
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

UNSUPERVISED ORDERING FOR MAXIMUM CLIQUE

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose an unsupervised approach for learning vertex orderings for the max-
imum clique problem by framing it within a permutation-based framework. We
transform the combinatorial constraints into geometric relationships such that the
ordering of vertices aligns with the clique structures. By integrating this clique-
oriented ordering into branch-and-bound search, we improve search efficiency and
reduce the number of computational steps. Our results demonstrate how unsu-
pervised learning of vertex ordering can enhance search efficiency across diverse
graph instances. We further study the generalization across different sizes.

1 INTRODUCTION

Unsupervised Learning (UL) is an emerging paradigm for solving Combinatorial Optimization
(CO) problems. While Supervised Learning (SL) requires expensive labelled data, and Reinforce-
ment Learning (RL) struggles with sparse rewards and high training variance, leading to unstable
performance, UL offers a promising alternative Min et al. (2023).

The Maximum Clique Problem (MCP) is of fundamental importance in graph theory and combi-
natorial optimization, with significant theoretical and practical implications. Formally, given an
undirected graph G(V,E), where V is the set of vertices and E is the set of edges, the MCP seeks
the largest subset C ⊆ V such that ∀u, v ∈ C, {u, v} ∈ E. In other words, the induced subgraph
G[C] is a complete graph, and the goal is to maximize |C|, the cardinality of the clique. The MCP
has wide-ranging applications, including social network analysis, where it helps uncover tightly
connected communities, and bioinformatics, where it is used to identify dense clusters in protein
interaction networks Bomze et al. (1999).

Exact algorithms for the MCP primarily follow the branch-and-bound framework. Among these,
a common strategy is to color the vertices in a specific order for computing upper bounds and
guiding vertex selection Tomita and Seki (2003); Tomita et al. (2010); San Segundo et al. (2011);
Konc and Janezic (2007). Other methods include iterative deepening with sub-clique information,
or use MaxSAT-based bounding Wu and Hao (2015). However, these algorithms mainly rely on
hand-crafted features to design effective pruning rules and branching strategies. Recently, there
has been a paradigm shift towards data-driven approaches, where machine learning techniques are
employed to build efficient search strategies. Among these data-driven methods, UL shows particular
promise because it can leverage the inherent structural patterns in graphs without requiring expensive
labelled training data.

Several approaches have tackled the MCP using UL by framing it as a binary classification task Kar-
alias and Loukas (2020). Recent advances have focused on two key areas: developing more so-
phisticated graph neural network architectures and designing novel loss functions Karalias et al.
(2022). These approaches aim to learn a function fθ : G(V,E)→ [0, 1]n that maps an input graph
to vertex-level probabilities, optimizing the model to identify vertices that belong to the maximum
clique.

Here, we propose an alternative approach that learns vertex ordering rather than binary assignments
for MCP. Consider the graph and its matrix representations shown in Figure 1. Our goal is to identify
potential cliques by reordering vertices. Given a graph with n nodes and adjacency matrix A ∈ Rn×n,
the matrix M(A) = J − I − A represents non-adjacent vertex pairs with 1s and adjacent pairs
with 0s, where J ∈ Rn×n is the all-ones matrix and I ∈ Rn×n is the identity matrix, M(A) is the
adjacency matrix of the complement graph.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

(a) (b) (c)

(d) (e) (f)

1

6

435

2

0 1 1 0 1 1
1 0 0 0 1 0
1 0 0 1 1 1
0 0 1 0 0 1
1 1 1 0 0 1
1 0 1 1 1 0





0 0 0 1 0 0
0 0 1 1 0 1
0 1 0 0 0 0
1 1 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0





1

2

534

6

0 1 1 1 0 1
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 0 0 1
0 1 1 0 0 0
1 0 0 1 0 0





0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 1 0 1
0 1 1 0 1 0




Figure 1: Graph representations and their corresponding matrices. (a) The original graph, (b) the
corresponding adjacency matrix A, (c) M(A) = J − I −A (where J is the all-ones matrix and I is
the identity matrix); (d) graph (a) with reordered nodes, (e) the corresponding adjacency matrix A′,
(f) M(A′) = J − I −A′.

Now, consider the two different vertex orderings illustrated in Figure 1 (a) and (d). Their corre-
sponding adjacency matrices, denoted as A and A′, are shown in Figure 1 (b) and (e). The matrices
M(A) and M(A′) are presented in Figure 1 (c) and (f), respectively. In M(A′), adjacent vertices
(represented by 0s) are successfully clustered in the upper-left corner, as highlighted by the red box.
This clustering effectively reveals potential clique members, since vertices within a clique must be
adjacent to each other, corresponding to the concentrated region of 0s in M(A′). Thus, if we can
find an optimal vertex ordering that places the clique nodes at the front, the clique structures will be
revealed by the concentrated pattern of 0s in the transformed matrix M(A′).

The reordering can be formally expressed as M(A′) = PTM(A)P, where P ∈ Rn×n is a permuta-
tion matrix. This formulation allows us to optimize the ordering of the vertices directly through a
permutation matrix P, from which we can extract the ordering of the vertices in the maximum clique.
This permutation framework fundamentally differs from previous UL approaches. While previous
methods encode clique constraints as penalty terms for binary classification, learning node-level
probabilities, our framework learns relative node orderings that reveal clique structures. This shift
from local classification (binary classification) to global structural relationships (ordering) enables
the direct capture of inter-node correlations through permutation patterns.

In this paper, we transform the discrete combinatorial problem into a continuous geometric opti-
mization using Chebyshev-based distances, which allows the model to capture clique structural
relationships between nodes. We integrate UL with branch-and-bound algorithms, resulting in im-
proved computational efficiency, especially for large, dense graphs. Our method is able to generalize
across sizes, with inference overhead diminishing as graph size increases and outperforming tradi-
tional degree-based ordering. Our approach extends beyond binary classification, revealing how UL
can learn fundamental combinatorial structures, suggesting broader applications in CO.

2 BACKGROUND

Branch-and-Bound for Maximum Clique The branch-and-bound (BnB) approach has been one
of the most effective exact methods for solving MCP, with its performance largely determined
by two key components: the vertex selection strategy and the upper bound computation. The
algorithm incrementally constructs a clique by recursively selecting vertices while leveraging bounds
to prune infeasible branches. A crucial factor in its efficiency is the use of heuristics such as

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

degree-based vertex ordering and coloring-based bounds, which have been widely adopted in BnB
frameworks San Segundo et al. (2011); Tomita and Seki (2003); Konc and Janezic (2007); Li et al.
(2017). These techniques—ranging from greedy coloring bounds to efficient vertex selection—have
significantly influenced subsequent advances McCreesh and Prosser (2013); San Segundo et al.
(2016).

Unsupervised Learning for Vertex Ordering The most relevant UL work on graph ordering for
combinatorial optimization is UL for Travelling Salesman Problem (TSP), as explored by Min and
Gomes (2023); Min et al. (2023). The goal of TSP is to find the shortest Hamiltonian cycle. Min and
Gomes (2023) use a Graph Neural Network (GNN) to construct a soft permutation matrix T ∈ Rn×n

and optimize the following loss:
LTSP = ⟨TVTT ,DTSP⟩, (1)

where V represents a Hamiltonian cycle from node 1→ 2→ ...→ n→ 1, and DTSP is the distance
matrix with self-loop distances set as λ. Essentially, T is an approximation of a hard permutation
matrix P ∈ Sn. Since the Hamiltonian cycle constraint holds under any permutation and the order is
equivalent with respect to the permutation, optimizing Equation 1 serves as a proxy for solving the
TSP, incorporating both the shortest path and Hamiltonian cycle constraints. In other words, the order
of vertices in the Hamiltonian cycle is determined by the permutation matrix and we aim to find the
one that minimizes the total distance.

Input
Features

Graph Neural
Network

Permutation
Formulation

Output Search

Figure 2: Overview of the unsupervised learning framework for TSP. The model takes graph features
as input and processes them through a GNN. The objective is formulated within a permutation
framework. The output provides a heat map that guides the subsequent search.

To learn the soft permutation matrix T, Min and Gomes (2023) use a GNN coupled with a Gumbel-
Sinkhorn operator. The transformation TVTT is a heat map representation that guides the subsequent
search procedure, as shown in Figure 2.

3 MODEL

In our model, the intuition and motivation are straightforward: we aim to learn a good vertex ordering
to enhance BnB search performance for MCP. As mentioned in Figure 1, an effective ordering can
reveal the hidden clique structure. While most existing search algorithms rely on degree-based vertex
ordering, we propose incorporating a clique-oriented vertex ordering to guide the search process.

3.1

Learning We train our model to learn and generate clique-oriented ordering following the TSP
framework, as illustrated in Figure 2. Our goal is to design a cost matrix DClique analogous to DTSP
that transforms the discrete constraint satisfaction problem into a continuous geometric optimization.
This transformation requires DClique to guide the vertices’ reordering process, with the specific aim
of clustering vertices in a way that reveals potential clique structures.

The key insight of our approach is to reorder vertices such that adjacent pairs are concentrated in
specific regions of the matrix. This geometric perspective naturally leads to the Chebyshev distance
matrix Cn and its complement Cn, as illustrated in Figure 3. The Chebyshev distance is defined as
the minimum number of moves a king piece requires to traverse a chessboard between two squares.
For an n × n grid, we formalize this distance as Cn[i, j] = max{i, j} − 1, with its complement
Cn[i, j] = n−max{i, j} assigning larger weights to elements in the upper-left region.

The Chebyshev distance matrix is crucial for our model to learn clique structures, as it will naturally
guide the optimization to push adjacent vertex pairs (0 in J − I −A) toward the upper-left corner, ef-
fectively clustering potential clique members together. Furthermore, we can strengthen this geometric
intuition by exponentially scaling the distance weights. Specifically, when we set DClique = (n2)Cn ,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

K

A B C D E F

1

2

3

4

5

6
0 1 2 3 4 5
1 1 2 3 4 5
2 2 2 3 4 5
3 3 3 3 4 5
4 4 4 4 4 5
5 5 5 5 5 5




C6 5− C6

5 4 3 2 1 0
4 4 3 2 1 0
3 3 3 2 1 0
2 2 2 2 1 0
1 1 1 1 1 0
0 0 0 0 0 0





Figure 3: (a): Visualization of a 6x6 chessboard with a king positioned at A6; (b) the Chebyshev
distance matrix C6, where each element represents the minimum number of moves required for a
king to travel between corresponding squares; (c) C6 = 5− C6, where the elements at top left have
larger weights. Cn[i, j] = max{i, j} - 1 and Cn[i, j] = n− 1− Cn = n−max{i, j}

.

minimizing LClique(P) = ⟨PT (J−I−A)P,DClique⟩ guarantees convergence to the optimal solution,
where P ∈ Sn denotes a hard permutation matrix. In practice, we set DClique = (1 + ϵ)(Cn−n/2),
where ϵ is a positive constant. This formulation maintains the exponential weighting scheme and
provides better numerical stability.

We train our neural network to minimize the clique-specific objective:

LClique = ⟨TT (J − I −A)T,DClique⟩, (2)

where T represents a soft permutation matrix.

While this formulation appears similar to the TSP objective in Equation 1, there is a difference in
the matrix multiplication order. The TSP formulation uses TVTT , whereas our clique formulation is
TT (J − I −A)T. This distinction stems from different invariance requirements in the two problems.
Let H0 = T0VTT

0 denote the initial heat map of TSP and T0 is the initial soft permutation matrix.
For TSP, the permuted heat map should be equivariant under node reordering. When we apply a
permutation matrix Π to the original node ordering, our GNN’s equivariance ensures T = ΠT0,
resulting in a consistently transformed heat map ΠH0Π

T .

In contrast, for the maximum clique problem, TT
0 (J − I −A)T0 must remain invariant under node

reordering. When we apply a permutation Π, the J − I −A transforms as J − I −ΠAΠT . Due to
our GNN’s equivariance, T = ΠT0, making (ΠT0)

T (J − I −ΠAΠT)(ΠT0) equal to the original
TT
0 (J − I − A)T0. This invariance is crucial as we aim to reorder adjacent pairs in the upper-left

corner, regardless of the initial vertex ordering.

Overall, here we encode the MCP using the same framework as TSP, where discrete combinatorial
constraints are transformed into continuous geometric optimization through matrix operations TVTT

and TT (J − I −A)T with distance matrices DTSP and DClique, respectively.

3.2 SEARCH

As mentioned, degree-based vertex ordering and coloring-based bounds are widely adopted in BnB
frameworks for solving the MCP Tomita and Seki (2003); Konc and Janezic (2007); Li and Quan
(2010); San Segundo et al. (2011); Wu and Hao (2015); Li et al. (2017). Among these methods,
MaxCliqueDynKonc and Janezic (2007), an improved version of Tomita et al.’s algorithm Tomita and
Seki (2003), is a well-established exact solver that we adopt as our baseline to compare degree-based
and UL-based vertex reordering methods. Most BnB methods for the MCP use the MaxCliqueDyn
paradigm, which maintains a candidate set of vertices and recursively selects them based on degree or
color to construct potential cliques while employing coloring-based bounds for pruning. Extensions
such as MaxCliqueDyn+EFL+SCR Li and Quan (2010) integrate failed literal detection and soft
clause relaxation but retain MaxCliqueDyn’s core structure.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Building upon this representative model, we aim to learn vertex ordering directly from graph
data to guide the BnB search, as an alternative to the traditional degree-based ordering used in
MaxCliqueDyn.

3.2.1 MAXCLIQUEDYN

MaxCliqueDyn uses dynamic bound adjustment to efficiently solve the MCP. The algorithm maintains
two key sets: Q for the current growing clique and Qmax for the best solution found. Step counters
S[level] and Sold[level] track search progress.

The algorithm combines several optimization strategies: non-increasing degree ordering for initial
bounds, dynamic step counting for adaptive bound adjustment, and the ColorSort algorithm for
maintaining vertex ordering properties. By applying bound calculations selectively near the root
of the search tree, MaxCliqueDyn achieves significant performance improvements on dense graphs
while preserving efficiency on sparse instances Konc and Janezic (2007).

At the beginning, MaxCliqueDyn sorts vertices in non-increasing degree order and assigns the first
∆(G) vertices colors 1 through ∆(G) and the remaining vertices color ∆(G) + 1, where ∆(G) is
the maximum degree in G. This provides a computationally efficient starting point that supports the
algorithm’s dynamic bound calculations throughout the search process Tomita and Seki (2003), the
algorithm is shown in Algorithm 1. This initial coloring strategy, though simple, establishes a valid
starting point for the BnB process. Rather than investing heavily in an optimal initial coloring, it uses
this basic coloring that improves automatically through the ColorSort. In practice, this simple
initial coloring achieves a balance between computation time and reduction in search space Tomita
and Seki (2003); Konc and Janezic (2007).

The ColorSort procedure plays a crucial role in the BnB framework by providing increasingly
refined upper bounds through an approximate graph coloring. Following Konc and Janezic (2007),
ColorSort first computes kmin = |Qmax| − |Q| + 1, which represents the minimum required
colors for potential improvements to the current best clique. It then assigns vertices to color classes
based on their adjacency relationships, where vertices receiving colors k < kmin are maintained in
their original positions, while vertices with colors k ≥ kmin are reordered based on their assigned
colors, we refer more details to the MaxCliqueDyn paper Konc and Janezic (2007).

3.2.2 FROM SOFT PERMUTATION T TO HARD PERMUTATION P

To transform the GNN output into a hard permutation matrix P, we employ a differentiable sorting
operation. Specifically, we apply the Gumbel-Sinkhorn operator to the GNN’s output, which is
a continuous relaxation of the permutation during training while allowing us to obtain a hard
permutation matrix during inference through the Hungarian algorithm Mena et al. (2018). This
permutation matrix P is then used to reorder the input vertices, partitioning likely clique nodes
together.

In our GNN model, each node has two input features: (1) local density, calculated as the ratio of
existing edges to possible edges in the node’s neighborhood, and (2) node degree. Our model first
generates logits which are transformed by a scaled tanh activation:

F = α tanh(fGNN(f0, A)) (3)
where f0 ∈ Rn×2 is the initial feature matrix and A ∈ Rn×n is the adjacency matrix. The learned
features are transformed into logits which are scaled by tanh with factor α. These scaled logits
are then passed through the Gumbel-Sinkhorn operator to build a differentiable approximation of a
permutation matrix:

T = GS(
F + γ × Gumbel noise

τ
, l), (4)

where γ is the scale of the Gumbel noise, τ is the temperature parameter, and l is the number of
Sinkhorn iterations. During inference, the logits F are then directly converted to a hard permutation
matrix using the Hungarian algorithm: P = Hungarian(−F+γ×Gumbel noise

τ).

3.2.3 SEARCH WITH CLIQUE-ORIENTED ORDERING

After obtaining the hard permutation matrix P, we reorder the vertices according to this permutation
to build what we refer to as the learned clique-oriented vertex ordering.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Algorithm 1 MaxCliqueDyn: Maximum Clique Algorithm with Dynamic Upper Bounds
Require: Graph G = (V,E), candidate set R ⊆ V , coloring C, depth level
Ensure: Maximum clique in G

1: Initialize Q← ∅, Qmax ← ∅, S[level]← 0, Sold[level]← 0 ▷ Cliques and steps
2: ALL_STEPS ← 1, Tlimit ← 0.025 ▷ Step counter and threshold
3: Sort V in a non-increasing order with respect to their degrees; color first ∆(G) vertices

1, . . . ,∆(G), rest ∆(G) + 1 ▷ Degree-based init coloring
4: procedure MAXCLIQUEDYN(R, C, level)
5: S[level]← S[level] + S[level − 1]− Sold[level] ▷ Step count
6: Sold[level]← S[level − 1] ▷ Save old count
7: while R ̸= ∅ do
8: p← argmaxv∈R C(v) ▷ Best remaining vertex
9: R← R \ {p} ▷ Remove vertex

10: if |Q|+ C[index_of_p_in_R] > |Qmax| then ▷ Promising bound
11: Q← Q ∪ {p} ▷ Add to clique
12: if R ∩ Γ(p) ̸= ∅ then ▷ Has neighbors, where Γ(p) denotes the neighborhood of

vertex p
13: if S[level]/ALL_STEPS < Tlimit then ▷ Near root
14: Compute degrees in G(R ∩ Γ(p)) ▷ Better bounds
15: Sort R ∩ Γ(p) by non-increasing degree ▷ Order by potential
16: end if
17: C ′ ← ColorSort(R ∩ Γ(p)) ▷ Color subgraph
18: S[level]← S[level] + 1 ▷ Count step
19: ALL_STEPS ← ALL_STEPS + 1 ▷ Update total
20: MAXCLIQUEDYN(R ∩ Γ(p), C ′, level + 1) ▷ Recurse
21: else
22: if |Q| > |Qmax| then ▷ New best
23: Qmax ← Q ▷ Update max
24: end if
25: end if
26: Q← Q \ {p} ▷ Backtrack
27: else
28: return ▷ Prune branch
29: end if
30: end while
31: end procedure

To enhance MaxCliqueDyn’s efficiency, we propose replacing the traditional degree-based ordering
(line 3 in Algorithm 1) with our clique-oriented vertex ordering learned through UL. To maintain BnB
correctness, we follow Konc and Janezic (2007); Tomita and Seki (2003) by coloring the first ∆(G)
vertices with unique colors from 1 to ∆(G) and assigning all remaining vertices color ∆(G) + 1.
Since MaxCliqueDyn selects vertices with the highest color label first, this ordering means non-clique
vertices are evaluated earlier in the search process, allowing the algorithm to establish good candidate
cliques during initial phases. These discovered cliques then serve as effective lower bounds as the
search progresses to the potential clique vertices later in the sequence, enabling more aggressive
pruning of the search space, thus leading to fewer total steps and faster execution.

In practice, we observe that although the subsequent ColorSort procedure in MaxCliqueDyn
will modify the initial vertex ordering, the vertices with maximum colors C(p) (which are selected
for subsequent procedures) tend to maintain a strong correlation with their initial positions in our
clique-oriented ordering. This means that vertices that we initially identified as likely clique members,
despite being reordered by ColorSort and R ∩ Γ(p), still tend to be processed later in the search
process, where Γ(p) denotes the neighborhood of vertex p. This delayed processing of potential
clique vertices aligns with our original strategy. Thus, the benefits of our clique-oriented ordering
persist.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

4 EXPERIMENTS

Training Our dataset consists of Erdős-Rényi (ER) graphs with sizes n ∈ {100, 200} and edge
probabilities p ∈ {0.1, 0.2, . . . , 0.9}. For each combination of size and probability, we generate
50,000 training graphs, 10,000 validation graphs, and 10,000 test graphs. We train our GNN using
the Adam optimizer with learning rate 0.0001 for 100 epochs per graph configuration. The model
architecture uses a two-layer Scattering Attention GNN (SAG) Min et al. (2022) with 6 scattering
and 3 low-pass channels, with hidden dimension 128 for n = 100 and 256 for n = 200. The tanh
scale is set to α = 40. We conducted experiments using a NVIDIA H100 Graphics Processing Unit
(GPU) and an Intel Xeon Gold 6154 Central Processing Unit (CPU).

In our experiments on n = 100, we vary the temperature parameter τ ∈ {1, 2, 3, 4, 5} and the noise
scale γ ∈ {0.01, 0.02, 0.03, 0.04, 0.05}, while fixing ϵ = 0.2 and l = 20 for all edge probabilities;
on n = 200, we use the same variations for τ and γ, but set ϵ to either 0.06 or ϵ = 0.08, with l = 10
for all edge probabilities. We then select the model with fastest inference time on the validation set.
The results on the test data are shown in Table 1 and 2.

Table 1: Comparison of MaxCliqueDyn with three orderings (Random, Clique-oriented, and Degree
Sort) on random graphs with n = 100 vertices and varying edge probabilities p. Each value represents
the average over 100 random instances. We report the number of steps and computation time (in
seconds) for each algorithm. The Clique-oriented approach includes an additional inference overhead.
The maximum clique size ω is reported in the last column.

Random Clique-oriented Degree Sort
p Steps Time (s) Steps Time Inference (s) Steps Time (s) ω

0.1 94.25 7.799e-5 97.22 7.290e-5 6.357e-5 + 9.424e-4 98.45 7.321e-5 3.962
0.2 110.9 9.900e-5 107.8 9.663e-5 6.323e-5 + 1.030e-3 108.6 9.437e-5 5.022
0.3 159.0 1.480e-4 139.7 1.330e-4 6.402e-5 + 9.302e-4 143.6 1.380e-4 6.122
0.4 284.7 2.565e-4 245.7 2.192e-4 6.379e-5 + 7.107e-4 252.4 2.296e-4 7.514
0.5 535.1 5.042e-4 434.3 3.973e-4 6.345e-5 + 8.736e-4 456.2 4.053e-4 9.191
0.6 973.8 9.766e-4 873.0 8.038e-4 6.371e-5 + 7.767e-4 912.0 8.087e-4 11.45
0.7 1968 1.922e-3 1764 1.625e-3 6.427e-5 + 8.173e-4 1792 1.612e-3 14.65
0.8 4641 5.201e-3 3904 4.200e-3 6.550e-5 + 8.862e-4 4066 4.230e-3 19.86
0.9 4870 7.752e-3 4069 6.118e-3 6.352e-5 + 1.051e-3 4209 6.206e-3 30.69

The best performance is highlighted in bold for the number of steps and underlined for computation
time (excluding inference overhead). For n = 100, our learned clique-oriented approach achieves the
lowest number of steps for all edge probabilities except p = 0.1, where random ordering performs
marginally better. The reduction in steps becomes more pronounced as edge probability increases,
with up to 16.4% fewer steps compared to random ordering at p = 0.9. Our learned clique-oriented
approach achieves the fastest execution in 7 out of 9 cases, while degree-based ordering performs
best in 2 cases (p = 0.2 and p = 0.7). The time savings correlate strongly with the reduction
in steps. The clique-oriented method does incur an additional inference cost, consisting of two
components: GNN inference (≈ 6.4 × 10−5 seconds) and building a hard permutation using the
Hungarian algorithm (≈ 9.0× 10−4 seconds). As the edge probability increases from 0.1 to 0.9, all
methods show exponential growth in both steps and computation time. However, the clique-oriented
approach maintains its relative advantage, with the benefits becoming more significant for denser
graphs. To investigate how our method scales with graph size, we conducted additional experiments
on larger graphs with n = 200 vertices, with results shown in Table 2.

The performance advantage of the clique-oriented ordering becomes more pronounced as both graph
size and density increase. In larger graphs with n = 200 vertices, the results are shown in Table 2. Our
clique-oriented ordering consistently achieves the lowest number of steps across all edge probabilities,
with improvements becoming particularly significant on denser graphs. For sparse graphs (p = 0.1),
the clique-oriented approach shows a modest improvement, reducing steps by 1.9% compared to
random ordering (from 2.040× 102 to 2.001× 102). This advantage over random ordering grows
substantially with edge probability: at p = 0.6, steps are reduced by 5.9% (from 2.818 × 104 to
2.651× 104), and at p = 0.9, the improvement reaches 15.7% (from 1.435× 107 to 1.209× 107).
Compared with degree-based ordering, the clique-oriented approach reduces 1.9% at p = 0.6 and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Comparison of MaxCliqueDyn with three orderings (Random, Clique-oriented, and Degree
Sort) on random graphs with n = 200 vertices and varying edge probabilities p. Each value represents
the average over 100 random instances. We report the number of steps and computation time (in
seconds) for each algorithm. The Clique-oriented approach includes an additional inference overhead.
The maximum clique size ω is reported in the last column.

Random Clique-oriented Degree Sort
p Steps Time (s) Steps Time (s) Inference (s) Steps Time (s) ω

0.1 2.040e+2 2.301e-4 2.001e+2 2.306e-4 8.138e-5+5.285e-3 2.031e+2 2.398e-4 4.209
0.2 3.505e+2 3.645e-4 3.236e+2 3.551e-4 8.143e-5+5.588e-3 3.270e+2 3.635e-4 5.881
0.3 9.182e+2 8.213e-4 8.426e+2 7.441e-4 8.100e-5+3.840e-3 8.554e+2 7.536e-4 7.096
0.4 2.196e+3 2.472e-3 2.115e+3 2.306e-3 8.289e-5+5.446e-3 2.220e+3 2.257e-3 8.959
0.5 6.492e+3 8.260e-3 6.119e+3 7.427e-3 8.097e-5+5.309e-3 6.233e+3 7.455e-3 11.02
0.6 2.818e+4 3.692e-2 2.651e+4 3.270e-2 8.133e-5+4.527e-3 2.703e+4 3.281e-2 13.88
0.7 1.372e+5 1.934e-1 1.277e+5 1.717e-1 8.143e-5+6.426e-3 1.299e+5 1.729e-1 18.05
0.8 1.288e+6 2.199e+0 1.182e+6 1.948e+0 8.191e-5+6.146e-3 1.248e+6 2.001e+0 25.20
0.9 1.435e+7 4.076e+1 1.209e+7 3.274e+1 8.132e-5+5.250e-3 1.252e+7 3.360e+1 41.27

3.4% at p = 0.9. The computation time shows similar trends, with the clique-oriented approach
achieving the fastest execution (excluding inference overhead) in 7 out of 9 cases. The time savings
become most significant on dense graphs. This substantial improvement more than compensates
for the small, constant inference overhead—approximately 8.1× 10−5 seconds for neural network
inference plus 5.3× 10−3 seconds for permutation computation.

It should be noted that, at p = 0.8 and p = 0.9, even when including the inference time overhead, our
clique-oriented ordering achieves lower total computation time compared to degree-based sorting1

Specifically, on p = 0.9, when we run the inference on our CPU (Intel Xeon Gold 6154), it has an
average inference time of ≈ 0.04 seconds, making total execution time for clique-oriented ordering
at p = 0.9 approximately 32.7 seconds, while degree-sort ordering takes 33.6 seconds, resulting in a
2.6% improvement. This demonstrates that even in a CPU-only environment, our clique-oriented
ordering outperforms degree-based ordering. This advantage becomes more pronounced as graph
size and density increase, making our method of great practical value. Our results suggest that our
UL model successfully captures important structural information that can guide more efficient BnB
search.

5 THE LEARNED CLIQUE-ORIENTED ORDERING

To visualize our UL clique-oriented ordering, we select a randomly generated test instance with
n = 200 vertices and edge probability p = 0.8. Figure 4 illustrates different vertex ordering
approaches. The random ordering does not show discernible patterns, making it difficult to identify
structural properties. Both the clique-oriented and degree-sorted ordering show a concentration of
edges in the upper-left region, but with distinct characteristics. The clique-oriented ordering groups
clique members together, revealing dense blocks that correspond to strongly connected subgraphs.
In contrast, the degree-sorted ordering emphasizes hub-like nodes but makes clique structures less
distinguishable, resulting in less distinct dense blocks.

Figure 5 shows adjacency matrices for the first 50 vertices, highlighting cliques of size ≥ 5. The
random ordering (a) exhibits minimal clique structures, while both clique-oriented (b) and degree-
sorted (c) orderings effectively cluster vertices belonging to cliques. The clique-oriented ordering
demonstrates better clique identification, revealing 7 distinct cliques compared to 6 in the degree-
sorted ordering, with cliques positioned closer to the upper-left corner. This validates the effectiveness
of our UL approach in revealing inherent clique structures through reordering.

1Note: In our implementation, we use scipy.optimize.linear_sum_assignment to obtain the
final hard permutation. We also evaluated the open-source CUDA implementation of the batched linear
assignment solver proposed in Karpukhin et al. (2024), which significantly accelerates the hard permutation
decoding process using a large batch size.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

(a) Random (b) Clique-oriented (UL) (c) Degree-sorted

Figure 4: Adjacency matrix visualization of the graph: (a) random ordering, (b) clique-oriented
ordering, and (c) matrix sorted by non-increasing degree.

(a) Random (b) Clique-oriented (UL) (c) Degree-sorted

Figure 5: Adjacency matrix of the first 50 nodes of the graph: (a) random ordering, (b) clique-oriented
ordering, and (c) matrix sorted by non-increasing degree.

6 CONCLUSION

In this paper, we demonstrate that UL can be used for reordering, where the resulting reordering
reveals underlying combinatorial structures. Instead of formulating the MCP as a binary classification
problem, we encode it using a permutation framework. This approach enables us to learn the ordering
of vertices directly, rather than making binary decisions. After decoding the model’s output, the clique
structures are naturally revealed. Importantly, reordering and binary classification approaches are
not mutually exclusive: while binary classification focuses on direct yes/no decisions about whether
nodes belong to the solution, reordering provides a complementary perspective by uncovering the
inherent structural relationships between nodes. By integrating both approaches, we can leverage
their respective strengths: binary classification’s explicit decision-making and reordering’s ability to
capture structural patterns.

Our experiments with MaxCliqueDyn demonstrated that traditional degree-based ordering in BnB
can be improved through UL approaches. As graph size and density increase, our inference overhead
becomes proportionally smaller in the total execution time. Notably, on the largest, densest graphs
(n = 200, p = 0.9), our approach outperforms degree-based ordering even when accounting for in-
ference time. This demonstrates the practical viability of our UL method, particularly for challenging
instances. Given that MaxCliqueDyn is a representative BnB algorithm and degree-based ordering
is widely used in most exact clique solvers, these results suggest the potential for improving exact
solvers through learned ordering strategies. In this paper, we only replaced the initial degree-based or-
dering with our learned clique-oriented ordering. There remain many promising directions for further
incorporating clique-oriented ordering into existing algorithms, such as exploring deeper integration
of learned clique-oriented methods throughout the search process, beyond just initialization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. Advances in Neural Information Processing Systems, 36:47264–47278, 2023.

Immanuel M Bomze, Marco Budinich, Panos M Pardalos, and Marcello Pelillo. The maximum clique
problem. Handbook of Combinatorial Optimization: Supplement Volume A, pages 1–74, 1999.

Etsuji Tomita and Tomokazu Seki. An efficient branch-and-bound algorithm for finding a maximum
clique. In International conference on discrete mathematics and theoretical computer science,
pages 278–289. Springer, 2003.

Etsuji Tomita, Yoichi Sutani, Takanori Higashi, Shinya Takahashi, and Mitsuo Wakatsuki. A simple
and faster branch-and-bound algorithm for finding a maximum clique. In International Workshop
on Algorithms and Computation, pages 191–203. Springer, 2010.

Pablo San Segundo, Diego Rodríguez-Losada, and Agustín Jiménez. An exact bit-parallel algorithm
for the maximum clique problem. Computers & Operations Research, 38(2):571–581, 2011.

Janez Konc and Dušanka Janezic. An improved branch and bound algorithm for the maximum clique
problem. proteins, 4(5):590–596, 2007.

Qinghua Wu and Jin-Kao Hao. A review on algorithms for maximum clique problems. European
Journal of Operational Research, 242(3):693–709, 2015.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:
6659–6672, 2020.

Nikolaos Karalias, Joshua Robinson, Andreas Loukas, and Stefanie Jegelka. Neural set function
extensions: Learning with discrete functions in high dimensions. Advances in Neural Information
Processing Systems, 35:15338–15352, 2022.

Chu-Min Li, Hua Jiang, and Felip Manyà. On minimization of the number of branches in branch-
and-bound algorithms for the maximum clique problem. Computers & Operations Research, 84:
1–15, 2017.

Ciaran McCreesh and Patrick Prosser. Multi-threading a state-of-the-art maximum clique algorithm.
Algorithms, 6(4):618–635, 2013.

Pablo San Segundo, Alvaro Lopez, and Panos M Pardalos. A new exact maximum clique algorithm
for large and massive sparse graphs. Computers & Operations Research, 66:81–94, 2016.

Yimeng Min and Carla Gomes. Unsupervised learning permutations for tsp using gumbel-sinkhorn
operator. In NeurIPS 2023 Workshop Optimal Transport and Machine Learning, 2023.

Chu-Min Li and Zhe Quan. Combining graph structure exploitation and propositional reasoning for
the maximum clique problem. In 2010 22nd IEEE international conference on tools with artificial
intelligence, volume 1, pages 344–351. IEEE, 2010.

Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations
with gumbel-sinkhorn networks. In International Conference on Learning Representations, 2018.

Yimeng Min, Frederik Wenkel, Michael Perlmutter, and Guy Wolf. Can hybrid geometric scattering
networks help solve the maximum clique problem? Advances in Neural Information Processing
Systems, 35:22713–22724, 2022.

Ivan Karpukhin, Foma Shipilov, and Andrey Savchenko. Hotpp benchmark: Are we good at the long
horizon events forecasting? arXiv preprint arXiv:2406.14341, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

A GENERALIZATION

To investigate our model’s capability to handle varying graph dimensions, we employ a zero-padding
strategy for size generalization. Given a graph with n = 190 nodes and edge probability p = 0.9,
we pad it with 10 dummy nodes to match our training dimension. To ensure similar edge density
between training and testing graphs after padding, we train the model on ER random graphs with
n = 200 nodes and edge probability p = 0.81. Specifically, these dummy nodes have zero feature
vectors, and their corresponding entries in the adjacency matrix are also set to zero, making them
isolated nodes. This padding strategy provides a general approach to handle size differences: smaller
graphs can be padded to the larger sizes, enabling our model to process arbitrary sizes.

Table 3: Comparison of MaxCliqueDyn with three orderings (Random, Generalized Clique-oriented,
and Degree Sort) on random graphs with n = 190 vertices and edge probabilities p = 0.9. For each
algorithm, we report the number of steps taken and computation time in seconds. The size of the
largest clique found ω is shown in the rightmost column.

Random Generalized Clique-oriented Degree Sort
p Steps Time (s) Steps Time (s) Inference (s) Steps Time (s) ω

0.9 7.145e+6 1.923e+1 5.656e+6 1.476e+1 8.191e-5+6.146e-3 5.886e+6 1.523e+1 40.46

We use the same training method described in Section 4 and our results are shown in Table 3.
The generalized clique-oriented model performs effectively, requiring 5.656× 106 steps and 14.76
seconds to find the maximum clique in an ER random graph with n = 190 and p = 0.9. This result
outperforms both the random algorithm (7.145×106 steps, 19.23 seconds) and the degree sort method
(5.886× 106 steps, 15.23 seconds). The additional inference overhead of our method (approximately
6.23 milliseconds) is negligible compared to the overall computation time, demonstrating that our
generalized approach maintains efficiency while handling different sizes.

B PROOF

The following proof discusses the connection between the Chebyshev distance complement Cn in
exponential form and the maximum clique problem. Specifically,

Lemma 1. When DClique = (n2)Cn with Cn[i, j] = n − max(i, j), minimizing Lclique(P) =
⟨PT (J − I −A)P,DClique⟩ yields the maximum clique.

Proof. Let G = (V,E) be an undirected graph with adjacency matrix A. The matrix J − I − A
represents non-adjacent vertex pairs, where J ∈ Rn×n is the all-ones matrix and I ∈ Rn×n is the
identity matrix.

Let ω be the size of the maximum clique in G. We will show that any permutation matrix that
minimizes Lclique(P) must place the maximum clique in the first ω positions.

Let P1 be a permutation matrix that places a maximum clique of size ω in the first ω positions. The
corresponding cost is:

Lclique(P1) =

n∑
i=1

n∑
j=1

[PT
1 (J − I −A)P1]ij · (n2)n−max(i,j) (5)

Since the first ω vertices form a clique, we have [PT
1 (J − I − A)P1]ij = 0 for all 1 ≤ i, j ≤ ω.

Non-adjacent vertex pairs can only exist in positions where at least one index exceeds ω. For these
positions, we have n−max(i, j) ≤ n− (ω + 1) = n− ω − 1. Therefore:

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Lclique(P1) ≤
∑
i,j

max(i,j)>ω

[PT
1 (J − I −A)P1]ij · (n2)n−max(i,j) (6)

≤
∑
i,j

max(i,j)>ω

(n2)n−max(i,j) (7)

≤ (n2 − ω2) · (n2)n−ω−1 (8)

Now, let P2 be any permutation matrix that does not place the maximum clique in the first ω positions.
Then at least one vertex from the maximum clique must be placed at position ω+1 or beyond, and at
least one non-clique vertex must be placed among the first ω positions.

Since the first ω positions cannot contain only clique vertices, there must exist at least one pair of
vertices in the first ω positions that are not adjacent. This non-adjacent pair contributes a value of
1 to [PT

2 (J − I − A)P2]ij where max(i, j) ≤ ω. The corresponding weight is at least (n2)n−ω.
Therefore:

Lclique(P2) ≥ (n2)n−ω (9)

We can now directly compare the bounds:

Lclique(P1)

Lclique(P2)
≤ (n2 − ω2) · (n2)n−ω−1

(n2)n−ω
(10)

=
n2 − ω2

n2
(11)

= 1− ω2

n2
< 1 (12)

This implies Lclique(P1) < Lclique(P2) for any permutation P2 that does not place the maximum
clique in the first ω positions. Therefore, any permutation matrix that minimizes Lclique(P) must
place the maximum clique in the first ω positions.

12

	Introduction
	Background
	Model
	
	Search
	MaxCliqueDyn
	From Soft Permutation T to Hard Permutation P
	Search with Clique-oriented Ordering

	Experiments
	The Learned Clique-oriented Ordering
	Conclusion
	Generalization
	Proof

