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ABSTRACT

We propose an unsupervised approach for learning vertex orderings for the max-
imum clique problem by framing it within a permutation-based framework. We
transform the combinatorial constraints into geometric relationships such that the
ordering of vertices aligns with the clique structures. By integrating this clique-
oriented ordering into branch-and-bound search, we improve search efficiency and
reduce the number of computational steps. Our results demonstrate how unsu-
pervised learning of vertex ordering can enhance search efficiency across diverse
graph instances. We further study the generalization across different sizes.

1 INTRODUCTION

Unsupervised Learning (UL) is an emerging paradigm for solving Combinatorial Optimization
(CO) problems. While Supervised Learning (SL) requires expensive labelled data, and Reinforce-
ment Learning (RL) struggles with sparse rewards and high training variance, leading to unstable
performance, UL offers a promising alternative Min et al. (2023).

The Maximum Clique Problem (MCP) is of fundamental importance in graph theory and combi-
natorial optimization, with significant theoretical and practical implications. Formally, given an
undirected graph G(V,E), where V is the set of vertices and E is the set of edges, the MCP seeks the
largest subset C ⊆ V such that ∀u, v ∈ C, {u, v} ∈ E. In other words, the induced subgraph G[C]
is a complete graph, and the goal is to maximize |C|, the cardinality of the clique. MCP is not only
NP-hard but also hard to approximate, since no O(n1−ε)-approximation is possible unless P = NP
Engebretsen and Holmerin (2000); Khot (2001); Zuckerman (2006). The MCP has wide-ranging
applications, including social network analysis, where it helps uncover tightly connected communities,
and bioinformatics, where it is used to identify dense clusters in protein interaction networks Bomze
et al. (1999).

Exact algorithms for the MCP primarily follow the branch-and-bound framework. Among these,
a common strategy is to color the vertices in a specific order for computing upper bounds and
guiding vertex selection Tomita and Seki (2003); Tomita et al. (2010); San Segundo et al. (2011);
Konc and Janezic (2007). Other methods include iterative deepening with sub-clique information,
or use MaxSAT-based bounding Wu and Hao (2015). However, these algorithms mainly rely on
hand-crafted features to design effective pruning rules and branching strategies. Recently, there
has been a paradigm shift towards data-driven approaches, where machine learning techniques are
employed to build efficient search strategies. Among these data-driven methods, UL shows particular
promise because it can leverage the inherent structural patterns in graphs without requiring expensive
labelled training data.

Several approaches have tackled the MCP using UL by framing it as a binary classification task Kar-
alias and Loukas (2020). Recent advances have focused on two key areas: developing more so-
phisticated graph neural network architectures and designing novel loss functions Karalias et al.
(2022). These approaches aim to learn a function fθ : G(V,E)→ [0, 1]n that maps an input graph
to vertex-level probabilities, optimizing the model to identify vertices that belong to the maximum
clique.

Here, we propose an alternative approach that learns vertex ordering rather than binary assignments
for MCP. Graph vertex ordering is a foundational concept in combinatorial optimization on graphs,
including the MCP, where an appropriate vertex permutation can significantly influence the efficiency
of exact search algorithms. Traditional approaches often rely on hand-crafted heuristics, such as
degree-based ordering Carraghan and Pardalos (1990); Tomita et al. (2010); San Segundo et al.
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(2011); Jiang et al. (2017); Szabó and Zavalnij (2018). Recently, graph reordering has also attracted
interest in the machine learning community, particularly for enhancing the efficiency of graph neural
networks Arai et al. (2016); Balaji and Lucia (2018); Merkel et al. (2024). These studies highlight
that suitable vertex permutations can substantially impact algorithmic performance—for example, by
exposing dense substructures or minimizing irregular memory access patterns.

Consider the graph and its matrix representations shown in Figure 1. Our goal is to identify potential
cliques by reordering vertices. Given a graph with n nodes and adjacency matrix A ∈ Rn×n, the
matrix M(A) = J − I −A represents non-adjacent vertex pairs with 1s and adjacent pairs with 0s,
where J ∈ Rn×n is the all-ones matrix and I ∈ Rn×n is the identity matrix, M(A) is the adjacency
matrix of the complement graph.
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Figure 1: Graph representations and their corresponding matrices. (a) The original graph, (b) the
corresponding adjacency matrix A, (c) M(A) = J − I −A (where J is the all-ones matrix and I is
the identity matrix); (d) graph (a) with reordered nodes, (e) the corresponding adjacency matrix A′,
(f) M(A′) = J − I −A′.

Now, consider the two different vertex orderings illustrated in Figure 1 (a) and (d). Their corre-
sponding adjacency matrices, denoted as A and A′, are shown in Figure 1 (b) and (e). The matrices
M(A) and M(A′) are presented in Figure 1 (c) and (f), respectively. In M(A′), adjacent vertices
(represented by 0s) are successfully clustered in the upper-left corner, as highlighted by the red box.
This clustering effectively reveals potential clique members, since vertices within a clique must be
adjacent to each other, corresponding to the concentrated region of 0s in M(A′). Thus, if we can
find an optimal vertex ordering that places the clique nodes at the front, the clique structures will be
revealed by the concentrated pattern of 0s in the transformed matrix M(A′).

The reordering can be formally expressed as M(A′) = PTM(A)P, where P ∈ Rn×n is a permuta-
tion matrix. This formulation allows us to optimize the ordering of the vertices directly through a
permutation matrix P, from which we can extract the ordering of the vertices in the maximum clique.
This permutation framework fundamentally differs from previous UL approaches. While previous
methods encode clique constraints as penalty terms for binary classification, learning node-level
probabilities, our framework learns relative node orderings that reveal clique structures. This shift
from local classification (binary classification) to global structural relationships (ordering) enables
the direct capture of inter-node correlations through permutation patterns.

In this paper, we transform the discrete combinatorial problem into a continuous geometric opti-
mization using Chebyshev-based distances, which allows the model to capture clique structural
relationships between nodes. We integrate UL with branch-and-bound algorithms, resulting in im-
proved computational efficiency, especially for large, dense graphs. Our method is able to generalize
across sizes, with inference overhead diminishing as graph size increases and outperforming tradi-
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tional degree-based ordering. Our approach extends beyond binary classification, revealing how UL
can learn fundamental combinatorial structures, suggesting broader applications in CO.

2 BACKGROUND

Branch-and-Bound for Maximum Clique The branch-and-bound (BnB) approach has been one
of the most effective exact methods for solving MCP, with its performance largely determined
by two key components: the vertex selection strategy and the upper bound computation. The
algorithm incrementally constructs a clique by recursively selecting vertices while leveraging bounds
to prune infeasible branches. A crucial factor in its efficiency is the use of heuristics such as
degree-based vertex ordering and coloring-based bounds, which have been widely adopted in BnB
frameworks San Segundo et al. (2011); Tomita and Seki (2003); Konc and Janezic (2007); Li et al.
(2017). These techniques—ranging from greedy coloring bounds to efficient vertex selection—have
significantly influenced subsequent advances McCreesh and Prosser (2013); San Segundo et al.
(2016).

Unsupervised Learning for Vertex Ordering The most relevant UL work on graph ordering for
combinatorial optimization is UL for Travelling Salesman Problem (TSP), as explored by Min and
Gomes (2023); Min et al. (2023). The goal of TSP is to find the shortest Hamiltonian cycle. Min and
Gomes (2023) use a Graph Neural Network (GNN) to construct a soft permutation matrix T ∈ Rn×n

and optimize the following loss:

LTSP = ⟨TVTT ,DTSP⟩, (1)

where V represents a Hamiltonian cycle from node 1→ 2→ ...→ n→ 1, and DTSP is the distance
matrix with self-loop distances set as λ. Here, a soft permutation matrix is a doubly stochastic matrix,
meaning that every entry satisfies Tij ≥ 0 and both its row and column sums are equal to 1, that is,

n∑
j=1

Tij = 1 and
n∑

i=1

Tij = 1 for all i, j. (2)

Such matrices provide a continuous relaxation of discrete permutation matrices, enabling gradient-
based optimization while still approximating valid permutations. Since the Hamiltonian cycle
constraint holds under any permutation and the order is equivalent with respect to the permutation,
optimizing Equation 1 serves as a proxy for solving the TSP, incorporating both the shortest path
and Hamiltonian cycle constraints. In other words, the order of vertices in the Hamiltonian cycle is
determined by the permutation matrix and we aim to find the one that minimizes the total distance.

Input
Features

Graph Neural
Network

Permutation
Formulation

Output Search

Figure 2: Overview of the unsupervised learning framework for TSP. The model takes graph features
as input and processes them through a GNN. The objective is formulated within a permutation
framework. The output provides a heat map that guides the subsequent search.

To learn the soft permutation matrix T, Min and Gomes (2023) use a GNN coupled with a Gumbel-
Sinkhorn operator. The transformation TVTT is a heat map representation that guides the subsequent
search procedure, as shown in Figure 2.

3 MODEL

In our model, the intuition and motivation are straightforward: we aim to learn a good vertex ordering
to enhance BnB search performance for MCP. As mentioned in Figure 1, an effective ordering can
reveal the hidden clique structure. While most existing search algorithms rely on degree-based vertex
ordering, we propose incorporating a clique-oriented vertex ordering to guide the search process.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Learning We train our model to learn and generate clique-oriented ordering following the TSP
framework, as illustrated in Figure 2. Our goal is to design a cost matrix DClique analogous to DTSP
that transforms the discrete constraint satisfaction problem into a continuous geometric optimization.
This transformation requires DClique to guide the vertices’ reordering process, with the specific aim
of clustering vertices in a way that reveals potential clique structures.
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Figure 3: (a): Visualization of a 6x6 chessboard with a king positioned at A6; (b) the Chebyshev
distance matrix C6, where each element represents the minimum number of moves required for a
king to travel between corresponding squares; (c) C6 = 5− C6, where the elements at top left have
larger weights. Cn[i, j] = max{i, j} - 1 and Cn[i, j] = n− 1− Cn = n−max{i, j}

.

The key insight of our approach is to reorder vertices such that adjacent pairs are concentrated in
specific regions of the matrix. This geometric perspective naturally leads to the Chebyshev distance
matrix Cn and its complement Cn, as illustrated in Figure 3. The Chebyshev distance is defined as
the minimum number of moves a king piece requires to traverse a chessboard between two squares.
For an n × n grid, we formalize this distance as Cn[i, j] = max{i, j} − 1, with its complement
Cn[i, j] = n−max{i, j} assigning larger weights to elements in the upper-left region.

The Chebyshev distance matrix is crucial for our model to learn clique structures, as it will naturally
guide the optimization to push adjacent vertex pairs (0 in J − I −A) toward the upper-left corner, ef-
fectively clustering potential clique members together. Furthermore, we can strengthen this geometric
intuition by exponentially scaling the distance weights. Specifically, when we set DClique = (n2)Cn ,
minimizing LClique(P ) = ⟨PT (J−I−A)P,DClique⟩ guarantees convergence to the optimal solution,
where P ∈ Sn denotes a hard permutation matrix. In practice, we set DClique = (1 + ϵ)(Cn−n/2),
where ϵ is a positive constant. This formulation maintains the exponential weighting scheme and
provides better numerical stability.

We train our neural network to minimize the clique-specific objective:

LClique = ⟨TT (J − I −A)T,DClique⟩, (3)

where T represents a soft permutation matrix.

While this formulation appears similar to the TSP objective in Equation 1, there is a difference in
the matrix multiplication order. The TSP formulation uses TVTT , whereas our clique formulation is
TT (J − I −A)T. This distinction stems from different invariance requirements in the two problems.
Let H0 = T0VTT

0 denote the initial heat map of TSP and T0 is the initial soft permutation matrix.
For TSP, the permuted heat map should be equivariant under node reordering. When we apply a
permutation matrix Π to the original node ordering, our GNN’s equivariance ensures T = ΠT0,
resulting in a consistently transformed heat map ΠH0Π

T . Equivariance here means that if we relabel
the graph by Π, the output heat map should relabel in the same way, preserving the structure of the
tour under any permutation of node indices.

In contrast, for the maximum clique problem, TT
0 (J − I −A)T0 must remain invariant under node

reordering. When we apply a permutation Π, the J − I −A transforms as J − I −ΠAΠT . Due to
our GNN’s equivariance, T = ΠT0, making (ΠT0)

T (J − I −ΠAΠT )(ΠT0) equal to the original
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TT
0 (J − I − A)T0. This invariance is crucial as we aim to reorder adjacent pairs in the upper-left

corner, regardless of the initial vertex ordering.

Overall, here we encode the MCP using the same framework as TSP, where discrete combinatorial
constraints are transformed into continuous geometric optimization through matrix operations TVTT

and TT (J − I −A)T with distance matrices DTSP and DClique, respectively.

Search As mentioned, degree-based vertex ordering and coloring-based bounds are widely adopted
in BnB frameworks for solving the MCP Tomita and Seki (2003); Konc and Janezic (2007); Li and
Quan (2010); San Segundo et al. (2011); Wu and Hao (2015); Li et al. (2017). Among these methods,
MaxCliqueDynKonc and Janezic (2007), an improved version of Tomita et al.’s algorithm Tomita and
Seki (2003), is a well-established exact solver that we adopt as our baseline to compare degree-based
and UL-based vertex reordering methods. Most BnB methods for the MCP use the MaxCliqueDyn
paradigm, which maintains a candidate set of vertices and recursively selects them based on degree or
color to construct potential cliques while employing coloring-based bounds for pruning. Extensions
such as MaxCliqueDyn+EFL+SCR Li and Quan (2010) integrate failed literal detection and soft
clause relaxation but retain MaxCliqueDyn’s core structure.

Algorithm 1 MaxCliqueDyn: Maximum Clique Algorithm with Dynamic Upper Bounds
Require: Graph G = (V,E), candidate set R ⊆ V , coloring C, depth level
Ensure: Maximum clique in G

1: Initialize Q← ∅, Qmax ← ∅, S[level]← 0, Sold[level]← 0 ▷ Cliques and steps
2: ALL_STEPS ← 1, Tlimit ← 0.025 ▷ Step counter and threshold
3: Sort V in a non-increasing order with respect to their degrees; color first ∆(G) vertices

1, . . . ,∆(G), rest ∆(G) + 1 ▷ Degree-based init coloring
4: procedure MAXCLIQUEDYN(R, C, level)
5: S[level]← S[level] + S[level − 1]− Sold[level] ▷ Step count
6: Sold[level]← S[level − 1] ▷ Save old count
7: while R ̸= ∅ do
8: p← argmaxv∈R C(v) ▷ Best remaining vertex
9: R← R \ {p} ▷ Remove vertex

10: if |Q|+ C[index_of_p_in_R] > |Qmax| then ▷ Promising bound
11: Q← Q ∪ {p} ▷ Add to clique
12: if R ∩ Γ(p) ̸= ∅ then ▷ Has neighbors, where Γ(p) denotes the neighborhood of

vertex p
13: if S[level]/ALL_STEPS < Tlimit then ▷ Near root
14: Compute degrees in G(R ∩ Γ(p)) ▷ Better bounds
15: Sort R ∩ Γ(p) by non-increasing degree ▷ Order by potential
16: end if
17: C ′ ← ColorSort(R ∩ Γ(p)) ▷ Color subgraph
18: S[level]← S[level] + 1 ▷ Count step
19: ALL_STEPS ← ALL_STEPS + 1 ▷ Update total
20: MAXCLIQUEDYN(R ∩ Γ(p), C ′, level + 1) ▷ Recurse
21: else
22: if |Q| > |Qmax| then ▷ New best
23: Qmax ← Q ▷ Update max
24: end if
25: end if
26: Q← Q \ {p} ▷ Backtrack
27: else
28: return ▷ Prune branch
29: end if
30: end while
31: end procedure

Building upon this representative model, we aim to learn vertex ordering directly from graph
data to guide the BnB search, as an alternative to the traditional degree-based ordering used in
MaxCliqueDyn.
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MaxCliqueDyn MaxCliqueDyn uses dynamic bound adjustment to efficiently solve the MCP. The
algorithm maintains two key sets: Q for the current growing clique and Qmax for the best solution
found. Step counters S[level] and Sold[level] track search progress.

The algorithm combines several optimization strategies: non-increasing degree ordering for initial
bounds, dynamic step counting for adaptive bound adjustment, and the ColorSort algorithm for
maintaining vertex ordering properties. By applying bound calculations selectively near the root
of the search tree, MaxCliqueDyn achieves significant performance improvements on dense graphs
while preserving efficiency on sparse instances Konc and Janezic (2007).

At the beginning, MaxCliqueDyn sorts vertices in non-increasing degree order and assigns the first
∆(G) vertices colors 1 through ∆(G) and the remaining vertices color ∆(G) + 1, where ∆(G) is
the maximum degree in G. This provides a computationally efficient starting point that supports the
algorithm’s dynamic bound calculations throughout the search process Tomita and Seki (2003), the
algorithm is shown in Algorithm 1. This initial coloring strategy, though simple, establishes a valid
starting point for the BnB process. Rather than investing heavily in an optimal initial coloring, it uses
this basic coloring that improves automatically through the ColorSort. In practice, this simple
initial coloring achieves a balance between computation time and reduction in search space Tomita
and Seki (2003); Konc and Janezic (2007).

The ColorSort procedure plays a crucial role in the BnB framework by providing increasingly
refined upper bounds through an approximate graph coloring. Following Konc and Janezic (2007),
ColorSort first computes kmin = |Qmax| − |Q| + 1, which represents the minimum required
colors for potential improvements to the current best clique. It then assigns vertices to color classes
based on their adjacency relationships, where vertices receiving colors k < kmin are maintained in
their original positions, while vertices with colors k ≥ kmin are reordered based on their assigned
colors, we refer more details to the MaxCliqueDyn paper Konc and Janezic (2007).

From Soft Permutation T to Hard Permutation P To transform the GNN output into a hard
permutation matrix P, we employ a differentiable sorting operation. Specifically, we apply the
Gumbel-Sinkhorn operator to the GNN’s output, which is a continuous relaxation of the permutation
during training while allowing us to obtain a hard permutation matrix during inference through the
Hungarian algorithm Mena et al. (2018). This permutation matrix P is then used to reorder the input
vertices, partitioning likely clique nodes together.

In our GNN model, each node has two input features: (1) local density, calculated as the ratio of
existing edges to possible edges in the node’s neighborhood, and (2) node degree. Our model first
generates logits which are transformed by a scaled tanh activation1:

F = α tanh(fGNN(f0, A)) (4)

where f0 ∈ Rn×2 is the initial feature matrix and A ∈ Rn×n is the adjacency matrix. The learned
features are transformed into logits which are scaled by tanh with factor α. These scaled logits
are then passed through the Gumbel-Sinkhorn operator to build a differentiable approximation of a
permutation matrix:

T = GS(
F + γ × Gumbel noise

τ
, l), (5)

where γ is the scale of the Gumbel noise, τ is the temperature parameter, and l is the number of
Sinkhorn iterations. During inference, the logits F are then directly converted to a hard permutation
matrix using the Hungarian algorithm: P = Hungarian(−F+γ×Gumbel noise

τ ).

Search with Clique-oriented Ordering After obtaining the hard permutation matrix P, we reorder
the vertices according to this permutation to build what we refer to as the learned clique-oriented
vertex ordering.

To enhance MaxCliqueDyn’s efficiency, we propose replacing the traditional degree-based ordering
(line 3 in Algorithm 1) with our clique-oriented vertex ordering learned through UL. To maintain BnB
correctness, we follow Konc and Janezic (2007); Tomita and Seki (2003) by coloring the first ∆(G)

1Our Gumbel–Sinkhorn implementation can use PyTorch’s GPU-accelerated tensor operations together with
torch.compile, which significantly speeds up both the forward optimization and the backward gradient
computations in practice.
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vertices with unique colors from 1 to ∆(G) and assigning all remaining vertices color ∆(G) + 1.
Since MaxCliqueDyn selects vertices with the highest color label first, this ordering means non-clique
vertices are evaluated earlier in the search process, allowing the algorithm to establish good candidate
cliques during initial phases. These discovered cliques then serve as effective lower bounds as the
search progresses to the potential clique vertices later in the sequence, enabling more aggressive
pruning of the search space, thus leading to fewer total steps and faster execution.

In practice, we observe that although the subsequent ColorSort procedure in MaxCliqueDyn
will modify the initial vertex ordering, the vertices with maximum colors C(p) (which are selected
for subsequent procedures) tend to maintain a strong correlation with their initial positions in our
clique-oriented ordering. This means that vertices that we initially identified as likely clique members,
despite being reordered by ColorSort and R ∩ Γ(p), still tend to be processed later in the search
process, where Γ(p) denotes the neighborhood of vertex p. This delayed processing of potential
clique vertices aligns with our original strategy. Thus, the benefits of our clique-oriented ordering
persist.

4 EXPERIMENTS

Training Our dataset consists of Erdős-Rényi (ER) graphs with sizes n ∈ {100, 200} and edge
probabilities p ∈ {0.1, 0.2, . . . , 0.9}. For each combination of size and probability, we generate
50,000 training graphs, 10,000 validation graphs, and 10,000 test graphs. We train our GNN using
the Adam optimizer with learning rate 0.0001 for 100 epochs per graph configuration. The model
architecture uses a two-layer Scattering Attention GNN (SAG) Min et al. (2022) with 6 scattering
and 3 low-pass channels, with hidden dimension 128 for n = 100 and 256 for n = 200. The tanh
scale is set to α = 40. We conducted experiments using a NVIDIA H100 Graphics Processing Unit
(GPU) and an Intel Xeon Gold 6154 Central Processing Unit (CPU).

Table 1: Comparison of MaxCliqueDyn with three orderings (Random, Clique-oriented, and Degree
Sort) on random graphs with n = 10, 000 vertices and varying edge probabilities p. We use a 5:1:1
split for training, validation, and test, and each reported value is the average over 10,000 random
instances. We report the number of steps and computation time (in seconds) for each algorithm. The
Clique-oriented approach includes an additional inference overhead. The maximum clique size ω is
reported in the last column.

Random Clique-oriented Degree Sort
p Steps Time (s) Steps Time Inference (s) Steps Time (s) ω

0.1 94.25 7.799e-5 97.22 7.290e-5 6.357e-5 + 9.424e-4 98.45 7.321e-5 3.962
0.2 110.9 9.900e-5 107.8 9.663e-5 6.323e-5 + 1.030e-3 108.6 9.437e-5 5.022
0.3 159.0 1.480e-4 139.7 1.330e-4 6.402e-5 + 9.302e-4 143.6 1.380e-4 6.122
0.4 284.7 2.565e-4 245.7 2.192e-4 6.379e-5 + 7.107e-4 252.4 2.296e-4 7.514
0.5 535.1 5.042e-4 434.3 3.973e-4 6.345e-5 + 8.736e-4 456.2 4.053e-4 9.191
0.6 973.8 9.766e-4 873.0 8.038e-4 6.371e-5 + 7.767e-4 912.0 8.087e-4 11.45
0.7 1968 1.922e-3 1764 1.625e-3 6.427e-5 + 8.173e-4 1792 1.612e-3 14.65
0.8 4641 5.201e-3 3904 4.200e-3 6.550e-5 + 8.862e-4 4066 4.230e-3 19.86
0.9 4870 7.752e-3 4069 6.118e-3 6.352e-5 + 1.051e-3 4209 6.206e-3 30.69

In our experiments on n = 100, we vary the temperature parameter τ ∈ {1, 2, 3, 4, 5} and the noise
scale γ ∈ {0.01, 0.02, 0.03, 0.04, 0.05}, while fixing ϵ = 0.2 and l = 20 for all edge probabilities;
on n = 200, we use the same variations for τ and γ, but set ϵ to either 0.06 or ϵ = 0.08, with l = 10
for all edge probabilities. We then select the model with fastest inference time on the validation set.
The results on the test data are shown in Table 1 and 2.

The best performance is highlighted in bold for the number of steps and underlined for computation
time (excluding inference overhead). For n = 100, our learned clique-oriented approach achieves the
lowest number of steps for all edge probabilities except p = 0.1, where random ordering performs
marginally better. The reduction in steps becomes more pronounced as edge probability increases,
with up to 16.4% fewer steps compared to random ordering at p = 0.9. Our learned clique-oriented
approach achieves the fastest execution in 7 out of 9 cases, while degree-based ordering performs
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Table 2: Comparison of MaxCliqueDyn with three orderings (Random, Clique-oriented, and Degree
Sort) on random graphs with n = 200 vertices and varying edge probabilities p. We use a 5:1:1
split for training, validation, and test, and each reported value is the average over 10,000 random
instances. We report the number of steps and computation time (in seconds) for each algorithm. The
Clique-oriented approach includes an additional inference overhead. The maximum clique size ω is
reported in the last column.

Random Clique-oriented Degree Sort
p Steps Time (s) Steps Time (s) Inference (s) Steps Time (s) ω

0.1 2.040e+2 2.301e-4 2.001e+2 2.306e-4 8.138e-5+5.285e-3 2.031e+2 2.398e-4 4.209
0.2 3.505e+2 3.645e-4 3.236e+2 3.551e-4 8.143e-5+5.588e-3 3.270e+2 3.635e-4 5.881
0.3 9.182e+2 8.213e-4 8.426e+2 7.441e-4 8.100e-5+3.840e-3 8.554e+2 7.536e-4 7.096
0.4 2.196e+3 2.472e-3 2.115e+3 2.306e-3 8.289e-5+5.446e-3 2.220e+3 2.257e-3 8.959
0.5 6.492e+3 8.260e-3 6.119e+3 7.427e-3 8.097e-5+5.309e-3 6.233e+3 7.455e-3 11.02
0.6 2.818e+4 3.692e-2 2.651e+4 3.270e-2 8.133e-5+4.527e-3 2.703e+4 3.281e-2 13.88
0.7 1.372e+5 1.934e-1 1.277e+5 1.717e-1 8.143e-5+6.426e-3 1.299e+5 1.729e-1 18.05
0.8 1.288e+6 2.199e+0 1.182e+6 1.948e+0 8.191e-5+6.146e-3 1.248e+6 2.001e+0 25.20
0.9 1.435e+7 4.076e+1 1.209e+7 3.274e+1 8.132e-5+5.250e-3 1.252e+7 3.360e+1 41.27

best in 2 cases (p = 0.2 and p = 0.7). The time savings correlate strongly with the reduction
in steps. The clique-oriented method does incur an additional inference cost, consisting of two
components: GNN inference (≈ 6.4 × 10−5 seconds) and building a hard permutation using the
Hungarian algorithm (≈ 9.0× 10−4 seconds). As the edge probability increases from 0.1 to 0.9, all
methods show exponential growth in both steps and computation time. However, the clique-oriented
approach maintains its relative advantage, with the benefits becoming more significant for denser
graphs. To investigate how our method scales with graph size, we conducted additional experiments
on larger graphs with n = 200 vertices, with results shown in Table 2.

The performance advantage of the clique-oriented ordering becomes more pronounced as both graph
size and density increase. In larger graphs with n = 200 vertices, the results are shown in Table 2. Our
clique-oriented ordering consistently achieves the lowest number of steps across all edge probabilities,
with improvements becoming particularly significant on denser graphs. For sparse graphs (p = 0.1),
the clique-oriented approach shows a modest improvement, reducing steps by 1.9% compared to
random ordering (from 2.040× 102 to 2.001× 102). This advantage over random ordering grows
substantially with edge probability: at p = 0.6, steps are reduced by 5.9% (from 2.818 × 104 to
2.651× 104), and at p = 0.9, the improvement reaches 15.7% (from 1.435× 107 to 1.209× 107).
Compared with degree-based ordering, the clique-oriented approach reduces 1.9% at p = 0.6 and
3.4% at p = 0.9. The computation time shows similar trends, with the clique-oriented approach
achieving the fastest execution (excluding inference overhead) in 7 out of 9 cases. The time savings
become most significant on dense graphs. This substantial improvement more than compensates
for the small, constant inference overhead—approximately 8.1× 10−5 seconds for neural network
inference plus 5.3× 10−3 seconds for permutation computation.

It should be noted that, at p = 0.8 and p = 0.9, even when including the inference time overhead,
our clique-oriented ordering achieves lower total computation time compared to degree-based sorting.
Specifically, on p = 0.9, when we run the inference on our CPU (Intel Xeon Gold 6154), it has an
average inference time of ≈ 0.04 seconds, making total execution time for clique-oriented ordering
at p = 0.9 approximately 32.7 seconds, while degree-sort ordering takes 33.6 seconds, resulting in a
2.6% improvement. This demonstrates that even in a CPU-only environment, our clique-oriented
ordering outperforms degree-based ordering. This advantage becomes more pronounced as graph
size and density increase, making our method of great practical value. Our results suggest that our
UL model successfully captures important structural information that guides more efficient BnB.

5 THE LEARNED CLIQUE-ORIENTED ORDERING

To visualize our UL clique-oriented ordering, we select a randomly generated test instance with
n = 200 vertices and edge probability p = 0.8. Figure 4 illustrates different vertex ordering
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approaches. The random ordering does not show discernible patterns, making it difficult to identify
structural properties. Both the clique-oriented and degree-sorted ordering show a concentration of
edges in the upper-left region, but with distinct characteristics. The clique-oriented ordering groups
clique members together, revealing dense blocks that correspond to strongly connected subgraphs.
In contrast, the degree-sorted ordering emphasizes hub-like nodes but makes clique structures less
distinguishable, resulting in less distinct dense blocks.

(a) Random (b) Clique-oriented (UL) (c) Degree-sorted

Figure 4: Adjacency matrix visualization of the graph: (a) random ordering, (b) clique-oriented
ordering, and (c) matrix sorted by non-increasing degree.

Figure 5 shows adjacency matrices for the first 50 vertices, highlighting cliques of size ≥ 5. The
random ordering (a) exhibits minimal clique structures, while both clique-oriented (b) and degree-
sorted (c) orderings effectively cluster vertices belonging to cliques. The clique-oriented ordering
demonstrates better clique identification, revealing 7 distinct cliques compared to 6 in the degree-
sorted ordering, with cliques positioned closer to the upper-left corner. This validates the effectiveness
of our UL approach in revealing inherent clique structures through reordering.

(a) Random (b) Clique-oriented (UL) (c) Degree-sorted

Figure 5: Adjacency matrix of the first 50 nodes of the graph: (a) random ordering, (b) clique-oriented
ordering, and (c) matrix sorted by non-increasing degree.

These visual results clearly reflect the goal of our method. The Chebyshev-inspired distance matrix
DClique encourages the model to pull likely clique-forming vertex pairs toward the top-left corner, and
during training it naturally learns to group densely connected vertices together. The dense blocks that
appear in the clique-oriented ordering are therefore a direct outcome of this objective, showing that the
model is uncovering meaningful structure rather than arranging vertices arbitrarily. This reordering
also benefits exact MCP solvers: when clique candidates appear early, the solver can identify a large
clique sooner, tighten the initial lower bound, and prune the search space more effectively. In contrast,
degree-based sorting provides no explicit structural bias toward clique formation and often scatters
true clique vertices.

Although the clique-oriented (UL) ordering and degree-sorted ordering may look similar at a global
level, this is expected because both pull well-connected vertices toward the top-left region. The
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important differences appear in the finer structure. The UL ordering produces sharper, more coherent
dense blocks that align more closely with actual clique memberships, as shown in the zoomed-in view
of the first 50 nodes, as shown in Figure 5. Degree sorting tends to group high-degree vertices that are
not necessarily part of the same clique, leading to more diffuse patterns. This subtle but consistent
sharpening of clique-related regions in the UL ordering is what ultimately gives it a performance
advantage, allowing the solver to focus on promising regions of the search space earlier and prune
more aggressively.

6 CONCLUSION

In this paper, we demonstrate that UL can be used for reordering, where the resulting reordering
reveals underlying combinatorial structures. Instead of formulating the MCP as a binary classification
problem, we encode it using a permutation framework. This approach enables us to learn the ordering
of vertices directly, rather than making binary decisions. After decoding the model’s output, the clique
structures are naturally revealed. Importantly, reordering and binary classification approaches are
not mutually exclusive: while binary classification focuses on direct yes/no decisions about whether
nodes belong to the solution, reordering provides a complementary perspective by uncovering the
inherent structural relationships between nodes. By integrating both approaches, we can leverage
their respective strengths: binary classification’s explicit decision-making and reordering’s ability to
capture structural patterns.

Our experiments with MaxCliqueDyn demonstrated that traditional degree-based ordering in BnB
can be improved through UL approaches. As graph size and density increase, our inference overhead
becomes proportionally smaller in the total execution time. Notably, on the largest, densest graphs
(n = 200, p = 0.9), our approach outperforms degree-based ordering even when accounting for in-
ference time. This demonstrates the practical viability of our UL method, particularly for challenging
instances. Given that MaxCliqueDyn is a representative BnB algorithm and degree-based ordering
is widely used in most exact clique solvers, these results suggest the potential for improving exact
solvers through learned ordering strategies. In this paper, we only replaced the initial degree-based or-
dering with our learned clique-oriented ordering. There remain many promising directions for further
incorporating clique-oriented ordering into existing algorithms, such as exploring deeper integration
of learned clique-oriented methods throughout the search process, beyond just initialization.

Sensitivity to Hyperparameters. We examined how different hyperparameters affect performance
and found the model to be generally robust. Increasing the GNN from 2 to 3 layers still improves
MaxCliqueDyn, achieving 1.232× 107 steps and 33.01 seconds on (n = 200, p = 0.9) compared
to 1.252 × 107 steps and 33.60 seconds. Gumbel noise has only a minor effect, with noise levels
of 0.01 and 0.05 both yielding about a 2.5% runtime reduction. The most sensitive component is
the Chebyshev-based matrix DClique. Our choice DClique = (1 + ε)(Cn−n/2) works well for small ε,
while larger values (e.g., ε = 0.5) cause numerical instability and degrade performance. This can
be mitigated by using smaller ε or a slower-growing polynomial form, as long as weights increase
toward the top-left to promote clique formation.

Discussion and Future Work. In this work, we demonstrate that an unsupervised learning-based
approach can already improve a widely used exact solver through its initial ordering alone. The key
point is that our ordering is learned, not hand-crafted, allowing the model to automatically discover
structural patterns that traditional heuristics may not be able to capture.

We focus on learning effective initial vertex orderings for MaxCliqueDyn, but the idea is not tied
to this solver. Since most exact MCP frameworks depend on an initial ordering to guide branching
and pruning, our approach can naturally support many solvers. An important advantage is that the
method is fully unsupervised, requiring no labels and making it cheap to train and easy to deploy. A
supervised variant that learns from high-quality orderings could yield even stronger improvements.
Node ordering remains crucial in modern exact MCP algorithms, and a good ordering can serve as
a simple yet effective preprocessing step for recent methods as well Li et al. (2013); Li and Quan
(2010); San Segundo et al. (2019). Exploring deeper integration between learning and search is a
promising direction for future work.
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A COMPUTE THE HARD PERMUTATION

In our implementation, we use scipy.optimize.linear_sum_assignment to compute the
final hard permutation. We also tested the open-source CUDA batched assignment solver from
Karpukhin et al. (2024), which substantially speeds up hard-permutation decoding when using large
batch sizes.

B GENERALIZATION

To investigate our model’s capability to handle varying graph dimensions, we employ a zero-padding
strategy for size generalization. Given a graph with n = 190 nodes and edge probability p = 0.9,
we pad it with 10 dummy nodes to match our training dimension. To ensure similar edge density
between training and testing graphs after padding, we train the model on ER random graphs with
n = 200 nodes and edge probability p = 0.81. Specifically, these dummy nodes have zero feature
vectors, and their corresponding entries in the adjacency matrix are also set to zero, making them
isolated nodes. This padding strategy provides a general approach to handle size differences: smaller
graphs can be padded to the larger sizes, enabling our model to process arbitrary sizes.

Table 3: Comparison of MaxCliqueDyn with three orderings (Random, Generalized Clique-oriented,
and Degree Sort) on random graphs with n = 190 vertices and edge probabilities p = 0.9. For each
algorithm, we report the number of steps taken and computation time in seconds. The size of the
largest clique found ω is shown in the rightmost column.

Random Generalized Clique-oriented Degree Sort
p Steps Time (s) Steps Time (s) Inference (s) Steps Time (s) ω

0.9 7.145e+6 1.923e+1 5.656e+6 1.476e+1 8.191e-5+6.146e-3 5.886e+6 1.523e+1 40.46

We use the same training method described in Section 4 and our results are shown in Table 3.
The generalized clique-oriented model performs effectively, requiring 5.656× 106 steps and 14.76
seconds to find the maximum clique in an ER random graph with n = 190 and p = 0.9. This result
outperforms both the random algorithm (7.145×106 steps, 19.23 seconds) and the degree sort method
(5.886× 106 steps, 15.23 seconds). The additional inference overhead of our method (approximately
6.23 milliseconds) is negligible compared to the overall computation time, demonstrating that our
generalized approach maintains efficiency while handling different sizes.

C PROOF

The following proof discusses the connection between the Chebyshev distance complement Cn in
exponential form and the maximum clique problem. Specifically,

Lemma 1. When DClique = (n2)Cn with Cn[i, j] = n − max(i, j), minimizing Lclique(P ) =
⟨PT (J − I −A)P,DClique⟩ yields the maximum clique.

Proof. Let G = (V,E) be an undirected graph with adjacency matrix A. The matrix J − I − A
represents non-adjacent vertex pairs, where J ∈ Rn×n is the all-ones matrix and I ∈ Rn×n is the
identity matrix.

Let ω be the size of the maximum clique in G. We will show that any permutation matrix that
minimizes Lclique(P ) must place the maximum clique in the first ω positions.

Let P1 be a permutation matrix that places a maximum clique of size ω in the first ω positions. The
corresponding cost is:

Lclique(P1) =

n∑
i=1

n∑
j=1

[PT
1 (J − I −A)P1]ij · (n2)n−max(i,j) (6)
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Since the first ω vertices form a clique, we have [PT
1 (J − I − A)P1]ij = 0 for all 1 ≤ i, j ≤ ω.

Non-adjacent vertex pairs can only exist in positions where at least one index exceeds ω. For these
positions, we have n−max(i, j) ≤ n− (ω + 1) = n− ω − 1. Therefore:

Lclique(P1) ≤
∑
i,j

max(i,j)>ω

[PT
1 (J − I −A)P1]ij · (n2)n−max(i,j) (7)

≤
∑
i,j

max(i,j)>ω

(n2)n−max(i,j) (8)

≤ (n2 − ω2) · (n2)n−ω−1 (9)

Now, let P2 be any permutation matrix that does not place the maximum clique in the first ω positions.
Then at least one vertex from the maximum clique must be placed at position ω+1 or beyond, and at
least one non-clique vertex must be placed among the first ω positions.

Since the first ω positions cannot contain only clique vertices, there must exist at least one pair of
vertices in the first ω positions that are not adjacent. This non-adjacent pair contributes a value of
1 to [PT

2 (J − I − A)P2]ij where max(i, j) ≤ ω. The corresponding weight is at least (n2)n−ω.
Therefore:

Lclique(P2) ≥ (n2)n−ω (10)

We can now directly compare the bounds:

Lclique(P1)

Lclique(P2)
≤ (n2 − ω2) · (n2)n−ω−1

(n2)n−ω
(11)

=
n2 − ω2

n2
(12)

= 1− ω2

n2
< 1 (13)

This implies Lclique(P1) < Lclique(P2) for any permutation P2 that does not place the maximum
clique in the first ω positions. Therefore, any permutation matrix that minimizes Lclique(P ) must
place the maximum clique in the first ω positions.
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