UNSUPERVISED ORDERING FOR MAXIMUM CLIQUE

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose an unsupervised approach for learning vertex orderings for the max-
imum clique problem by framing it within a permutation-based framework. We
transform the combinatorial constraints into geometric relationships such that the
ordering of vertices aligns with the clique structures. By integrating this clique-
oriented ordering into branch-and-bound search, we improve search efficiency and
reduce the number of computational steps. Our results demonstrate how unsu-
pervised learning of vertex ordering can enhance search efficiency across diverse
graph instances. We further study the generalization across different sizes.

1 INTRODUCTION

Unsupervised Learning (UL) is an emerging paradigm for solving Combinatorial Optimization
(CO) problems. While Supervised Learning (SL) requires expensive labelled data, and Reinforce-
ment Learning (RL) struggles with sparse rewards and high training variance, leading to unstable
performance, UL offers a promising alternative [Min et al.|(2023).

The Maximum Clique Problem (MCP) is of fundamental importance in graph theory and combi-
natorial optimization, with significant theoretical and practical implications. Formally, given an
undirected graph G(V, E), where V is the set of vertices and E is the set of edges, the MCP seeks
the largest subset C' C V such that Vu,v € C, {u,v} € E. In other words, the induced subgraph
G[C] is a complete graph, and the goal is to maximize |C|, the cardinality of the clique. The MCP
has wide-ranging applications, including social network analysis, where it helps uncover tightly
connected communities, and bioinformatics, where it is used to identify dense clusters in protein
interaction networks Bomze et al.| (1999).

Exact algorithms for the MCP primarily follow the branch-and-bound framework. Among these,
a common strategy is to color the vertices in a specific order for computing upper bounds and
guiding vertex selection Tomita and Seki| (2003)); Tomita et al.|(2010); |San Segundo et al.| (2011);
Konc and Janezic|(2007). Other methods include iterative deepening with sub-clique information,
or use MaxSAT-based bounding Wu and Hao| (2015). However, these algorithms mainly rely on
hand-crafted features to design effective pruning rules and branching strategies. Recently, there
has been a paradigm shift towards data-driven approaches, where machine learning techniques are
employed to build efficient search strategies. Among these data-driven methods, UL shows particular
promise because it can leverage the inherent structural patterns in graphs without requiring expensive
labelled training data.

Several approaches have tackled the MCP using UL by framing it as a binary classification task Kar{
alias and Loukas| (2020). Recent advances have focused on two key areas: developing more so-
phisticated graph neural network architectures and designing novel loss functions Karalias et al.
(2022). These approaches aim to learn a function fy : G(V, E) — [0, 1]™ that maps an input graph
to vertex-level probabilities, optimizing the model to identify vertices that belong to the maximum
clique.

Here, we propose an alternative approach that learns vertex ordering rather than binary assignments
for MCP. Consider the graph and its matrix representations shown in Figure[T} Our goal is to identify
potential cliques by reordering vertices. Given a graph with n nodes and adjacency matrix A € R™*",
the matrix M(A) = J — I — A represents non-adjacent vertex pairs with 1s and adjacent pairs
with 0s, where J € R™*™ is the all-ones matrix and I € R™*" is the identity matrix, M[(A) is the
adjacency matrix of the complement graph.

990 011011 000100
100010 001101
'\’é 100111 010000
‘ 001001 110010
QQ 111001 000100
101110 010000

() OO ©@rg11101 19700001107
101110 0000[01

'\6 110110 0000[01

‘ 111001 0000[10

(6 (1) 011000 ro0101
100100 011010

Figure 1: Graph representations and their corresponding matrices. (a) The original graph, (b) the
corresponding adjacency matrix A, (c) M(A) = J — I — A (where J is the all-ones matrix and I is
the identity matrix); (d) graph (a) with reordered nodes, (e) the corresponding adjacency matrix A’,
OMA)=TJ-T-A".

Now, consider the two different vertex orderings illustrated in Figure|l|(a) and (d). Their corre-
sponding adjacency matrices, denoted as A and A’, are shown in Figure|l|(b) and (e). The matrices
M(A) and M(A’) are presented in Figure 1] (c) and (f), respectively. In M(A’), adjacent vertices
(represented by 0s) are successfully clustered in the upper-left corner, as highlighted by the red box.
This clustering effectively reveals potential clique members, since vertices within a clique must be
adjacent to each other, corresponding to the concentrated region of Os in M(A’). Thus, if we can
find an optimal vertex ordering that places the clique nodes at the front, the clique structures will be
revealed by the concentrated pattern of Os in the transformed matrix M(A’).

The reordering can be formally expressed as M(A’) = PTM(A)P, where P € R™"*" is a permuta-
tion matrix. This formulation allows us to optimize the ordering of the vertices directly through a
permutation matrix P, from which we can extract the ordering of the vertices in the maximum clique.
This permutation framework fundamentally differs from previous UL approaches. While previous
methods encode clique constraints as penalty terms for binary classification, learning node-level
probabilities, our framework learns relative node orderings that reveal clique structures. This shift
from local classification (binary classification) to global structural relationships (ordering) enables
the direct capture of inter-node correlations through permutation patterns.

In this paper, we transform the discrete combinatorial problem into a continuous geometric opti-
mization using Chebyshev-based distances, which allows the model to capture clique structural
relationships between nodes. We integrate UL with branch-and-bound algorithms, resulting in im-
proved computational efficiency, especially for large, dense graphs. Our method is able to generalize
across sizes, with inference overhead diminishing as graph size increases and outperforming tradi-
tional degree-based ordering. Our approach extends beyond binary classification, revealing how UL
can learn fundamental combinatorial structures, suggesting broader applications in CO.

2 BACKGROUND

Branch-and-Bound for Maximum Clique The branch-and-bound (BnB) approach has been one
of the most effective exact methods for solving MCP, with its performance largely determined
by two key components: the vertex selection strategy and the upper bound computation. The
algorithm incrementally constructs a clique by recursively selecting vertices while leveraging bounds
to prune infeasible branches. A crucial factor in its efficiency is the use of heuristics such as

degree-based vertex ordering and coloring-based bounds, which have been widely adopted in BnB
frameworks [San Segundo et al.|(2011)); Tomita and Seki| (2003)); [Konc and Janezic (2007); |Li et al.
(2017). These techniques—ranging from greedy coloring bounds to efficient vertex selection—have
significantly influenced subsequent advances McCreesh and Prosser| (2013)); [San Segundo et al.
(2016).

Unsupervised Learning for Vertex Ordering The most relevant UL work on graph ordering for
combinatorial optimization is UL for Travelling Salesman Problem (TSP), as explored by Min and
Gomes| (2023); Min et al.|(2023). The goal of TSP is to find the shortest Hamiltonian cycle. Min and
Gomes|(2023) use a Graph Neural Network (GNN) to construct a soft permutation matrix T € R™*™
and optimize the following loss:

Lrsp = (TVTT, Drsp), (1)

where V represents a Hamiltonian cycle from node 1 — 2 — ... — n — 1, and Drgp is the distance
matrix with self-loop distances set as A. Essentially, T is an approximation of a hard permutation
matrix P € .S,,. Since the Hamiltonian cycle constraint holds under any permutation and the order is
equivalent with respect to the permutation, optimizing Equation] serves as a proxy for solving the
TSP, incorporating both the shortest path and Hamiltonian cycle constraints. In other words, the order
of vertices in the Hamiltonian cycle is determined by the permutation matrix and we aim to find the
one that minimizes the total distance.

Input > Graph Neural Permutation

. Output
Features Network Formulation P el

Figure 2: Overview of the unsupervised learning framework for TSP. The model takes graph features
as input and processes them through a GNN. The objective is formulated within a permutation
framework. The output provides a heat map that guides the subsequent search.

To learn the soft permutation matrix T,|Min and Gomes| (2023)) use a GNN coupled with a Gumbel-
Sinkhorn operator. The transformation TVT? is a heat map representation that guides the subsequent
search procedure, as shown in Figure

3 MODEL

In our model, the intuition and motivation are straightforward: we aim to learn a good vertex ordering
to enhance BnB search performance for MCP. As mentioned in Figure[I] an effective ordering can
reveal the hidden clique structure. While most existing search algorithms rely on degree-based vertex
ordering, we propose incorporating a clique-oriented vertex ordering to guide the search process.

3.1

Learning We train our model to learn and generate clique-oriented ordering following the TSP
framework, as illustrated in Figureg} Our goal is to design a cost matrix Dcique analogous to Drsp
that transforms the discrete constraint satisfaction problem into a continuous geometric optimization.
This transformation requires Dcjique to guide the vertices’ reordering process, with the specific aim
of clustering vertices in a way that reveals potential clique structures.

The key insight of our approach is to reorder vertices such that adjacent pairs are concentrated in
specific regions of the matrix. This geometric perspective naturally leads to the Chebyshev distance
matrix C), and its complement C,,, as illustrated in Figure The Chebyshev distance is defined as
the minimum number of moves a king piece requires to traverse a chessboard between two squares.
For an n x n grid, we formalize this distance as C,,[i, j] = max{i,j} — 1, with its complement
Chrli, j] = n — max{i, j} assigning larger weights to elements in the upper-left region.

The Chebyshev distance matrix is crucial for our model to learn clique structures, as it will naturally

guide the optimization to push adjacent vertex pairs (0 in J — I — A) toward the upper-left corner, ef-
fectively clustering potential clique members together. Furthermore, we can strengthen this geometric

intuition by exponentially scaling the distance weights. Specifically, when we set Dcjigue = (n2)Cn,

6 _ o - _
5% 012345 543210

112345 443210
4 222345 333210
3 333345 222210
, 444445 111110

555555 000000
!) Cs S 5O

A B C D E F

Figure 3: (a): Visualization of a 6x6 chessboard with a king positioned at A6; (b) the Chebyshev
distance matrix Cg, where each element represents the minimum number of moves required for a
king to travel between corresponding squares; (c) Cs = 5 — C§, where the elements at top left have
larger weights. C),[¢, j] = max{i,j} -l and C,[i,j]=n—1—C, =n —max{i,j}

minimizing Leiique(P) = (PT(J —I— A)P, Djigue) guarantees convergence to the optimal solution,

where P € S, denotes a hard permutation matrix. In practice, we set Dciigue = (1 + e)(a’”/ 2),
where € is a positive constant. This formulation maintains the exponential weighting scheme and
provides better numerical stability.

We train our neural network to minimize the clique-specific objective:
T
LClique = <T (J -1 - A)TaDClique>a 2
where T represents a soft permutation matrix.

While this formulation appears similar to the TSP objective in Equation [I] there is a difference in
the matrix multiplication order. The TSP formulation uses TVTT, whereas our clique formulation is
T?(J — I — A)T. This distinction stems from different invariance requirements in the two problems.
Let Hy = TOVTg denote the initial heat map of TSP and Ty is the initial soft permutation matrix.
For TSP, the permuted heat map should be equivariant under node reordering. When we apply a
permutation matrix II to the original node ordering, our GNN’s equivariance ensures T = IITy,
resulting in a consistently transformed heat map ITHoI17 .

In contrast, for the maximum clique problem, TZ (J — I — A)T must remain invariant under node
reordering. When we apply a permutation II, the J — I — A transforms as J — I — ITAII”. Due to
our GNN’s equivariance, T = IITy, making (IIT)7 (J — I — ITAIIT)(IITy) equal to the original
TE(J — I — A)Ty. This invariance is crucial as we aim to reorder adjacent pairs in the upper-left
corner, regardless of the initial vertex ordering.

Overall, here we encode the MCP using the same framework as TSP, where discrete combinatorial
constraints are transformed into continuous geometric optimization through matrix operations TVT”
and TT(J — I — A)T with distance matrices Drsp and Dciique, respectively.

3.2 SEARCH

As mentioned, degree-based vertex ordering and coloring-based bounds are widely adopted in BnB
frameworks for solving the MCP [Tomita and Seki| (2003)); [Konc and Janezic| (2007); |Li and Quan
(2010); |San Segundo et al.| (2011); [Wu and Hao| (2015)); [Li et al.| (2017). Among these methods,
MaxCliqueDynKonc and Janezic| (2007), an improved version of Tomita et al.’s algorithm [Tomita and
Sekil (2003)), is a well-established exact solver that we adopt as our baseline to compare degree-based
and UL-based vertex reordering methods. Most BnB methods for the MCP use the MaxCliqueDyn
paradigm, which maintains a candidate set of vertices and recursively selects them based on degree or
color to construct potential cliques while employing coloring-based bounds for pruning. Extensions
such as MaxCliqueDyn+EFL+SCR |Li and Quan| (2010)) integrate failed literal detection and soft
clause relaxation but retain MaxCliqueDyn’s core structure.

Building upon this representative model, we aim to learn vertex ordering directly from graph
data to guide the BnB search, as an alternative to the traditional degree-based ordering used in
MaxCliqueDyn.

3.2.1 MAXCLIQUEDYN

MaxCliqueDyn uses dynamic bound adjustment to efficiently solve the MCP. The algorithm maintains
two key sets: @ for the current growing clique and @, for the best solution found. Step counters
Sllevel] and Syiq[level] track search progress.

The algorithm combines several optimization strategies: non-increasing degree ordering for initial
bounds, dynamic step counting for adaptive bound adjustment, and the ColorSort algorithm for
maintaining vertex ordering properties. By applying bound calculations selectively near the root
of the search tree, MaxCliqueDyn achieves significant performance improvements on dense graphs
while preserving efficiency on sparse instances Konc and Janezic|(2007).

At the beginning, MaxCliqueDyn sorts vertices in non-increasing degree order and assigns the first
A(G) vertices colors 1 through A(G) and the remaining vertices color A(G) + 1, where A(G) is
the maximum degree in G. This provides a computationally efficient starting point that supports the
algorithm’s dynamic bound calculations throughout the search process Tomita and Seki (2003)), the
algorithm is shown in Algorithm[I] This initial coloring strategy, though simple, establishes a valid
starting point for the BnB process. Rather than investing heavily in an optimal initial coloring, it uses
this basic coloring that improves automatically through the ColorSort. In practice, this simple
initial coloring achieves a balance between computation time and reduction in search space Tomita
and Seki| (2003)); [Konc and Janezic| (2007)).

The ColorSort procedure plays a crucial role in the BnB framework by providing increasingly
refined upper bounds through an approximate graph coloring. Following [Konc and Janezic| (2007)),
ColorSort first computes kmin = |Qmax| — |@] + 1, which represents the minimum required
colors for potential improvements to the current best clique. It then assigns vertices to color classes
based on their adjacency relationships, where vertices receiving colors £ < kniy are maintained in
their original positions, while vertices with colors & > ki, are reordered based on their assigned
colors, we refer more details to the MaxCliqueDyn paper |Konc and Janezic| (2007)).

3.2.2 FROM SOFT PERMUTATION T TO HARD PERMUTATION P

To transform the GNN output into a hard permutation matrix P, we employ a differentiable sorting
operation. Specifically, we apply the Gumbel-Sinkhorn operator to the GNN’s output, which is
a continuous relaxation of the permutation during training while allowing us to obtain a hard
permutation matrix during inference through the Hungarian algorithm Mena et al.| (2018). This
permutation matrix P is then used to reorder the input vertices, partitioning likely clique nodes
together.

In our GNN model, each node has two input features: (1) local density, calculated as the ratio of
existing edges to possible edges in the node’s neighborhood, and (2) node degree. Our model first
generates logits which are transformed by a scaled tanh activation:

F = atanh(fonn(fo, 4)) (€)

where f, € R™*2 is the initial feature matrix and A € R™*" is the adjacency matrix. The learned
features are transformed into logits which are scaled by tanh with factor . These scaled logits
are then passed through the Gumbel-Sinkhorn operator to build a differentiable approximation of a
permutation matrix:

T = GS(), “)

where 7 is the scale of the Gumbel noise, 7 is the temperature parameter, and [is the number of
Sinkhorn iterations. During inference, the logits J are then directly converted to a hard permutation
matrix using the Hungarian algorithm: P = Hungarian(—w).

F + v x Gumbel noise
T

3.2.3 SEARCH WITH CLIQUE-ORIENTED ORDERING

After obtaining the hard permutation matrix P, we reorder the vertices according to this permutation
to build what we refer to as the learned clique-oriented vertex ordering.

Algorithm 1 MaxCliqueDyn: Maximum Clique Algorithm with Dynamic Upper Bounds

Require: Graph G = (V, E), candidate set R C V, coloring C, depth level
Ensure: Maximum clique in G

1: Initialize Q < 0, Qmax < 0, S|level] < 0, Syq|level] < 0 > Cliques and steps
2: ALL_STEPS < 1, Tjjmit < 0.025 > Step counter and threshold
3: Sort V' in a non-increasing order with respect to their degrees; color first A(G) vertices
1,...,A(G), rest A(G) + 1 > Degree-based init coloring
4: procedure MAXCLIQUEDYN(R, C, level)
5: Sllevel] + S[level] + S[level — 1] — Syiq[level] > Step count
6: Sord[level] < Sllevel — 1] > Save old count
7: while R # () do
8: p < argmax,er C(v) > Best remaining vertex
9: R < R\ {p} > Remove vertex
10: if |Q| + Clindex_of_p_in_R] > |Qmaz| then > Promising bound
11: Q+ QU {p} > Add to clique
12: if RNT'(p) # (0 then > Has neighbors, where I'(p) denotes the neighborhood of
vertex p
13: if S[level]/ALL_STEPS < Tjimi: then > Near root
14: Compute degrees in G(RNT'(p)) > Better bounds
15: Sort R N I'(p) by non-increasing degree > Order by potential
16: end if
17: C’ < ColorSort(RNT'(p)) > Color subgraph
18: Sllevel] « S[level] + 1 > Count step
19: ALL_STEPS < ALL_STEPS +1 > Update total
20: MAXCLIQUEDYN(R N I[(p), C’, level + 1) > Recurse
21: else
22: if |Q] > |Qmaz| then > New best
23: Qmaz < Q > Update max
24: end if
25: end if
26: Q<+ Q\{p} > Backtrack
27: else
28: return > Prune branch
29: end if

30: end while
31: end procedure

To enhance MaxCliqueDyn’s efficiency, we propose replacing the traditional degree-based ordering
(line 3 in Algorithm[T)) with our clique-oriented vertex ordering learned through UL. To maintain BnB
correctness, we follow Konc and Janezic|(2007); [Tomita and Seki| (2003)) by coloring the first A(G)
vertices with unique colors from 1 to A(G) and assigning all remaining vertices color A(G) + 1.
Since MaxCliqueDyn selects vertices with the highest color label first, this ordering means non-clique
vertices are evaluated earlier in the search process, allowing the algorithm to establish good candidate
cliques during initial phases. These discovered cliques then serve as effective lower bounds as the
search progresses to the potential clique vertices later in the sequence, enabling more aggressive
pruning of the search space, thus leading to fewer total steps and faster execution.

In practice, we observe that although the subsequent ColorSort procedure in MaxCliqueDyn
will modify the initial vertex ordering, the vertices with maximum colors C(p) (which are selected
for subsequent procedures) tend to maintain a strong correlation with their initial positions in our
clique-oriented ordering. This means that vertices that we initially identified as likely clique members,
despite being reordered by ColorSort and R NT'(p), still tend to be processed later in the search
process, where I'(p) denotes the neighborhood of vertex p. This delayed processing of potential
clique vertices aligns with our original strategy. Thus, the benefits of our clique-oriented ordering
persist.

4 EXPERIMENTS

Training Our dataset consists of Erdds-Rényi (ER) graphs with sizes n € {100,200} and edge
probabilities p € {0.1,0.2,...,0.9}. For each combination of size and probability, we generate
50,000 training graphs, 10,000 validation graphs, and 10,000 test graphs. We train our GNN using
the Adam optimizer with learning rate 0.0001 for 100 epochs per graph configuration. The model
architecture uses a two-layer Scattering Attention GNN (SAG) Min et al.| (2022)) with 6 scattering
and 3 low-pass channels, with hidden dimension 128 for n = 100 and 256 for n = 200. The tanh
scale is set to o = 40. We conducted experiments using a NVIDIA H100 Graphics Processing Unit
(GPU) and an Intel Xeon Gold 6154 Central Processing Unit (CPU).

In our experiments on n = 100, we vary the temperature parameter 7 € {1, 2,3, 4,5} and the noise
scale v € {0.01,0.02,0.03,0.04,0.05}, while fixing ¢ = 0.2 and [= 20 for all edge probabilities;
on n = 200, we use the same variations for 7 and +, but set € to either 0.06 or ¢ = 0.08, with [= 10
for all edge probabilities. We then select the model with fastest inference time on the validation set.
The results on the test data are shown in Table[Iland 21

Table 1: Comparison of MaxCliqueDyn with three orderings (Random, Clique-oriented, and Degree
Sort) on random graphs with n = 100 vertices and varying edge probabilities p. Each value represents
the average over 100 random instances. We report the number of steps and computation time (in
seconds) for each algorithm. The Clique-oriented approach includes an additional inference overhead.
The maximum clique size w is reported in the last column.

Random Clique-oriented Degree Sort
P Steps Time (s) Steps Time Inference (s) Steps Time (s) w

0.1 94.25 7.799e-5 9722 7.290e-5 6.357¢-5 + 9.424e-4 98.45 7.321e-5 3.962
0.2 1109 9.900e-5 107.8 9.663e-5 6.323e-5 + 1.030e-3 108.6 9.437e-5 5.022
0.3 159.0 1.480e-4 139.7 1.330e-4 6.402e-5 + 9.302¢-4 143.6 1.380e-4 6.122
0.4 2847 2.565e-4 245.7 2.192e-4 06.379¢-5 + 7.107e-4 2524 2.296e-4 7.514
0.5 535.1 5.042e-4 4343 3.973e-4 6.345¢-5 + 8.736e-4 456.2 4.053e-4 9.191
0.6 973.8 9.766e-4 873.0 8.038¢-4 6.371e-5+ 7.767e-4 912.0 8.087e-4 11.45
0.7 1968 1.922e-3 1764 1.625e-3 6.427e-5 + 8.173e-4 1792 1.612e-3 14.65
0.8 4641 5.201e-3 3904 4.200e-3 6.550e-5 + 8.862¢-4 4066 4.230e-3 19.86

0.9 4870 7.752e-3 4069 6.118e-3 6.352e-5 + 1.051e-3 4209 6.206e-3 30.69

The best performance is highlighted in bold for the number of steps and underlined for computation
time (excluding inference overhead). For n = 100, our learned clique-oriented approach achieves the
lowest number of steps for all edge probabilities except p = 0.1, where random ordering performs
marginally better. The reduction in steps becomes more pronounced as edge probability increases,
with up to 16.4% fewer steps compared to random ordering at p = 0.9. Our learned clique-oriented
approach achieves the fastest execution in 7 out of 9 cases, while degree-based ordering performs
best in 2 cases (p = 0.2 and p = 0.7). The time savings correlate strongly with the reduction
in steps. The clique-oriented method does incur an additional inference cost, consisting of two
components: GNN inference (=~ 6.4 x 1075 seconds) and building a hard permutation using the
Hungarian algorithm (=~ 9.0 x 104 seconds). As the edge probability increases from 0.1 to 0.9, all
methods show exponential growth in both steps and computation time. However, the clique-oriented
approach maintains its relative advantage, with the benefits becoming more significant for denser
graphs. To investigate how our method scales with graph size, we conducted additional experiments
on larger graphs with n = 200 vertices, with results shown in Table 2}

The performance advantage of the clique-oriented ordering becomes more pronounced as both graph
size and density increase. In larger graphs with n = 200 vertices, the results are shown in Table[2] Our
clique-oriented ordering consistently achieves the lowest number of steps across all edge probabilities,
with improvements becoming particularly significant on denser graphs. For sparse graphs (p = 0.1),
the clique-oriented approach shows a modest improvement, reducing steps by 1.9% compared to
random ordering (from 2.040 x 102 to 2.001 x 102). This advantage over random ordering grows
substantially with edge probability: at p = 0.6, steps are reduced by 5.9% (from 2.818 x 10* to
2.651 x 10%), and at p = 0.9, the improvement reaches 15.7% (from 1.435 x 107 to 1.209 x 107).
Compared with degree-based ordering, the clique-oriented approach reduces 1.9% at p = 0.6 and

Table 2: Comparison of MaxCliqueDyn with three orderings (Random, Clique-oriented, and Degree
Sort) on random graphs with n = 200 vertices and varying edge probabilities p. Each value represents
the average over 100 random instances. We report the number of steps and computation time (in
seconds) for each algorithm. The Clique-oriented approach includes an additional inference overhead.
The maximum clique size w is reported in the last column.

Random Clique-oriented Degree Sort
p Steps Time (s) Steps Time (s) Inference (s) Steps Time (s) w

0.1 2.040e+2 2.301e-4 2.001e+2 2.306e-4 8.138e-5+5.285¢-3 2.031e+2 2.398e-4 4.209
0.2 3.505e+2 3.645e-4 3.236e+2 3.551e-4 8.143e-5+5.588e-3 3.270e+2 3.635e-4 5.881
0.3 9.182e+2 8.213e-4 8.426e+2 7.441e-4 8.100e-5+3.840e-3 8.554e+2 7.536e-4 7.096
0.4 2.196e+3 2.472e-3 2.115e+3 2.306e-3 8.289%¢-5+5.446e-3 2.220e+3 2.257e-3 8.959
0.5 6.492e+3 8.260e-3 6.119e+3 7.427e-3 8.097e-5+5.309¢-3 6.233e+3 7.455e-3 11.02
0.6 2.818e+4 3.692e-2 2.651e+4 3.270e-2 8.133e-5+4.527e-3 2.703e+4 3.281e-2 13.88
0.7 1.372e+5 1.934e-1 1.277e+5 1.717e-1 8.143e-5+6.426e-3 1.299e+5 1.729e-1 18.05
0.8 1.288e+6 2.199e+0 1.182e+6 1.948e+0 8.191e-5+6.146e-3 1.248e+6 2.001e+0 25.20
0.9 1.435e+7 4.076e+1 1.209e+7 3.274e+1 8.132e-5+5.250e-3 1.252e+7 3.360e+1 41.27

3.4% at p = 0.9. The computation time shows similar trends, with the clique-oriented approach
achieving the fastest execution (excluding inference overhead) in 7 out of 9 cases. The time savings
become most significant on dense graphs. This substantial improvement more than compensates
for the small, constant inference overhead—approximately 8.1 x 10~° seconds for neural network
inference plus 5.3 x 103 seconds for permutation computation.

It should be noted that, at p = 0.8 and p = 0.9, even when including the inference time overhead, our
clique-oriented ordering achieves lower total computation time compared to degree-based sortinéﬂ
Specifically, on p = 0.9, when we run the inference on our CPU (Intel Xeon Gold 6154), it has an
average inference time of ~ 0.04 seconds, making total execution time for clique-oriented ordering
at p = 0.9 approximately 32.7 seconds, while degree-sort ordering takes 33.6 seconds, resulting in a
2.6% improvement. This demonstrates that even in a CPU-only environment, our clique-oriented
ordering outperforms degree-based ordering. This advantage becomes more pronounced as graph
size and density increase, making our method of great practical value. Our results suggest that our
UL model successfully captures important structural information that can guide more efficient BnB
search.

5 THE LEARNED CLIQUE-ORIENTED ORDERING

To visualize our UL clique-oriented ordering, we select a randomly generated test instance with
n = 200 vertices and edge probability p = 0.8. Figure [] illustrates different vertex ordering
approaches. The random ordering does not show discernible patterns, making it difficult to identify
structural properties. Both the clique-oriented and degree-sorted ordering show a concentration of
edges in the upper-left region, but with distinct characteristics. The clique-oriented ordering groups
clique members together, revealing dense blocks that correspond to strongly connected subgraphs.
In contrast, the degree-sorted ordering emphasizes hub-like nodes but makes clique structures less
distinguishable, resulting in less distinct dense blocks.

Figure [5] shows adjacency matrices for the first 50 vertices, highlighting cliques of size > 5. The
random ordering (a) exhibits minimal clique structures, while both clique-oriented (b) and degree-
sorted (c) orderings effectively cluster vertices belonging to cliques. The clique-oriented ordering
demonstrates better clique identification, revealing 7 distinct cliques compared to 6 in the degree-
sorted ordering, with cliques positioned closer to the upper-left corner. This validates the effectiveness
of our UL approach in revealing inherent clique structures through reordering.

"Note: In our implementation, we use scipy.optimize.linear_sum_assignment to obtain the
final hard permutation. We also evaluated the open-source CUDA implementation of the batched linear
assignment solver proposed in |Karpukhin et al.|(2024), which significantly accelerates the hard permutation
decoding process using a large batch size.

20 20

40 40

60 60

80 80

100 100 100

120 120 120

140 140 140

160 160 160

180 180 180

0 120 140 160 180 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180

(a) Random (b) Clique-oriented (UL) (c) Degree-sorted

Figure 4: Adjacency matrix visualization of the graph: (a) random ordering, (b) clique-oriented
ordering, and (c) matrix sorted by non-increasing degree.

(a) Random (b) Clique-oriented (UL) (c) Degree-sorted

Figure 5: Adjacency matrix of the first 50 nodes of the graph: (a) random ordering, (b) clique-oriented
ordering, and (c) matrix sorted by non-increasing degree.

6 CONCLUSION

In this paper, we demonstrate that UL can be used for reordering, where the resulting reordering
reveals underlying combinatorial structures. Instead of formulating the MCP as a binary classification
problem, we encode it using a permutation framework. This approach enables us to learn the ordering
of vertices directly, rather than making binary decisions. After decoding the model’s output, the clique
structures are naturally revealed. Importantly, reordering and binary classification approaches are
not mutually exclusive: while binary classification focuses on direct yes/no decisions about whether
nodes belong to the solution, reordering provides a complementary perspective by uncovering the
inherent structural relationships between nodes. By integrating both approaches, we can leverage
their respective strengths: binary classification’s explicit decision-making and reordering’s ability to
capture structural patterns.

Our experiments with MaxCliqueDyn demonstrated that traditional degree-based ordering in BnB
can be improved through UL approaches. As graph size and density increase, our inference overhead
becomes proportionally smaller in the total execution time. Notably, on the largest, densest graphs
(n =200, p = 0.9), our approach outperforms degree-based ordering even when accounting for in-
ference time. This demonstrates the practical viability of our UL method, particularly for challenging
instances. Given that MaxCliqueDyn is a representative BnB algorithm and degree-based ordering
is widely used in most exact clique solvers, these results suggest the potential for improving exact
solvers through learned ordering strategies. In this paper, we only replaced the initial degree-based or-
dering with our learned clique-oriented ordering. There remain many promising directions for further
incorporating clique-oriented ordering into existing algorithms, such as exploring deeper integration
of learned clique-oriented methods throughout the search process, beyond just initialization.

REFERENCES

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. Advances in Neural Information Processing Systems, 36:47264-47278, 2023.

Immanuel M Bomze, Marco Budinich, Panos M Pardalos, and Marcello Pelillo. The maximum clique
problem. Handbook of Combinatorial Optimization: Supplement Volume A, pages 1-74, 1999.

Etsuji Tomita and Tomokazu Seki. An efficient branch-and-bound algorithm for finding a maximum

clique. In International conference on discrete mathematics and theoretical computer science,
pages 278-289. Springer, 2003.

Etsuji Tomita, Yoichi Sutani, Takanori Higashi, Shinya Takahashi, and Mitsuo Wakatsuki. A simple
and faster branch-and-bound algorithm for finding a maximum clique. In International Workshop
on Algorithms and Computation, pages 191-203. Springer, 2010.

Pablo San Segundo, Diego Rodriguez-Losada, and Agustin Jiménez. An exact bit-parallel algorithm
for the maximum clique problem. Computers & Operations Research, 38(2):571-581, 2011.

Janez Konc and DuSanka Janezic. An improved branch and bound algorithm for the maximum clique
problem. proteins, 4(5):590-596, 2007.

Qinghua Wu and Jin-Kao Hao. A review on algorithms for maximum clique problems. European
Journal of Operational Research, 242(3):693-709, 2015.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:
6659-6672, 2020.

Nikolaos Karalias, Joshua Robinson, Andreas Loukas, and Stefanie Jegelka. Neural set function
extensions: Learning with discrete functions in high dimensions. Advances in Neural Information
Processing Systems, 35:15338-15352, 2022.

Chu-Min Li, Hua Jiang, and Felip Manya. On minimization of the number of branches in branch-
and-bound algorithms for the maximum clique problem. Computers & Operations Research, 84:
1-15, 2017.

Ciaran McCreesh and Patrick Prosser. Multi-threading a state-of-the-art maximum clique algorithm.
Algorithms, 6(4):618-635, 2013.

Pablo San Segundo, Alvaro Lopez, and Panos M Pardalos. A new exact maximum clique algorithm
for large and massive sparse graphs. Computers & Operations Research, 66:81-94, 2016.

Yimeng Min and Carla Gomes. Unsupervised learning permutations for tsp using gumbel-sinkhorn
operator. In NeurIPS 2023 Workshop Optimal Transport and Machine Learning, 2023.

Chu-Min Li and Zhe Quan. Combining graph structure exploitation and propositional reasoning for
the maximum clique problem. In 2010 22nd IEEFE international conference on tools with artificial
intelligence, volume 1, pages 344-351. IEEE, 2010.

Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations
with gumbel-sinkhorn networks. In International Conference on Learning Representations, 2018.

Yimeng Min, Frederik Wenkel, Michael Perlmutter, and Guy Wolf. Can hybrid geometric scattering
networks help solve the maximum clique problem? Advances in Neural Information Processing
Systems, 35:22713-22724, 2022.

Ivan Karpukhin, Foma Shipilov, and Andrey Savchenko. Hotpp benchmark: Are we good at the long
horizon events forecasting? arXiv preprint arXiv:2406.14341, 2024.

10

A GENERALIZATION

To investigate our model’s capability to handle varying graph dimensions, we employ a zero-padding
strategy for size generalization. Given a graph with n = 190 nodes and edge probability p = 0.9,
we pad it with 10 dummy nodes to match our training dimension. To ensure similar edge density
between training and testing graphs after padding, we train the model on ER random graphs with
n = 200 nodes and edge probability p = 0.81. Specifically, these dummy nodes have zero feature
vectors, and their corresponding entries in the adjacency matrix are also set to zero, making them
isolated nodes. This padding strategy provides a general approach to handle size differences: smaller
graphs can be padded to the larger sizes, enabling our model to process arbitrary sizes.

Table 3: Comparison of MaxCliqueDyn with three orderings (Random, Generalized Clique-oriented,
and Degree Sort) on random graphs with n = 190 vertices and edge probabilities p = 0.9. For each
algorithm, we report the number of steps taken and computation time in seconds. The size of the
largest clique found w is shown in the rightmost column.

Random Generalized Clique-oriented Degree Sort
p Steps Time (s) Steps Time (s) Inference (s) Steps Time (s) w

0.9 7.145e+6 1.923e+1 5.656e+6 1.476e+1 8.191e-5+6.146e-3 5.886e+6 1.523e+1 40.46

We use the same training method described in Section 4] and our results are shown in Table [3]
The generalized clique-oriented model performs effectively, requiring 5.656 x 106 steps and 14.76
seconds to find the maximum clique in an ER random graph with n = 190 and p = 0.9. This result
outperforms both the random algorithm (7.145 x 10° steps, 19.23 seconds) and the degree sort method
(5.886 x 10° steps, 15.23 seconds). The additional inference overhead of our method (approximately
6.23 milliseconds) is negligible compared to the overall computation time, demonstrating that our
generalized approach maintains efficiency while handling different sizes.

B PROOF

The following proof discusses the connection between the Chebyshev distance complement C,, in
exponential form and the maximum clique problem. Specifically,

Lemma 1. When Dejigue = (n?)% with Cyli,j] = n — max(i, j), minimizing Leiigue(P) =
(PT(J—1—-A)P, D ciigue) yields the maximum clique.

Proof. Let G = (V, E) be an undirected graph with adjacency matrix A. The matrix J — I — A
represents non-adjacent vertex pairs, where J € R™*" is the all-ones matrix and / € R™*"™ is the
identity matrix.

Let w be the size of the maximum clique in G. We will show that any permutation matrix that
minimizes Ljique (P) must place the maximum clique in the first w positions.

Let P; be a permutation matrix that places a maximum clique of size w in the first w positions. The
corresponding cost is:

n n

Letique(P1) = Z Z[PF(J — 1 —A)Py);; - (n?)nmax(d) 5

i=1 j=1

Since the first w vertices form a clique, we have [P (J — I — A)P;];; = Oforall 1 < i,j < w.
Non-adjacent vertex pairs can only exist in positions where at least one index exceeds w. For these
positions, we have n — max(i,j) <n — (w+ 1) = n — w — 1. Therefore:

11

Eclique(Pl) < Z [PlT(J e A)Pl]” . (nQ)n—max(i,j) (6)

2%}
max(4,j)>w
g Z (n2)n—max(i,j) (7)
max(’Li),jj)>w
< (nQ _ w2) . (n2)n7w71 (8)

Now, let P, be any permutation matrix that does not place the maximum clique in the first w positions.
Then at least one vertex from the maximum clique must be placed at position w + 1 or beyond, and at
least one non-clique vertex must be placed among the first w positions.

Since the first w positions cannot contain only clique vertices, there must exist at least one pair of
vertices in the first w positions that are not adjacent. This non-adjacent pair contributes a value of
1 to [Pf(J — I — A)P,];; where max(i, j) < w. The corresponding weight is at least (n?)"~.
Therefore:

Eclique(PQ) Z (n2)n7w (9)

We can now directly compare the bounds:

Eclique(Pl) < (’I’L2 — w2) . (n2)n—w—1

10
Eclique(P2) o (n2)n—w ()
TL2 — w2
e (11)
2
—1-2 <1 (12)
n

This implies Leiique(P1) < Leiique(P2) for any permutation P, that does not place the maximum
clique in the first w positions. Therefore, any permutation matrix that minimizes Ecﬁque(P) must
place the maximum clique in the first w positions.

12

	Introduction
	Background
	Model
	
	Search
	MaxCliqueDyn
	From Soft Permutation T to Hard Permutation P
	Search with Clique-oriented Ordering

	Experiments
	The Learned Clique-oriented Ordering
	Conclusion
	Generalization
	Proof

