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Linear-Time Algorithms for Representative
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Abstract
Representative subset selection from data streams is a critical prob-

lem with wide-ranging applications in web data mining and ma-

chine learning, such as social media marketing, big data summariza-

tion, and recommendation systems. This problem is often framed

as maximizing a monotone submodular function subject to a knap-

sack constraint, where each data element in the stream has an

associated cost, and the goal is to select elements within a bud-

get 𝐵 to maximize revenue. However, existing algorithms typically

rely on restrictive assumptions about the costs of data elements,

and their performance bounds heavily depend on the budget 𝐵. As

a result, these algorithms are only effective in limited scenarios

and have super-linear time complexity, making them unsuitable

for large-scale data streams. In this paper, we introduce the first

linear-time streaming algorithms for this problem, without any

assumptions on the data stream, while also minimizing memory

usage. Specifically, our single-pass streaming algorithm achieves

an approximation ratio of 1/8 − 𝜖 under O(𝑛) time complexity and

O(𝑘 log 1

𝜖 ) space complexity, where 𝑘 is the largest cardinality of

any feasible solution. Our multi-pass streaming algorithm improves

this to a (1/2 − 𝜖)-approximation using only three passes over the

stream, with O( 𝑛𝜖 log
1

𝜖 ) time complexity and O( 𝑘𝜖 log
1

𝜖 ) space
complexity. Extensive experiments across various applications re-

lated to web data mining and social media marketing demonstrate

the superiority of our algorithms in terms of both effectiveness and

efficiency.

CCS Concepts
• Information systems→Web mining; • Theory of computa-
tion→ Streaming, sublinear and near linear time algorithms;
Approximation algorithms analysis.
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web data mining, streaming algorithm, data summarization, sub-

modular maximization
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1 Introduction
Representative subset selection from large datasets is a fundamental

problem with various data-driven applications related to web data

mining and machine learning, including but not limited to social

media marketing [36, 40, 43, 61], recommendation systems [16, 17,

22, 58, 64], document summarization [13, 48, 52, 54, 55] and feature

selection [4, 10, 41, 67]. Many studies (e.g., [6, 15–17, 26, 40, 64])

have formulated this problem as the task of selecting a subset that

maximizes a submodular function. This approach leverages the

“diminishing returns” property of submodular functions to quantify

the “representativeness” or “utility” of the selected subset. Moreover,

constraints such as cardinality or knapsack constraints are typically

imposed on the objective submodular function to model real-world

limitations [3, 5, 16, 26, 40, 56, 64].

Since the seminal work of Fisher et al. [30], constrained sub-

modular maximization problems have been extensively studied,

with a variety of algorithms proposed that achieve good approx-

imation ratios [32, 44, 50, 56, 62, 65]. However, the advent of big

data has introduced new challenges, rendering many of these al-

gorithms less practical due to their computational demands. Over

the past decades, the exponential growth in data size has placed

increasing demands on algorithmic efficiency, leading to substan-

tial research efforts to develop faster submodular maximization

algorithms. Early work in this line has achieved nearly linear time

complexity of O𝜖 (𝑛 log𝑘) [7, 23–25, 33, 46], where O𝜖 hides 𝜖 fac-

tors, 𝑛 denotes the size of the ground set and 𝑘 denotes the maxi-

mum cardinality of any feasible solution
1
. More recent work (e.g.,

[9, 11, 12, 15, 20, 47, 53, 57, 59]) has focused on further reducing

runtime, surpassing the nearly linear complexities of previous ap-

proaches and proposing clean linear-time algorithms for submod-

ular maximization problems. Since linear time complexity is the

minimum required to read all elements of the ground set, it is un-

likely that any algorithm can be more efficient without employing

parallelization, while still maintaining a reasonable approximation

ratio [53]. Moreover, in many domains, data volumes are expanding

at a rate exceeding the capacity of computers to store them in main

memory [7]. Therefore, many studies such as [5, 6, 15–17, 26, 58, 64]

have focused on memory-efficient algorithms and proposed stream-

ing submodular maximization algorithms, which takes a constant

number of passes through the ground set while accessing only a

small fraction of the data stored in main memory at any given time.

In this paper, we formulate the representative subset selection

problem as the problem of monotone submodular maximization

subject to a knapsack constraint (abbreviated as the SMKC prob-

lem). The knapsack constraint is a fundamental constraint that can

capture real-world limitations such as budget, time, or size, and thus

the SMKC problem has been extensively studied since 1982 [65].

1
The time complexity of submodular maximization algorithms is typically measured by

the number of oracle queries to the objective function, as these queries are significantly

more time-consuming than other basic operations [1, 2, 29, 46].

1
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Currently, for this problem, existing work [53, 59] has only success-

fully proposed linear-time algorithms with provable approximation

ratios in the offline setting, where all data must be stored in main

memory—an impractical requirement for many real-world appli-

cations. In the streaming setting, the current best single-pass [39]

(resp. multi-pass [34]) streaming algorithm can only achieve the

super-linear time complexity of O( 𝑛𝜖 log𝐵) and the space complex-

ity of O( 𝐵𝜖 log𝐵) (resp. O( 𝑘𝜖 log𝐵)) with an approximation ratio

of 1/3 − 𝜖 (resp. 1/2 − 𝜖), where 𝐵 is the budget for the knapsack

constraint. Note that the value of 𝐵 also influences the complexities

of other existing streaming algorithms for the SMKC problem to

the same extent, if not more (refer to Table 1). In the worst case, the

budget 𝐵 can be arbitrarily large and grow exponentially with the

input size 𝑛, resulting in a quadratic or worse complexity for these

algorithms. More critically, the approximation ratios of existing

algorithms are derived under the assumption that the cost of each

element is no less than 1. These algorithms suggest using normal-

ization to ensure the assumption holds, thereby supporting their

approximation ratios. However, such normalization is impractical

for single-pass streaming algorithms as the costs are not known in

advance, rendering their performance guarantees perhaps invalid.

Meanwhile, this normalization implies that 𝐵 cannot be normalized

to reduce time and space complexity in these algorithms, further

compounding the efficiency issues. Therefore, we aim to answer

the following questions in this paper:

• Given that the assumptions and performance guarantees

of existing streaming algorithms for the SMKC problem

may not always hold in practical scenarios, is it possible to

design more practical streaming algorithms for the SMKC

problem that maintain provable performance guarantees

without relying on restrictive assumptions?

• Furthermore, if such algorithms exist, can they achieve

linear time complexity while using minimal memory?

1.1 Our Contributions
In this paper, we provide confirmative answers to the above ques-

tions, by presenting two novel streaming algorithms for the SMKC

problem without any assumptions on the data stream. The contri-

butions of our paper can be summarized as follows:

• We propose a single-pass streaming algorithm dubbed On-
eStream that achieves an approximation ratio of 1/8 − 𝜖
for the SMKC problem. The time and space complexities of

the OneStream algorithm are O(𝑛) and O(𝑘 log 1

𝜖 ), respec-
tively. To our knowledge, OneStream is the first streaming

algorithm with a provable approximation ratio and linear

time complexity for the SMKC problem.

• Based on the OneStream algorithm, we further propose

a multi-pass streaming algorithm, dubbed MultiStream,

which achieves an approximation ratio of 1/2 − 𝜖 within

three passes over the data stream. This matches the best ra-

tio achieved by existing streaming algorithms for the SMKC

problem. However, while existing streaming algorithms

require super-linear time complexity, ourMultiStream al-

gorithm only has a linear time complexity of O( 𝑛𝜖 log
1

𝜖 )
under O( 𝑘𝜖 log

1

𝜖 ) space complexity.

• We conduct extensive experiments using several real-world

applications related to the web, including maximum cover-

age on networks and revenue maximization on networks.

The experimental results strongly demonstrate the effec-

tiveness and efficiency of our algorithms.

1.2 Challenges and Techniques
To our knowledge, existing streaming submodular maximization

algorithms with linear time complexity are limited to handling

cardinality [15, 47] or matroid constraints [9, 12, 20], and fail to

offer performance guarantees for the knapsack constraint. Addi-

tionally, many techniques used in these algorithms are specific to

cardinality or matroid constraints and do not easily extend to knap-

sack constraints. For example, the linear-time streaming algorithms

for cardinality constraints rely heavily on the fact that a solution

with 𝑘 elements satisfies the constraint. This property is used (1)

to control the number of elements maintained by the algorithm,

thereby ensuring that memory consumption stays within an ac-

ceptable bound of O(𝑘), and (2) to select the last 𝑘 elements from

the tail of the solution set to form the final feasible solution. How-

ever, in the SMKC problem, we lack prior knowledge of the value

of 𝑘 , and a solution with 𝑘 elements may not necessarily satisfy

the knapsack constraint. Similarly, the performance guarantees

of linear-time streaming algorithms for matroid constraints rely

on the exchange property of matroids, a characteristic absent in

knapsack constraints.

Moreover, existing streaming algorithms for the SMKC problem

rely on guessing an “ideal threshold” to achieve their approximation

ratios, and they find this threshold through a canonical geomet-

ric search process under the assumption that each element’s cost

is at least 1. However, their threshold guessing approach needs

extra time and memory complexity of O(log𝐵), resulting in unsat-

isfactory super-linear time complexity, especially since the budget

𝐵 can be arbitrarily large and even grow exponentially with the

input size 𝑛 in the worst-case scenario. To address cases where

elements’ costs are less than 1, existing streaming algorithms sug-

gest using normalization to ensure that each element’s cost is at

least 1. However, such normalization is impractical for single-pass

streaming algorithms as the costs are not known in advance, which

invalidates their performance guarantees. Furthermore, this nor-

malization implies that 𝐵 cannot be normalized to reduce time and

space complexity in these algorithms, further compounding the

efficiency issues.

To address the above challenges, ourOneStream algorithmmain-

tains a “cumulative set”

⋃𝑖
𝑡=𝑗 𝑆𝑡 , which consists of a small number

of candidate solutions 𝑆𝑡 : 𝑡 ∈ [ 𝑗, 𝑖]. Each candidate solution 𝑆𝑡 is

initialized as an empty set and grows by adding elements from

the data stream until it becomes a “nearly feasible solution”, i.e., a

set that satisfies the knapsack constraint by removing at most one

element. OneStream also computes a threshold based on the utility

of the cumulative set to control the cost-effectiveness of elements

added to the candidate solutions. This approach eliminates the need

for the time-consuming geometric search process used in previous

streaming algorithms to find an ideal threshold. By constructing

nearly feasible solutions, OneStream offers two key benefits: (1) it

limits the size of each candidate solution to at most 𝑘 + 1 = O(𝑘);
2
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Table 1: Streaming algorithms for monotone submodular maximization subject to a knapsack constraint.

Passes Reference Ratio Space Complexity Time / Query Complexity

= 1 [17] 1/6 − 𝜖 O( 𝑘𝜖 log𝐵) O( 𝑛𝑘𝜖 log𝐵)
[39] 4/11 − 𝜖 O( 𝐵

𝜖4
log

4 𝐵) O( 𝑛
𝜖4

log
4 𝐵)

[37] 2/5 − 𝝐 O( 𝐵
𝜖4

log
4 𝐵) O( 𝑛

𝜖4
log

4 𝐵)
[39] 1/3 − 𝜖 O( 𝐵𝜖 log𝐵) O( 𝑛𝜖 log𝐵)

Algorithm 1 1/8 − 𝜖 O(𝒌 log 1
𝝐 ) O(𝒏)

> 1 [66] 1/2 − 𝜖# O(𝐵) O(𝑛( 1𝜖 + log𝐵))
[38] 1/2 − 𝝐 O( 𝐵

𝜖7
log

2 𝐵) O( 𝐵
𝜖8

log
2 𝐵)

[34] 1/2 − 𝝐 O( 𝑘𝜖 log𝐵) O( 𝑛𝜖 log𝐵)
Algorithm 2 1/2 − 𝝐 O(𝒌𝝐 log 1

𝝐 ) O(𝒏𝝐 log 1
𝝐 )

1 𝑘 denotes the largest cardinality of any feasible solution, 𝐵 is the budget. Bold font and magenta color

indicate the best result(s) in each setting.

2
Apart from our results, the approximation ratios in existing work are based on the assumption that each

element’s cost is at least 1. They suggest normalization to enforce this assumption, thereby supporting their

approximation ratios. However, such normalization is impractical for single-pass streaming algorithms as

the costs are not known in advance, potentially invalidating their performance guarantees.

3
In the worst case, 𝐵 can be arbitrarily large and even grow exponentially with 𝑛, resulting in a complexity

worse than𝑂 (𝑛2 ) for algorithms dependent on 𝐵. Note that normalization may not be applicable for

reducing 𝐵, as these algorithms rely on it to ensure the cost assumption and uphold their performance

guarantees.

#
The approximation ratio is derived from flawed analysis as pointed out by [34].

and (2) it ensures the final solution (a subset of the cumulative

set satisfying budget 𝐵) is of high quality, as each element in the

cumulative set has a cost-effectiveness ratio above the computed

threshold. Besides, OneStream employs a sliding window mecha-

nism to control the total number of nearly feasible solutions stored

in memory. Thanks to these techniques, OneStream achieves linear

time complexity with minimal memory usage.

Our MultiStream algorithm leverages the OneStream algorithm

to efficiently guess the “ideal threshold” (associated with the utility

of the optimal solution), which guides a better selection of elements

to obtain an improved approximation ratio. Different from existing

threshold guessing approaches, we dynamically choose an easier-

to-find ideal threshold based on the cost distribution of elements

in the optimal solution in our proof, which is combined with On-
eStream’s ability to provide accurate upper and lower bounds for

the utility of the optimal solution in linear time, enabling an effi-

cient threshold guess process without relying on the assumption

that each element’s cost is at least 1. This guess process incurs only

a small amount of extra O(1/𝜖) (rather than O(log𝐵)) time and

memory overhead, ensuring that MultiStream achieves a better

approximation ratio while maintaining linear complexities. More

details about our algorithms can be found in Section 4-5.

Due to the space limit, we defer the detailed proofs of most

lemmas and theorems to Appendix A, while only providing some

intuitions and key ideas for them in the main text.

2 Related Work
2.1 Algorithms for Monotone Submodular

Maximization Under a Knapsack Constraint
Monotone submodular maximization under a knapsack constraint

(i.e., the SMKC problem) has been extensively studied [27, 44, 62, 65]

in the offline setting. Among these works, [62] achieved the opti-

mal approximation ratio of 1 − 1/𝑒 , but its O(𝑛5) time complexity

renders it impractical for real-world applications. Subsequent stud-

ies [7, 23, 49, 63, 66] put effort into more efficient algorithms, and

recent work [53, 59] have proposed linear-time algorithms for the

SMKC problem, where [53] achieves (1/2− 𝜖)-approximation using

O( 𝑛𝜖 log
1

𝜖 ) time complexity. However, these algorithms are still

limited to the offline setting, requiring all elements to be stored in

memory, which is impractical in many real-world scenarios.

Recently, great efforts have been devoted to designing streaming

algorithms for the SMKC problem, as shown by Table 1. Among

single-pass streaming algorithms, [37] achieves the best approxima-

tion ratio of 2/5−𝜖 with time complexity ofO( 𝑛
𝜖4

log
4 𝐵), while [39]

offers the best time complexity of O( 𝑛𝜖 log𝐵) with a worse approx-

imation ratio of 1/3 − 𝜖 . Among multi-pass streaming algorithms,

[38] first achieved an approximation ratio of 1/2 − 𝜖 using O( 1𝜖 )
passes over the data stream, with time complexity of O( 𝐵

𝜖8
log

2 𝐵).
Subsequently, [66] developed a new streaming algorithm aimed at

avoiding the large polynomial factors of 1/𝜖 in [38]’s complexity,

reducing the time complexity to O(𝑛( 1𝜖 + log𝐵)) while maintaining

the same approximation ratio and number of passes over the data

stream. However, [34] later pointed out errors in the theoretical

analysis of [66], invalidating its approximation guarantee. [34] pro-

posed a new algorithm that restores the 1/2 − 𝜖 approximation

ratio using two passes over the data stream with time complexity of

O( 𝑛𝜖 log𝐵). However, as shown in Table 1, the complexities of all

existing streaming algorithms depend on𝐵, which, in the worst case,

can grow exponentially with the input size 𝑛, leading to quadratic

or worse time complexity for these algorithms. More critically, the

approximation ratios of existing algorithms are derived under the

assumption that the cost of each element is no less than 1. These

3
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algorithms suggest using normalization to ensure the assumption

holds, thereby supporting their approximation ratios. However,

such normalization is impractical for single-pass streaming algo-

rithms, rendering their performance guarantees perhaps invalid.

Meanwhile, this normalization implies that 𝐵 cannot be normalized

to reduce time and space complexity in these algorithms, further

compounding the efficiency issues.

2.2 Linear-Time Algorithms for Streaming
Submodular Maximization

Chakrabarti and Kale [12] pioneered the achievement of linear com-

plexity for streaming submodular maximization. Their algorithm

is tailored for matroid constraints, requires one pass over the data

stream, and uses O(𝑛) time complexity and O(𝑘) space complexity

to achieve a 1/4 approximation ratio. Subsequently, [20] reduces

the number of queries in [12]’s algorithm from 2𝑛 to 𝑛, while main-

taining the same approximation ratio and complexities. [9] further

generalize [20]’s algorithm to handle not necessarily monotone sub-

modular functions, achieving a 1/11.66 approximation ratio with

the same complexities.

For simpler cardinality constraints, [47] proposed a linear-time

single-pass (resp. multi-pass) streaming submodular maximization

algorithm, achieving 1/4 (resp. 1 − 1/𝑒 − 𝜖) approximation ratio

with O(𝑛) (resp. O(𝑛/𝜖)) time complexity and O(𝑘 log𝑘 log(1/𝜖))
(resp. O(𝑘 log𝑘)) space complexity. [15] extends [47]’s algorithms

to handle not necessarily monotone submodular functions, achiev-

ing 1/23.313−𝜖 (resp. 0.25−𝜖) approximation ratio using one (resp.

O(1/𝜖)) pass(es) over the data stream with unchanged complexities.

However, as explained in Section 1.2, none of these algorithms

offer any approximation guarantee for our SMKC problem, and

many techniques used in these algorithms are tailored to cardinality

or matroid constraints, which do not readily generalize to knapsack

constraints. Thus, whether there exists a linear-time streaming

algorithm for the SMKC problem remains an open question.

3 Problem Statement
We consider the problem of selecting a representative subset of

elements from a streaming datasetN of size 𝑛, aiming to maximize

a non-negative set function 𝑓 : 2N ↦→ R≥0. For any subset 𝑆 ⊆ N ,

𝑓 (𝑆) quantifies the utility of 𝑆 , i.e., how well 𝑆 representsN accord-

ing to some objective. In many data summarization problems (e.g.,

[6, 15, 17, 26, 58, 64]), the utility function 𝑓 (·) exhibits an intuitive

property known as submodularity characterized by diminishing

returns. The function with submodularity can be defined as follows:

Definition 3.1 (Submodular Function). A set function 𝑓 : 2N ↦→
R≥0 is submodular if for all𝑋 ⊆ 𝑌 ⊆ N and𝑢 ∈ N \𝑌 , it holds that
𝑓 (𝑢 | 𝑌 ) ≤ 𝑓 (𝑢 | 𝑋 ),where 𝑓 (𝑢 | 𝑆) = 𝑓 (𝑆∪{𝑢})− 𝑓 (𝑆) represents
the marginal gain of 𝑢 with respect to 𝑆 for any 𝑆 ∈ {𝑋,𝑌 }.

Intuitively, submodularity implies that adding an element 𝑢 to

a set 𝑌 yields no more utility gain than adding 𝑢 to a subset 𝑋 of

𝑌 . Besides, 𝑓 (·) is monotone if 𝑓 (𝑋 ) ≤ 𝑓 (𝑌 ) for all 𝑋 ⊆ 𝑌 ⊆ N ,

indicating that adding a new element never decreases the utility. In

this paper, we assume that the utility function 𝑓 (·) is monotone and

submodular. Furthermore, we consider a fundamental constraint

that the feasible solution follows a knapsack constraint, which can

model real-world constraints such as budget, time, and size.

Assume that each element𝑢 ∈ N has an associated cost 𝑐 (𝑢), and
the total cost of a set 𝑆 ⊆ N is defined as a modular function 𝑐 (𝑆) =∑
𝑢∈𝑆 𝑐 (𝑢). Our subset selection problem can then be formulated

as the problem of submodular maximization subject to a knapsack

constraint (abbreviated as the SMKC problem):

max{𝑓 (𝑆) : 𝑆 ⊆ N ∧ 𝑐 (𝑆) ≤ 𝐵},

where 𝑓 (·) is submodular and monotone; 𝐵 ≥ 0 is the given budget.

Following common practice in submodular optimization, we assume

that there exists an oracle that can return the value of 𝑓 (𝑆) for
any 𝑆 ⊆ N . Oracle queries typically have a significantly higher

time complexity than other basic operations, so the efficiency of

submodular optimization problems is commonly measured by the

number of oracle queries [1, 2, 29, 46]. We study the SMKC problem

in the streaming setting, where elements in N arrive sequentially

in an arbitrary order. The streaming algorithm is allowed to make

a few passes over the elements, using a small memory.

Without loss of generality, we assume that 𝑐 (𝑢) ≤ 𝐵 for every

𝑢 ∈ N , as any element with a cost exceeding the budget can be im-

mediately discarded upon arrival. Throughout this paper, we denote

an optimal solution to the SMKC problem as 𝑂 , the element with

the highest cost in 𝑂 as 𝑜𝑚 (i.e., 𝑜𝑚 = argmax𝑢∈𝑂 𝑐 (𝑢)), and the

maximum cardinality of any feasible solution as 𝑘 . For notational

convenience, let [𝑖] = {1, . . . , 𝑖} for any natural number 𝑖 .

4 The Single-Pass Streaming Algorithm
In this section, we propose our single-pass streaming algorithm

dubbed OneStream, which is the first streaming algorithm with

a provable approximation ratio and linear time/query complexity

for the SMKC problem. Moreover, OneStream does not rely on the

assumption that each element’s cost is at least 1, which may not

hold in single-pass scenarios where elements cannot be normalized

in advance. This makes OneStream more practical than existing

single-pass streaming algorithms.

4.1 Algorithm Design
As shown by Algorithm 1, the OneStream algorithm maintains a

“cumulative set”

⋃𝑖
𝑡=𝑗 𝑆𝑡 composed of a small number of candidate

solutions, where each candidate solution is initialized as an empty

set when first added to the cumulative set and then gradually grows

by incorporating valuable elements from the data stream until it

becomes a “nearly feasible solution” (a set that satisfies the knap-

sack constraint after removing no more than one element). More

specifically, the algorithm uses a threshold based on the utility (i.e.,

objective function value) of the cumulative set to check the mar-

ginal cost-effectiveness (i.e., marginal gain/cost) of each incoming

element from the data stream (Line 4). If the element satisfies the

threshold requirement, it is added to the most recent candidate set

𝑆𝑖 in the cumulative set (Line 5). Once this candidate set grows as

a nearly feasible solution, a new candidate set 𝑆𝑖+1 is initialized

to receive elements that meet the threshold requirement, and the

process repeats (Line 6 and Line 9). By using the threshold based

on the utility of the cumulative set itself, the OneStream algorithm

avoids the geometric search for a suitable threshold, thus achieving

4
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Algorithm 1: OneStream (ℏ)

Input: integer ℏ ≥ 1

1 initialize 𝑖 ← 1, 𝑗 ← 1, 𝑆𝑖 ← ∅ and 𝑒∗ ← null;

2 take a new pass over the data stream;

3 while there is an incoming element 𝑒 do

4 if
𝑓 (𝑒 |⋃𝑖

𝑡=𝑗 𝑆𝑡 )
𝑐 (𝑒 ) ≥ 𝑓 (⋃𝑖

𝑡=𝑗 𝑆𝑡 )
𝐵

then
5 𝑆𝑖 ← 𝑆𝑖 ∪ {𝑒};
6 if 𝑐 (𝑆𝑖 ) ≥ 𝐵 then
7 if 𝑖 − 𝑗 + 1 = 2ℏ then
8 Delete sets 𝑆 𝑗 , 𝑆 𝑗+1, · · · , 𝑆 𝑗+ℏ−1; 𝑗 ← 𝑗 + ℏ;
9 𝑖 ← 𝑖 + 1; 𝑆𝑖 ← ∅;

10 𝑒∗ ← argmax𝑢∈{𝑒∗,𝑒 } 𝑓 ({𝑢});
11 𝑖𝑛 ← 𝑖; 𝑗𝑛 ← 𝑗 ;

12 if 𝑐 (⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 ) ≤ 𝐵 then 𝑄∗ ← ⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 ;

13 else
14 let 𝑆 (𝑥) denote the set of the last 𝑥 elements added to⋃𝑖𝑛

𝑡=𝑗𝑛
𝑆𝑡 ; find 𝑧 ∈ [|

⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 |] such that

𝑐 (𝑆 (𝑧)) ≤ 𝐵 ∧ 𝑐 (𝑆 (𝑧 + 1)) > 𝐵;

15 𝑄∗ ← argmax𝑄∈{𝑆 (𝑧 ),𝑒∗ } 𝑓 (𝑄);
16 return 𝑄∗,

⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡

linear complexity. Moreover, constructing candidate solutions as

nearly feasible solutions offers a two-fold benefit: (1) limiting the

cardinality of each solution to no more than 𝑘 + 1 = O(𝑘), ensuring
less memory consumption; (2) ensuring the cost of each solution is

no less than 𝐵, coupled with the fact that the cost-effectiveness of

each element in the solution surpasses the threshold, guarantees a

satisfactory overall utility.

OneStream algorithm also employs a sliding windowmechanism

to control the number of the nearly feasible solution, to ensure the

total memory consumption is small. Specifically, if the total number

of these solutions reaches the predefined limit of 2ℏ, OneStream
deletes the oldest ℏ sets from the cumulative set

⋃𝑖
𝑡=𝑗 𝑆𝑡 (Line 7-8).

Recall that the threshold used to add elements in Line 4 depends on

𝑓 (⋃𝑖
𝑡=𝑗 𝑆𝑡 ), which increases as the algorithm runs. Thus, elements

added earlier are tested by lower thresholds and are likely to have

lower utility. Consequently, deleting these older elements results

in only a small loss in utility.

When the data stream ends, the cumulative set

⋃𝑖
𝑡=𝑗 𝑆𝑡 may be

an unfeasible solution. To extract a good feasible solution from it

as the final output, OneStream searches for a feasible solution 𝑆 (𝑧)
from the tail of

⋃𝑖
𝑡=𝑗 𝑆𝑡 (Line 14). The intuition behind this is that

elements added later have passed the test by higher thresholds and

are more likely to possess good utility. The one with better utility

between 𝑆 (𝑧) and the best singleton element set (generated by Line

10) is then returned as the final solution 𝑄∗ (Line 15).

4.2 Theoretical Analysis
Our overall analysis approach is as follows. We first demonstrate

that the complete “cumulative set”

⋃𝑖
𝑡=1 𝑆𝑡 without any deletions

can provide an upper bound for the utility of the optimal solution

upon the termination of the algorithm (Lemma 4.1); then show that

the utility loss caused by deleting old nearly feasible solutions from

the cumulative set is small and can be bounded (Lemma 4.2-4.4).

Based on these, we can prove that the final solution obtained after

solution deletion and element extraction can also upper bound the

utility of the optimal solution, resulting in the approximation ratio

of the algorithm (Lemma 4.5).

Lemma 4.1. Upon termination of Algorithm 1, the following in-
equality holds: 𝑓 (⋃𝑖𝑛

𝑡=1
𝑆𝑡 ) ≥ 𝑓 (𝑂)/2.

To demonstrate that the utility loss caused by deleting nearly

feasible solutions in Line 8 is small, we first demonstrate that in-

corporating a new nearly feasible solution 𝑆𝑡 into the cumulative

set

⋃𝑞−1
𝑡=𝑗

𝑆𝑡 doubles the utility of it (Lemma 4.2), resulting in a con-

tinuous increase in the utility of the cumulative set as OneStream
runs, even when the deletion occurs (Lemma 4.3).

Lemma 4.2. At the end of the each iteration of the while loop in
Algorithm 1, we must have 𝑓 (⋃𝑞

𝑡=𝑗
𝑆𝑡 ) ≥ 2 · 𝑓 (⋃𝑞−1

𝑡=𝑗
𝑆𝑡 ) for any

𝑞 ∈ [ 𝑗 + 1, 𝑖] : 𝑐 (𝑆𝑞) ≥ 𝐵.

Lemma 4.3. Let 𝑇𝑖 (𝑖 > 1) denote the state of ⋃𝑖
𝑡=𝑗 𝑆𝑡 right before

the execution of Line 9 in Algorithm 1. Consider the iteration of the
while loop in Algorithm 1 when 𝑇𝑖 is generated, then:

• If the deletion in Line 8 is not executed in the current iteration,
we have 2 · 𝑓 (𝑇𝑖−1) ≤ 𝑓 (𝑇𝑖 ).

• Otherwise, we have 𝑓 (𝑇𝑖−1) ≤ 𝑓 (𝑇𝑖 ).

Building upon the previous two lemmas, we can demonstrate

that solution deletions do not result in a significant utility loss and

the cumulative set finally stored in memory retains a substantial

utility, as shown by Lemma 4.4.

Lemma 4.4. 𝑓 (⋃𝑖𝑛
𝑡=1

𝑆𝑡 ) ≤ (1 + 1

2
ℏ−1−1 ) 𝑓 (

⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 )

Before deriving the approximation ratio of Alg. 1, we only need

to prove the solution𝑄∗ returned by the algorithm can upper bound

the final cumulative set

⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 , based on the observation that

elements added later to

⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 have passed higher threshold tests

than those added earlier, thus possessing high utility of

⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 .

Lemma 4.5. 𝑓 (⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 ) ≤ 4 · 𝑓 (𝑄∗)

Combining Lemma 4.1, 4.4 and 4.5, we can immediately get the

performance bounds of OneStream, as shown by Theorem 4.6.

Theorem 4.6. By setting ℏ = log
2
( 1
8𝜖 ) + 1 where 𝜖 ∈ (0, 1),

OneStream can return a solution 𝑄∗ satisfying 𝑐 (𝑄∗) ≤ 𝐵 and
𝑓 (𝑄∗) ≥ (1/8 − 𝜖) 𝑓 (𝑂) for the SMCK problem in a single pass
over the data stream. The time/query and space complexities of the
algorithm are O(𝑛) and O(𝑘 log 1

𝜖 ), respectively.

Proof. The approximation ratio can be directly derived by com-

bining Lemmas 4.1, 4.4, and 4.5. For each incoming element, the

algorithm incurs one oracle query at Line 4 and another at Line 10,

resulting in a total of 2𝑛 oracle queries and a time complexity of

O(𝑛). As shown in Lines 6-9, the algorithm maintains at most ℏ

candidate solutions, each with a size no more than 𝑘 + 1, leading to
a space complexity of O(𝑘 log 1

𝜖 ). □
5
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Algorithm 2:MultiStream (ℎ, 𝜖)

Input: integer ℏ ≥ 1 and number 𝜖 ∈ (0, 1)
1 𝑀1, 𝑀2 ← OneStream(ℏ); 𝑃 ← {(1 − 𝜖)−𝑧 : 𝑧 ∈

Z ∧ (1−𝜖 ) 𝑓 (𝑀1 )
2𝐵

≤ (1 − 𝜖)−𝑧 ≤
(1+ 1

2
ℏ−1−1

) 𝑓 (𝑀2 )
𝜖𝐵

};
2 initialize 𝐴𝜌 ← ∅ for each 𝜌 ∈ 𝑃 and 𝐿∗ ← 𝑀1;

3 take a new pass over the data stream;

4 while there is an incoming element 𝑒 do
5 foreach 𝜌 ∈ 𝑃 ∧ 𝜌 ≤ 𝑓 (𝑒)/𝑐 (𝑒) do
6 if 𝑐 (𝐴𝜌 ) + 𝑐 (𝑒) ≤ 𝐵 ∧ 𝑓 (𝑒 | 𝐴𝜌 ) ≥ 𝜌 · 𝑐 (𝑒) then
7 𝐴𝜌 ← 𝐴𝜌 ∪ {𝑒};
8 if 𝑓 (𝐴𝜌 ) > 𝑓 (𝐿∗) then
9 𝐿∗ ← 𝐴𝜌 ;

10 take a new pass over the data stream;

11 while there is an incoming element 𝑒 do
12 foreach 𝜌 ∈ 𝑃 do
13 if 𝑒 ∉ 𝐴𝜌 ∧ 𝑐 (𝐴𝜌 ) + 𝑐 (𝑒) ≤ 𝐵 ∧ 𝑓 (𝐴𝜌 ∪ {𝑒}) ≥ 𝑓 (𝐿∗)

then
14 𝐿∗ ← 𝐴𝜌 ∪ {𝑒};

15 foreach 𝜌 ∈ 𝑃 do
16 foreach 𝑒 ∈ 𝐴𝜌 do
17 if 𝑒 ∉ 𝐿∗ ∧ 𝑐 (𝐿∗) + 𝑐 (𝑒) ≤ 𝐵 then 𝐿∗ ← 𝐿∗ ∪ {𝑒} ;

18 return 𝐿∗

5 The Multi-Pass Streaming Algorithm
In this section, we propose our multi-pass streaming algorithm

dubbedMultiStream, which improves the approximation ratio to

1/2 − 𝜖 , matching the best ratio achieved by existing streaming

algorithms for the SMKC problem while maintaining linear time

complexity.

5.1 Algorithm Design
As shown by Algorithm 2,MultiStream algorithm first efficiently

guess the “ideal threshold” related to the utility (i.e., objective func-

tion value) of the optimal solution, based on OneStream algorithm

(Line 1). It then performs element selection based on each guessed

threshold 𝜌 ∈ 𝑃 (i.e., potential ideal threshold) within two passes

over the data stream (Line 2-14). The specific element selection

process is as follows. For each incoming element in the data stream,

the algorithm first selects thresholds from 𝑃 that are smaller than

the current element’s cost-effectiveness (Line 5), as the candidate so-

lution with a threshold larger than the element’s cost-effectiveness

would not accept the element, rendering further checking unneces-

sary. Then, for each selected threshold 𝜌 , the algorithm adds the

element to 𝐴𝜌 if the element satisfies both the knapsack constraint

and the threshold requirement (Line 6-7). The candidate solution

with the best utility is stored in 𝐿∗ (Line 8-9). Subsequently, the
algorithm re-reads the data stream and attempts to insert each

element into each existing candidate solution without violating

the knapsack constraint, thereby enhancing the candidate solu-

tion’s utility (Line 10-14). Finally, the algorithm attempts to insert

elements stored in memory into the current optimal solution 𝐿∗,

further improving the utility of the returned solution in practice

(Line 15-17).

5.2 Theoretical Analysis
As shown by Lemma 5.1, if the element with the highest cost in

the optimal solution (i.e., 𝑜𝑚) has a large utility, we can directly

conclude the algorithm exhibits a favorable approximation ratio.

Lemma 5.1. If 𝑓 ({𝑜𝑚}) ≥ 𝑓 (𝑂)/2, the solution returned by 𝐿∗

Algorithm 2 satisfying 𝑐 (𝐿∗) ≤ 𝐵 and 𝑓 (𝐿∗) ≥ (1/2 − 𝜖) 𝑓 (𝑂).

Proof. The lemma follows as 𝑓 (𝑀1) ≤ 𝑓 (𝐿∗) and OneStream
ensures that 𝑓 (𝑀1) ≥ max𝑢∈N 𝑓 ({𝑢}). □

Now focus on the case where the utility of 𝑜𝑚 is relatively small.

We divide our following analysis into two cases based on whether

𝑜𝑚 consumes the majority of the budget of the optimal solution 𝑂 ,

and then demonstrate that in both cases, the algorithm can find a

candidate solution with a corresponding ideal threshold that can

upper bound the utility of the optimal solution (Lemma 5.2-5.3). A

key purpose of the case-by-case discussion is to quickly find the

ideal threshold without relying on the assumption that the cost

of any element is no less than 1, which can be better understood

through the following example. The 𝐵−𝑐 (𝑜𝑚) in the ideal threshold
𝜌∗ of Lemma 5.3 might be very small or even zero. Therefore, we

consider the case where it is greater than or equal to 𝜖𝐵, ensuring

that 𝜌∗ can be quickly found through geometric search.

The proof ideas for Lemma 5.2 can be explained as follows. We

first establish the existence of a candidate solution with the ideal

threshold 𝜌∗. Then we show that if the cost of this candidate solu-

tion is sufficiently large, its utility is also sufficiently large due to

the threshold filtering process. Otherwise, the candidate solution re-

tains enough budget to include all elements in the optimal solution

except for 𝑜𝑚 . Thus, elements in 𝑂 \ {𝑜𝑚} that are excluded from

this candidate solution must have low marginal cost-effectiveness,

which implies excluding these elements causes little utility loss.

The proof of Lemma 5.3 follows a similar line of reasoning.

Lemma 5.2. If 𝐵−𝑐 (𝑜𝑚) < 𝜖𝐵 and 𝑓 ({𝑜𝑚}) < 𝑓 (𝑂)/2, then Algo-
rithm 2 can generate a candidate solution 𝐴𝜌∗ satisfying 𝑐 (𝐴𝜌∗ ) ≤ 𝐵

and 𝑓 (𝐴𝜌∗ ) ≥ (1/2 − 𝜖) 𝑓 (𝑂), where 𝜌∗ ∈ [ (1−𝜖 ) 𝑓 (𝑂 )
2𝐵

,
𝑓 (𝑂 )
2𝐵
].

Lemma 5.3. If 𝐵 − 𝑐 (𝑜𝑚) ≥ 𝜖𝐵, then Algorithm 2 can generate a
candidate solution 𝐴𝜌∗ satisfying one of the following conditions:

(1) 𝑐 (𝐴𝜌∗ ) ≤ 𝐵 and 𝑓 (𝐴𝜌∗ ) ≥ (1/2 − 𝜖) 𝑓 (𝑂)
(2) 𝑐 (𝐴𝜌∗ ∪ {𝑜𝑚}) ≤ 𝐵 and 𝑓 (𝐴𝜌∗ ∪ {𝑜𝑚}) ≥ (1/2 − 𝜖) 𝑓 (𝑂)

where 𝜌∗ ∈ [ (1−𝜖 ) 𝑓 (𝑂 )
2(𝐵−𝑐 (𝑜𝑚 ) ) ,

𝑓 (𝑂 )
2(𝐵−𝑐 (𝑜𝑚 ) ) ].

Based on the two lemmas above, we can readily derive the per-

formance bounds of MultiStream, as shown in Theorem 5.4.

Theorem 5.4. By setting ℏ = O(1), MultiStream can return a
solution 𝐿∗ satisfying 𝑐 (𝐿∗) ≤ 𝐵 and 𝑓 (𝐿∗) ≥ (1/2 − 𝜖) 𝑓 (𝑂) for
the SMCK problem within three passes over the data stream. The
time/query and space complexities of the algorithm are O( 𝑛𝜖 log

1

𝜖 )
and O( 𝑘𝜖 log

1

𝜖 ), respectively.

Proof. Since Line 11-14 of Algorithm 2 ensure that 𝑓 (𝐿∗) ≥
𝑓 (𝐴𝜌∗ ∪ {𝑜𝑚}) when the second condition of Lemma 5.3, we also
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Figure 1: Experimental results of maximum coverage on networks

have 𝑓 (𝐿∗) ≥ 𝑓 (𝑂)/2 when the case described by Lemma 5.3 hap-

pens. Combining this result with Lemmas 5.1-5.2 yields the approx-

imation ratio.

Note that Algorithm 2 maintains at most O(|𝑃 |) candidate so-
lutions. Moreover, for each candidate solution 𝐴𝜌 (𝜌 ∈ 𝑃), the
algorithm incurs at most𝑛 oracle queries at Lines 5, 6 and 13, respec-

tively. Thus, the query/time and space complexities of Algorithm 2

are O(𝑛 |𝑃 |) and O(𝑘 |𝑃 |), respectively. Based on the definition of

𝑃 and the fact that 𝑓 (𝑀2) ≤ 4 · 𝑓 (𝑀1) due to Lemma 4.5, we have

|𝑃 | = O( 1𝜖 log
1

𝜖 ). Combining these results completes the proof.

□

6 Performance Evaluation
In this section, we empirically evaluate the performance of our

algorithms against the state-of-the-art streaming algorithms for two

real-world applications of the SMKC problem, including maximum

coverage on networks and revenue maximization on networks. The

metrics compared include the utility (i.e., the objective function

value), the number of oracle queries to the objective function, and

the maximum number of elements in memory. The following four

algorithms are implemented in the experiments:

• OneStream: our single-pass streaming algorithm (i.e, Algo-

rithm 1).

• MultiStream: our multi-pass streaming algorithm (i.e, Al-

gorithm 2).

• DynamicMRT [39]: the state-of-the-art single-pass stream-

ing algorithm for the SMKC problem.

• SmkStream [34]: the state-of-the-art multi-pass streaming

algorithm for the SMKC problem.

All our experiments are conducted on a Windows workstation with

Intel(R) Core(TM) i7-14700 @ 2.10 GHz CPU and 64GB memory
2
.

For each of the implemented algorithms, the parameter 𝜖 for accu-

racy (if any) is set to 0.1.

6.1 Maximum Coverage on Networks
Maximum coverage has various real-world applications such as

web monitoring [60], influence maximization [43, 61], community

detection [31] and sensor placement [45]. This application has also

been considered in previous studies, such as [5, 16, 17, 19, 21, 26,

64, 68]. Given a network 𝐺 = (N , 𝐸), our goal is to identify a

subset of seed nodes 𝑆 ⊆ N that can influence a large number of

users within a budget 𝐵. This goal is formulated as maximizing a

monotone submodular function:

max{𝑓 (𝑆) = | ∪𝑢∈𝑆 𝑁 (𝑢) | : 𝑐 (𝑆) ≤ 𝐵},

where 𝑁 (𝑢) = {𝑣 : (𝑢, 𝑣) ∈ 𝐸} denotes the neighbors of 𝑢. Follow-
ing [17, 35, 42], each node 𝑢 ∈ N is associated with a non-negative

cost 𝑐 ({𝑢}) = 1 +
√︁
𝑑 (𝑢), where 𝑑 (𝑢) represents the out-degree of

𝑢, and the costs of all nodes are normalized so that the average cost

is 2 and the cost of each element is at least 1, ensuring that the

approximation ratios of baselines are valid. In our experiments, we

use two network datasets sourced from SNAP [51]: (1) the epinions

2
The code is available at: https://anonymous.4open.science/r/LinearKnapStream/
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Figure 2: Experimental results of revenue maximization on networks

network with 131,828 nodes and 841,372 edges; and (2) the email

network with 265,214 nodes and 420,045 edges.

Figure 1 shows the experimental results of maximum coverage

on networks. It can be observed that our OneStream algorithm

achieves almost 90% of the best utility results using only 2𝑛 or-

acle queries, which is 3.43% (resp. 3.09%) of the query count of

the super-linear time complexity algorithm DynamicMRT (resp.

SmkStream) algorithm on average. This demonstrates that our al-

gorithm significantly improves the efficiency of solving the SMKC

problem while sacrificing little utility. Moreover, our OneStream
algorithm exhibits the lowest memory consumption, occupying

only 1.72% (resp. 5.45%) of the memory used by DynamicMRT (resp.

SmkStream) algorithm on average, highlighting its exceptional

memory efficiency. Regarding ourMultiStream algorithm, it con-

sistently achieves the best utility while using significantly fewer

queries and lower memory consumption compared to the baseline

algorithms with super-linear time complexity (i.e., DynamicMRT
and SmkStream). While OneStream and MultiStream both have

linear time complexity and small space complexity, we observe

that MultiStream performs worse than OneStream on query count

and memory consumption in experiments due to the additional 𝜖

constant term in complexity.

6.2 Revenue Maximization on Networks
This application is based on the social network marketing model

proposed by [36], and is considered by many previous studies (e.g.,

[2, 3, 8, 14, 15, 18, 28, 34, 40, 47]). In this application, we are given a

network𝐺 = (N , 𝐸) where each node𝑢 ∈ N represents a user with

an associated cost 𝑐 (𝑢), and each edge (𝑢, 𝑣) ∈ 𝐸 has a weight𝑤𝑢,𝑣

denoting the influence of𝑢 on 𝑣 . Our goal is to select a subset 𝑆 ⊆ N
of seed users within a budget 𝐵 (i.e.,

∑
𝑢∈𝑆 𝑐 (𝑢) ≤ 𝐵), and pay 𝑐 (𝑢)

to each seed user 𝑢 ∈ 𝑆 for advertising products to maximize the

total revenue. The revenue function is defined as

𝑓 (𝑆) =
∑︁
𝑢∈N

√︄∑︁
𝑣∈𝑆

𝑤𝑣,𝑢 ,

which is monotone and submodular as indicated by [14, 47]. Fol-

lowing [8, 18, 28, 34], the network 𝐺 is constructed by randomly

selecting 25 communities from the top 5, 000 communities in the

YouTube social network[51]; the edge weights are randomly sam-

pled from the continuous uniform distributionU(0, 1); the cost of
any user 𝑢 ∈ N is determined by 𝑐 (𝑢) =

√︁∑
(𝑢,𝑣) ∈𝐸 𝑤𝑢,𝑣), and the

costs of all nodes are normalized so that the average cost is 2 and the

cost of each element is at least 1, ensuring that the approximation

ratios of baselines are valid.

Figure 2 shows the experimental results for revenue maximiza-

tion on networks, which further demonstrates the effectiveness of

our proposed algorithms. More specifically, our OneStream algo-

rithm achieves approximately 94% of the best utility results, while

using only 3.47% (resp. 2.80%) of the query count of the Dynam-
icMRT (resp. SmkStream) algorithm and occupying only 3.00% (resp.

6.17%) of the memory used by DynamicMRT (resp. SmkStream)

algorithm. Our MultiStream algorithm consistently achieves the

best utility while using significantly fewer oracle queries and lower

memory compared to the baseline algorithms with super-linear

time complexity (i.e., DynamicMRT and SmkStream). Again, these

results demonstrate the superiority of our algorithms in terms of

both time and memory usage.

7 Conclusion
In this paper, we study the problem of extracting a representative

subset from data streams, formulated as maximizing monotone

submodular functions subject to a knapsack constraint. Existing

streaming algorithms for this problem only achieve super-linear

time complexity depending on the budget, potentially reaching

quadratic or even higher complexities in the worst case. Moreover,

these algorithms rely on a restrictive assumption which may ren-

der their performance guarantees invalid in practical scenarios. To

address these limitations, we propose a more practical single-pass

streaming algorithm that does not depend on such an assumption,

achieving an approximation ratio of 1/8 − 𝜖 with linear complex-

ity of O(𝑛) and space complexity of O(𝑘 log 1

𝜖 ). Furthermore, we

propose a multi-pass algorithm achieving an approximation ratio

of 1/2 − 𝜖 , matching the best achievable approximation ratio in

streaming settings while maintaining linear time complexity and

minimum memory usage. The experiments on real-world applica-

tions related to web data mining and machine learning demonstrate

the superiority of our algorithms in terms of both effectiveness and

efficiency.
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A Omitted Proofs
A.1 Proof of Lemma 4.1

Proof. For any element 𝑢 ∈ ⋃𝑖𝑛
𝑡=1

𝑆𝑡 , we use S<𝑢 to denote the

state of

⋃𝑖
𝑡=𝑗 𝑆𝑡 at the moment when the element 𝑢 is considered

by Line 4 of Algorithm 1. Then we have:

𝑓 (𝑂) − 𝑓 (
𝑖𝑛⋃
𝑡=1

𝑆𝑡 ) ≤
∑︁

𝑢∈𝑂\⋃𝑖𝑛
𝑡=1

𝑆𝑡

𝑓 (𝑢 |
𝑖𝑛⋃
𝑡=1

𝑆𝑡 )

≤
∑︁

𝑢∈𝑂\⋃𝑖𝑛
𝑡=1

𝑆𝑡

𝑓 (𝑢 | S<𝑢 ) <
∑︁

𝑢∈𝑂\⋃𝑖𝑛
𝑡=1

𝑆𝑡

𝑓 (S<𝑢 )
𝐵

· 𝑐 (𝑢)

≤
∑︁

𝑢∈𝑂\⋃𝑖𝑛
𝑡=1

𝑆𝑡

𝑓 (⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 )
𝐵

· 𝑐 (𝑢) ≤ 𝑓 (
𝑖𝑛⋃

𝑡=𝑗𝑛

𝑆𝑡 ),

where the first and second inequalities are due to the submodu-

larity of 𝑓 (·); the third inequality is due to Line 4 of Algorithm 1;

the fourth inequality is due to the monotonicity of 𝑓 (·); the last
inequality is due to 𝑐 (𝑂) ≤ 𝐵. □

A.2 Proof of Lemma 4.2
Proof. For any element 𝑢 ∈ ⋃𝑖𝑛

𝑡=1
𝑆𝑡 , we use S<𝑢 to denote the

state of

⋃𝑖
𝑡=𝑗 𝑆𝑡 at the moment when the element 𝑢 was considered

by Line 4. Suppose that the elements in 𝑆𝑞 are {𝑢1, · · · , 𝑢 |𝑆𝑞 | } (listed
according to the order they are added into 𝑆𝑞 ), then we have

𝑓 (
𝑞⋃
𝑡=𝑗

𝑆𝑡 ) − 𝑓 (
𝑞−1⋃
𝑡=𝑗

𝑆𝑡 ) =
∑︁

𝑢𝑥 ∈𝑆𝑞
𝑓 (𝑢𝑥 |

𝑞−1⋃
𝑡=𝑗

𝑆𝑡 ∪ {𝑢1, · · · , 𝑢𝑥−1})

≥
∑︁

𝑢𝑥 ∈𝑆𝑞
𝑓 (𝑢𝑥 | S<𝑢𝑥 ) ≥

∑︁
𝑢𝑥 ∈𝑆𝑞

𝑓 (S<𝑢𝑥 )
𝐵

· 𝑐 (𝑢𝑥 )

≥
𝑓 (⋃𝑞−1

𝑡=𝑗
𝑆𝑡 )

𝐵

∑︁
𝑢𝑥 ∈𝑆𝑞

𝑐 (𝑢𝑥 ) ≥ 𝑓 (
𝑞−1⋃
𝑡=𝑗

𝑆𝑡 ),

where the first inequality is due to submodularity and the fact that⋃𝑞−1
𝑡=𝑗

𝑆𝑡 ∪ {𝑢1, · · · , 𝑢𝑥−1} ⊆ S<𝑢𝑥 ; the second inequality is due to

Line 4 of Alg. 1; the third inequality is due to the monotonicity. □

A.3 Proof of Lemma 4.3
Proof. If the deletion in Line 8 is not executed, the lemma

follows directly from 𝑇𝑖 = 𝑇𝑖−1 ∪ 𝑆𝑖 and Lemma 4.2

Now, consider the case where the deletion in Line 8 is executed.

In this case, we have 𝑇𝑖 = 𝑇𝑖−1 \𝑇𝑖−ℏ ∪ 𝑆𝑖 . Thus, we can get

𝑓 (𝑇𝑖 ) = 𝑓 (𝑇𝑖−1 \𝑇𝑖−ℏ ∪ 𝑆𝑖 ) ≥ 𝑓 (𝑇𝑖−1 ∪ 𝑆𝑖 ) − 𝑓 (𝑇𝑖−ℏ)

≥ 2 · 𝑓 (𝑇𝑖−1) −
𝑓 (𝑇𝑖−1)
2
ℏ−1 = (2 − 1

2
ℏ−1 ) 𝑓 (𝑇𝑖−1) ≥ 𝑓 (𝑇𝑖−1),

where the first inequality is due to the submodularity of 𝑓 (·); the
second inequality is due to Lemma 4.2 and the fact that there are

ℏ − 1 sets are added into 𝑇𝑖−1 without any deletion from 𝑇𝑖−ℏ to

𝑇𝑖−1; the last inequality is due to the fact that ℏ ≥ 1.

Combine all the above and finish the proof. □

A.4 Proof of Lemma 4.4
Proof. By the submodularity of 𝑓 (·), we have

𝑓 (
𝑖𝑛⋃
𝑡=1

𝑆𝑡 ) ≤ 𝑓 (
𝑗𝑛−1⋃
𝑡=1

𝑆𝑡 ) + 𝑓 (
𝑖𝑛⋃

𝑡=𝑗𝑛

𝑆𝑡 ) (1)

Note that

⋃𝑗𝑛−1
𝑡=1

𝑆𝑡 can be written as multiple unions of 𝑆𝑡 (𝑡 ∈
[ 𝑗𝑛 − 1]), where each union consists of ℏ disjoint 𝑆𝑡 that are deleted

by Line 8 of Algorithm 1. Thus, we can prove this lemma by showing

that the loss in utility caused by these deleted sets can be bounded

by the final cumulative set

⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 .

Suppose that a total of𝑀 deletions occur during the algorithm’s

execution; denote each union of deleted sets as 𝐷𝑡 (𝑡 ∈ [𝑀]) and
arrange them in such a way that 𝑡1 < 𝑡2 implies 𝐷𝑡1 is deleted after

𝐷𝑡2 (in reverse order of deletion). According to the above definition,

we have

⋃𝑗𝑛−1
𝑡=1

𝑆𝑡 = {𝐷𝑡 : 𝑡 ∈ [𝑀]}. It can be observed that each

𝐷𝑡 has previously appeared as a cumulative set

⋃𝑖
𝑡 ′=𝑗 𝑆𝑡 = 𝑇𝑖 (𝑖, 𝑗 ∈

[𝑖𝑛]), as illustrated below:

Observation 1. For any 𝐷𝑡 (𝑡 ∈ [𝑀]), there exists a𝑇𝑖 such that
𝐷𝑡 = 𝑇𝑖 , where 𝑖 = (𝑀 − 𝑡 + 1)ℏ and 𝑇𝑖 is defined in Lemma 4.3.

Proof. According to Line 6-8 of Algorithm 1, the first deletion

occurs in the iteration where 𝑇
2ℏ =

⋃
2ℏ
𝑡=1 𝑆𝑡 \

⋃ℏ
𝑡=1 𝑆𝑡 =

⋃
2ℏ
𝑡=ℏ+1 𝑆𝑡

is generated, with the deleted set being 𝐷𝑀 = 𝑇ℏ =
⋃ℏ

𝑡=1 𝑆𝑡 . The

second deletion occurs in the iteration where 𝑇
3ℏ =

⋃
3ℏ
𝑡=ℏ+1 𝑆𝑡 \⋃

2ℏ
𝑡=ℏ+1 𝑆𝑡 =

⋃
3ℏ
𝑡=2ℏ+1 𝑆𝑡 is generated, with the deleted set being

𝐷𝑀−1 = 𝑇
2ℏ =

⋃
2ℏ
𝑡=ℏ+1 𝑆𝑡 . Following this rule, we have 𝐷𝑡 =

𝑇(𝑀−𝑡+1)ℏ, which completes the proof. □

Combining this observation with Lemma 4.3, we can get

𝑓 (𝐷𝑡 ) = 𝑓 (𝑇(𝑀−𝑡+1)ℏ) ≥ 2
ℏ−1 · 𝑓 (𝑇(𝑀−𝑡 )ℏ) = 2

ℏ−1 · 𝑓 (𝐷𝑡+1)
Observe that 𝐷1 = 𝑇𝑀 ·ℏ is the last union of sets to be deleted from

memory by Algorithm 1, and this deletion occurs when 𝑇𝑀 ·ℏ+ℏ is
generated. Therefore, by Lemma 4.3 and the monotonicity of 𝑓 (·),
we can conclude that

𝑓 (
𝑖𝑛⋃

𝑡=𝑗𝑛

𝑆𝑡 ) ≥ 𝑓 (𝑇𝑀 ·ℏ+ℏ) ≥ 2
ℏ−1 · 𝑓 (𝑇𝑀 ·ℏ) = 2

ℏ−1 · 𝑓 (𝐷1) .

Using the above two inequalities, we can get 𝑓 (⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 ) ≥
2
𝑡 (ℏ−1) · 𝑓 (𝐷𝑡 ′ ) for any 𝑡 ′ ∈ [𝑀]. Combining this result with Eqn.

(1), we conclude that

𝑓 (
𝑖𝑛⋃
𝑡=1

𝑆𝑡 ) ≤ 𝑓 (
⋃

𝑡 ∈[𝑀 ]
𝐷𝑡 ) + 𝑓 (

𝑖𝑛⋃
𝑡=𝑗𝑛

𝑆𝑡 )

≤
𝑀∑︁
𝑡=1

𝑓 (𝐷𝑡 ) + 𝑓 (
𝑖𝑛⋃

𝑡=𝑗𝑛

𝑆𝑡 ) ≤
𝑀∑︁
𝑡=0

2
−𝑡 (ℏ−1) · 𝑓 (

𝑖𝑛⋃
𝑡=𝑗𝑛

𝑆𝑡 )

≤ 𝑓 (
𝑖𝑛⋃

𝑡=𝑗𝑛

𝑆𝑡 )
∞∑︁
𝑡=0

2
−𝑡 (ℏ−1) = 𝑓 (

𝑖𝑛⋃
𝑡=𝑗𝑛

𝑆𝑡 )
1

1 − 21−ℏ
,

where the last inequality follows from the sum of a geometric series.

The lemma then follows by rearranging the inequality. □
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A.5 Proof of Lemma 4.5
Proof. If 𝑐 (⋃𝑖𝑛

𝑡=𝑗𝑛
𝑆𝑡 ) ≤ 𝐵, then

⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 = 𝑄∗ and the lemma

trivially holds. Therefore, we consider the case that 𝑐 (⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 ) > 𝐵

in the following.

For any element 𝑢 ∈ ⋃𝑖𝑛
𝑡=1

𝑆𝑡 , we use S<𝑢 to denote the state

of

⋃𝑖
𝑡=𝑗 𝑆𝑡 at the moment when the element 𝑢 is considered by

Line 4 of Algorithm 1. Suppose that the elements in 𝑆 (𝑧 + 1) are
{𝑢1, · · · , 𝑢 |𝑆 (𝑧+1) | } (listed according to the order which they arrive),
then we have

𝑓 (
𝑖𝑛⋃

𝑡=𝑗𝑛

𝑆𝑡 ) − 𝑓 (
𝑖𝑛⋃

𝑡=𝑗𝑛

𝑆𝑡 \ 𝑆 (𝑧 + 1))

=
∑︁

𝑢𝑥 ∈𝑆 (𝑧+1)
𝑓 (𝑢𝑥 |

𝑖𝑛⋃
𝑡=𝑗𝑛

𝑆𝑡 \ 𝑆 (𝑧 + 1) ∪ {𝑢1, · · · , 𝑢𝑥−1})

≥
∑︁

𝑢𝑥 ∈𝑆 (𝑧+1)
𝑓 (𝑢𝑥 | S<𝑢𝑥 ) ≥

∑︁
𝑢𝑥 ∈𝑆 (𝑧+1)

𝑓 (S<𝑢𝑥 )
𝐵

· 𝑐 (𝑢𝑥 )

≥
∑︁

𝑢𝑥 ∈𝑆 (𝑧+1)

𝑓 (⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 \ 𝑆 (𝑧 + 1))
𝐵

· 𝑐 (𝑢𝑥 )

≥ 𝑓 (
𝑖𝑛⋃

𝑡=𝑗𝑛

𝑆𝑡 \ 𝑆 (𝑧 + 1)),

where the first inequality is due to submodularity and the fact that⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 \𝑆 (𝑧 + 1) ∪ {𝑢1, · · · , 𝑢𝑥−1} ⊆ S<𝑢𝑥 ; the second inequality
is due to Line 4 of Algorithm 1; the third inequality is due to the

monotonicity of 𝑓 (·); the last inequality is due to the definition of

𝑆 (𝑧 + 1) in Line 14.

Rearranging the inequality above, we obtain 𝑓 (⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 ) ≥ 2 ·
𝑓 (⋃𝑖𝑛

𝑡=𝑗𝑛
𝑆𝑡 \𝑆 (𝑧+1)) ≥ 2

(
𝑓 (⋃𝑖𝑛

𝑡=𝑗𝑛
𝑆𝑡 ) − 𝑓 (𝑆 (𝑧+1))

)
, which means

that 2 · 𝑓 (𝑆 (𝑧 + 1)) ≥ 𝑓 (⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 ). We denote by 𝑒′ the element

first added into 𝑆 (𝑧 + 1). Applying the submodularity, we can get

2 · 𝑓 (𝑄∗) ≥ 𝑓 (𝑆 (𝑧)) + 𝑓 (𝑒∗) ≥ 𝑓 (𝑆 (𝑧)) + 𝑓 (𝑒′) ≥ 𝑓 (𝑆 (𝑧 + 1)),
where the second inequality is due to Line 10 of Algorithm 1; the

last inequality is due to the fact that 𝑆 (𝑧 +1) \𝑒′ = 𝑆 (𝑧). Combining

the last two inequalities completes the proof. □

A.6 Proof of Lemma 5.2
Proof. By Lemma 4.1, Lemma 4.4 and the fact that 𝑀1 is a

feasible solution, we must have

(1 − 𝜖) 𝑓 (𝑀1)
2𝐵

≤ (1 − 𝜖) 𝑓 (𝑂)
2𝐵

≤ 𝜌∗ ≤ 𝑓 (𝑂)
2𝐵
≤
(1 + 1

2
ℏ−1−1 ) 𝑓 (𝑀2)
𝜖𝐵

.

From this inequality and the definition of 𝑃 in Line 1, Algorithm 2

must generate the solution 𝐴𝜌∗ in Line 2. We divide our following

analysis into two cases whether all elements of 𝑂 \ {𝑜𝑚} can be

added to 𝐴𝜌∗ without violating the knapsack constraint when the

algorithm terminates.

• 𝑐 (𝐴𝜌∗ ) > (1 − 𝜖)𝐵 :

In this case, by Line 4-7 of Algorithm 2, we must have:

𝑓 (𝐴𝜌∗ ) ≥ 𝜌∗ · 𝑐 (𝐴𝜌∗ ) > (1 − 𝜖)𝐵
(1 − 𝜖) 𝑓 (𝑂)

2𝐵
≥ (1/2 − 𝜖) 𝑓 (𝑂) .

• 𝑐 (𝐴𝜌∗ ) ≤ (1 − 𝜖)𝐵 :

In this case, we can conclude that any𝑢 ∈ 𝑂 \ (𝐴𝜌∗ ∪{𝑜𝑚}) can
be added into 𝐴𝜌∗ without violating the knapsack constraint.

Thus, the reason it is not added is that its cost-effectiveness is

smaller than the threshold 𝜌∗. So we have

𝑓 (𝑂 \ {𝑜𝑚}) − 𝑓 (𝐴𝜌∗ ) ≤
∑︁

𝑢∈𝑂\(𝐴𝜌∗∪{𝑜𝑚 })
𝑓 (𝑢 | 𝐴𝜌∗ )

≤
∑︁

𝑢∈𝑂\(𝐴𝜌∗∪{𝑜𝑚 })
𝜌∗ · 𝑐 (𝑢) ≤ 𝑓 (𝑂)

2𝐵
𝜖𝐵 ≤ 𝜖 𝑓 (𝑂)/2, (2)

where the first inequality is due to the submodularity of 𝑓 (·);
the second inequality is due to Line 6 of Algorithm 2. Recall

our assumption that 𝑓 ({𝑜𝑚}) < 𝑓 (𝑂)/2, which implies 𝑓 (𝑂 \
{𝑜𝑚}) ≥ 1/2·𝑓 (𝑂) due to the submodularity of 𝑓 (·). Combining

this observation with Eqn. (2) completes the proof.

□

A.7 Proof of Lemma 5.3
Proof. By Lemma 4.1, Lemma 4.4 and the fact that 𝑀1 is a

feasible solution, we must have

(1 − 𝜖) 𝑓 (𝑀)
2𝐵

≤ (1 − 𝜖) 𝑓 (𝑂)
2(𝐵 − 𝑐 (𝑜𝑚))

≤ 𝜌∗

≤ 𝑓 (𝑂)
2(𝐵 − 𝑐 (𝑜𝑚))

≤
(1 + 1

2
ℏ−1−1 ) 𝑓 (𝑀2)
𝜖𝐵

.

From this inequality and the definition of 𝑃 in Line 1, Algorithm 2

must generate the solution 𝐴𝜌∗ in Line 2. We divide our following

analysis into two cases based on whether all elements of 𝑂 \ {𝑜𝑚}
can be added into 𝐴𝜌∗ without violating the knapsack constraint

when the algorithm ends (i.e., whether 𝑐 (𝐴𝜌∗ ) exceeds 𝐵 − 𝑐 (𝑜𝑚)
or not).

• 𝑐 (𝐴𝜌∗ ) > 𝐵 − 𝑐 (𝑜𝑚) :
In this case, by Line 4-7 of Algorithm 2, we must have:

𝑓 (𝐴𝜌∗ ) ≥ 𝜌∗ · 𝑐 (𝐴𝜌∗ ) > 𝐵 − 𝑐 (𝑜𝑚)
(1 − 𝜖) 𝑓 (𝑂)
2(𝐵 − 𝑐 (𝑜𝑚))

≥ (1/2 − 𝜖) 𝑓 (𝑂).

• 𝑐 (𝐴𝜌∗ ) ≤ 𝐵 − 𝑐 (𝑜𝑚) :
In this case, we can conclude that any 𝑢 ∈ 𝑂 \𝐴𝜌∗ can be added

into 𝐴𝜌∗ without violating the knapsack constraint. Thus, the

reason it is not added is that its cost-effectiveness is smaller

than the threshold 𝜌∗. So we have

𝑓 (𝑂) − 𝑓 (𝐴𝜌∗ ∪ {𝑜𝑚}) ≤
∑︁

𝑢∈𝑂\(𝐴𝜌∗∪{𝑜𝑚 })
𝑓 (𝑢 | 𝐴𝜌∗ )

≤
∑︁

𝑢∈𝑂\(𝐴𝜌∗∪{𝑜𝑚 })
𝜌∗ · 𝑐 (𝑢)

≤ 𝑓 (𝑂)
2(𝐵 − 𝑐 (𝑜𝑚))

(𝐵 − 𝑐 (𝑜𝑚)) = 𝑓 (𝑂)/2,

where the first inequality is due to the submodularity of 𝑓 (·);
the second inequality is due to Line 6 of Algorithm 2. Combining

all the above then the lemma follows.

□
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