
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Linear-Time Algorithms for Representative
Subset Selection From Data Streams

Anonymous Author(s)
∗

Abstract
Representative subset selection from data streams is a critical prob-

lem with wide-ranging applications in web data mining and ma-

chine learning, such as social media marketing, big data summariza-

tion, and recommendation systems. This problem is often framed

as maximizing a monotone submodular function subject to a knap-

sack constraint, where each data element in the stream has an

associated cost, and the goal is to select elements within a bud-

get 𝐵 to maximize revenue. However, existing algorithms typically

rely on restrictive assumptions about the costs of data elements,

and their performance bounds heavily depend on the budget 𝐵. As

a result, these algorithms are only effective in limited scenarios

and have super-linear time complexity, making them unsuitable

for large-scale data streams. In this paper, we introduce the first

linear-time streaming algorithms for this problem, without any

assumptions on the data stream, while also minimizing memory

usage. Specifically, our single-pass streaming algorithm achieves

an approximation ratio of 1/8 − 𝜖 under O(𝑛) time complexity and

O(𝑘 log 1

𝜖) space complexity, where 𝑘 is the largest cardinality of

any feasible solution. Our multi-pass streaming algorithm improves

this to a (1/2 − 𝜖)-approximation using only three passes over the

stream, with O(𝑛𝜖 log
1

𝜖) time complexity and O(𝑘𝜖 log
1

𝜖) space
complexity. Extensive experiments across various applications re-

lated to web data mining and social media marketing demonstrate

the superiority of our algorithms in terms of both effectiveness and

efficiency.

CCS Concepts
• Information systems→Web mining; • Theory of computa-
tion→ Streaming, sublinear and near linear time algorithms;
Approximation algorithms analysis.

Keywords
web data mining, streaming algorithm, data summarization, sub-

modular maximization

ACM Reference Format:
Anonymous Author(s). 2025. Linear-Time Algorithms for Representative

Subset Selection From Data Streams. In Proceedings of (WWW ’25). ACM,

New York, NY, USA, 12 pages. https://doi.org/XXX.XXX

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’25, 28 April - 2 May, 2025, Sydney, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXX.XXX

1 Introduction
Representative subset selection from large datasets is a fundamental

problem with various data-driven applications related to web data

mining and machine learning, including but not limited to social

media marketing [36, 40, 43, 61], recommendation systems [16, 17,

22, 58, 64], document summarization [13, 48, 52, 54, 55] and feature

selection [4, 10, 41, 67]. Many studies (e.g., [6, 15–17, 26, 40, 64])

have formulated this problem as the task of selecting a subset that

maximizes a submodular function. This approach leverages the

“diminishing returns” property of submodular functions to quantify

the “representativeness” or “utility” of the selected subset. Moreover,

constraints such as cardinality or knapsack constraints are typically

imposed on the objective submodular function to model real-world

limitations [3, 5, 16, 26, 40, 56, 64].

Since the seminal work of Fisher et al. [30], constrained sub-

modular maximization problems have been extensively studied,

with a variety of algorithms proposed that achieve good approx-

imation ratios [32, 44, 50, 56, 62, 65]. However, the advent of big

data has introduced new challenges, rendering many of these al-

gorithms less practical due to their computational demands. Over

the past decades, the exponential growth in data size has placed

increasing demands on algorithmic efficiency, leading to substan-

tial research efforts to develop faster submodular maximization

algorithms. Early work in this line has achieved nearly linear time

complexity of O𝜖 (𝑛 log𝑘) [7, 23–25, 33, 46], where O𝜖 hides 𝜖 fac-

tors, 𝑛 denotes the size of the ground set and 𝑘 denotes the maxi-

mum cardinality of any feasible solution
1
. More recent work (e.g.,

[9, 11, 12, 15, 20, 47, 53, 57, 59]) has focused on further reducing

runtime, surpassing the nearly linear complexities of previous ap-

proaches and proposing clean linear-time algorithms for submod-

ular maximization problems. Since linear time complexity is the

minimum required to read all elements of the ground set, it is un-

likely that any algorithm can be more efficient without employing

parallelization, while still maintaining a reasonable approximation

ratio [53]. Moreover, in many domains, data volumes are expanding

at a rate exceeding the capacity of computers to store them in main

memory [7]. Therefore, many studies such as [5, 6, 15–17, 26, 58, 64]

have focused on memory-efficient algorithms and proposed stream-

ing submodular maximization algorithms, which takes a constant

number of passes through the ground set while accessing only a

small fraction of the data stored in main memory at any given time.

In this paper, we formulate the representative subset selection

problem as the problem of monotone submodular maximization

subject to a knapsack constraint (abbreviated as the SMKC prob-

lem). The knapsack constraint is a fundamental constraint that can

capture real-world limitations such as budget, time, or size, and thus

the SMKC problem has been extensively studied since 1982 [65].

1
The time complexity of submodular maximization algorithms is typically measured by

the number of oracle queries to the objective function, as these queries are significantly

more time-consuming than other basic operations [1, 2, 29, 46].

1

https://doi.org/XXX.XXX
https://doi.org/XXX.XXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, 28 April - 2 May, 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Currently, for this problem, existing work [53, 59] has only success-

fully proposed linear-time algorithms with provable approximation

ratios in the offline setting, where all data must be stored in main

memory—an impractical requirement for many real-world appli-

cations. In the streaming setting, the current best single-pass [39]

(resp. multi-pass [34]) streaming algorithm can only achieve the

super-linear time complexity of O(𝑛𝜖 log𝐵) and the space complex-

ity of O(𝐵𝜖 log𝐵) (resp. O(𝑘𝜖 log𝐵)) with an approximation ratio

of 1/3 − 𝜖 (resp. 1/2 − 𝜖), where 𝐵 is the budget for the knapsack

constraint. Note that the value of 𝐵 also influences the complexities

of other existing streaming algorithms for the SMKC problem to

the same extent, if not more (refer to Table 1). In the worst case, the

budget 𝐵 can be arbitrarily large and grow exponentially with the

input size 𝑛, resulting in a quadratic or worse complexity for these

algorithms. More critically, the approximation ratios of existing

algorithms are derived under the assumption that the cost of each

element is no less than 1. These algorithms suggest using normal-

ization to ensure the assumption holds, thereby supporting their

approximation ratios. However, such normalization is impractical

for single-pass streaming algorithms as the costs are not known in

advance, rendering their performance guarantees perhaps invalid.

Meanwhile, this normalization implies that 𝐵 cannot be normalized

to reduce time and space complexity in these algorithms, further

compounding the efficiency issues. Therefore, we aim to answer

the following questions in this paper:

• Given that the assumptions and performance guarantees

of existing streaming algorithms for the SMKC problem

may not always hold in practical scenarios, is it possible to

design more practical streaming algorithms for the SMKC

problem that maintain provable performance guarantees

without relying on restrictive assumptions?

• Furthermore, if such algorithms exist, can they achieve

linear time complexity while using minimal memory?

1.1 Our Contributions
In this paper, we provide confirmative answers to the above ques-

tions, by presenting two novel streaming algorithms for the SMKC

problem without any assumptions on the data stream. The contri-

butions of our paper can be summarized as follows:

• We propose a single-pass streaming algorithm dubbed On-
eStream that achieves an approximation ratio of 1/8 − 𝜖
for the SMKC problem. The time and space complexities of

the OneStream algorithm are O(𝑛) and O(𝑘 log 1

𝜖), respec-
tively. To our knowledge, OneStream is the first streaming

algorithm with a provable approximation ratio and linear

time complexity for the SMKC problem.

• Based on the OneStream algorithm, we further propose

a multi-pass streaming algorithm, dubbed MultiStream,

which achieves an approximation ratio of 1/2 − 𝜖 within

three passes over the data stream. This matches the best ra-

tio achieved by existing streaming algorithms for the SMKC

problem. However, while existing streaming algorithms

require super-linear time complexity, ourMultiStream al-

gorithm only has a linear time complexity of O(𝑛𝜖 log
1

𝜖)
under O(𝑘𝜖 log

1

𝜖) space complexity.

• We conduct extensive experiments using several real-world

applications related to the web, including maximum cover-

age on networks and revenue maximization on networks.

The experimental results strongly demonstrate the effec-

tiveness and efficiency of our algorithms.

1.2 Challenges and Techniques
To our knowledge, existing streaming submodular maximization

algorithms with linear time complexity are limited to handling

cardinality [15, 47] or matroid constraints [9, 12, 20], and fail to

offer performance guarantees for the knapsack constraint. Addi-

tionally, many techniques used in these algorithms are specific to

cardinality or matroid constraints and do not easily extend to knap-

sack constraints. For example, the linear-time streaming algorithms

for cardinality constraints rely heavily on the fact that a solution

with 𝑘 elements satisfies the constraint. This property is used (1)

to control the number of elements maintained by the algorithm,

thereby ensuring that memory consumption stays within an ac-

ceptable bound of O(𝑘), and (2) to select the last 𝑘 elements from

the tail of the solution set to form the final feasible solution. How-

ever, in the SMKC problem, we lack prior knowledge of the value

of 𝑘 , and a solution with 𝑘 elements may not necessarily satisfy

the knapsack constraint. Similarly, the performance guarantees

of linear-time streaming algorithms for matroid constraints rely

on the exchange property of matroids, a characteristic absent in

knapsack constraints.

Moreover, existing streaming algorithms for the SMKC problem

rely on guessing an “ideal threshold” to achieve their approximation

ratios, and they find this threshold through a canonical geomet-

ric search process under the assumption that each element’s cost

is at least 1. However, their threshold guessing approach needs

extra time and memory complexity of O(log𝐵), resulting in unsat-

isfactory super-linear time complexity, especially since the budget

𝐵 can be arbitrarily large and even grow exponentially with the

input size 𝑛 in the worst-case scenario. To address cases where

elements’ costs are less than 1, existing streaming algorithms sug-

gest using normalization to ensure that each element’s cost is at

least 1. However, such normalization is impractical for single-pass

streaming algorithms as the costs are not known in advance, which

invalidates their performance guarantees. Furthermore, this nor-

malization implies that 𝐵 cannot be normalized to reduce time and

space complexity in these algorithms, further compounding the

efficiency issues.

To address the above challenges, ourOneStream algorithmmain-

tains a “cumulative set”

⋃𝑖
𝑡=𝑗 𝑆𝑡 , which consists of a small number

of candidate solutions 𝑆𝑡 : 𝑡 ∈ [𝑗, 𝑖]. Each candidate solution 𝑆𝑡 is

initialized as an empty set and grows by adding elements from

the data stream until it becomes a “nearly feasible solution”, i.e., a

set that satisfies the knapsack constraint by removing at most one

element. OneStream also computes a threshold based on the utility

of the cumulative set to control the cost-effectiveness of elements

added to the candidate solutions. This approach eliminates the need

for the time-consuming geometric search process used in previous

streaming algorithms to find an ideal threshold. By constructing

nearly feasible solutions, OneStream offers two key benefits: (1) it

limits the size of each candidate solution to at most 𝑘 + 1 = O(𝑘);
2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Linear-Time Algorithms for Representative
Subset Selection From Data Streams WWW ’25, 28 April - 2 May, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 1: Streaming algorithms for monotone submodular maximization subject to a knapsack constraint.

Passes Reference Ratio Space Complexity Time / Query Complexity

= 1 [17] 1/6 − 𝜖 O(𝑘𝜖 log𝐵) O(𝑛𝑘𝜖 log𝐵)
[39] 4/11 − 𝜖 O(𝐵

𝜖4
log

4 𝐵) O(𝑛
𝜖4

log
4 𝐵)

[37] 2/5 − 𝝐 O(𝐵
𝜖4

log
4 𝐵) O(𝑛

𝜖4
log

4 𝐵)
[39] 1/3 − 𝜖 O(𝐵𝜖 log𝐵) O(𝑛𝜖 log𝐵)

Algorithm 1 1/8 − 𝜖 O(𝒌 log 1
𝝐) O(𝒏)

> 1 [66] 1/2 − 𝜖# O(𝐵) O(𝑛(1𝜖 + log𝐵))
[38] 1/2 − 𝝐 O(𝐵

𝜖7
log

2 𝐵) O(𝐵
𝜖8

log
2 𝐵)

[34] 1/2 − 𝝐 O(𝑘𝜖 log𝐵) O(𝑛𝜖 log𝐵)
Algorithm 2 1/2 − 𝝐 O(𝒌𝝐 log 1

𝝐) O(𝒏𝝐 log 1
𝝐)

1 𝑘 denotes the largest cardinality of any feasible solution, 𝐵 is the budget. Bold font and magenta color

indicate the best result(s) in each setting.

2
Apart from our results, the approximation ratios in existing work are based on the assumption that each

element’s cost is at least 1. They suggest normalization to enforce this assumption, thereby supporting their

approximation ratios. However, such normalization is impractical for single-pass streaming algorithms as

the costs are not known in advance, potentially invalidating their performance guarantees.

3
In the worst case, 𝐵 can be arbitrarily large and even grow exponentially with 𝑛, resulting in a complexity

worse than𝑂 (𝑛2) for algorithms dependent on 𝐵. Note that normalization may not be applicable for

reducing 𝐵, as these algorithms rely on it to ensure the cost assumption and uphold their performance

guarantees.

#
The approximation ratio is derived from flawed analysis as pointed out by [34].

and (2) it ensures the final solution (a subset of the cumulative

set satisfying budget 𝐵) is of high quality, as each element in the

cumulative set has a cost-effectiveness ratio above the computed

threshold. Besides, OneStream employs a sliding window mecha-

nism to control the total number of nearly feasible solutions stored

in memory. Thanks to these techniques, OneStream achieves linear

time complexity with minimal memory usage.

Our MultiStream algorithm leverages the OneStream algorithm

to efficiently guess the “ideal threshold” (associated with the utility

of the optimal solution), which guides a better selection of elements

to obtain an improved approximation ratio. Different from existing

threshold guessing approaches, we dynamically choose an easier-

to-find ideal threshold based on the cost distribution of elements

in the optimal solution in our proof, which is combined with On-
eStream’s ability to provide accurate upper and lower bounds for

the utility of the optimal solution in linear time, enabling an effi-

cient threshold guess process without relying on the assumption

that each element’s cost is at least 1. This guess process incurs only

a small amount of extra O(1/𝜖) (rather than O(log𝐵)) time and

memory overhead, ensuring that MultiStream achieves a better

approximation ratio while maintaining linear complexities. More

details about our algorithms can be found in Section 4-5.

Due to the space limit, we defer the detailed proofs of most

lemmas and theorems to Appendix A, while only providing some

intuitions and key ideas for them in the main text.

2 Related Work
2.1 Algorithms for Monotone Submodular

Maximization Under a Knapsack Constraint
Monotone submodular maximization under a knapsack constraint

(i.e., the SMKC problem) has been extensively studied [27, 44, 62, 65]

in the offline setting. Among these works, [62] achieved the opti-

mal approximation ratio of 1 − 1/𝑒 , but its O(𝑛5) time complexity

renders it impractical for real-world applications. Subsequent stud-

ies [7, 23, 49, 63, 66] put effort into more efficient algorithms, and

recent work [53, 59] have proposed linear-time algorithms for the

SMKC problem, where [53] achieves (1/2− 𝜖)-approximation using

O(𝑛𝜖 log
1

𝜖) time complexity. However, these algorithms are still

limited to the offline setting, requiring all elements to be stored in

memory, which is impractical in many real-world scenarios.

Recently, great efforts have been devoted to designing streaming

algorithms for the SMKC problem, as shown by Table 1. Among

single-pass streaming algorithms, [37] achieves the best approxima-

tion ratio of 2/5−𝜖 with time complexity ofO(𝑛
𝜖4

log
4 𝐵), while [39]

offers the best time complexity of O(𝑛𝜖 log𝐵) with a worse approx-

imation ratio of 1/3 − 𝜖 . Among multi-pass streaming algorithms,

[38] first achieved an approximation ratio of 1/2 − 𝜖 using O(1𝜖)
passes over the data stream, with time complexity of O(𝐵

𝜖8
log

2 𝐵).
Subsequently, [66] developed a new streaming algorithm aimed at

avoiding the large polynomial factors of 1/𝜖 in [38]’s complexity,

reducing the time complexity to O(𝑛(1𝜖 + log𝐵)) while maintaining

the same approximation ratio and number of passes over the data

stream. However, [34] later pointed out errors in the theoretical

analysis of [66], invalidating its approximation guarantee. [34] pro-

posed a new algorithm that restores the 1/2 − 𝜖 approximation

ratio using two passes over the data stream with time complexity of

O(𝑛𝜖 log𝐵). However, as shown in Table 1, the complexities of all

existing streaming algorithms depend on𝐵, which, in the worst case,

can grow exponentially with the input size 𝑛, leading to quadratic

or worse time complexity for these algorithms. More critically, the

approximation ratios of existing algorithms are derived under the

assumption that the cost of each element is no less than 1. These

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, 28 April - 2 May, 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

algorithms suggest using normalization to ensure the assumption

holds, thereby supporting their approximation ratios. However,

such normalization is impractical for single-pass streaming algo-

rithms, rendering their performance guarantees perhaps invalid.

Meanwhile, this normalization implies that 𝐵 cannot be normalized

to reduce time and space complexity in these algorithms, further

compounding the efficiency issues.

2.2 Linear-Time Algorithms for Streaming
Submodular Maximization

Chakrabarti and Kale [12] pioneered the achievement of linear com-

plexity for streaming submodular maximization. Their algorithm

is tailored for matroid constraints, requires one pass over the data

stream, and uses O(𝑛) time complexity and O(𝑘) space complexity

to achieve a 1/4 approximation ratio. Subsequently, [20] reduces

the number of queries in [12]’s algorithm from 2𝑛 to 𝑛, while main-

taining the same approximation ratio and complexities. [9] further

generalize [20]’s algorithm to handle not necessarily monotone sub-

modular functions, achieving a 1/11.66 approximation ratio with

the same complexities.

For simpler cardinality constraints, [47] proposed a linear-time

single-pass (resp. multi-pass) streaming submodular maximization

algorithm, achieving 1/4 (resp. 1 − 1/𝑒 − 𝜖) approximation ratio

with O(𝑛) (resp. O(𝑛/𝜖)) time complexity and O(𝑘 log𝑘 log(1/𝜖))
(resp. O(𝑘 log𝑘)) space complexity. [15] extends [47]’s algorithms

to handle not necessarily monotone submodular functions, achiev-

ing 1/23.313−𝜖 (resp. 0.25−𝜖) approximation ratio using one (resp.

O(1/𝜖)) pass(es) over the data stream with unchanged complexities.

However, as explained in Section 1.2, none of these algorithms

offer any approximation guarantee for our SMKC problem, and

many techniques used in these algorithms are tailored to cardinality

or matroid constraints, which do not readily generalize to knapsack

constraints. Thus, whether there exists a linear-time streaming

algorithm for the SMKC problem remains an open question.

3 Problem Statement
We consider the problem of selecting a representative subset of

elements from a streaming datasetN of size 𝑛, aiming to maximize

a non-negative set function 𝑓 : 2N ↦→ R≥0. For any subset 𝑆 ⊆ N ,

𝑓 (𝑆) quantifies the utility of 𝑆 , i.e., how well 𝑆 representsN accord-

ing to some objective. In many data summarization problems (e.g.,

[6, 15, 17, 26, 58, 64]), the utility function 𝑓 (·) exhibits an intuitive

property known as submodularity characterized by diminishing

returns. The function with submodularity can be defined as follows:

Definition 3.1 (Submodular Function). A set function 𝑓 : 2N ↦→
R≥0 is submodular if for all𝑋 ⊆ 𝑌 ⊆ N and𝑢 ∈ N \𝑌 , it holds that
𝑓 (𝑢 | 𝑌) ≤ 𝑓 (𝑢 | 𝑋),where 𝑓 (𝑢 | 𝑆) = 𝑓 (𝑆∪{𝑢})− 𝑓 (𝑆) represents
the marginal gain of 𝑢 with respect to 𝑆 for any 𝑆 ∈ {𝑋,𝑌 }.

Intuitively, submodularity implies that adding an element 𝑢 to

a set 𝑌 yields no more utility gain than adding 𝑢 to a subset 𝑋 of

𝑌 . Besides, 𝑓 (·) is monotone if 𝑓 (𝑋) ≤ 𝑓 (𝑌) for all 𝑋 ⊆ 𝑌 ⊆ N ,

indicating that adding a new element never decreases the utility. In

this paper, we assume that the utility function 𝑓 (·) is monotone and

submodular. Furthermore, we consider a fundamental constraint

that the feasible solution follows a knapsack constraint, which can

model real-world constraints such as budget, time, and size.

Assume that each element𝑢 ∈ N has an associated cost 𝑐 (𝑢), and
the total cost of a set 𝑆 ⊆ N is defined as a modular function 𝑐 (𝑆) =∑
𝑢∈𝑆 𝑐 (𝑢). Our subset selection problem can then be formulated

as the problem of submodular maximization subject to a knapsack

constraint (abbreviated as the SMKC problem):

max{𝑓 (𝑆) : 𝑆 ⊆ N ∧ 𝑐 (𝑆) ≤ 𝐵},

where 𝑓 (·) is submodular and monotone; 𝐵 ≥ 0 is the given budget.

Following common practice in submodular optimization, we assume

that there exists an oracle that can return the value of 𝑓 (𝑆) for
any 𝑆 ⊆ N . Oracle queries typically have a significantly higher

time complexity than other basic operations, so the efficiency of

submodular optimization problems is commonly measured by the

number of oracle queries [1, 2, 29, 46]. We study the SMKC problem

in the streaming setting, where elements in N arrive sequentially

in an arbitrary order. The streaming algorithm is allowed to make

a few passes over the elements, using a small memory.

Without loss of generality, we assume that 𝑐 (𝑢) ≤ 𝐵 for every

𝑢 ∈ N , as any element with a cost exceeding the budget can be im-

mediately discarded upon arrival. Throughout this paper, we denote

an optimal solution to the SMKC problem as 𝑂 , the element with

the highest cost in 𝑂 as 𝑜𝑚 (i.e., 𝑜𝑚 = argmax𝑢∈𝑂 𝑐 (𝑢)), and the

maximum cardinality of any feasible solution as 𝑘 . For notational

convenience, let [𝑖] = {1, . . . , 𝑖} for any natural number 𝑖 .

4 The Single-Pass Streaming Algorithm
In this section, we propose our single-pass streaming algorithm

dubbed OneStream, which is the first streaming algorithm with

a provable approximation ratio and linear time/query complexity

for the SMKC problem. Moreover, OneStream does not rely on the

assumption that each element’s cost is at least 1, which may not

hold in single-pass scenarios where elements cannot be normalized

in advance. This makes OneStream more practical than existing

single-pass streaming algorithms.

4.1 Algorithm Design
As shown by Algorithm 1, the OneStream algorithm maintains a

“cumulative set”

⋃𝑖
𝑡=𝑗 𝑆𝑡 composed of a small number of candidate

solutions, where each candidate solution is initialized as an empty

set when first added to the cumulative set and then gradually grows

by incorporating valuable elements from the data stream until it

becomes a “nearly feasible solution” (a set that satisfies the knap-

sack constraint after removing no more than one element). More

specifically, the algorithm uses a threshold based on the utility (i.e.,

objective function value) of the cumulative set to check the mar-

ginal cost-effectiveness (i.e., marginal gain/cost) of each incoming

element from the data stream (Line 4). If the element satisfies the

threshold requirement, it is added to the most recent candidate set

𝑆𝑖 in the cumulative set (Line 5). Once this candidate set grows as

a nearly feasible solution, a new candidate set 𝑆𝑖+1 is initialized

to receive elements that meet the threshold requirement, and the

process repeats (Line 6 and Line 9). By using the threshold based

on the utility of the cumulative set itself, the OneStream algorithm

avoids the geometric search for a suitable threshold, thus achieving

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Linear-Time Algorithms for Representative
Subset Selection From Data Streams WWW ’25, 28 April - 2 May, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 1: OneStream (ℏ)

Input: integer ℏ ≥ 1

1 initialize 𝑖 ← 1, 𝑗 ← 1, 𝑆𝑖 ← ∅ and 𝑒∗ ← null;

2 take a new pass over the data stream;

3 while there is an incoming element 𝑒 do

4 if
𝑓 (𝑒 |⋃𝑖

𝑡=𝑗 𝑆𝑡)
𝑐 (𝑒) ≥ 𝑓 (⋃𝑖

𝑡=𝑗 𝑆𝑡)
𝐵

then
5 𝑆𝑖 ← 𝑆𝑖 ∪ {𝑒};
6 if 𝑐 (𝑆𝑖) ≥ 𝐵 then
7 if 𝑖 − 𝑗 + 1 = 2ℏ then
8 Delete sets 𝑆 𝑗 , 𝑆 𝑗+1, · · · , 𝑆 𝑗+ℏ−1; 𝑗 ← 𝑗 + ℏ;
9 𝑖 ← 𝑖 + 1; 𝑆𝑖 ← ∅;

10 𝑒∗ ← argmax𝑢∈{𝑒∗,𝑒 } 𝑓 ({𝑢});
11 𝑖𝑛 ← 𝑖; 𝑗𝑛 ← 𝑗 ;

12 if 𝑐 (⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡) ≤ 𝐵 then 𝑄∗ ← ⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 ;

13 else
14 let 𝑆 (𝑥) denote the set of the last 𝑥 elements added to⋃𝑖𝑛

𝑡=𝑗𝑛
𝑆𝑡 ; find 𝑧 ∈ [|

⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 |] such that

𝑐 (𝑆 (𝑧)) ≤ 𝐵 ∧ 𝑐 (𝑆 (𝑧 + 1)) > 𝐵;

15 𝑄∗ ← argmax𝑄∈{𝑆 (𝑧),𝑒∗ } 𝑓 (𝑄);
16 return 𝑄∗,

⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡

linear complexity. Moreover, constructing candidate solutions as

nearly feasible solutions offers a two-fold benefit: (1) limiting the

cardinality of each solution to no more than 𝑘 + 1 = O(𝑘), ensuring
less memory consumption; (2) ensuring the cost of each solution is

no less than 𝐵, coupled with the fact that the cost-effectiveness of

each element in the solution surpasses the threshold, guarantees a

satisfactory overall utility.

OneStream algorithm also employs a sliding windowmechanism

to control the number of the nearly feasible solution, to ensure the

total memory consumption is small. Specifically, if the total number

of these solutions reaches the predefined limit of 2ℏ, OneStream
deletes the oldest ℏ sets from the cumulative set

⋃𝑖
𝑡=𝑗 𝑆𝑡 (Line 7-8).

Recall that the threshold used to add elements in Line 4 depends on

𝑓 (⋃𝑖
𝑡=𝑗 𝑆𝑡), which increases as the algorithm runs. Thus, elements

added earlier are tested by lower thresholds and are likely to have

lower utility. Consequently, deleting these older elements results

in only a small loss in utility.

When the data stream ends, the cumulative set

⋃𝑖
𝑡=𝑗 𝑆𝑡 may be

an unfeasible solution. To extract a good feasible solution from it

as the final output, OneStream searches for a feasible solution 𝑆 (𝑧)
from the tail of

⋃𝑖
𝑡=𝑗 𝑆𝑡 (Line 14). The intuition behind this is that

elements added later have passed the test by higher thresholds and

are more likely to possess good utility. The one with better utility

between 𝑆 (𝑧) and the best singleton element set (generated by Line

10) is then returned as the final solution 𝑄∗ (Line 15).

4.2 Theoretical Analysis
Our overall analysis approach is as follows. We first demonstrate

that the complete “cumulative set”

⋃𝑖
𝑡=1 𝑆𝑡 without any deletions

can provide an upper bound for the utility of the optimal solution

upon the termination of the algorithm (Lemma 4.1); then show that

the utility loss caused by deleting old nearly feasible solutions from

the cumulative set is small and can be bounded (Lemma 4.2-4.4).

Based on these, we can prove that the final solution obtained after

solution deletion and element extraction can also upper bound the

utility of the optimal solution, resulting in the approximation ratio

of the algorithm (Lemma 4.5).

Lemma 4.1. Upon termination of Algorithm 1, the following in-
equality holds: 𝑓 (⋃𝑖𝑛

𝑡=1
𝑆𝑡) ≥ 𝑓 (𝑂)/2.

To demonstrate that the utility loss caused by deleting nearly

feasible solutions in Line 8 is small, we first demonstrate that in-

corporating a new nearly feasible solution 𝑆𝑡 into the cumulative

set

⋃𝑞−1
𝑡=𝑗

𝑆𝑡 doubles the utility of it (Lemma 4.2), resulting in a con-

tinuous increase in the utility of the cumulative set as OneStream
runs, even when the deletion occurs (Lemma 4.3).

Lemma 4.2. At the end of the each iteration of the while loop in
Algorithm 1, we must have 𝑓 (⋃𝑞

𝑡=𝑗
𝑆𝑡) ≥ 2 · 𝑓 (⋃𝑞−1

𝑡=𝑗
𝑆𝑡) for any

𝑞 ∈ [𝑗 + 1, 𝑖] : 𝑐 (𝑆𝑞) ≥ 𝐵.

Lemma 4.3. Let 𝑇𝑖 (𝑖 > 1) denote the state of ⋃𝑖
𝑡=𝑗 𝑆𝑡 right before

the execution of Line 9 in Algorithm 1. Consider the iteration of the
while loop in Algorithm 1 when 𝑇𝑖 is generated, then:

• If the deletion in Line 8 is not executed in the current iteration,
we have 2 · 𝑓 (𝑇𝑖−1) ≤ 𝑓 (𝑇𝑖).

• Otherwise, we have 𝑓 (𝑇𝑖−1) ≤ 𝑓 (𝑇𝑖).

Building upon the previous two lemmas, we can demonstrate

that solution deletions do not result in a significant utility loss and

the cumulative set finally stored in memory retains a substantial

utility, as shown by Lemma 4.4.

Lemma 4.4. 𝑓 (⋃𝑖𝑛
𝑡=1

𝑆𝑡) ≤ (1 + 1

2
ℏ−1−1) 𝑓 (

⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡)

Before deriving the approximation ratio of Alg. 1, we only need

to prove the solution𝑄∗ returned by the algorithm can upper bound

the final cumulative set

⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 , based on the observation that

elements added later to

⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 have passed higher threshold tests

than those added earlier, thus possessing high utility of

⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 .

Lemma 4.5. 𝑓 (⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡) ≤ 4 · 𝑓 (𝑄∗)

Combining Lemma 4.1, 4.4 and 4.5, we can immediately get the

performance bounds of OneStream, as shown by Theorem 4.6.

Theorem 4.6. By setting ℏ = log
2
(1
8𝜖) + 1 where 𝜖 ∈ (0, 1),

OneStream can return a solution 𝑄∗ satisfying 𝑐 (𝑄∗) ≤ 𝐵 and
𝑓 (𝑄∗) ≥ (1/8 − 𝜖) 𝑓 (𝑂) for the SMCK problem in a single pass
over the data stream. The time/query and space complexities of the
algorithm are O(𝑛) and O(𝑘 log 1

𝜖), respectively.

Proof. The approximation ratio can be directly derived by com-

bining Lemmas 4.1, 4.4, and 4.5. For each incoming element, the

algorithm incurs one oracle query at Line 4 and another at Line 10,

resulting in a total of 2𝑛 oracle queries and a time complexity of

O(𝑛). As shown in Lines 6-9, the algorithm maintains at most ℏ

candidate solutions, each with a size no more than 𝑘 + 1, leading to
a space complexity of O(𝑘 log 1

𝜖). □
5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, 28 April - 2 May, 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Algorithm 2:MultiStream (ℎ, 𝜖)

Input: integer ℏ ≥ 1 and number 𝜖 ∈ (0, 1)
1 𝑀1, 𝑀2 ← OneStream(ℏ); 𝑃 ← {(1 − 𝜖)−𝑧 : 𝑧 ∈

Z ∧ (1−𝜖) 𝑓 (𝑀1)
2𝐵

≤ (1 − 𝜖)−𝑧 ≤
(1+ 1

2
ℏ−1−1

) 𝑓 (𝑀2)
𝜖𝐵

};
2 initialize 𝐴𝜌 ← ∅ for each 𝜌 ∈ 𝑃 and 𝐿∗ ← 𝑀1;

3 take a new pass over the data stream;

4 while there is an incoming element 𝑒 do
5 foreach 𝜌 ∈ 𝑃 ∧ 𝜌 ≤ 𝑓 (𝑒)/𝑐 (𝑒) do
6 if 𝑐 (𝐴𝜌) + 𝑐 (𝑒) ≤ 𝐵 ∧ 𝑓 (𝑒 | 𝐴𝜌) ≥ 𝜌 · 𝑐 (𝑒) then
7 𝐴𝜌 ← 𝐴𝜌 ∪ {𝑒};
8 if 𝑓 (𝐴𝜌) > 𝑓 (𝐿∗) then
9 𝐿∗ ← 𝐴𝜌 ;

10 take a new pass over the data stream;

11 while there is an incoming element 𝑒 do
12 foreach 𝜌 ∈ 𝑃 do
13 if 𝑒 ∉ 𝐴𝜌 ∧ 𝑐 (𝐴𝜌) + 𝑐 (𝑒) ≤ 𝐵 ∧ 𝑓 (𝐴𝜌 ∪ {𝑒}) ≥ 𝑓 (𝐿∗)

then
14 𝐿∗ ← 𝐴𝜌 ∪ {𝑒};

15 foreach 𝜌 ∈ 𝑃 do
16 foreach 𝑒 ∈ 𝐴𝜌 do
17 if 𝑒 ∉ 𝐿∗ ∧ 𝑐 (𝐿∗) + 𝑐 (𝑒) ≤ 𝐵 then 𝐿∗ ← 𝐿∗ ∪ {𝑒} ;

18 return 𝐿∗

5 The Multi-Pass Streaming Algorithm
In this section, we propose our multi-pass streaming algorithm

dubbedMultiStream, which improves the approximation ratio to

1/2 − 𝜖 , matching the best ratio achieved by existing streaming

algorithms for the SMKC problem while maintaining linear time

complexity.

5.1 Algorithm Design
As shown by Algorithm 2,MultiStream algorithm first efficiently

guess the “ideal threshold” related to the utility (i.e., objective func-

tion value) of the optimal solution, based on OneStream algorithm

(Line 1). It then performs element selection based on each guessed

threshold 𝜌 ∈ 𝑃 (i.e., potential ideal threshold) within two passes

over the data stream (Line 2-14). The specific element selection

process is as follows. For each incoming element in the data stream,

the algorithm first selects thresholds from 𝑃 that are smaller than

the current element’s cost-effectiveness (Line 5), as the candidate so-

lution with a threshold larger than the element’s cost-effectiveness

would not accept the element, rendering further checking unneces-

sary. Then, for each selected threshold 𝜌 , the algorithm adds the

element to 𝐴𝜌 if the element satisfies both the knapsack constraint

and the threshold requirement (Line 6-7). The candidate solution

with the best utility is stored in 𝐿∗ (Line 8-9). Subsequently, the
algorithm re-reads the data stream and attempts to insert each

element into each existing candidate solution without violating

the knapsack constraint, thereby enhancing the candidate solu-

tion’s utility (Line 10-14). Finally, the algorithm attempts to insert

elements stored in memory into the current optimal solution 𝐿∗,

further improving the utility of the returned solution in practice

(Line 15-17).

5.2 Theoretical Analysis
As shown by Lemma 5.1, if the element with the highest cost in

the optimal solution (i.e., 𝑜𝑚) has a large utility, we can directly

conclude the algorithm exhibits a favorable approximation ratio.

Lemma 5.1. If 𝑓 ({𝑜𝑚}) ≥ 𝑓 (𝑂)/2, the solution returned by 𝐿∗

Algorithm 2 satisfying 𝑐 (𝐿∗) ≤ 𝐵 and 𝑓 (𝐿∗) ≥ (1/2 − 𝜖) 𝑓 (𝑂).

Proof. The lemma follows as 𝑓 (𝑀1) ≤ 𝑓 (𝐿∗) and OneStream
ensures that 𝑓 (𝑀1) ≥ max𝑢∈N 𝑓 ({𝑢}). □

Now focus on the case where the utility of 𝑜𝑚 is relatively small.

We divide our following analysis into two cases based on whether

𝑜𝑚 consumes the majority of the budget of the optimal solution 𝑂 ,

and then demonstrate that in both cases, the algorithm can find a

candidate solution with a corresponding ideal threshold that can

upper bound the utility of the optimal solution (Lemma 5.2-5.3). A

key purpose of the case-by-case discussion is to quickly find the

ideal threshold without relying on the assumption that the cost

of any element is no less than 1, which can be better understood

through the following example. The 𝐵−𝑐 (𝑜𝑚) in the ideal threshold
𝜌∗ of Lemma 5.3 might be very small or even zero. Therefore, we

consider the case where it is greater than or equal to 𝜖𝐵, ensuring

that 𝜌∗ can be quickly found through geometric search.

The proof ideas for Lemma 5.2 can be explained as follows. We

first establish the existence of a candidate solution with the ideal

threshold 𝜌∗. Then we show that if the cost of this candidate solu-

tion is sufficiently large, its utility is also sufficiently large due to

the threshold filtering process. Otherwise, the candidate solution re-

tains enough budget to include all elements in the optimal solution

except for 𝑜𝑚 . Thus, elements in 𝑂 \ {𝑜𝑚} that are excluded from

this candidate solution must have low marginal cost-effectiveness,

which implies excluding these elements causes little utility loss.

The proof of Lemma 5.3 follows a similar line of reasoning.

Lemma 5.2. If 𝐵−𝑐 (𝑜𝑚) < 𝜖𝐵 and 𝑓 ({𝑜𝑚}) < 𝑓 (𝑂)/2, then Algo-
rithm 2 can generate a candidate solution 𝐴𝜌∗ satisfying 𝑐 (𝐴𝜌∗) ≤ 𝐵

and 𝑓 (𝐴𝜌∗) ≥ (1/2 − 𝜖) 𝑓 (𝑂), where 𝜌∗ ∈ [(1−𝜖) 𝑓 (𝑂)
2𝐵

,
𝑓 (𝑂)
2𝐵
].

Lemma 5.3. If 𝐵 − 𝑐 (𝑜𝑚) ≥ 𝜖𝐵, then Algorithm 2 can generate a
candidate solution 𝐴𝜌∗ satisfying one of the following conditions:

(1) 𝑐 (𝐴𝜌∗) ≤ 𝐵 and 𝑓 (𝐴𝜌∗) ≥ (1/2 − 𝜖) 𝑓 (𝑂)
(2) 𝑐 (𝐴𝜌∗ ∪ {𝑜𝑚}) ≤ 𝐵 and 𝑓 (𝐴𝜌∗ ∪ {𝑜𝑚}) ≥ (1/2 − 𝜖) 𝑓 (𝑂)

where 𝜌∗ ∈ [(1−𝜖) 𝑓 (𝑂)
2(𝐵−𝑐 (𝑜𝑚)) ,

𝑓 (𝑂)
2(𝐵−𝑐 (𝑜𝑚))].

Based on the two lemmas above, we can readily derive the per-

formance bounds of MultiStream, as shown in Theorem 5.4.

Theorem 5.4. By setting ℏ = O(1), MultiStream can return a
solution 𝐿∗ satisfying 𝑐 (𝐿∗) ≤ 𝐵 and 𝑓 (𝐿∗) ≥ (1/2 − 𝜖) 𝑓 (𝑂) for
the SMCK problem within three passes over the data stream. The
time/query and space complexities of the algorithm are O(𝑛𝜖 log

1

𝜖)
and O(𝑘𝜖 log

1

𝜖), respectively.

Proof. Since Line 11-14 of Algorithm 2 ensure that 𝑓 (𝐿∗) ≥
𝑓 (𝐴𝜌∗ ∪ {𝑜𝑚}) when the second condition of Lemma 5.3, we also

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Linear-Time Algorithms for Representative
Subset Selection From Data Streams WWW ’25, 28 April - 2 May, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

 (a) Email Network (b) Email Network

(c) Email Network

(d) Epinions Network

(a)

(e) Epinions Network (f) Epinions Network

YouTube Network (b) YouTube Network (c) YouTube Network

3

3.4

3.8

4.2

4.6

500 1000

U
ti

li
ty

X
 1

0
4

Budget

0

5

10

15

20

500 1000

Q
u

e
ri

e
s

>
��
�

�

Budget

0

0.5

1

1.5

2

2.5

500 1000

E
le

m
e
n

ts
 i
n

 M
e
m

o
ry X
 1

0
4

Budget

2.7

3.1

3.5

3.9

500 1000

U
ti

li
ty

Budget

0

3

6

9

12

500 1000

Q
u

e
ri

e
s

Budget

0

0.5

1

1.5

2

500 1000

E
le

m
e
n

ts
 i
n

 M
e
m

o
ry

Budget

1.4

1.6

1.8

2

100 200

U
ti

li
ty

>
��
�

�

Budget

0

2

4

6

8

100 200

Q
u

e
ri

e
s

Budget

0

0.9

1.8

2.7

500 1000

E
le

m
e
n

ts
 i
n

 M
e
m

o
ry

Budget

>
��
�

X
 1

0
4 �

X
 1

0
4

X
 1

0
4

>
��
�

�

Figure 1: Experimental results of maximum coverage on networks

have 𝑓 (𝐿∗) ≥ 𝑓 (𝑂)/2 when the case described by Lemma 5.3 hap-

pens. Combining this result with Lemmas 5.1-5.2 yields the approx-

imation ratio.

Note that Algorithm 2 maintains at most O(|𝑃 |) candidate so-
lutions. Moreover, for each candidate solution 𝐴𝜌 (𝜌 ∈ 𝑃), the
algorithm incurs at most𝑛 oracle queries at Lines 5, 6 and 13, respec-

tively. Thus, the query/time and space complexities of Algorithm 2

are O(𝑛 |𝑃 |) and O(𝑘 |𝑃 |), respectively. Based on the definition of

𝑃 and the fact that 𝑓 (𝑀2) ≤ 4 · 𝑓 (𝑀1) due to Lemma 4.5, we have

|𝑃 | = O(1𝜖 log
1

𝜖). Combining these results completes the proof.

□

6 Performance Evaluation
In this section, we empirically evaluate the performance of our

algorithms against the state-of-the-art streaming algorithms for two

real-world applications of the SMKC problem, including maximum

coverage on networks and revenue maximization on networks. The

metrics compared include the utility (i.e., the objective function

value), the number of oracle queries to the objective function, and

the maximum number of elements in memory. The following four

algorithms are implemented in the experiments:

• OneStream: our single-pass streaming algorithm (i.e, Algo-

rithm 1).

• MultiStream: our multi-pass streaming algorithm (i.e, Al-

gorithm 2).

• DynamicMRT [39]: the state-of-the-art single-pass stream-

ing algorithm for the SMKC problem.

• SmkStream [34]: the state-of-the-art multi-pass streaming

algorithm for the SMKC problem.

All our experiments are conducted on a Windows workstation with

Intel(R) Core(TM) i7-14700 @ 2.10 GHz CPU and 64GB memory
2
.

For each of the implemented algorithms, the parameter 𝜖 for accu-

racy (if any) is set to 0.1.

6.1 Maximum Coverage on Networks
Maximum coverage has various real-world applications such as

web monitoring [60], influence maximization [43, 61], community

detection [31] and sensor placement [45]. This application has also

been considered in previous studies, such as [5, 16, 17, 19, 21, 26,

64, 68]. Given a network 𝐺 = (N , 𝐸), our goal is to identify a

subset of seed nodes 𝑆 ⊆ N that can influence a large number of

users within a budget 𝐵. This goal is formulated as maximizing a

monotone submodular function:

max{𝑓 (𝑆) = | ∪𝑢∈𝑆 𝑁 (𝑢) | : 𝑐 (𝑆) ≤ 𝐵},

where 𝑁 (𝑢) = {𝑣 : (𝑢, 𝑣) ∈ 𝐸} denotes the neighbors of 𝑢. Follow-
ing [17, 35, 42], each node 𝑢 ∈ N is associated with a non-negative

cost 𝑐 ({𝑢}) = 1 +
√︁
𝑑 (𝑢), where 𝑑 (𝑢) represents the out-degree of

𝑢, and the costs of all nodes are normalized so that the average cost

is 2 and the cost of each element is at least 1, ensuring that the

approximation ratios of baselines are valid. In our experiments, we

use two network datasets sourced from SNAP [51]: (1) the epinions

2
The code is available at: https://anonymous.4open.science/r/LinearKnapStream/

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, 28 April - 2 May, 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) Email Network (b) Email Network (c) Email Network

(d) Epinions Network (e) Epinions Network (f) Epinions Network

(a) YouTube Network (b) YouTube Network (c) YouTube Network

3

3.4

3.8

4.2

4.6

500 1000

U
ti

li
ty

X
 1

0
4

Budget

0

5

10

15

20

500 1000

Q
u

e
ri

e
s

>
��
�

�

Budget

0

0.5

1

1.5

2

2.5

500 1000

E
le

m
e
n

ts
 i
n

 M
e
m

o
ry X
 1

0
4

Budget

2.7

3.1

3.5

3.9

500 1000

U
ti

li
ty

Budget

0

3

6

9

12

500 1000

Q
u

e
ri

e
s

Budget

0

0.5

1

1.5

2

500 1000

E
le

m
e
n

ts
 i
n

 M
e
m

o
ry

Budget

1.4

1.6

1.8

2

100 200

U
ti

li
ty

>
��
�

�

Budget

0

2

4

6

8

100 200

Q
u

e
ri

e
s

Budget

0

0.9

1.8

2.7

100 200

E
le

m
e
n

ts
 i
n

 M
e
m

o
ry

Budget

>
��
�

X
 1

0
4 �

X
 1

0
4

X
 1

0
4

>
��
�

�

Figure 2: Experimental results of revenue maximization on networks

network with 131,828 nodes and 841,372 edges; and (2) the email

network with 265,214 nodes and 420,045 edges.

Figure 1 shows the experimental results of maximum coverage

on networks. It can be observed that our OneStream algorithm

achieves almost 90% of the best utility results using only 2𝑛 or-

acle queries, which is 3.43% (resp. 3.09%) of the query count of

the super-linear time complexity algorithm DynamicMRT (resp.

SmkStream) algorithm on average. This demonstrates that our al-

gorithm significantly improves the efficiency of solving the SMKC

problem while sacrificing little utility. Moreover, our OneStream
algorithm exhibits the lowest memory consumption, occupying

only 1.72% (resp. 5.45%) of the memory used by DynamicMRT (resp.

SmkStream) algorithm on average, highlighting its exceptional

memory efficiency. Regarding ourMultiStream algorithm, it con-

sistently achieves the best utility while using significantly fewer

queries and lower memory consumption compared to the baseline

algorithms with super-linear time complexity (i.e., DynamicMRT
and SmkStream). While OneStream and MultiStream both have

linear time complexity and small space complexity, we observe

that MultiStream performs worse than OneStream on query count

and memory consumption in experiments due to the additional 𝜖

constant term in complexity.

6.2 Revenue Maximization on Networks
This application is based on the social network marketing model

proposed by [36], and is considered by many previous studies (e.g.,

[2, 3, 8, 14, 15, 18, 28, 34, 40, 47]). In this application, we are given a

network𝐺 = (N , 𝐸) where each node𝑢 ∈ N represents a user with

an associated cost 𝑐 (𝑢), and each edge (𝑢, 𝑣) ∈ 𝐸 has a weight𝑤𝑢,𝑣

denoting the influence of𝑢 on 𝑣 . Our goal is to select a subset 𝑆 ⊆ N
of seed users within a budget 𝐵 (i.e.,

∑
𝑢∈𝑆 𝑐 (𝑢) ≤ 𝐵), and pay 𝑐 (𝑢)

to each seed user 𝑢 ∈ 𝑆 for advertising products to maximize the

total revenue. The revenue function is defined as

𝑓 (𝑆) =
∑︁
𝑢∈N

√︄∑︁
𝑣∈𝑆

𝑤𝑣,𝑢 ,

which is monotone and submodular as indicated by [14, 47]. Fol-

lowing [8, 18, 28, 34], the network 𝐺 is constructed by randomly

selecting 25 communities from the top 5, 000 communities in the

YouTube social network[51]; the edge weights are randomly sam-

pled from the continuous uniform distributionU(0, 1); the cost of
any user 𝑢 ∈ N is determined by 𝑐 (𝑢) =

√︁∑
(𝑢,𝑣) ∈𝐸 𝑤𝑢,𝑣), and the

costs of all nodes are normalized so that the average cost is 2 and the

cost of each element is at least 1, ensuring that the approximation

ratios of baselines are valid.

Figure 2 shows the experimental results for revenue maximiza-

tion on networks, which further demonstrates the effectiveness of

our proposed algorithms. More specifically, our OneStream algo-

rithm achieves approximately 94% of the best utility results, while

using only 3.47% (resp. 2.80%) of the query count of the Dynam-
icMRT (resp. SmkStream) algorithm and occupying only 3.00% (resp.

6.17%) of the memory used by DynamicMRT (resp. SmkStream)

algorithm. Our MultiStream algorithm consistently achieves the

best utility while using significantly fewer oracle queries and lower

memory compared to the baseline algorithms with super-linear

time complexity (i.e., DynamicMRT and SmkStream). Again, these

results demonstrate the superiority of our algorithms in terms of

both time and memory usage.

7 Conclusion
In this paper, we study the problem of extracting a representative

subset from data streams, formulated as maximizing monotone

submodular functions subject to a knapsack constraint. Existing

streaming algorithms for this problem only achieve super-linear

time complexity depending on the budget, potentially reaching

quadratic or even higher complexities in the worst case. Moreover,

these algorithms rely on a restrictive assumption which may ren-

der their performance guarantees invalid in practical scenarios. To

address these limitations, we propose a more practical single-pass

streaming algorithm that does not depend on such an assumption,

achieving an approximation ratio of 1/8 − 𝜖 with linear complex-

ity of O(𝑛) and space complexity of O(𝑘 log 1

𝜖). Furthermore, we

propose a multi-pass algorithm achieving an approximation ratio

of 1/2 − 𝜖 , matching the best achievable approximation ratio in

streaming settings while maintaining linear time complexity and

minimum memory usage. The experiments on real-world applica-

tions related to web data mining and machine learning demonstrate

the superiority of our algorithms in terms of both effectiveness and

efficiency.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Linear-Time Algorithms for Representative
Subset Selection From Data Streams WWW ’25, 28 April - 2 May, 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Georgios Amanatidis, Federico Fusco, Philip Lazos, Stefano Leonardi, and Re-

becca Reiffenhäuser. 2020. Fast adaptive non-monotone submodular maximiza-

tion subject to a knapsack constraint. InAdvances in Neural Information Processing
Systems (NeurIPS).

[2] Georgios Amanatidis, Federico Fusco, Philip Lazos, Stefano Leonardi, and Re-

becca Reiffenhäuser. 2022. Fast adaptive non-monotone submodular maximiza-

tion subject to a knapsack constraint. Journal of Artificial Intelligence Research
(JAIR) 74 (2022), 661–690.

[3] Georgios Amanatidis, Federico Fusco, Philip Lazos, Stefano Leonardi, Al-

berto Marchetti Spaccamela, and Rebecca Reiffenhäuser. 2021. Submodular

Maximization subject to a Knapsack Constraint: Combinatorial Algorithms with

Near-optimal Adaptive Complexity. In International Conference onMachine Learn-
ing (ICML). 231–242.

[4] Magda Amiridi, Nikos Kargas, and Nicholas D Sidiropoulos. 2021. Information-

theoretic feature selection via tensor decomposition and submodularity. IEEE
Transactions on Signal Processing 69 (2021), 6195–6205.

[5] Dmitrii Avdiukhin, Slobodan Mitrović, Grigory Yaroslavtsev, and Samson Zhou.

2019. Adversarially robust submodular maximization under knapsack constraints.

In ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD). 148–156.

[6] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and An-

dreas Krause. 2014. Streaming submodular maximization: Massive data sum-

marization on the fly. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD). 671–680.

[7] Ashwinkumar Badanidiyuru and Jan Vondrák. 2014. Fast algorithms for maxi-

mizing submodular functions. In ACM-SIAM Symposium on Discrete Algorithms
(SODA). 1497–1514.

[8] Eric Balkanski, Adam Breuer, and Yaron Singer. 2018. Non-monotone submodular

maximization in exponentially fewer iterations. InAdvances in Neural Information
Processing Systems (NeurIPS). 2359–2370.

[9] Eric Balkanski, Steven DiSilvio, and Alan Kuhnle. 2024. Submodular Maximiza-

tion in Exactly 𝑛 Queries. arXiv preprint arXiv:2406.00148 (2024).
[10] Wei-Xuan Bao, Jun-Yi Hang, and Min-Ling Zhang. 2022. Submodular feature

selection for partial label learning. In ACM Knowledge Discovery and Data Mining
(SIGKDD). 26–34.

[11] Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy Schwartz. 2015. A tight

linear time (1/2)-approximation for unconstrained submodular maximization.

SIAM Journal on Computing (SICOMP) 44, 5 (2015), 1384–1402.
[12] Amit Chakrabarti and Sagar Kale. 2015. Submodular maximization meets stream-

ing: matchings, matroids, and more. Mathematical Programming 154 (2015),

225–247.

[13] Yllias Chali, Moin Tanvee, and Mir Tafseer Nayeem. 2017. Towards abstractive

multi-document summarization using submodular function-based framework,

sentence compression and merging. In International Joint Conference on Natural
Language Processing (IJCNLP). 418–424.

[14] Yixin Chen, Tonmoy Dey, and Alan Kuhnle. 2021. Best of Both Worlds: Practical

and Theoretically Optimal Submodular Maximization in Parallel. In Advances in
Neural Information Processing Systems (NeurIPS), Vol. 34.

[15] Yixin Chen and Alan Kuhnle. 2023. Approximation Algorithms for Size-

Constrained Non-Monotone Submodular Maximization in Deterministic Linear

Time. In ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD). 250–261.

[16] Shuang Cui, Kai Han, Jing Tang, and He Huang. 2023. Constrained Subset

Selection from Data Streams for Profit Maximization. In International World
Wide Web Conferences (WWW). 1822–1831.

[17] Shuang Cui, Kai Han, Shaojie Tang, Feng Li, and Jun Luo. 2024. Fairness in

Streaming Submodular Maximization Subject to a Knapsack Constraint. In ACM
Knowledge Discovery and Data Mining (SIGKDD). 514–525.

[18] Shuang Cui, Kai Han, Tianshuai Zhu, Jing Tang, Benwei Wu, and He Huang.

2021. Randomized Algorithms for Submodular Function Maximization with a

𝑘-System Constraint. In International Conference on Machine Learning (ICML).
2222–2232.

[19] Paul Dütting, Federico Fusco, Silvio Lattanzi, Ashkan Norouzi-Fard, and Morteza

Zadimoghaddam. 2022. Deletion robust submodular maximization over matroids.

In International Conference on Machine Learning (ICML). 5671–5693.
[20] Paul Dütting, Federico Fusco, Silvio Lattanzi, Ashkan Norouzi-Fard, and Morteza

Zadimoghaddam. 2023. Fully dynamic submodular maximization over matroids.

In International Conference on Machine Learning (ICML). 8821–8835.
[21] Marwa El Halabi, Federico Fusco, Ashkan Norouzi-Fard, Jakab Tardos, and Jakub

Tarnawski. 2023. Fairness in streaming submodular maximization over a matroid

constraint. In International Conference on Machine Learning (ICML). 9150–9171.
[22] Marwa El Halabi, Slobodan Mitrović, Ashkan Norouzi-Fard, Jakab Tardos, and

Jakub M Tarnawski. 2020. Fairness in streaming submodular maximization:

Algorithms and hardness. In Advances in Neural Information Processing Systems
(NeurIPS).

[23] Alina Ene and Huy L Nguyen. 2019. A Nearly-Linear Time Algorithm for Sub-

modular Maximization with a Knapsack Constraint. In International Colloquium

on Automata, Languages and Programming (ICALP), Vol. 132. 53.
[24] Alina Ene and Huy L Nguyen. 2019. Towards Nearly-linear Time Algorithms for

SubmodularMaximizationwith aMatroid Constraint. In International Colloquium
on Automata, Languages and Programming (ICALP), Vol. 132.

[25] Alina Ene, Huy L Nguyen, and Adrian Vladu. 2019. Submodular maximization

with matroid and packing constraints in parallel. In ACM Symposium on the
Theory of Computing (STOC). 90–101.

[26] Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadimoghad-

dam. 2017. Submodular optimization over sliding windows. In InternationalWorld
Wide Web Conferences (WWW). 421–430.

[27] Salman Fadaei, MohammadAmin Fazli, and MohammadAli Safari. 2011. Maxi-

mizing non-monotone submodular set functions subject to different constraints:

Combined algorithms. Operations Research Letters 39, 6 (2011), 447–451.
[28] Matthew Fahrbach, Vahab Mirrokni, and Morteza Zadimoghaddam. 2019. Non-

monotone submodular maximization with nearly optimal adaptivity and query

complexity. In International Conference on Machine Learning (ICML). 1833–1842.
[29] Moran Feldman, Christopher Harshaw, and Amin Karbasi. 2023. How do you

want your greedy: Simultaneous or repeated? Journal of Machine Learning
Research (JMLR) 24 (2023), 72–1.

[30] ML Fisher, GL Nemhauser, and LA Wolsey. 1978. An analysis of approximations

for maximizing submodular set functions—II. Mathematical Programming Study
8 (1978), 73–87.

[31] Esther Galbrun, Aristides Gionis, andNikolaj Tatti. 2014. Overlapping community

detection in labeled graphs. Data Mining and Knowledge Discovery 28 (2014),

1586–1610.

[32] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. 2010. Con-

strained non-monotone submodular maximization: Offline and secretary algo-

rithms. In Conference on Web and Internet Economics (WINE). 246–257.
[33] Kai Han, Zongmai Cao, Shuang Cui, and Benwei Wu. 2020. Deterministic

approximation for submodular maximization over a matroid in nearly linear

time. In Advances in Neural Information Processing Systems (NeurIPS).
[34] Kai Han, Shuang Cui, Tianshuai Zhu, Enpei Zhang, Benwei Wu, Zhizhuo Yin,

Tong Xu, Shaojie Tang, and He Huang. 2021. Approximation Algorithms for

Submodular Data Summarization with a Knapsack Constraint. In International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS).

[35] Chris Harshaw, Moran Feldman, Justin Ward, and Amin Karbasi. 2019. Sub-

modular maximization beyond non-negativity: Guarantees, fast algorithms, and

applications. In International Conference on Machine Learning (ICML). 2634–2643.
[36] Jason Hartline, Vahab Mirrokni, and Mukund Sundararajan. 2008. Optimal

marketing strategies over social networks. In International World Wide Web
Conferences (WWW). 189–198.

[37] Chien-Chung Huang and Naonori Kakimura. 2021. Improved streaming al-

gorithms for maximizing monotone submodular functions under a knapsack

constraint. Algorithmica 83, 3 (2021), 879–902.
[38] Chien-Chung Huang and Naonori Kakimura. 2022. Multi-pass streaming algo-

rithms for monotone submodular function maximization. Theory of Computing
Systems 66, 1 (2022), 354–394.

[39] Chien-Chung Huang, Naonori Kakimura, and Yuichi Yoshida. 2020. Streaming

algorithms for maximizing monotone submodular functions under a knapsack

constraint. Algorithmica 82, 4 (2020), 1006–1032.
[40] He Huang, Kai Han, Shuang Cui, and Jing Tang. 2023. Randomized Pricing with

Deferred Acceptance for Revenue Maximization with Submodular Objectives. In

International World Wide Web Conferences (WWW). 3530–3540.
[41] Rishabh Iyer, Ninad Khargonkar, Jeff Bilmes, and Himanshu Asnani. 2021. Gen-

eralized submodular information measures: Theoretical properties, examples,

optimization algorithms, and applications. IEEE Transactions on Information
Theory 68, 2 (2021), 752–781.

[42] Ehsan Kazemi, Shervin Minaee, Moran Feldman, and Amin Karbasi. 2021. Regu-

larized submodular maximization at scale. In International Conference on Machine
Learning (ICML). 5356–5366.

[43] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of

influence through a social network. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD). 137–146.

[44] Samir Khuller, Anna Moss, and Joseph Seffi Naor. 1999. The budgeted maximum

coverage problem. Information Processing Letters (IPL) 70, 1 (1999), 39–45.
[45] Andreas Krause, Jure Leskovec, Carlos Guestrin, Jeanne VanBriesen, and Christos

Faloutsos. 2008. Efficient sensor placement optimization for securing large water

distribution networks. Journal of Water Resources Planning and Management 134,
6 (2008), 516–526.

[46] Alan Kuhnle. 2019. Interlaced greedy algorithm for maximization of submodular

functions in nearly linear time. In Advances in Neural Information Processing
Systems (NeurIPS), Vol. 32.

[47] Alan Kuhnle. 2021. Quick streaming algorithms for maximization of mono-

tone submodular functions in linear time. In Artificial Intelligence and Statistics
(AISTATS). 1360–1368.

[48] Alex Kulesza, Ben Taskar, et al. 2012. Determinantal point processes for machine

learning. Foundations and Trends in Machine Learning 5, 2–3 (2012), 123–286.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, 28 April - 2 May, 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[49] Ariel Kulik, Hadas Shachnai, and Tami Tamir. 2013. Approximations for mono-

tone and nonmonotone submodular maximization with knapsack constraints.

Mathematics of Operations Research 38, 4 (2013), 729–739.

[50] Jon Lee, Vahab S Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. 2009.

Non-monotone submodular maximization under matroid and knapsack con-

straints. In ACM Symposium on Theory of Computing (STOC). 323–332.
[51] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. https://snap.stanford.edu/data

[52] Jingxuan Li, Lei Li, and Tao Li. 2012. Multi-document summarization via sub-

modularity. Applied Intelligence 37 (2012), 420–430.
[53] Wenxin Li, Moran Feldman, Ehsan Kazemi, and Amin Karbasi. 2022. Submodular

maximization in clean linear time. In Advances in Neural Information Processing
Systems (NeurIPS), Vol. 35. 17473–17487.

[54] Hui Lin and Jeff Bilmes. 2011. A class of submodular functions for document

summarization. InAnnual Meeting of the Association for Computational Linguistics
(ACL). 510–520.

[55] Hui Lin and Jeff Bilmes. 2012. Learning mixtures of submodular shells with

application to document summarization. In Conference on Uncertainty in Artificial
Intelligence (UAI). 479–490.

[56] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. 2016.

Fast constrained submodular maximization: Personalized data summarization.

In International Conference on Machine Learning (ICML). 1358–1367.
[57] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Von-

drák, and Andreas Krause. 2015. Lazier than lazy greedy. In AAAI Conference on
Artificial Intelligence (AAAI), Vol. 29.

[58] Sofia Maria Nikolakaki, Alina Ene, and Evimaria Terzi. 2021. An efficient frame-

work for balancing submodularity and cost. In ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (SIGKDD). 1256–1266.

[59] Canh V. Pham, Tan D. Tran, Dung T. K. Ha, and My T. Thai. 2023. Linear Query

Approximation Algorithms for Non-monotone Submodular Maximization under

Knapsack Constraint. In International Joint Conference on Artificial Intelligence
(IJCAI). 4127–4135.

[60] Barna Saha and Lise Getoor. 2009. On maximum coverage in the streaming

model & application to multi-topic blog-watch. In SIAM International Conference
on Data Mining (SDM). 697–708.

[61] Ana-Andreea Stoica, Jessy Xinyi Han, and Augustin Chaintreau. 2020. Seeding

network influence in biased networks and the benefits of diversity. In Interna-
tional World Wide Web Conferences (WWW). 2089–2098.

[62] Maxim Sviridenko. 2004. A note on maximizing a submodular set function

subject to a knapsack constraint. Operations Research Letters 32, 1 (2004), 41–43.
[63] Jing Tang, Xueyan Tang, Andrew Lim, Kai Han, Chongshou Li, and Junsong Yuan.

2021. Revisiting Modified Greedy Algorithm for Monotone Submodular Maxi-

mization with a Knapsack Constraint. Proceedings of the ACM on Measurement
and Analysis of Computing Systems (SIGMETRICS) 5, 1 (2021), 1–22.

[64] Yanhao Wang, Francesco Fabbri, and Michael Mathioudakis. 2021. Fair and

representative subset selection from data streams. In International World Wide
Web Conferences (WWW). 1340–1350.

[65] Laurence A Wolsey. 1982. Maximising real-valued submodular functions: Primal

and dual heuristics for location problems. Mathematics of Operations Research 7,

3 (1982), 410–425.

[66] Grigory Yaroslavtsev, Samson Zhou, and Dmitrii Avdiukhin. 2020. “bring your

own greedy”+ max: Near-optimal 1/2-approximations for submodular knapsack.

In International Conference on Artificial Intelligence and Statistics (AISTATS). 3263–
3274.

[67] Baosheng Yu, Meng Fang, Dacheng Tao, and Jie Yin. 2016. Submodular asymmet-

ric feature selection in cascade object detection. In AAAI Conference on Artificial
Intelligence (AAAI), Vol. 30.

[68] Guangyi Zhang, Nikolaj Tatti, and Aristides Gionis. 2022. Coresets remem-

bered and items forgotten: submodular maximization with deletions. In IEEE
International Conference on Data Mining (ICDM).

10

https://snap.stanford.edu/data

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Linear-Time Algorithms for Representative
Subset Selection From Data Streams WWW ’25, 28 April - 2 May, 2025, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A Omitted Proofs
A.1 Proof of Lemma 4.1

Proof. For any element 𝑢 ∈ ⋃𝑖𝑛
𝑡=1

𝑆𝑡 , we use S<𝑢 to denote the

state of

⋃𝑖
𝑡=𝑗 𝑆𝑡 at the moment when the element 𝑢 is considered

by Line 4 of Algorithm 1. Then we have:

𝑓 (𝑂) − 𝑓 (
𝑖𝑛⋃
𝑡=1

𝑆𝑡) ≤
∑︁

𝑢∈𝑂\⋃𝑖𝑛
𝑡=1

𝑆𝑡

𝑓 (𝑢 |
𝑖𝑛⋃
𝑡=1

𝑆𝑡)

≤
∑︁

𝑢∈𝑂\⋃𝑖𝑛
𝑡=1

𝑆𝑡

𝑓 (𝑢 | S<𝑢) <
∑︁

𝑢∈𝑂\⋃𝑖𝑛
𝑡=1

𝑆𝑡

𝑓 (S<𝑢)
𝐵

· 𝑐 (𝑢)

≤
∑︁

𝑢∈𝑂\⋃𝑖𝑛
𝑡=1

𝑆𝑡

𝑓 (⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡)
𝐵

· 𝑐 (𝑢) ≤ 𝑓 (
𝑖𝑛⋃

𝑡=𝑗𝑛

𝑆𝑡),

where the first and second inequalities are due to the submodu-

larity of 𝑓 (·); the third inequality is due to Line 4 of Algorithm 1;

the fourth inequality is due to the monotonicity of 𝑓 (·); the last
inequality is due to 𝑐 (𝑂) ≤ 𝐵. □

A.2 Proof of Lemma 4.2
Proof. For any element 𝑢 ∈ ⋃𝑖𝑛

𝑡=1
𝑆𝑡 , we use S<𝑢 to denote the

state of

⋃𝑖
𝑡=𝑗 𝑆𝑡 at the moment when the element 𝑢 was considered

by Line 4. Suppose that the elements in 𝑆𝑞 are {𝑢1, · · · , 𝑢 |𝑆𝑞 | } (listed
according to the order they are added into 𝑆𝑞), then we have

𝑓 (
𝑞⋃
𝑡=𝑗

𝑆𝑡) − 𝑓 (
𝑞−1⋃
𝑡=𝑗

𝑆𝑡) =
∑︁

𝑢𝑥 ∈𝑆𝑞
𝑓 (𝑢𝑥 |

𝑞−1⋃
𝑡=𝑗

𝑆𝑡 ∪ {𝑢1, · · · , 𝑢𝑥−1})

≥
∑︁

𝑢𝑥 ∈𝑆𝑞
𝑓 (𝑢𝑥 | S<𝑢𝑥) ≥

∑︁
𝑢𝑥 ∈𝑆𝑞

𝑓 (S<𝑢𝑥)
𝐵

· 𝑐 (𝑢𝑥)

≥
𝑓 (⋃𝑞−1

𝑡=𝑗
𝑆𝑡)

𝐵

∑︁
𝑢𝑥 ∈𝑆𝑞

𝑐 (𝑢𝑥) ≥ 𝑓 (
𝑞−1⋃
𝑡=𝑗

𝑆𝑡),

where the first inequality is due to submodularity and the fact that⋃𝑞−1
𝑡=𝑗

𝑆𝑡 ∪ {𝑢1, · · · , 𝑢𝑥−1} ⊆ S<𝑢𝑥 ; the second inequality is due to

Line 4 of Alg. 1; the third inequality is due to the monotonicity. □

A.3 Proof of Lemma 4.3
Proof. If the deletion in Line 8 is not executed, the lemma

follows directly from 𝑇𝑖 = 𝑇𝑖−1 ∪ 𝑆𝑖 and Lemma 4.2

Now, consider the case where the deletion in Line 8 is executed.

In this case, we have 𝑇𝑖 = 𝑇𝑖−1 \𝑇𝑖−ℏ ∪ 𝑆𝑖 . Thus, we can get

𝑓 (𝑇𝑖) = 𝑓 (𝑇𝑖−1 \𝑇𝑖−ℏ ∪ 𝑆𝑖) ≥ 𝑓 (𝑇𝑖−1 ∪ 𝑆𝑖) − 𝑓 (𝑇𝑖−ℏ)

≥ 2 · 𝑓 (𝑇𝑖−1) −
𝑓 (𝑇𝑖−1)
2
ℏ−1 = (2 − 1

2
ℏ−1) 𝑓 (𝑇𝑖−1) ≥ 𝑓 (𝑇𝑖−1),

where the first inequality is due to the submodularity of 𝑓 (·); the
second inequality is due to Lemma 4.2 and the fact that there are

ℏ − 1 sets are added into 𝑇𝑖−1 without any deletion from 𝑇𝑖−ℏ to

𝑇𝑖−1; the last inequality is due to the fact that ℏ ≥ 1.

Combine all the above and finish the proof. □

A.4 Proof of Lemma 4.4
Proof. By the submodularity of 𝑓 (·), we have

𝑓 (
𝑖𝑛⋃
𝑡=1

𝑆𝑡) ≤ 𝑓 (
𝑗𝑛−1⋃
𝑡=1

𝑆𝑡) + 𝑓 (
𝑖𝑛⋃

𝑡=𝑗𝑛

𝑆𝑡) (1)

Note that

⋃𝑗𝑛−1
𝑡=1

𝑆𝑡 can be written as multiple unions of 𝑆𝑡 (𝑡 ∈
[𝑗𝑛 − 1]), where each union consists of ℏ disjoint 𝑆𝑡 that are deleted

by Line 8 of Algorithm 1. Thus, we can prove this lemma by showing

that the loss in utility caused by these deleted sets can be bounded

by the final cumulative set

⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 .

Suppose that a total of𝑀 deletions occur during the algorithm’s

execution; denote each union of deleted sets as 𝐷𝑡 (𝑡 ∈ [𝑀]) and
arrange them in such a way that 𝑡1 < 𝑡2 implies 𝐷𝑡1 is deleted after

𝐷𝑡2 (in reverse order of deletion). According to the above definition,

we have

⋃𝑗𝑛−1
𝑡=1

𝑆𝑡 = {𝐷𝑡 : 𝑡 ∈ [𝑀]}. It can be observed that each

𝐷𝑡 has previously appeared as a cumulative set

⋃𝑖
𝑡 ′=𝑗 𝑆𝑡 = 𝑇𝑖 (𝑖, 𝑗 ∈

[𝑖𝑛]), as illustrated below:

Observation 1. For any 𝐷𝑡 (𝑡 ∈ [𝑀]), there exists a𝑇𝑖 such that
𝐷𝑡 = 𝑇𝑖 , where 𝑖 = (𝑀 − 𝑡 + 1)ℏ and 𝑇𝑖 is defined in Lemma 4.3.

Proof. According to Line 6-8 of Algorithm 1, the first deletion

occurs in the iteration where 𝑇
2ℏ =

⋃
2ℏ
𝑡=1 𝑆𝑡 \

⋃ℏ
𝑡=1 𝑆𝑡 =

⋃
2ℏ
𝑡=ℏ+1 𝑆𝑡

is generated, with the deleted set being 𝐷𝑀 = 𝑇ℏ =
⋃ℏ

𝑡=1 𝑆𝑡 . The

second deletion occurs in the iteration where 𝑇
3ℏ =

⋃
3ℏ
𝑡=ℏ+1 𝑆𝑡 \⋃

2ℏ
𝑡=ℏ+1 𝑆𝑡 =

⋃
3ℏ
𝑡=2ℏ+1 𝑆𝑡 is generated, with the deleted set being

𝐷𝑀−1 = 𝑇
2ℏ =

⋃
2ℏ
𝑡=ℏ+1 𝑆𝑡 . Following this rule, we have 𝐷𝑡 =

𝑇(𝑀−𝑡+1)ℏ, which completes the proof. □

Combining this observation with Lemma 4.3, we can get

𝑓 (𝐷𝑡) = 𝑓 (𝑇(𝑀−𝑡+1)ℏ) ≥ 2
ℏ−1 · 𝑓 (𝑇(𝑀−𝑡)ℏ) = 2

ℏ−1 · 𝑓 (𝐷𝑡+1)
Observe that 𝐷1 = 𝑇𝑀 ·ℏ is the last union of sets to be deleted from

memory by Algorithm 1, and this deletion occurs when 𝑇𝑀 ·ℏ+ℏ is
generated. Therefore, by Lemma 4.3 and the monotonicity of 𝑓 (·),
we can conclude that

𝑓 (
𝑖𝑛⋃

𝑡=𝑗𝑛

𝑆𝑡) ≥ 𝑓 (𝑇𝑀 ·ℏ+ℏ) ≥ 2
ℏ−1 · 𝑓 (𝑇𝑀 ·ℏ) = 2

ℏ−1 · 𝑓 (𝐷1) .

Using the above two inequalities, we can get 𝑓 (⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡) ≥
2
𝑡 (ℏ−1) · 𝑓 (𝐷𝑡 ′) for any 𝑡 ′ ∈ [𝑀]. Combining this result with Eqn.

(1), we conclude that

𝑓 (
𝑖𝑛⋃
𝑡=1

𝑆𝑡) ≤ 𝑓 (
⋃

𝑡 ∈[𝑀]
𝐷𝑡) + 𝑓 (

𝑖𝑛⋃
𝑡=𝑗𝑛

𝑆𝑡)

≤
𝑀∑︁
𝑡=1

𝑓 (𝐷𝑡) + 𝑓 (
𝑖𝑛⋃

𝑡=𝑗𝑛

𝑆𝑡) ≤
𝑀∑︁
𝑡=0

2
−𝑡 (ℏ−1) · 𝑓 (

𝑖𝑛⋃
𝑡=𝑗𝑛

𝑆𝑡)

≤ 𝑓 (
𝑖𝑛⋃

𝑡=𝑗𝑛

𝑆𝑡)
∞∑︁
𝑡=0

2
−𝑡 (ℏ−1) = 𝑓 (

𝑖𝑛⋃
𝑡=𝑗𝑛

𝑆𝑡)
1

1 − 21−ℏ
,

where the last inequality follows from the sum of a geometric series.

The lemma then follows by rearranging the inequality. □

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’25, 28 April - 2 May, 2025, Sydney, Australia Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

A.5 Proof of Lemma 4.5
Proof. If 𝑐 (⋃𝑖𝑛

𝑡=𝑗𝑛
𝑆𝑡) ≤ 𝐵, then

⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 = 𝑄∗ and the lemma

trivially holds. Therefore, we consider the case that 𝑐 (⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡) > 𝐵

in the following.

For any element 𝑢 ∈ ⋃𝑖𝑛
𝑡=1

𝑆𝑡 , we use S<𝑢 to denote the state

of

⋃𝑖
𝑡=𝑗 𝑆𝑡 at the moment when the element 𝑢 is considered by

Line 4 of Algorithm 1. Suppose that the elements in 𝑆 (𝑧 + 1) are
{𝑢1, · · · , 𝑢 |𝑆 (𝑧+1) | } (listed according to the order which they arrive),
then we have

𝑓 (
𝑖𝑛⋃

𝑡=𝑗𝑛

𝑆𝑡) − 𝑓 (
𝑖𝑛⋃

𝑡=𝑗𝑛

𝑆𝑡 \ 𝑆 (𝑧 + 1))

=
∑︁

𝑢𝑥 ∈𝑆 (𝑧+1)
𝑓 (𝑢𝑥 |

𝑖𝑛⋃
𝑡=𝑗𝑛

𝑆𝑡 \ 𝑆 (𝑧 + 1) ∪ {𝑢1, · · · , 𝑢𝑥−1})

≥
∑︁

𝑢𝑥 ∈𝑆 (𝑧+1)
𝑓 (𝑢𝑥 | S<𝑢𝑥) ≥

∑︁
𝑢𝑥 ∈𝑆 (𝑧+1)

𝑓 (S<𝑢𝑥)
𝐵

· 𝑐 (𝑢𝑥)

≥
∑︁

𝑢𝑥 ∈𝑆 (𝑧+1)

𝑓 (⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 \ 𝑆 (𝑧 + 1))
𝐵

· 𝑐 (𝑢𝑥)

≥ 𝑓 (
𝑖𝑛⋃

𝑡=𝑗𝑛

𝑆𝑡 \ 𝑆 (𝑧 + 1)),

where the first inequality is due to submodularity and the fact that⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡 \𝑆 (𝑧 + 1) ∪ {𝑢1, · · · , 𝑢𝑥−1} ⊆ S<𝑢𝑥 ; the second inequality
is due to Line 4 of Algorithm 1; the third inequality is due to the

monotonicity of 𝑓 (·); the last inequality is due to the definition of

𝑆 (𝑧 + 1) in Line 14.

Rearranging the inequality above, we obtain 𝑓 (⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡) ≥ 2 ·
𝑓 (⋃𝑖𝑛

𝑡=𝑗𝑛
𝑆𝑡 \𝑆 (𝑧+1)) ≥ 2

(
𝑓 (⋃𝑖𝑛

𝑡=𝑗𝑛
𝑆𝑡) − 𝑓 (𝑆 (𝑧+1))

)
, which means

that 2 · 𝑓 (𝑆 (𝑧 + 1)) ≥ 𝑓 (⋃𝑖𝑛
𝑡=𝑗𝑛

𝑆𝑡). We denote by 𝑒′ the element

first added into 𝑆 (𝑧 + 1). Applying the submodularity, we can get

2 · 𝑓 (𝑄∗) ≥ 𝑓 (𝑆 (𝑧)) + 𝑓 (𝑒∗) ≥ 𝑓 (𝑆 (𝑧)) + 𝑓 (𝑒′) ≥ 𝑓 (𝑆 (𝑧 + 1)),
where the second inequality is due to Line 10 of Algorithm 1; the

last inequality is due to the fact that 𝑆 (𝑧 +1) \𝑒′ = 𝑆 (𝑧). Combining

the last two inequalities completes the proof. □

A.6 Proof of Lemma 5.2
Proof. By Lemma 4.1, Lemma 4.4 and the fact that 𝑀1 is a

feasible solution, we must have

(1 − 𝜖) 𝑓 (𝑀1)
2𝐵

≤ (1 − 𝜖) 𝑓 (𝑂)
2𝐵

≤ 𝜌∗ ≤ 𝑓 (𝑂)
2𝐵
≤
(1 + 1

2
ℏ−1−1) 𝑓 (𝑀2)
𝜖𝐵

.

From this inequality and the definition of 𝑃 in Line 1, Algorithm 2

must generate the solution 𝐴𝜌∗ in Line 2. We divide our following

analysis into two cases whether all elements of 𝑂 \ {𝑜𝑚} can be

added to 𝐴𝜌∗ without violating the knapsack constraint when the

algorithm terminates.

• 𝑐 (𝐴𝜌∗) > (1 − 𝜖)𝐵 :

In this case, by Line 4-7 of Algorithm 2, we must have:

𝑓 (𝐴𝜌∗) ≥ 𝜌∗ · 𝑐 (𝐴𝜌∗) > (1 − 𝜖)𝐵
(1 − 𝜖) 𝑓 (𝑂)

2𝐵
≥ (1/2 − 𝜖) 𝑓 (𝑂) .

• 𝑐 (𝐴𝜌∗) ≤ (1 − 𝜖)𝐵 :

In this case, we can conclude that any𝑢 ∈ 𝑂 \ (𝐴𝜌∗ ∪{𝑜𝑚}) can
be added into 𝐴𝜌∗ without violating the knapsack constraint.

Thus, the reason it is not added is that its cost-effectiveness is

smaller than the threshold 𝜌∗. So we have

𝑓 (𝑂 \ {𝑜𝑚}) − 𝑓 (𝐴𝜌∗) ≤
∑︁

𝑢∈𝑂\(𝐴𝜌∗∪{𝑜𝑚 })
𝑓 (𝑢 | 𝐴𝜌∗)

≤
∑︁

𝑢∈𝑂\(𝐴𝜌∗∪{𝑜𝑚 })
𝜌∗ · 𝑐 (𝑢) ≤ 𝑓 (𝑂)

2𝐵
𝜖𝐵 ≤ 𝜖 𝑓 (𝑂)/2, (2)

where the first inequality is due to the submodularity of 𝑓 (·);
the second inequality is due to Line 6 of Algorithm 2. Recall

our assumption that 𝑓 ({𝑜𝑚}) < 𝑓 (𝑂)/2, which implies 𝑓 (𝑂 \
{𝑜𝑚}) ≥ 1/2·𝑓 (𝑂) due to the submodularity of 𝑓 (·). Combining

this observation with Eqn. (2) completes the proof.

□

A.7 Proof of Lemma 5.3
Proof. By Lemma 4.1, Lemma 4.4 and the fact that 𝑀1 is a

feasible solution, we must have

(1 − 𝜖) 𝑓 (𝑀)
2𝐵

≤ (1 − 𝜖) 𝑓 (𝑂)
2(𝐵 − 𝑐 (𝑜𝑚))

≤ 𝜌∗

≤ 𝑓 (𝑂)
2(𝐵 − 𝑐 (𝑜𝑚))

≤
(1 + 1

2
ℏ−1−1) 𝑓 (𝑀2)
𝜖𝐵

.

From this inequality and the definition of 𝑃 in Line 1, Algorithm 2

must generate the solution 𝐴𝜌∗ in Line 2. We divide our following

analysis into two cases based on whether all elements of 𝑂 \ {𝑜𝑚}
can be added into 𝐴𝜌∗ without violating the knapsack constraint

when the algorithm ends (i.e., whether 𝑐 (𝐴𝜌∗) exceeds 𝐵 − 𝑐 (𝑜𝑚)
or not).

• 𝑐 (𝐴𝜌∗) > 𝐵 − 𝑐 (𝑜𝑚) :
In this case, by Line 4-7 of Algorithm 2, we must have:

𝑓 (𝐴𝜌∗) ≥ 𝜌∗ · 𝑐 (𝐴𝜌∗) > 𝐵 − 𝑐 (𝑜𝑚)
(1 − 𝜖) 𝑓 (𝑂)
2(𝐵 − 𝑐 (𝑜𝑚))

≥ (1/2 − 𝜖) 𝑓 (𝑂).

• 𝑐 (𝐴𝜌∗) ≤ 𝐵 − 𝑐 (𝑜𝑚) :
In this case, we can conclude that any 𝑢 ∈ 𝑂 \𝐴𝜌∗ can be added

into 𝐴𝜌∗ without violating the knapsack constraint. Thus, the

reason it is not added is that its cost-effectiveness is smaller

than the threshold 𝜌∗. So we have

𝑓 (𝑂) − 𝑓 (𝐴𝜌∗ ∪ {𝑜𝑚}) ≤
∑︁

𝑢∈𝑂\(𝐴𝜌∗∪{𝑜𝑚 })
𝑓 (𝑢 | 𝐴𝜌∗)

≤
∑︁

𝑢∈𝑂\(𝐴𝜌∗∪{𝑜𝑚 })
𝜌∗ · 𝑐 (𝑢)

≤ 𝑓 (𝑂)
2(𝐵 − 𝑐 (𝑜𝑚))

(𝐵 − 𝑐 (𝑜𝑚)) = 𝑓 (𝑂)/2,

where the first inequality is due to the submodularity of 𝑓 (·);
the second inequality is due to Line 6 of Algorithm 2. Combining

all the above then the lemma follows.

□

12

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Challenges and Techniques

	2 Related Work
	2.1 Algorithms for Monotone Submodular Maximization Under a Knapsack Constraint
	2.2 Linear-Time Algorithms for Streaming Submodular Maximization

	3 Problem Statement
	4 The Single-Pass Streaming Algorithm
	4.1 Algorithm Design
	4.2 Theoretical Analysis

	5 The Multi-Pass Streaming Algorithm
	5.1 Algorithm Design
	5.2 Theoretical Analysis

	6 Performance Evaluation
	6.1 Maximum Coverage on Networks
	6.2 Revenue Maximization on Networks

	7 Conclusion
	References
	A Omitted Proofs
	A.1 Proof of Lemma 4.1
	A.2 Proof of Lemma 4.2
	A.3 Proof of Lemma 4.3
	A.4 Proof of Lemma 4.4
	A.5 Proof of Lemma 4.5
	A.6 Proof of Lemma 5.2
	A.7 Proof of Lemma 5.3

