empirically show that, in
the intra-modal tasks of image-to-image and text-to-text retrieval, approaching
these tasks inter-modally significantly improves performance with respect to intra-
modal baselines on more than fifteen datasets. Additionally, we demonstrate
that approaching a native inter-modal task (e.g. zero-shot image classification)
intra-modally decreases performance, further validating our findings. Finally, we
show that incorporating an intra-modal term in the pre-training objective or nar-
rowing the modality gap between the text and image feature embedding spaces
helps reduce the intra-modal misalignment. The code is publicly available at:
https://github.com/miccunifi/Cross-the-Gap.

1 INTRODUCTION

In recent years the availability of massive, pre-trained Vision-Language Models (VLMs) has en-
abled a wide variety of applications ranging from zero-shot image segmentation (Zhou et al., 2022a;
Lüddecke & Ecker, 2022) to visual question answering (Song et al., 2022; Parelli et al., 2023). These
models are typically composed of independent image and text encoders which are simultaneously
trained on massive corpora of image-text pairs to align the text and image embeddings of associ-
ated inputs. For example, the Contrastive Language-Image Pre-training (CLIP) model is trained on
a corpus of 400M image-text pairs to map inputs from both modalities into a shared embedding
space (Radford et al., 2021). CLIP is trained with an inter-modal contrastive loss that aims to max-
imize the similarity of corresponding image-text samples while minimizing the similarity with all
the other examples within a batch.

Despite CLIP’s shared embedding space, visual and textual features lie in distinct regions. This
phenomenon, known as the modality gap (Liang et al., 2022), originates from model initializa-
tion, and the inter-modal contrastive loss preserves and worsens it during training. Moreover, we
note that CLIP’s contrastive training strategy focuses on inter-modal (i.e. image-text) similarities
between paired samples and disregards intra-modal (i.e. image-image and text-text) similarities.
Consequently, the intra-image and intra-text similarities between CLIP representations might not
faithfully correspond to those of the actual images or texts, as depicted in the left section of Fig. 1.
We refer to this issue as intra-modal misalignment. A simple experiment aimed at quantifying this
problem is presented in Appendix B.

*These authors contributed equally to this work.
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Figure 1: Motivation and overview. Left: The inter-modal contrastive loss used in pretraining
enforces paired images and texts to be at a given distance r (i.e. rdog and rcat) but does not encourage
intra-modal alignment. Consequently, intra-modal similarity scores might not correspond to those
of actual images and texts (i.e. d1 < d2). Right: We show that the common practice of individually
exploiting only one encoder is suboptimal and approaching intra-modal tasks (e.g. image-to-image
retrieval) inter-modally via modality inversion improves performance.

Aspects of this misalignment have been accounted for in the limited scope of zero- and few-shot
image classification (Udandarao et al., 2023; Yi et al., 2024). However, many recent works over-
look this phenomenon and still employ CLIP representations for intra-modal comparison, which
leads to suboptimal similarity measurements. Examples range from KNN-based image classifica-
tion (Geirhos et al., 2024) to text-to-image generation (Gal et al., 2022; Ruiz et al., 2023) and video
synthesis (Esser et al., 2023; Zhang et al., 2024). For instance, Esser et al. (2023) measure the tem-
poral consistency of generated videos via intra-modal CLIP similarity between consecutive frames.

In this paper we argue that relying on intra-modal similarities computed using pre-trained CLIP
encoders is inherently suboptimal. To support this we conduct an extensive study of the behavior
of intra-modal similarities on the intra-modal tasks of image-to-image and text-to-text retrieval. We
perform this analysis by transforming intra-modal tasks into inter-modal ones to leverage CLIP’s
inter-modal alignment.

Specifically, we map features from their native modality (i.e. the same as the input) into their comple-
mentary one. We refer to this process as modality inversion. To perform modality inversion we adapt
Optimization-based Textual Inversion (OTI) (Baldrati et al., 2023) and introduce Optimization-based
Visual Inversion (OVI). OTI and OVI are iterative modality inversion strategies that map image fea-
tures into text features and vice versa while keeping the encoders frozen. These techniques operate at
the single-feature level, i.e. they do not require external data nor the training of a mapping network.

Our experiments show that tackling intra-modal tasks inter-modally via modality inversion – as il-
lustrated in the right side of Fig. 1 – outperforms intra-modal baselines on more than fifteen datasets.
To additionally support our claim that this performance improvement stems from inter-modal align-
ment and not the modality inversion process itself, we transform inter-modal tasks into intra-modal
ones. Specifically, we show that applying modality inversion to the inherently inter-modal zero-shot
image classification task yields worse performance than the inter-modal baseline.

Moreover, we investigate whether the inclusion of an intra-modal loss during image-text contrastive
pre-training reduces intra-modal misalignment. For this analysis we use SLIP (Mu et al., 2022),
which adds just such an intra-modal loss to improve the alignment within the image embedding
space. Results confirm that adding intra-modal loss terms during the pre-training of VLMs signifi-
cantly mitigates intra-modal misalignment. Finally, we study the relation between the modality gap
phenomenon and the intra-modal misalignment. In particular, similar to Liang et al. (2022) we fine-
tune CLIP to reduce the modality gap and observe a decrease in the performance of approaching
intra-modal tasks inter-modally. This indicates that a narrower modality gap diminishes the impact
of intra-modal misalignment.
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The main contributions of this work are:

• we conduct a thorough and comprehensive study of CLIP’s intra-modal misalignment, and
our analyses show that the common practice of relying on intra-modal similarities com-
puted through pre-trained CLIP encoders is inherently suboptimal.

• we propose to transform intra-modal tasks to inter-modal ones via modality inversion to
exploit CLIP’s inter-modal alignment. To this end we introduce OVI, a single-feature level
modality inversion strategy that maps textual features into the image embedding space;

• we conduct extensive experiments that show that approaching intra-modal tasks inter-
modally significantly outperforms intra-modal baselines on more than fifteen datasets; and

• we demonstrate that adding intra-modal loss terms during VLM pre-training or reducing
the modality gap mitigates the impact of intra-modal misalignment.

2 RELATED WORK

Contrastively trained Vision-Language Models. VLMs have become increasingly popular for
their ability to learn aligned representations across visual and textual modalities (Radford et al.,
2021; Jia et al., 2021; Zhai et al., 2022; 2023; Mu et al., 2022; Li et al., 2021). This alignment
enables VLMs to be used in a broad variety of downstream tasks, including image-text retrieval and
zero-shot image classification, by projecting images and text into a shared feature space.

The most prominent example is CLIP (Radford et al., 2021), which maximizes the similarity be-
tween paired images and text captions while minimizing the similarity with the other samples in
the batch. SigLIP (Zhai et al., 2023), on the other hand, employs a sigmoid-based contrastive loss
that considers only the single image-text pairs while neglecting the other samples in the same batch.
More recently, several approaches have extended the CLIP-style contrastive loss by incorporating
intra-modal similarities into the training objectives (Mu et al., 2022; Li et al., 2021). For instance,
SLIP (Mu et al., 2022) integrates a self-supervised component that maximizes the similarity between
different augmentations of the same image, with a strategy akin to SimCLR (Chen et al., 2020).

The modality gap in multi-modal models. Liang et al. (2022) demonstrated a consistent phe-
nomenon affecting VLMs known as the modality gap. This refers to the separation between fea-
ture embeddings of different modalities (e.g. text and images) within their shared representation
space (Liang et al., 2022). The modality gap arises due to both model initialization and the con-
trastive learning objective used during training. At initialization, independent encoders for each
modality produce embeddings that are restricted to distinct regions (or cones) within the representa-
tion space. During training, the contrastive learning process preserves and worsens this separation.
Several works have studied the causes and implications of the modality gap in CLIP (Shi et al., 2023;
Schrodi et al., 2024; Zhang et al., 2023). Schrodi et al. (2024) analyzed the embedding space and
demonstrated that a minimal number of embedding dimensions – often as few as two – are sufficient
to perfectly separate the image and text modalities.

Intra-modal misalignment. Some studies have investigated the problem of misaligned intra-modal
embedding distances within the context of zero- and few-shot image classification (Udandarao et al.,
2023; Yi et al., 2024). To address this, Udandarao et al. (2023) propose mitigating the issue by com-
puting similarities in the image-text space, rather than working exclusively with image embeddings,
thereby leveraging the inter-modal nature of the feature representations. Similarly, CODER (Yi
et al., 2024) introduces an enhanced image representation technique based on measuring distances
between images and their neighboring texts within CLIP’s embedding space.

Our contribution with respect to the state-of-the-art. While these prior works have addressed
various aspects of intra-modal and inter-modal relationships within VLMs, their scope remains lim-
ited, often focusing on specific tasks, datasets, or narrow perspectives on the modality gap and its
effects. None of these studies comprehensively investigate the fundamental nature of the intra-modal
versus inter-modal similarities across diverse tasks and datasets, nor do they fully explore the poten-
tial performance improvements achievable by leveraging inter-modal comparisons for intra-modal
problems. The motivation behind our work is to shed light on the phenomenon of intra-modal mis-
alignment, and its relationship to the modality gap, and to demonstrate the importance of either
ensuring intra-modal alignment during pre-training or comparing solely representations that belong
to different modalities.
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3 CLIP PRELIMINARIES

CLIP is a vision-language model trained to align images and textual captions in a shared embedding
space (Radford et al., 2021). It consists of an image encoder fθ and a text encoder gϕ. Given an
image I , the image encoder extracts its feature representation fθ(I) ∈ Rd, where d is the size of the
shared embedding space. Likewise, for a given textual caption Y , first a word embedding layer Ev
maps each tokenized word to the token embedding space V . Then, the text encoder gϕ generates the
textual feature representation gϕ(Ev(Y )) ∈ Rd.

When using a Vision Transformer (ViT) (Dosovitskiy et al., 2020) as the visual encoder fθ, the
encoding process begins by splitting the image into U fixed-size non-overlapping patches. Each
patch is then transformed into a corresponding patch embedding {w1, w2, . . . , wU} through a linear
projection by the patch embedding layer Ew, where each wi resides in the patch embedding space
W . A learnable class (CLS) token c is concatenated with the patch embeddings, resulting in the
input to the vision transformer being Ī = {c, w1, w2, . . . , wU}. Finally, the CLS token of the final
transformer layer is projected into the shared embedding space via a linear projection to obtain the
final representation fθ([c, Ew(I))] = fθ(Ī) ∈ Rd. For brevity, when unnecessary we will omit both
the patch embedding layer Ew and the token embedding layer Ev , and use the simplified notations
fθ(I) instead of fθ([c, Ew(I)]) and gϕ(Y ) instead of gϕ(Ev(Y )).

Given a batch of image-caption pairs B = {(In, Yn)}Nn=1, CLIP aims to maximize the cosine sim-
ilarity for the N correct pairs while minimizing it for the N2 − N other pairs. This is achieved by
optimizing a symmetric, multi-class N-pair contrastive loss (Sohn, 2016). Let ψnI = fθ(In) and
ψnT = gϕ(Ev(Yn)) denote the image and text embeddings, respectively. The CLIP loss is:

LCLIP = − 1

N

N∑
n=1

(
log

exp(c(ψnI , ψ
n
T )/τ)∑N

m=1 exp(c(ψ
n
I , ψ

m
T )/τ)

+ log
exp(c(ψnT , ψ

n
I )/τ)∑N

m=1 exp(c(ψ
n
T , ψ

m
I )/τ)

)
, (1)

where c(·, ·) denotes the cosine similarity, and τ is a temperature parameter. As shown by Liang
et al. (2022), Eq. (1) leads to a measurable separation between embeddings of the different modali-
ties, creating what is known as the modality gap. This gap is significantly affected by the temperature
τ , with a larger gap occurring as the temperature decreases.

Note that CLIP’s training loss focuses exclusively on inter-modal similarities between paired sam-
ples while neglecting intra-modal similarities. For example, consider an image feature anchor
ψI and two distinct text features ψ1

T and ψ2
T expressing the same concept. The loss enforces

both ψ1
T and ψ2

T to be at a cosine distance r from ψI , where the cosine distance is defined as
d(ψA, ψB) = 1 − c(ψA, ψB). This is equivalent to d(ψI , ψ1

T ) = d(ψI , ψ
2
T ) = r, meaning the text

embeddings lie on a hypersphere of radius r centered at ψI . The absence of intra-modal constraints
leaves the alignment between ψ1

T and ψ2
T remains uncalibrated; thus, we have 0 ≤ d(ψ1

T , ψ
2
T ) ≤ 2r.

This indicates that, while both text features are equidistant from the image feature, their intra-modal
similarity is not constrained in any way, leading to intra-modal misalignment. We argue that such a
misalignment must either be mitigated via additional intra-modal losses during pre-training or must
be compensated by tackling intra-modal tasks inter-modally.

4 FROM INTRA-MODAL TO INTER-MODAL VIA MODALITY INVERSION

Due to the modality gap, images and text features lie in distinct regions in CLIP’s shared embedding
space. Previous work introduced modality inversion techniques to map features from the native
modality to the complementary one (Ramesh et al., 2022; Patel et al., 2024; Li et al., 2023). For
instance, Ramesh et al. (2022) trains a diffusion model to generate CLIP’s image features from text
captions for text-to-image generation.

Our goal is to demonstrate that tackling intra-modal tasks in an inter-modal way outperforms intra-
modal baselines. To this end, we propose to employ a modality inversion strategy to derive represen-
tations that exploit both native and complementary modality encoders. However, existing modality
inversion techniques rely on external data or the training of a mapping network, making the inversion
process dependent on external factors (Ramesh et al., 2022; Patel et al., 2024; Li et al., 2023).
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To minimize the impact of external biases in our analysis, we choose to rely on two modality
inversion strategies that operate at a single-feature level, i.e. that map each individual feature to
its complementary modality without the need for any external resources. Specifically, we adapt
Optimization-based Textual Inversion (OTI) (Baldrati et al., 2023; Agnolucci et al., 2024) and we
introduce Optimization-based Visual Inversion (OVI) to map an image to the text embedding space
and vice versa while keeping the encoders frozen. Both are iterative and optimization-based ap-
proaches. The core concept behind OTI and OVI is to learn vectors of trainable parameters that
are passed through the encoder of the complementary modality to yield features aligned with the
representations of the native modality encoder. By optimizing these input vectors while keeping the
encoder weights fixed, we ensure that the output features retain the pre-training alignment. In the
following we define OTI and OVI for CLIP, but they can be applied to any VLM that maps images
and texts into a shared embedding space. To make our analysis more comprehensive, in Appendix G
we present two additional experiments in which modality inversion is performed using a pre-trained
captioner or an adapter.

4.1 OPTIMIZATION-BASED TEXTUAL INVERSION (OTI)

Starting from an image I , OTI involves iteratively optimizing a set of R pseudo-tokens v∗ =
{v∗1 , v∗2 , . . . , v∗R}, with v∗i ∈ V for i ∈ {1, . . . , R}, for a given number of optimization steps S.
We refer to v∗ as pseudo-tokens since they belong to the token embedding space V but are not
associated with any existing words. Algorithm 1 in Appendix A shows the pseudo-code of OTI.

The pseudo-tokens v∗ are randomly initialized and concatenated with the template sentence “a photo
of” to form Y v∗ = [Ev(“a photo of”), v∗] input into the CLIP text encoder gϕ to obtain ψT =

gϕ(Y v∗). Then we extract the features of the image I with the CLIP image encoder fθ, resulting in
ψI = fθ(I). Since we aim to obtain a textual feature representation ψT that captures the informative
content of I , we minimize the gap between image and text features via a cosine loss:

Lcos = 1− c(ψI , ψT ). (2)

Note that while we adapt OTI from Baldrati et al. (2023) our goal is significantly different. Their
work focuses on deriving a single pseudo-token that captures the informative content of the image
I and can interact with existing words to form meaningful sentences (e.g., “a photo of v∗ that is
running . . . ”), thus they use OTI for combining inputs from both modalities. In contrast, we use
OTI purely as a mapping technique from visual to textual features. We do not focus on the pseudo-
tokens themselves but aim to obtain a final representation that effectively captures the content of
the image I . Additionally, the original OTI technique employs a regularization loss that exploits
an auxiliary vocabulary to constrain the pseudo-token to reside in CLIP’s token embedding space.
However we are not interested in using the learned v∗ in different contexts – and more importantly,
we aim to avoid influencing the inversion process with external data. For this reason we do not use
a regularization loss.

4.2 OPTIMIZATION-BASED VISUAL INVERSION (OVI)

We propose the OVI approach to map text features from the CLIP text embedding space to the visual
embedding space. Note that since OVI learns vectors of trainable parameters in the patch embedding
space W , it can be applied only to ViT-based image encoders.

Given a sentence Y , we first extract its text featuresψT = gϕ(Ev(Y )). OVI then optimizes a set of P
randomly initialized pseudo-patches w∗ = {w∗

1 , . . . , w
∗
P }, where each w∗

i ∈ W . This optimization
is performed for a fixed number of optimization steps S. Similarly to the terminology introduced in
Sec. 4.1, we refer to w∗ as pseudo-patches since they belong to the patch embedding space W but
are not associated with any existing image. Algorithm 2 in Appendix A illustrates the pseudo-code
of the OVI method.

Since the ViT employs learned positional embeddings, the number of input patches U to the image
encoder is fixed. Consequently, when P < U directly using w∗ as input is impossible. In such
cases, we apply nearest-neighbor interpolation to repeat the pseudo-patches and match the required
number of U patches.
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Specifically, given the pre-trained CLS token c, the input to the ViT is given by:
Īw∗ = {c, w∗

1 , w
∗
1 , . . . , w

∗
1︸ ︷︷ ︸

H1 times

, w∗
2 , w

∗
2 , . . . , w

∗
2︸ ︷︷ ︸

H2 times

, . . . , w∗
P , w

∗
P , . . . , w

∗
P︸ ︷︷ ︸

HP times

}, (3)

where H1, . . . ,HP represent the number of times each pseudo-patch is repeated, and
H1 + . . .+HP = U . The specific values are given by the nearest-neighbor interpolation. Finally,
the input Īw∗ is passed through CLIP’s image encoder to obtain the features ψI = fθ(Īw∗). To
obtain a visual feature representation ψI that captures the informative content of Y , we minimize
the gap between the image and text features using the same cosine-based loss in Eq. (2).

4.3 CROSSING THE MODALITY GAP WITH OTI AND OVI

The goal of OTI and OVI is to map features from the native modality into corresponding features in
the complementary modality. We observe that in cases where the loss Lcos approaches zero, the com-
plementary features converge to the native ones, thus drifting into the native modality embedding
manifold. This undermines the goal of leveraging CLIP’s image-text alignment.

For OTI, in our experiments the loss never approaches zero – within a reasonable number of opti-
mization steps – when considering a single pseudo-token (i.e. R = 1). We argue that this stems
from the strong inductive biases of the frozen encoders and the modality gap, making it challenging
for a single pseudo-token to bridge the distance between image and text representations. Never-
theless, the OTI-inverted features retain the informative content of the corresponding image. As a
result, the potential drift related to Lcos does not pose a significant issue, and inter-modal alignment
is preserved. In all experiments we use R = 1 unless stated otherwise.

Also for OVI we observe that the loss only approaches zero when the number of pseudo patches
P is relatively large. Unlike OTI, we find that for some experiments a single pseudo-patch (i.e.
P = 1) is insufficient for embedding the informative content of the corresponding text. We believe
that this discrepancy stems from the inherent differences between images and texts. Specifically, in
textual inputs a single word (or pseudo-token) can significantly alter the meaning of a sentence. For
instance, the sentences “a photo of a building” and ”a photo of a dog” convey completely different
meanings, despite differing by only one word. In contrast, a single (pseudo-)patch has less influence
on the overall semantic content of an image. Therefore, while a single pseudo-token is enough for
an effective modality inversion with OTI, more pseudo-patches may be necessary when applying
OVI. Consequently, in our experiments, we employ a number of pseudo-patches P ranging from
1 to 4, based on the considered model (see Appendix D for more details). For such values, the
pseudo-patches effectively embed the informative content of the input text. Moreover, the inter-
modal alignment is maintained and the drift does not constitute a significant problem.

5 EXPERIMENTAL RESULTS

Here we report on a broad range of experiments supporting our claims. We first evaluate two intra-
modal tasks: image-to-image and text-to-text retrieval. We show that transforming intra-modal tasks
into inter-modal ones via OTI and OVI consistently improves performance by better aligning with
the original CLIP training objective. To confirm that this outcome does not stem from the modal-
ity inversion process itself, we evaluate a natively inter-modal task – zero-shot image classification
– and show that making it intra-modal hinders the performance. Finally, we analyze the behavior
of modality inversion techniques, and we study how adding intra-modal loss terms during VLM
pre-training or narrowing the modality gap affects intra-modal misalignment. In the following, we
denote as inter-modal approaches those involving inter-modal similarity comparisons, i.e. similar-
ity comparisons between features of two different modalities (such as image-text, OTI-image, and
OVI-text). Conversely, intra-modal approaches refer to methods that employ intra-modal similarity
comparisons (such as image-image, text-text, OTI-OTI, and OVI-OVI).

To ensure a comprehensive analysis, we experiment using multiple CLIP models with different
backbones and pre-training datasets. We also consider SigLIP to prove that our observations are
not specific to the CLIP loss but generalize to other inter-modal contrastive losses. Specifically, we
use OpenAI CLIP with ViT-B/32 and ViT-L/14 backbones, OpenCLIP (OPEN) pre-trained on the
DataComp dataset (Gadre et al., 2024) with the same backbones, and SigLIP-B/16. Implementation
details and description of all datasets used are given in Appendices A and F.
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Table 1: Performance (mAP) evaluation on the image-to-image retrieval task. Blue rows indicate the
usage of OTI-inverted features, while white rows refer to the intra-modal baseline. ✓ and X denote
inter-modal and intra-modal approaches, respectively.
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L
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✓ 41.8 53.0 55.2 79.1 71.8 64.2 89.7 37.6 43.3 52.9 59.0 43.6 88.9 54.9 38.8 58.3

5.1 IMAGE-TO-IMAGE RETRIEVAL

Pre-trained CLIP image encoders are often used to extract features for image-to-image similarity
comparisons. For this reason, we study the image-to-image retrieval task.

Experiment design. The objective is to retrieve images from a gallery that are visually similar to
a given query image. We consider a total of 15 datasets commonly employed for image-to-image
retrieval and image classification. We consider two strategies. In the first, which we call intra-
modal, we directly compare the features of the query image with those of the gallery. In the second,
we transform the intra-modal image-to-image retrieval task into an inter-modal one by applying OTI
to the query image. Then, we use the resulting OTI-inverted features to query the gallery.

Results. We report the results in Tab. 1. Approaching the task inter-modally using the OTI-inverted
features outperforms the intra-modal baseline, achieving an average absolute improvement ranging
from 2% to 3%. Specifically, we observe that the performance gain is obtained across a large va-
riety of datasets with different class granularity and diverse domains, spanning from birds (CUB)
to monuments (RParis). Moreover, we notice that the intra-modal misalignment phenomenon is
independent of the pre-training dataset (CLIP vs. OpenCLIP) and pre-training contrastive loss
(CLIP/OpenCLIP vs. SigLIP) since the performance improvement is consistent across all the con-
sidered VLMs. Finally, we note that OTI-inverted features cannot contain more informative content
than the native ones – used by the intra-modal baseline – since they are obtained simply by map-
ping them to the complementary modality at a single-feature level and without using any external
resources. Thus, the observed improvement is solely attributable to inter-modal alignment rather
than to a more enriched representation.

5.2 TEXT-TO-TEXT RETRIEVAL

Although text features from pre-trained CLIP models are not commonly used for text-to-text tasks,
we believe that it is important to show that our findings also apply to text-to-text comparisons.

Experiment design. Using the CLIP text encoder for text-only tasks presents several challenges.
Specifically, the CLIP text encoder is trained on short, descriptive texts. As a result, using it for
tasks such as sentiment analysis or text classification, which involve longer texts and abstract con-
cepts, results in a mismatch with the pre-training data. Moreover, VLMs have a limited input token
capacity (e.g. 77 tokens for CLIP), which makes them unsuitable for longer texts. To avoid these
problems, we formulate an intra-modal text-to-text retrieval task using image captioning datasets.
Specifically, we select datasets in which each sample consists of an image and multiple associated
captions (e.g. Flickr30K (Plummer et al., 2015)). These captions are comparable to those used in
VLM training and are short enough to avoid token limit issues. We ignore the images and use the
first caption associated with each image as the query text. The goal is to retrieve the other captions
related to the same image from a gallery of all captions in the dataset. In Appendix G, we also report
experimental results on purely textual text-to-text retrieval datasets. To address the issue of texts
exceeding the input token limit of VLMs, we use an LLM to summarize the texts.
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Table 2: Left: Performance (mAP) evaluation on the text-to-text retrieval task. Purple rows indicate
the usage of OVI-inverted features, while white rows refer to the intra-modal baseline. Right: Per-
formance (accuracy) evaluation on the zero-shot image classification task. Blue rows indicate the
usage of OTI-inverted features, while white rows refer to the inter-modal baseline. ✓ and X denote
inter-modal and intra-modal approaches, respectively.
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X 72.1 89.8 73.1 29.4 52.3 56.4 87.6 62.4 90.2 71.3 68.0 68.4

O
PE

N B/32 ✓ 88.4 90.3 73.5 24.4 53.9 56.5 83.0 67.0 96.2 61.6 68.6 69.4
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As in the image-to-image retrieval experiments detailed in Sec. 5.1, we consider two strategies. In
the former, we use the query text features to retrieve from the gallery. In the latter, we approach the
task inter-modally by applying OVI to each query to obtain the complementary features.

Results. Table 2 (left) shows the results. Analogously to image-to-image retrieval, using the OVI-
inverted features outperforms the intra-modal baseline. Specifically, the absolute performance gains
range from 1% to 5% across all datasets, backbones, and VLMs. This outcome proves that intra-
modal similarity comparisons lead to suboptimal performance independently from the considered
modality. Hence, the intra-modal misalignment phenomenon involves both the image and text em-
bedding spaces.

5.3 ZERO-SHOT IMAGE CLASSIFICATION

We evaluate the performance of modality inversion on inter-modal tasks, such as zero-shot image
classification and image-text retrieval. We expect that transforming inter-modal tasks to intra-modal
ones hinders performance due to intra-modal misalignment. Here we consider zero-shot image
classification, while we report experiments on image-text retrieval in the supplementary material.

Experiment design. CLIP-like models perform zero-shot image classification by predicting the
output class based on the similarity between the input image and a set of textual prompts in the
form of “a photo of a [CLASS]”, where CLASS represents each class name, such as “cat” or “dog”.
Following Zhou et al. (2022b), we take into account 11 datasets (see the supplementary material for
more details). We consider three strategies. The first is the inter-modal baseline, which compares
the features of the input image and the set of prompts. In the second, we apply OTI to the input
image. In the third, OVI is applied to each textual prompt.

Results. In Tab. 2 (right) we report the performance of the first two strategies described above.
Results for the third strategy are given in Appendix G. As expected, using modality inversion con-
sistently leads to performance degradation across different VLMs and backbones. Note that the
datasets used in zero-shot image classification are also employed for image-to-image retrieval in
Sec. 5.1. This allows us to reuse the same OTI-inverted features for both tasks. Interestingly, the
results are opposite: performance improves in image-to-image retrieval but decreases in zero-shot
image classification. This contrast arises because, in the former, we transform an intra-modal task
into an inter-modal one, while in the latter, we do the reverse. This experiment demonstrates that
modality inversion does not inherently improve performance, as the same OTI-inverted features can
either enhance or hinder results depending on the nature of the task.

5.4 ANALYZING MODALITY INVERSION

In this section we study how and why transforming native modality features into complementary
ones via modality inversion leads to performance improvement on intra-modal tasks. For brevity,
we consider only OTI, but we find that the same considerations apply to OVI. We consider the Cars
dataset (Krause et al., 2013) and the CLIP ViT-B/32 model.
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Figure 2: (a, b) Loss values and retrieval performance over OTI optimization steps for different
numbers of pseudo-tokens R. (c) Distribution of pairwise image-image, text-image, and OTI-image
cosine similarities. We consider the OTI-inverted features using four pseudo-tokens (R = 4) at two
distinct optimization steps: the performance peak (step 17) and the final step (step 1000).

In Figs. 2(a) and 2(b) we investigate how the values of the loss Lcos and the image-to-image retrieval
performance vary based on the number of optimization steps and pseudo-tokens R. First, we notice
that with a single pseudo-token (i.e. R = 1) the loss does not reach zero within a reasonable number
of optimization steps. Conversely, asR increases (i.e. the number of trainable parameters grows) the
loss decreases more rapidly and approaches zero. As discussed in Sec. 4.3, as the loss decreases the
OTI-inverted features shift away from the text manifold towards the image manifold, approaching
the original native image features. This phenomenon is reflected in the image retrieval performance
shown in Fig. 2(b), since for enough optimization steps and pseudo-tokens the performance ap-
proaches those obtained by the native image features. Moreover, we observe that, regardless of the
value of R, the best performance corresponds to a relatively low number of optimization steps.

We argue that, in proximity to the performance peak observed during the optimization process, the
OTI-inverted features capture the informative content of the corresponding image while retaining
the inter-modal alignment. To support this claim, we compute cosine similarities for image-image,
text-image, and OTI-image feature pairs. Specifically, we analyze the OTI-inverted features using
four pseudo-tokens (R = 4) at two distinct optimization steps: the performance peak (step 17) and
the final step (step 1000), where performance approaches the intra-modal baseline. In Fig. 2(c) we
plot the distribution of these pairwise similarities. We observe that, at the performance peak, the
similarity distribution of OTI-image matches the text-image similarity distribution, while at the final
step it aligns with the image-image similarity distribution, confirming the drift of the OTI-inverted
features toward the image manifold. This suggests that OTI-inverted features perform best when
aligned with image features in the same way as text features, confirming our hypothesis that the
performance improvement obtained by OTI stems from leveraging CLIP’s inter-modal alignment.

Finally, we notice that R = 1 is not the optimal choice to achieve the best performance when using
OTI. Still, we use R = 1 in the experiments as the associated OTI-inverted features are less prone to
drift towards the native image features, thus being more robust to the number of optimization steps.
Moreover, the main objective of this work is not to achieve the best results on the downstream tasks
but rather show that using VLMs intra-modally is suboptimal.

5.5 THE ROLE OF INTRA-MODAL CONSTRAINTS

We investigate whether incorporating an intra-modal loss term during image-text contrastive pre-
training effectively mitigates the issue of intra-modal misalignment. To this end, we consider
SLIP (Mu et al., 2022), which adds a self-supervised intra-modal loss based on SimCLR (Chen
et al., 2020) to the standard CLIP inter-modal contrastive loss LCLIP (see Appendix C for more
details). Such intra-modal loss encourages the model to produce similar representations for two
augmentations of the same image, aiming to improve the intra-modal alignment within the image
embedding space.

To verify this, we perform an image-to-image retrieval experiment following the evaluation protocol
from Sec. 5.1. We report the results in Tab. 3. Notably, the OTI-inverted features achieve comparable
performance to the native image ones. This contrasts with results from VLMs trained solely with
an inter-modal contrastive loss (see Tab. 1), in which OTI led to a substantial performance boost.
This experiment proves that SLIP’s intra-modal loss effectively reduces intra-modal misalignment
and suggests the importance of including such a loss when pre-training VLMs.
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Table 3: Performance (mAP) evaluation on the image-to-image retrieval task using SLIP model.
Blue rows indicate the usage of OTI-inverted features, while white rows refer to the intra-modal
baseline. ✓ and X denote inter-modal and intra-modal approaches, respectively.
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5.6 THE ROLE OF THE MODALITY GAP
Table 4: Impact of the modality gap on the per-
formance (mAP) for the image-to-image retrieval
task on image retrieval datasets. Blue rows in-
dicate the usage of OTI-inverted features, while
white rows refer to the intra-modal baseline. ✓
and X denote inter-modal and intra-modal ap-
proaches, respectively.
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During CLIP pre-training, the temperature pa-
rameter τ in Eq. (1) critically affects the modal-
ity gap: higher temperatures considerably re-
duce or close it (Liang et al., 2022). To exam-
ine the impact of the modality gap on the intra-
modal misalignment, we fine-tune a CLIP ViT-
B/32 model on the COCO dataset (Lin et al.,
2014) using a temperature τ = 1.0, which
closes the modality gap. As a reference, we
repeat the experiment with τ = 0.01, i.e. the
value employed during CLIP pre-training. See
Tab. A2 for more details on the magnitudes of
the modality gap for the different models.

We reproduce our image-to-image retrieval experiments using these fine-tuned models and report
results in Tab. 4. In the absence of the modality gap (τ = 1) tackling intra-modal tasks inter-modally
does not improve performance. This shows that closing the modality gap reduces the intra-modal
misalignment. The results of the reference model (τ = 0.01) prove that this outcome does not
stem from the fine-tuning strategy. As also observed by Liang et al. (2022), we note that using
higher temperature values during training leads to an overall performance decrease in downstream
tasks, despite reducing the modality gap. For this reason, we argue that – in practice – simply
increasing the temperature value in Eq. (1) does not represent a viable strategy to address intra-
modal misalignment.

6 CONCLUSIONS

In this work we show that relying on intra-modal similarities computed with off-the-shelf VLMs
is suboptimal for intra-modal tasks like image-to-image and text-to-text retrieval. This stems from
the inter-modal contrastive loss employed for pre-training these models that leads to a modality gap
and intra-modal misalignment. We propose to transform intra-modal tasks to inter-modal ones via
two single-feature level modality inversion techniques. We demonstrate that this strategy improves
performance as it exploits the inter-modal alignment of VLMs. Finally, we show that employing
an intra-modal loss component during VLM pre-training or reducing the modality gap alleviates the
impact of intra-modal misalignment.

Limitations. Our analyses demonstrate the significance of intra-modal misalignment when exploit-
ing pre-trained CLIP models, but fall short of offering practical alternatives. The modality inversion
techniques we propose are computationally expensive. They are based on iterative optimization of
learnable input parameters (150 optimization steps for OTI and 1000 for OVI in our experiments).
This limits their practical applicability and future work should concentrate on efficient methods to
mitigate the intra-modal misalignment.
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Algorithm 1 Optimization-based Textual Inversion (OTI)

1: Input: Image I , number of pseudo-tokens R, number of opti-
mization steps S

2: Initialize v∗ = {v∗1 , v
∗
2 , . . . , v

∗
R}

3: Extract image features: ψI = fθ(I)
4: for s = 1 to S do
5: Form Y v∗ = [Ev(”a photo of”), v∗]
6: Extract text features: ψT = gϕ(Y v∗ )
7: Compute loss: Lcos = 1 − cos (ψI , ψT )
8: Update v∗ to minimize Lcos
9: end for

10: Output: OTI-inverted features ψT = gϕ(Y v∗ )

Algorithm 2 Optimization-based Visual Inversion (OVI)

1: Input: Text Y , number of pseudo-patches P , number of optimiza-
tion steps S

2: Initialize w∗ = {w∗
1 , w

∗
2 , . . . , w

∗
P }

3: Extract text features: ψT = gϕ(Ev(Y ))
4: for s = 1 to S do
5: Form input Īw∗ using Eq. (3)
6: Extract image features: ψI = fθ(Īw∗ )
7: Compute loss: Lcos = 1 − cos (ψI , ψT )
8: Update w∗ to minimize Lcos
9: end for

10: Output: OVI-inverted features ψI = fθ(Īw∗ )

Algorithms 1 and 2. Left: OTI maps an image into the textual embedding space by optimizing
pseudo-tokens. Right: OVI maps a text into the visual embedding space by optimizing pseudo-
patches. Both approaches iteratively minimize the cosine distance between the feature representa-
tions of the native and complementary modality.

APPENDIX A IMPLEMENTATION DETAILS

OTI and OVI. We report the pseudo-code of Optimization-based Textual Inversion (OTI) and
Optimization-based Visual Inversion (OVI) in Algorithm 1 and Algorithm 2, respectively. Un-
less stated otherwise, we use the same hyperparameters for OTI and OVI. We employ the AdamW
Loshchilov & Hutter (2019) optimizer with learning rate equal to 0.02, β1 = 0.9, β2 = 0.999, and
weight decay 0.01. We perform 150 optimization steps for OTI and 1000 steps for OVI. For OTI,
we consistently use a single pseudo-token (R = 1). In contrast, for OVI, we employ a number of
pseudo-patches P ranging from 1 to 4, depending on the considered model (see Sec. D for more
details). On average, when using the CLIP ViT/B-32 model, OTI takes approximately 0.2 seconds
per image, while OVI takes around 0.5 seconds per text prompt on a single A100 GPU (40GBs) with
a batch size of 2048. The memory usage scales linearly with the batch size. Specifically, when using
the CLIP ViT-B/32 model, OTI requires approximately 1,878 MiB plus 18.6 MiB per sample in the
batch. For example, with a batch size of 128, the memory consumption is about 4,260 MiB. For OVI,
the memory usage is approximately 2,218 MiB plus 16.2 MiB per sample, resulting in about 4,290
MiB with the same batch size. We use mixed precision to save memory and increase computational
efficiency. In downstream tasks all the features are normalized to have a unit L2-norm.

CLIP fine-tuning. To investigate the role of the modality gap on the intra-modal misalignment,
we perform a fine-tuning of the CLIP model using different loss temperatures (see Sec. 5.6). In
particular, we fine-tune the CLIP ViT B/32 model on the COCO training set for 30k steps, using a
batch size of 512 and a learning rate of 1e-6. As an optimizer we employ AdamW with β1 = 0.9,
β2 = 0.98 and a weight decay of 0.2. To mitigate possible overfitting issues, we train only the final
projection layers. We train two different models, in the first we set the loss temperature parameter
τ = 1.0 (first two rows of Tab. 4), while in the second we use τ = 0.01 (last two rows of Tab. 4).

APPENDIX B MORE INSIGHTS ON INTRA-MODAL MISALIGNMENT
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Figure A1: Distribution of pair-
wise dog-dog and dog-cat image
similarities. Overlap highlights the
intra-modal misalignment issue.

To provide quantitative insights into the intra-modal misalign-
ment issue we conduct a simple experiment using the CLIP
ViT-B/32 model and the “Dogs vs Cats” dataset (Elson et al.,
2007). This dataset consists of 25K images evenly distributed
between two classes: dog and cat. Our goal is to demonstrate
that, despite inter-modal alignment, the intra-modal similarity
scores are misaligned, i.e. they might not reflect those of actual
images and texts, as illustrated in the left section of Fig. 1.

We start by filtering out images with incorrect inter-modal
alignment to class-specific prompts. Specifically, we remove
dog images that exhibit higher similarity to the prompt “a
photo of a cat” than to the prompt “a photo of a dog”. Then
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we use the dog-related prompt to query the gallery of all images and filter out the minimal number
of images that are incorrectly ranked for this query. We repeat the same procedure for cat images.
This filtering ensures perfect inter-modal alignment and text-image retrieval scores.

On the resulting filtered dataset, we perform image-to-image retrieval using dog images as queries
and the whole set of images as the gallery. If inter-modal alignment guarantees intra-modal align-
ment, all dog images should rank higher than cat images for any dog query, resulting in perfect
retrieval. However, our results contradict this assumption. Specifically, we observe a mean Average
Precision (mAP) of 83.1% and an average R-Precision of 73.2%, where R-Precision represents the
precision at rank R, with R being the total number of relevant items for a given query. These find-
ings indicate that on average at least 26.8% of dog images are ranked below cat images for a given
dog query. Figure A1 qualitatively illustrates this issue, revealing significant overlap between the
distributions of pairwise dog-dog and dog-cat image similarities. We observe similar results when
employing cat images as queries. Given the evidence of intra-modal misalignment in such a toy
dataset, we believe that the issue is likely to be even more pronounced in more complex datasets
with more classes.

APPENDIX C ADDITIONAL VLMS

In this section, we provide a more detailed explanation of the SigLIP and SLIP models, highlighting
their key differences from CLIP.

SigLIP. In SigLIP (Zhai et al., 2023), given a batch of image-caption pairs B = {(Ii, Yi)}Ni=1,
training maximizes the cosine similarity for the N correct pairs and minimizes it for the N2 −
N incorrect pairs. Unlike the softmax-based contrastive loss from Eq. (1) used in CLIP, SigLIP
employs a sigmoid-based loss that avoids global normalization factors. Each image-text pair is
processed independently, transforming the learning task into a binary classification problem across
all pair combinations. The matching pair (Ii, Yi) receives a positive label, while all other pairs
(Ii, Yj ̸=i) receive negative labels. SigLIP consists of an image encoder fθ and a text encoder gϕ.
We denote the image and text embeddings as ψiI = fθ(Ii) and ψiT = gϕ(Yi), respectively. The loss
employed by SigLIP is:

LSigLIP = − 1

N

N∑
i=1

N∑
j=1

log

(
1

1 + ezij(−c(ψ
i
I ,ψ

j
T )/τ+b)

)
, (4)

where c(·, ·) denotes the cosine similarity, τ is a learnable temperature parameter, b is a learnable
bias, and zij is the label for a given image and text input (zij = 1 if i = j and zij = −1 otherwise).
Similar to CLIP, SigLIP’s loss does not include explicit intra-modal constraints; the loss focuses
solely on inter-modal alignment between image and text embeddings, without directly enforcing
intra-modal alignment.

SLIP. SLIP (Mu et al., 2022) is a VLM trained with both language supervision and image self-
supervision. Its loss function combines two components: the inter-modal loss used in CLIP (Eq. (1)),
and an intra-modal self-supervised term. For the self-supervised component, SLIP uses an adapta-
tion of SimCLR (Chen et al., 2020). This loss, denoted as LSimCLR, maximizes features similarities
between two different views (i.e. augmentation) of the same image:

LSimCLR = − 1

2N

2N∑
i=1

log
exp

(
c(ψp(i)I , ψ

q(i)
I )/τ

)
∑2N
k=1,k ̸=i exp

(
c(ψiI , ψ

k
I )/τ

) , (5)

where ψjI indicates the image embedding of a sample j, p(i) and q(i) are two augmented views of
the image i, c(·, ·) denotes the cosine similarity, and τ is a temperature parameter.

The final loss used in SLIP is a combination of CLIP and self-supervised losses:

LSLIP = LCLIP + LSimCLR. (6)

By incorporating the intra-modal self-supervised loss, SLIP encourages better intra-modal align-
ment within the image embedding space. We confirm this empirically in Tab. 3.
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APPENDIX D SELECTING THE NUMBER OF PSEUDO-PATCHES FOR OVI

Table A1: Ablation on the number of OVI pseudo-
patches for text-to-text retrieval on the Flickr30K
validation set. The highest mAP score in each
row is highlighted in bold, with the correspond-
ing value of P representing the number of pseudo-
patches used in the experiments.

Number of Pseudo-Patches P

VLM Backbone Intra-modal 1 2 4 8 16

CLIP B/32 51.4 54.5 52.9 51.8 51.6 51.6
L/14 52.6 51.7 55.2 56.0 55.3 54.1

OPEN B/32 57.3 59.6 57.9 57.5 57.4 57.4
L/14 59.6 60.6 62.5 62.4 61.2 60.4

SigLIP B/16 56.3 45.2 58.0 60.1 59.9 59.4

SLIP B/16 45.8 46.4 46.4 46.1 45.9 45.9
L/16 49.8 48.9 50.0 49.8 49.9 49.8

In Sec. 4.3, we observe that for certain experi-
ments a single pseudo-patch (i.e. P = 1) is not
enough to encapsulate the informative content
of the associated text. To determine the optimal
number of pseudo-patches for each VLM, we
conducted a text-to-text retrieval experiment on
the Flickr30K (Plummer et al., 2015) validation
set, varying the number of P from 1 to 16.

Table A1 presents the results of this ablation.
We observe that the ideal number of pseudo-
patches changes depending on the model. In
particular, larger VLMs – with a greater num-
ber of input patches U – tend to require more
pseudo-patches. We hypothesize that this is be-
cause, as the number of patches increases, the
influence of a single pseudo-patch decreases,
necessitating a larger number to capture suffi-
cient information.

APPENDIX E DIFFERENT VLM, DIFFERENT MODALITY GAP

In Sec. 5.6 we show that in the absence of the modality gap, tackling intra-modal tasks inter-modally
does not improve performance. This demonstrates that closing the modality gap helps reduce intra-
modal misalignment.

Following Liang et al. (2022) we define the modality gap as the difference between the two centroids
of the image and text modality embeddings:

∆gap =
1

N

N∑
i=1

xi −
1

N

N∑
i=1

yi, (7)

where xi and yi are the L2-normalized image and text embeddings, and N is the number of pairs.

Table A2: ∥∆gap∥ for different VLMs on COCO.

VLM Backbone Loss ∥∆gap∥

CLIP B/32 LCLIP
0.82

L/14 0.82

OPEN B/32 LCLIP
0.82

L/14 0.80

SigLIP B/16 LSigLIP 1.05

SLIP B16 LCLIP + LSimCLR
0.57

L/16 0.49

Fine-tuned B/32 LCLIP(τ = 1) 0.007
CLIP LCLIP(τ = 0.01) 0.88

To facilitate a clearer comparison across differ-
ent VLMs, in Table A2 we report the magnitude
of the modality gaps evaluated on the COCO
validation split. We observe that integrating
an intra-modal constraint (e.g. SLIP) or using a
higher temperature in the contrastive loss (e.g.
our fine-tuned model with temperature τ = 1)
helps reduce or even eliminate the modality
gap. By analyzing Tabs. 1 to 4, we confirm our
hypothesis that exists a positive correlation be-
tween the magnitude of the modality gap and
the improvement in approaching intra-modal
tasks inter-modally using OTI (or OVI).

APPENDIX F DATASET DETAILS

Our experimental evaluation is performed on 18 datasets. Here we report all the evaluated splits and
details of the datasets used in our experiments.

Zero-shot Image Classification. Following Zhou et al. (2022b), we validate our zero-shot im-
age classification experiments on 11 publicly available datasets with diverse characteristics: Im-
ageNet (Deng et al., 2009) for large-scale object classification; Caltech101 (Fei-Fei et al., 2004)
for general object classification; EuroSAT (Helber et al., 2019) for satellite image recognition;
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Food101 (Bossard et al., 2014), FGVCAircraft (Maji et al., 2013), OxfordPets (Parkhi et al., 2012),
Flowers102 (Nilsback & Zisserman, 2008), and StanfordCars (Krause et al., 2013) for fine-grained
classification; UCF101 (Soomro et al., 2012) for action recognition; and the Describable Textures
Dataset (DTD) (Cimpoi et al., 2014) for texture classification. Following Zhou et al. (2022b), we
discard the “BACKGROUND Google” and “Faces easy” classes from Caltech101. For UCF101 – a
video dataset – we follow Radford et al. (2021) and use the middle frame of each video clip as the
input image. In all classification experiments, we report the accuracy results on the test set.

Image-to-Image Retrieval. For image-to-image retrieval experiments, we use the 11 datasets also
employed for zero-shot image classification and four widely used datasets commonly used for metric
learning and image retrieval: CUB-200-2011 (CUB) (Wah et al., 2011), Stanford Online Products
(SOP) (Oh Song et al., 2016), ROxford (Radenović et al., 2018), and RParis (Radenović et al.,
2018), for a total of 15 datasets. In the 11 datasets used for zero-shot image classification, we use
the test set as the query set and the training set as the gallery. For CUB, the entire dataset is used as
both the query and gallery sets. In SOP, both the query and gallery sets are taken from the test set.

In all experiments involving ROxford and RParis, we follow the standard benchmark and include
the R1M distractor set, containing 1 million images, as negative samples for all the queries. For
brevity in the paper we report only the metric calculated on the Easy setting Radenović et al. (2018).
For image-to-image retrieval evaluation, we use the standard mean Average Precision (mAP) metric.
Importantly, by using the same 11 datasets employed for zero-shot classification, we can evaluate
the performance of the same OTI-inverted features on both inter-modal zero-shot classification and
intra-modal image retrieval tasks

Text-to-Text Retrieval. We performed our text-to-text retrieval experiments using three image-
caption datasets: COCO (Lin et al., 2014), Flickr30K (Plummer et al., 2015), and nocaps (Agrawal
et al., 2019). We selected these datasets for two reasons: they contain short, descriptive text similar
to the ones used to train VLMs, and they provide multiple captions for each image. In our evaluation,
we use the first caption of each image as the query and aim to retrieve the other captions associated
with the same image from a gallery of all captions in the dataset. On average, COCO and Flickr30K
images have 5 captions each, while nocaps images have 10. We use the Karpathy split (Karpathy
& Fei-Fei, 2015) for both COCO and Flickr30K and report results using captions from the test
split. For nocaps, we report results on the validation split. Although these datasets contain images
associated with captions, we ignore the images in this setting. We use mAP as the evaluation metric
similar to the image retrieval experiments.

APPENDIX G ADDITIONAL EXPERIMENTS

Here we report additional experiments to support our claims about the importance of approaching
tasks inter-modally when using constrastively trained VLMs.

Zero-shot Image Classification with OVI. Due to space limitation, in Sec. 5.3, we provide a brief
overview of how CLIP-like models can perform zero-shot image classification. Here, we offer a
more detailed explanation for clarity. Given an image I and a set of textual prompts Y = {Yi | i =
1, . . . , C}, where C is the number of classes, each text prompt Yi is formatted as: ”a photo of a
[CLASSi]”, with CLASSi representing a specific class name, such as ”cat” or ”dog”. Let the image
features be denoted as ψI = fθ(I) and the text features for each prompt by ψiT = gϕ(Yi). The
probability of the image belonging to each class is then given by:

p(y = i|I) = exp(c(ψiT , ψI)/τ)∑C
j=1 exp(c(ψ

j
T , ψI)/τ)

, (8)

where c(·, ·) denotes cosine similarity and τ is a temperature parameter.

In Sec. 5.3, we transform zero-shot image classification from being natively inter-modal to intra-
modal by applying OTI to the input image I (see the right section of Tab. 2). As expected, this
consistently leads to performance degradation for different VLMs and backbones, demonstrating
that modality inversion does not inherently improve performance. Similarly, we perform an exper-
iment where we approach the zero-shot classification task intra-modally by applying OVI to each
textual prompt, with results reported in Tab. A3. Consistent with our previous findings, we observe
that approaching classification intra-modally hinders the performance.
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Table A3: Performance (accuracy) evaluation on the zero-shot image classification task. Purple rows
indicate the usage of OVI-inverted features, while white rows refer to the inter-modal baseline. ✓
and X denote inter-modal and intra-modal approaches, respectively.
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B/32 ✓ 60.4 87.5 67.0 19.1 43.6 45.2 80.5 62.0 91.2 62.0 62.1 61.9
X 37.4 59.9 35.0 9.2 26.2 18.9 65.1 44.1 83.9 51.2 42.9 43.1

L/14 ✓ 76.8 93.6 79.3 32.5 53.0 58.1 91.0 67.6 94.9 74.2 73.5 72.2
X 46.9 71.1 65.1 23.3 41.4 23.8 73.6 46.2 41.6 63.5 54.8 50.1

O
PE

N B/32 ✓ 88.4 90.3 73.5 24.4 53.9 56.5 83.0 67.0 96.2 61.6 68.6 69.4
X 81.4 82.1 62.4 17.9 45.8 36.6 76.1 56.9 93.6 55.1 59.6 60.7

L/14 ✓ 93.7 95.0 82.5 47.6 62.7 68.0 92.3 74.2 97.6 75.0 78.9 78.9
X 78.6 85.3 71.1 35.9 48.6 47.9 86.2 50.7 92.9 62.4 67.3 66.1

Si
g

L
IP B/16 ✓ 90.7 94.1 85.8 43.9 62.0 42.3 89.2 69.6 97.4 74.9 75.7 75.1

X 67.2 68.9 32.6 23.5 40.5 14.2 59.6 27.8 35.1 21.0 22.1 37.5

Table A4: Performance evaluation on the image-to-text and on the text-to-image retrieval task. Blue
rows and Purple rows indicate the usage of OTI- and OVI-inverted features, respectively. White
rows refer to the inter-modal baselines. ✓ and X denote inter-modal and intra-modal approaches,
respectively.

Image-to-Text Text-to-Image
Flickr30k COCO Flickr30k COCO

Backbone
Inter

modal R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

C
L

IP

B/32 ✓ 78.8 94.9 98.2 50.1 75.0 83.5 58.8 83.5 90.0 30.5 56.0 66.9
X 64.5 86.6 92.5 39.8 64.5 74.6 52.7 77.9 86.2 25.6 49.1 60.5

L/14 ✓ 85.2 97.4 99.2 56.3 79.3 86.6 64.9 87.3 92.0 36.5 61.0 71.1
X 75.8 92.9 95.9 49.0 72.8 81.2 60.7 84.8 90.3 33.2 55.1 67.7

O
PE

N B/32 ✓ 79.2 93.8 96.2 53.5 77.7 86.0 61.1 84.9 90.9 37.1 62.4 72.7
X 72.8 90.3 94.1 49.2 73.4 82.0 57.4 81.5 88.4 33.1 58.0 68.4

L/14 ✓ 89.1 98.6 99.7 63.3 84.2 90.4 73.4 91.8 95.5 45.7 70.1 79.2
X 86.0 97.7 98.9 60.8 81.5 88.3 67.4 88.1 93.0 39.0 63.4 73.2

Si
g

L
IP B/16 ✓ 89.0 98.0 99.2 65.7 85.4 91.2 74.6 92.3 95.6 47.8 72.4 81.0

X 81.8 95.5 97.3 57.0 79.0 86.2 57.9 82.6 88.7 33.7 58.2 68.9

Image-Text Retrieval with OTI and OVI. To provide additional experimental evidence that trans-
forming inter-modal tasks in intra-modal ones hinders performance, we conduct an experiment
on image-text retrieval using the COCO (Lin et al., 2014) and Flickr30K (Plummer et al., 2015)
datasets. We use the Karpathy splits Karpathy & Fei-Fei (2015) for both datasets and report results
on the test split. Following standard the evaluation benchmark, we report Recall@K scores with
K = 1, 5, and 10. Specifically, in image-to-text retrieval, we apply OTI to the query image, while
in text-to-image retrieval, we apply OVI to the query text. We then compare the results with the
inter-modal baseline, which directly compares image and text features. Results in Tab. A4 confirm
our findings from the zero-shot image classification task: transforming an inter-modal task into an
intra-modal one leads to performance degradation due to intra-modal misalignment.

Text-to-text Retrieval on Purely Textual Datasets. In Sec. 5.2 we conduct a text-to-text retrieval
experiment using image captioning datasets to avoid a mismatch with VLMs pre-training data. In
this section, we evaluate the performance of OVI on purely textual datasets using the CLIP ViT B/32
model. Specifically, we select seven datasets from the NanoBEIR benchmark1 spanning diverse
domains such as scientific documents (SciDOCS) and climate-related texts (ClimateFEVER). We
discard Question-Answering (QA) datasets and those with queries whose average length exceeds
the context length of CLIP’s text encoder (77 tokens). Additionally, we include the IMDB Reviews
(Maas et al., 2011) and the 20 Newsgroups (Lang, 1995) datasets.

1https://huggingface.co/collections/zeta-alpha-ai/nanobeir
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Table A5: Performance (mAP) evaluation on the text-to-text retrieval task using purely textual
datasets. Purple rows indicate the usage of OVI-inverted features. ✓ and X denote inter-modal
and intra-modal approaches, respectively.
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OVI ✓ 52.3 33.1 15.3 39.1 70.5 12.2 33.6 16.8 33.2 34.0

Table A6: Performance (mAP) comparison between the proposed modality inversion techniques and
the adapter-based approach on the image-to-image (left) and text-to-text (right) retrieval tasks. Blue
rows and Purple rows indicate the usage of OTI- and OVI-inverted features, respectively. ✓ and X
denote inter-modal and intra-modal approaches, respectively.
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Baseline X 51.7 26.2 35.1 37.7
Adapter ✓ 51.9 28.3 37.8 39.3
OVI ✓ 54.8 28.3 38.8 40.6

All selected datasets comprise texts that cannot be easily represented visually. Examples include
“Learning Actionable Representations with Goal-Conditioned Policies” (SciDocs), “Atheism, phi-
losophy, and the absence of belief in deities” (20 Newsgroup), and “The carbon footprint on wind
energy is significant” (ClimateFEVER). Since gallery texts often exceed CLIP’s context length, we
employ the Llama-3.2-1B-Instruct2 Large Language Model (Dubey et al., 2024) to summarize them
to fit within the token limit.

We report the results in Tab. A5. OVI achieves a significant performance improvement over the
intra-modal baseline. This outcome demonstrates that OVI is effective even when considering texts
that can not be easily represented visually.

From Intra-modal to Inter-modal via Adapters. To broaden our comparative analysis we con-
duct an additional experiment where we train two single-layer linear adapters: one maps image
features to text features (aligned with the goal of OTI), and the other maps text features to image
features (aligned with the goal of OVI). For training, we leverage the LLaVA-CC3M3 dataset (Liu
et al., 2024), which comprises 595K image-text pairs. This dataset is derived by filtering the CC3M
dataset (Sharma et al., 2018) to achieve a more balanced distribution of concept coverage. We train
each adapter using a cosine loss that minimizes the distance between the adapter output and the
corresponding complementary features. Additionally, following Patel et al. (2024), we also employ
a CLIP-based contrastive loss component.

Table A6 presents the results for image-to-image and text-to-text retrieval tasks using the CLIP
ViT-B/32 model. The adapter-based approach improves performance over the intra-modal baseline
for both tasks. These findings support our claim that approaching the task inter-modally enhances
performance thanks to CLIP’s inherent inter-modal alignment. Interestingly, we observe that OTI
and OVI outperform the adapter-based approach in most scenarios. This result emphasizes the
effectiveness of OTI and OVI, as they do not require a training dataset but rather map individual
features directly to the complementary modality without relying on external resources.

From Intra-modal to Inter-modal via Captioning. We compare the performance of OTI on image-
to-image retrieval with a captioning-based approach. Specifically, given a query image, we first
generate the caption using a pre-trained captioning model, then use CLIP’s text encoder to extract
the text features to perform retrieval.

2https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
3https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K
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Table A7: Performance (mAP) comparison between the proposed OTI technique and the captioning-
based approach on the image-to-image retrieval task. Blue rows indicate the usage of OTI-inverted
features. ✓ and X denote inter-modal and intra-modal approaches, respectively.
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Baseline X 22.9 34.4 42.6 67.9 24.6 38.5
DeCap ✓ 4.4 2.0 0.1 1.2 2.5 2.0
CoCa (COCO) ✓ 3.5 0.8 0.0 0.7 1.8 1.4
CoCa (LAION) ✓ 17.6 3.9 8.4 28.2 23.6 16.3
OTI ✓ 24.6 35.1 43.0 70.3 28.0 40.2

We experiment with three pre-trained captioning models: DeCap (Li et al., 2023), which directly
generates captions from CLIP image features; CoCa (LAION)4 (Yu et al.), trained on the Laion2B
(Schuhmann et al., 2022) dataset; and CoCa (COCO)5, pre-trained on Laion2B and fine-tuned on
COCO (Lin et al., 2014).

DeCap:
A large building with a
clock tower on the front.

CoCa (COCO):

CoCa (LAION):

An old building with two
towers has a clock on it.

All souls college, oxford,
united kingdom.

Figure A2: Captions generated by pre-
trained captioning models for an image
from the ROxford dataset.

Table A7 shows the results using the CLIP ViT-
B/32 model. Regardless of the captioning model,
the captioning-based approaches achieve unsatisfactory
performance, even falling short of the intra-modal base-
line despite leveraging CLIP’s inter-modal alignment.
This outcome stems from the fact that the generated
captions are not discriminative enough to perform im-
age retrieval. This is particularly evident in fine-grained
domains such as the buildings of the ROxford and
RParis datasets (Radenović et al., 2018). Figure A2
shows an example of generated captions for a randomly
chosen image from the ROxford dataset. We observe
that all the captioning models generate generic and not
sufficiently discriminative captions. CoCa (LAION)
produces a more precise description than the other models, reflecting its higher performance.

Intra-OTI Similarity Comparisons. To further support our claim that the performance improve-
ment in image-to-image retrieval stems from CLIP’s inter-modal alignment and not from the modal-
ity inversion itself, we perform an experiment where we apply OTI to both query and gallery images.
Since OTI maps image features into text features, this intra-OTI strategy involves intra-modal simi-
larity comparisons within the text embedding space.

Table A8: Performance (mAP) evaluation on the
image-to-image retrieval task. ✓ and X denote inter-
modal and intra-modal approaches, respectively.
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Baseline X 22.9 34.4 42.6 67.9 24.6 38.5
Intra-OTI X 21.3 31.9 42.3 68.2 24.9 37.7
OTI (ours) ✓ 24.6 35.1 43.0 70.3 28.0 40.2

Table A8 shows the results on image
retrieval datasets using the CLIP ViT-
B/32 model. We observe that employ-
ing inter-modal similarity comparisons by
applying OTI only to the query images
achieves better performance than using
intra-modal similarities with the intra-OTI
approach. This confirms that modality in-
version techniques do not inherently im-
prove performance. Instead, their effec-
tiveness lies in leveraging CLIP’s inter-
modal alignment by transforming intra-modal tasks into inter-modal ones.

Impact of the OTI Template Sentence. As detailed in Sec. 4.1, for OTI we concatenate the tem-
plate sentence “a photo of” with the pseudo-token v∗ to craft the prompt “a photo of v∗”. To study
the impact of the template sentence on the performance, we test the following prompts: 1) “an image
of v∗”; 2) “we see v∗ in this photo”; and 3) “v∗” (the empty prompt).

4https://huggingface.co/laion/CoCa-ViT-B-32-laion2B
5https://huggingface.co/laion/mscoco finetuned CoCa-ViT-B-32
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Table A9: Impact on the performance (mAP) of the OTI template sentence used in image-to-image
retrieval. Each prompt is given by the combination of a template sentence with the pseudo-token v∗.
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“v∗” (empty prompt) 24.0 34.6 43.7 69.6 28.2 40.0
“We see v∗ in this photo” 24.5 34.7 43.0 69.7 28.3 40.0
“An image of v∗” 24.0 34.8 43.1 70.7 28.3 40.2
“A photo of v∗” (ours) 24.6 35.1 43.0 70.3 28.0 40.2

Table A9 reports the image-to-image retrieval results using the CLIP ViT-B/32 model. We observe
that all the considered prompts achieve comparable performance. These results demonstrate the
robustness of the OTI technique to the template sentence.

Combining Native and OTI-Inverted Features. We conduct an experiment on image-to-image
retrieval to assess whether combining native image features with the corresponding OTI-inverted
features improves the performance. Let ψI = fθ(I) be the native image features and ψT = gϕ(Y v∗)
be the OTI-inverted features. We query the gallery using a weighted combination of native and OTI-
inverted representations:

ψIT = α ∗ ψT + (1− α) ∗ ψI , (9)
where α ∈ [0, 1] is a weighting factor that controls the contribution of each component.

Table A10: Performance (mAP) evaluation of the combi-
nation between native and OTI-inverted features for vary-
ing weighting factors α for image-to-image retrieval.
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Baseline (α = 0) 22.9 34.4 42.6 67.9 24.6 38.5
OTI (α = 0.25) 24.0 35.6 44.9 70.1 25.9 40.1
OTI (α = 0.50) 24.6 36.1 46.7 71.0 27.0 41.1
OTI (α = 0.75) 24.8 35.9 46.3 71.1 27.7 41.2
OTI (α = 1) (ours) 24.6 35.1 43.0 70.3 28.0 40.2

Table A10 reports the results on image-
to-image retrieval datasets for vary-
ing values of α using the CLIP ViT-
B/32 model. Interestingly, for α large
enough, combining native and inverted
features obtains better results than re-
lying solely on either of them. No-
tably, regardless of the α value, we ob-
serve that employing OTI-inverted fea-
tures always improves the performance
over the intra-modal baseline. We leave
further investigation of the combination
of native and OTI-inverted features to
future work.

22


	Introduction
	Related Work
	CLIP Preliminaries
	From Intra-modal to Inter-modal via Modality Inversion
	Optimization-based Textual Inversion (OTI)
	Optimization-based Visual Inversion (OVI)
	Crossing the Modality Gap with OTI and OVI

	Experimental Results
	Image-to-Image Retrieval
	Text-to-Text Retrieval
	Zero-Shot Image Classification
	Analyzing Modality Inversion
	The Role of Intra-Modal Constraints
	The Role of the Modality Gap

	Conclusions
	Implementation Details
	More Insights on Intra-modal Misalignment
	Additional VLMs
	Selecting the number of pseudo-patches for OVI
	Different VLM, Different Modality Gap
	Dataset Details
	Additional Experiments

