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Abstract

We tackle the problem of novel class discovery and localization (NCDL). In
this setting, we assume a source dataset with supervision for only some object
classes. Instances of other classes need to be discovered, classified, and localized
automatically based on visual similarity without any human supervision. To tackle
NCDL, we propose a two-stage object detection network Region-based NCDL
(RNCDL) that uses a region proposal network to localize regions of interest (Rols).
We then train our network to learn to classify each Rol, either as one of the known
classes, seen in the source dataset, or one of the novel classes, with a long-tail
distribution constraint on the class assignments, reflecting the natural frequency of
classes in the real world. By training our detection network with this objective in
an end-to-end manner, it learns to classify all region proposals for a large variety
of classes, including those not part of the labeled object class vocabulary. Our
experiments conducted using COCO and LVIS datasets reveal that our method
is significantly more effective than multi-stage pipelines that rely on traditional
clustering algorithms. Furthermore, we demonstrate the generality of our approach
by applying our method to a large-scale Visual Genome dataset, where our network
successfully learns to detect various semantic classes without direct supervision.
Our code is available athttps://github.com/v1fom/RNCDL.

1 Introduction

We tackle novel class discovery and localization in unlabeled datasets, a long-standing problem
in computer vision [55 59} 41, 142, [54]]. As we are approaching the limits of well-understood and
successful supervised training of object detectors [22, 21} 53] 27]] and labeling novel and rare classes
that appear in the long tail of object class distribution is becoming prohibitively expensive [24], we
expect joint novel class discovery and localization to become increasingly more important.

Object class discovery in image collections is a difficult problem, as there are, in general, many
possible equally valid attributes (e.g., object color or orientation) for grouping of visual patterns.
As shown in [29} 30], novel class discovery (NCD) can be well-posed and tackled in a data-driven
manner by injecting prior knowledge on how we wish to group semantic classes using some degree
of supervision. However, existing NCD methods [29} 30} 25| 26} 72}, (7, |73/ (741 [19]] all assume curated
datasets, where objects of interest are pre-cropped and semantic classes are fairly balanced. By
contrast, in this paper, we tackle joint novel class discovery and localization (NCDL), a task of
learning to discover and detect objects from raw, unlabeled, and uncurated data. This is a significantly
more challenging and realistic problem setting, as images always contain a mixture of labeled and
unlabeled object classes, and we need to localize and categorize them.
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Figure 1: Novel class discovery and localization. Given labeled images along with annotations for
known, frequently observed semantic classes and unlabeled images that may contain instances of
novel classes, our network learns to localize and recognize common semantic classes and categorize
novel classes, for which supervision in the form of labeled instances is not available.

We re-purpose COCO and LVIS datasets to study this problem. We use 50% of COCO
images together with COCO class vocabulary and labels for supervised model training. We treat the
remaining 50% of images as unlabelled image collection. We use these images to learn to detect
remaining object classes for which supervision is not given. With this setting, we mimic real-world
scenarios where no supervision is given for the target domain.

We train our two-stage [53] object detector Region-based NCDL (RNCDL) in an end-to-end
manner such that we can (i) correctly detect (i.e., localize and categorize) labeled objects, and, in
parallel, (ii) detect unlabeled objects by learning feature representations suitable for categorization
of objects that would otherwise be classified as the background class. We start with supervised
training on the labeled source domain, followed by self-supervised training on the target (unlabeled)
domain. Finally, we transfer knowledge from the source to the target domain by retaining weights
for class-agnostic modules, such as RPN, bounding box regression, and instance segmentation
heads. For classification, we add to the primary known classification head a new, secondary head for
categorization of regions that do not correspond to these a-priori known semantic classes. We train
both heads jointly with an objective to categorize every region proposal consistently under multiple
transformations and a constraint that the marginal distribution of class assignments should follow
a long-tailed distribution. Such a non-uniform classification prior incentivizes the network to learn
features that capture the diversity of objects and prevents the network from being biased towards the
labeled, known semantic classes.

Our end-to-end trainable RNCDL network categorizes all regions of interest in a single network
forward pass and does not require running clustering algorithms during the inference. Moreover, it
significantly outperforms prior art [68] that learns object representations using contrastive learning
followed by k-means clustering. More importantly, with this work, we lay the foundations for an
exciting new line of research beyond well-established supervised learning for object detection.

In summary, this paper makes the following contributions: (i) we study the problem of novel class
discovery and localization in-the-wild using standard object detection datasets that do not pre-localize
regions of interest manually or assume objects are roughly centered, i.e., exhibit a strong photographer
bias. (ii) we propose a simple yet effective and scalable method that can be trained end-to-end on the
unlabeled domain. First, our network is bootstrapped using a labeled dataset to learn features suitable
for categorizing future instances. Then, we learn feature representations suitable for categorization
for arbitrary objects using the self-supervised objective. Finally, (iii), we show that our method can
discover and detect novel class instances and outperform prior work, demonstrating the generalization
to datasets beyond COCO.

2 Related Work

Object discovery in image and video collections. The discovery of semantic classes that appear in
the unlabeled image or video collections is a long-standing research problem [60]. Early methods



employ multiple bottom-up segmentation of images [55}59]] to discover commonly occurring patterns
using topic modeling, e.g., Dirichlet allocation [6].

Method by [41] relies on saliency, while [42]] incorporates semantic knowledge about certain semantic
classes for which supervision is available. These methods are evaluated on smaller datasets [23. 58
17]] that contain one or a handful of well-delineated objects. Rubinstein et al. [54] tackles object
discovery methods in nosy internet photo collections. Beyond images, Kwak et al. [40] tackle the
discovery of objects in YouTube videos that usually contain a single object exhibiting dominant
motion. They build on a two-stage approach: (i) identify the most salient region proposals in terms
of appearance and motion, and (ii) co-segment consistently appearing objects across video clips.
Object discovery in videos, recorded from a moving platform, was tackled in [49} 50] by first mining
video-object tracks by associating region proposal network (RPN) [53] based proposals across time,
followed by clustering of video proposals based on features, extracted from a pre-trained network.
Recent work on open-set panoptic segmentation [32] similarly groups object proposals based on
features extracted from a pre-trained network to pseudo-label commonly-occurring objects. The
method by [68] follows the general approach of clustering RPN proposals; however, instead of
relying on pre-trained CNN features, this approach learns representations suitable for clustering using
self-supervised objective, trained via contrastive learning.

While most of the foregoing works focus on saliency criteria to significantly narrow down the number
of region proposals, [62] 63] resort to combinatorial optimization that can cope with a large set of
object proposals to discover objects that frequently appear in image datasets. Furthermore, it has
been shown [64] that this approach can be scaled to large image collections, e.g., Openlmages [39].

Novel class discovery. Novel class discovery (NCD) methods assume labeled data for some semantic
classes is given. This data can be used as a guide to learn a notion of similarity and invariances
to certain features that should be ignored for the grouping (such as object color and orientation).
Unlabeled images are assumed to contain novel class instances only. Hsu ez al. |29} 30] propose a
framework that injects prior knowledge on how we wish to group semantic classes from supervised
learning on labeled images to the unlabeled domain via learnable similarity function. The work of
Han et al. [25] builds on deep clustering [[71] and suggests an approach for automatically discovering
the number of novel classes. Han et al. [26] build on the pairwise similarity of image features [12]
and propose leveraging self-supervised pretraining along with freezing the backbone to reduce bias
towards the known classes. Follow-up works [[72| 134} [74} [73]] further boost the performance by
leveraging self-supervised learning and regularization techniques. UNO [19] proposes a simple
method based on SwAV [[L1]] that bootstraps signal for novel class training using pseudo-labels
generated under equipartitioning constraints. ORCA [7]] extends the NCD problem setting and
assumes that we are given images containing instances of novel and known objects at inference time.
Motivated by [61}112}165]], they leverage self-supervised initialization of backbone, supervised loss,
and unsupervised loss based on pairwise pseudo-labels, and novel dynamic softmax margin [[65]]
to alleviate bias of the known classes. By contrast to our work, the aforementioned NCD methods
investigate the problem in the image classification setting, assuming objects of interest are localized
(pre-cropped) and operate in the absence of outliers (e.g., images containing no objects).

Related and complementary research directions. Methods for generic [45] or large vocabulary
object detection [24] focus on detecting/segmenting a large set of a-priori known semantic classes,
often by utilizing multiple datasets and (possibly weak) supervision [[75} 152, 31]]. A special case is
zero-shot learning [70] and detection [3} 48 [51]], where (mostly weak) supervision for unseen classes
comes in the form of attributes, class names, latent features, or other forms of auxiliary data commonly
used to learn a joint multi-modal embedding space. Few-shot learning methods [36} 167} 18} 8] learn
from one or a few data samples per class. Methods by [I18| 8] employ a secondary classification
head that is trained using few-shot supervision and distillation [[18]] or margin loss [8]]. In contrast to
zero-shot, few-shot, and large-vocabulary detection, we assume no supervision and prior knowledge
for object classes that appear in the tail.

Methods for open-set recognition 56} 157, 33} |5] and detection [48],[16] focus on the calibration of
per-class uncertainties to minimize the confusion between known and possibly unknown classes.
As defined by [4}46], open-world recognition methods must explicitly recognize unknown object
instances that were not observed as labeled samples during the model training and must continually
update object detectors to recognize these unknown instances. Recent work on open-world detec-
tion [35]] focuses on the continual learning aspect of the task. For the evaluation, labels for novel
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Figure 2: A high-level overview of our network. (fop) During the supervised training phase, we
train our backbone and RPN networks using labeled data, together with classification head and a
class agnostic localization head. During the discovery phase, we freeze all the layers of the network
apart from classification head and attach and train a novel classification head using unlabeled data.
During the inference (bottom), we perform a standard R-CNN pass, using classification heads of
both known and novel categories to predict a class assignment for each proposal. This can be either
one of K classes, that were presented a labeled samples during the model training, or any novel
object class that appears in the training data.

classes are fully provided (those are the held-out classes). Our work is orthogonal and tackles the
“missing bit” of the open-world detection pipeline: semantic grouping of novel objects that can appear
in the training data. Clusters of discovered novel classes could be verified by human annotators and
used to update detection models continually, as proposed by [4].

3 Novel Class Discovery and Localization

We first detail novel class discovery and localization (NCDL), the task of learning to discover
and detect objects from unlabeled and uncurated data. We assume given a source (labeled) image
dataset D* for known object classes C* (|C*| = K), that provides both class and box level objects
supervision: D* = {(I,{(b,c)})}, where I € R"*w*3 b € R* and ¢ € C*. In addition, we use
one or more target (unlabeled) datasets D™ = {I} that may contain instances of both previously seen
and novel object classes C¥ U C™ (|C"| = N, N > K) that we need to learn to detect in the absence
of any labels. For an arbitrary image I from the source or target domain, NCDL methods should
detect all object instances present in the image: {(b’, ¢)}, i.e., localize them and categorize them.
For example, an instance of a known class, e.g., car, needs to be detected as the car class, while a
novel class instance with ¢/ € C™ needs to be assigned to one of the unknown, novel classes (e.g.,
unknown_1, unknown_2, etc.).

As this paper’s main contribution, we propose Region-based NCDL (RNCDL), an end-to-end trainable
detection and discovery network that learns to localize and categorize objects, including those for
which explicit supervision is not given. We base our method on a two-stage Faster or Mask R-
CNN [53L 271, trained in a supervised manner on a dataset that contains labels for some semantic
classes. Such detectors can already reliably localize and classify known objects and are naturally
suitable for the NCDL task, as their region proposal network (RPN) is trained in a class-agnostic
manner to propose regions of interest (Rols) that likely contain objects. Given object-centric feature
representation for each localized Rol, one natural approach for discovering (categorizing) novel
classes would be to cluster such regions in feature space using, e.g., k-means, c.f., [49} 32, |68]].
Feature representations learned via supervised R-CNN training are suitable for localizing regions
that likely contain objects and for classifying them as one of the known classes. However, features



representing Rols that do not contain labeled class objects are effectively trained to be collapsed
into a single background class and, therefore, not discriminative enough for robust categorization of
novel instances. Furthermore, such an approach would have a strong bias toward classifying novel
instances as one of the labeled classes.

3.1 Method Overview

In the following, we detail our RNCDL, which learns to categorize all region proposals jointly on
both (labeled) source and (unlabeled) target datasets in an end-to-end manner. In a nutshell, we
first train class-agnostic modules of our detector on the source domain (Fig.[ZA, top), i.e., RPN,
bounding box regression head, (optionally) instance segmentation head, and a classifier for known
classes. We proceed with self-supervised training (Fig.[2JA, bottom) on the target domain to learn to
additionally categorize instances of unknown classes. To this end, we add a secondary classification
head (to the primary classification head, trained to categorize known classes) and train both jointly,
with an objective to categorize every region proposal consistently under multiple transformations and
a constraint that the marginal distribution of class assignments follows a long-tailed distribution.

Supervised training on the source domain. We begin with a self-supervised backbone pre-
training [28]] on ImageNet [[15] to initialize the R-CNN backbone network. We then train the object
detector on the source (labeled) domain using supervision for objects of known C* classes, such as 80
COCO classes (Fig.[2A, top). We use the labeled data to train the shared feature extractor (backbone)
together with a class-agnostic region proposal network (RPN), class-agnostic box regression head,
and a classification head for the categorization of C* classes. Specifically, we train RPN to predict a
set of class-agnostic proposals { (b, 0)}, for each image, where b € R* are predicted coordinates and
o € R s the objectness score. We then use RolAlign [27] to crop Rol features from the backbone and

feed them to an MLP to obtain box-head features f € R that we pass to the additional network heads
to obtain the final predictions. We train a class-agnostic bounding box regression head to refine box

location for each Rol b = h*® (b, f ), and a classification box head to categorize each Rol as one of

the K classes or the background class: ¢é = h*(f) = W*f, where ¢ € RE+! and WF € RE+H)XF,
We train our network using the standard R-CNN loss [53] Ly, = LrpN + Lyox + Leis, that consists
of RPN classification Lrp loss, box regression loss Ly, and second-stage classification loss L.
We discuss all changes to Detectron2 Faster R-CNN implementation, as needed for the NCDL task,
in Sec. ?? in the appendix.

Discovery on the target domain. For the self-supervised (discovery) training phase on the target
domain, we first modify the primary (known) classification head by removing the background class

from its weight matrix such that Wk € RE*F Then, we attach a secondary (novel) classification

head h™ on top of Rol box features f (Fig.). This head consists of an MLP and a linear classification
layer that we detail in Sec.[3.2]

In this phase we freeze all layers except the classification heads. We train both classification
heads jointly using a self-supervised classification loss L (detailed in Sec.[3.3)) and supervised
classification loss L.js: Lgise = Lss + « - Lejs where « is the supervised loss scale coefficient. We
show in our ablations (Sec.[4.2)) that keeping the downscaled (v < 1) supervised classification loss in
the loop effectively alleviates forgetting the weights for the known classes, while large @ may induce
an unwanted bias towards classifying Rols as known classes.

Both classification losses are effectively cross-entropy losses. L is trained using provided labels,
while L, is trained using pseudo-labels generated online for the current batch of proposals. We
detail online pseudo-label generation in Sec.[3.3] In a nutshell, this loss encourages the network to
categorize every region proposal consistently under multiple transformations and, importantly, under
a constraint that the marginal distribution of predicted class assignments for the last batches follows a
prior long-tailed distribution. We compute the supervised loss only for annotation-matched region
proposals. With such a joint training objective, our network is encouraged to learn to distinguish
a large variety of classes present in the regions sampled by RPN while retaining the capability to
classify known objects.

3.2 Secondary Classification Head

As the box features f are kept frozen during the discovery phase, we use several non-linear projection
layers in the secondary classification head: f* = ¢g™(f), where ¢” is a multi-layer perceptron with



ReLU activations. With this transformation, we learn to disentangle features for distinct novel

classes without affecting the Rol box features f. On top of the projected features 7, we employ
a cosine classiﬁcation layer, shown to be effective in the context of few-shot learning [20, 13} |66]:

R
N
novel classes (the parameter N for the secondary head) empirically (see Sec.[4.2).

where 1" € R¥ are the predicted novel-class logits. We determine the number of

3.3 Self-Supervision via Online Constrained Clustering

For self-supervised learning, we perform pseudo-labeling via constrained clustering during online
model training to assign a soft pseudo-label to each Rol (RPN proposal). We generate pseudo-labels
q € RWHEK)XEB for Rols in all input images (labeled and unlabeled, D™V U DX) that can span all
classes, both known and novel. The parameter B denotes the batch size. We use these pseudo-labels
q as a supervisory signal to compute cross-entropy loss L to train both classification heads.

For pseudo-label generation one possibility would be to use standard clustering methods (e.g.,
k-means [47]), however, such offline clustering would make training slow, and such methods
were shown to produce unstable results in domain of image classification [9, [10]. Instead, we
follow recent developments in the field of self-supervised representation learning [[11} 2} [1]] and
minimize a clustering energy function online during the mode training (i.e., cross-entropy loss):

E(p,q) = % Zf;l Z;VJ“K q(y|I;) log p(y|I;), where q are class labels (i.e., pseudo-labels), and

p = softmax([1¥,1"]) € RINFK)XEB are predicted class-probabilities. Note that both labels q and
probabilities p are subject to optimization. Similar to [2]], we employ an alternating algorithm. First,
we use a constrained clustering method to generate pseudo-labels q based on current network weights.
Then, we update weights by optimizing p using fixed q, and iterate.

To generate class pseudo-labels, we first choose a target clusters’ marginal probability distribution
(i.e., a prior distribution). Empirically, we obtained best results using a non-symmetrical log-normal
distribution. This distribution is right-skewed, suitable for modeling the long-tail. We then generate
such soft pseudo-labels g that (i) closely match the chosen marginals and (i) minimize E(p, q) for
the given p. In [2,[1]], it is shown that this can be posed as a constrained optimization problem and
solved as an optimal transport problem using the fast online Sinkhorn-Knopp algorithm [14]. Having
obtained the pseudo-labels q, we fix them, compute the loss L, = E(P, q), and update weights for
the classification heads using the back-propagation algorithm.

Memory module. To generate good-quality pseudo-labels for each mini-batch, we need a diverse
set of samples that capture a wide variety of classes. A small set of features per mini-batch could
lead to noisy cluster assignments. As we operate in scenarios with more than a thousand classes
to discover, we introduce a memory module (c.f., [28} [11]]) to store Rol box features from the last
batches and ensure a diverse set of samples when computing clustering assignments. As in [28 [11]],
we design the memory module as a queue, where at the end of each iteration, we replace the oldest
set of stored features with the features from the current batch. During pseudo-labeling, we pass the
extended set of features to the Sinkhorn algorithm. Specifically, after extracting current-batch Rol
features, we concatenate them with the features stored in the memory module M, compute their

logits, and as an input to the Sinkhorn algorithm use: 1 = [1¥,17] = [h¥([f, M]), h™([f, M])], where
M € RMs=XF and My, is the number of features stored in the memory. Such a modified procedure
generates B + M, pseudo-labels for both current-batch proposals and memory features. We discard
pseudo-labels generated for memory features and use only those B generated for the current-batch
proposals, i.e., we use the memory module only to improve the quality of current-batch pseudo-labels.

Swapping multi-view cluster assignments. To ensure that the network outputs consistent classifi-
cation predictions p, we employ an additional supervisory signal from multiple augmentations [11]].
Specifically, for each image from DV U DX, we first generate Rols (proposals) and refine their
coordinates via a class-agnostic classification head. We then generate two augmented views for each
image (we discuss augmentations in Sec. ?? in the appendix), and extract features twice for each Rol.
Finally, we generate pseudo-labels for each view (set of features) individually, using the Sinkhorn
algorithm as described in Sec. obtaining two sets of pseudo-labels q;, ¢ € {1, 2} that correspond
to the same proposals. To enforce feature invariance to the augmentations and capture the semantic
similarity of the proposals, we swap the resulting pseudo-labels q; between views and calculate losses
as E(P;,q;), where ¢ # j, i.e., we use pseudo-labels obtained for one view, as labels to the other. We



calculate the total loss as the average of the losses for both views: Lss = (E(pP1,92) + E(P2, q1))/2.
For each view, we maintain a separate feature memory module.

3.4 Inference and Evaluation

Finally, to categorize Rols (RPN proposals) during the inference (Fig.[2B), we extract a set of
Rols {(b, 0)} for each image and pass them to localization refinement and class prediction heads.
We pass Rol features through both h* and A" classification heads and concatenate their logits:
p = softmax([1¥,1"]) = softmax([h*(f), h"(£)]) € RE*N to compute output class probabilities
over K known and N novel semantic classes.

Semantic class assignment. Our method provides only categorization for novel classes. Class IDs
(i.e., cluster IDs) are not directly mapped to classes, defined in a certain semantic class vocabulary,
as needed for the evaluation. We therefore need to obtain a mapping of predicted class IDs to
ground-truth semantic clsses. To do so, we follow similar strategy as prior art [25} 26,19, 168]]. Once
we train our network, we generate classification predictions for each GT annotation in the validation
dataset. Then, we use the Hungarian algorithm [38] to obtain an one-to-one mapping between GT
labels and validation class predictions. We ignore instances of predicted classes that were not mapped
to GT classes. Then, we proceed to the standard R-CNN inference pass, where we apply the generated
mapping and follow the standard R-CNN post-processing and evaluation [43].

4 Experimental Evaluation

In this section, we discuss our evaluation test-bed, including datasets, evaluation settings, and metrics
(Sec. .1). In Sec.[d.2] we justify our main design decisions by studying NCDL performance in a
well-controlled setting that closely follows a real-world scenario (training on a source labeled and
target unlabeled dataset). We then compare our method’s performance to several baselines (Sec. [4.3)
and, finally, demonstrate that our method is applicable beyond our evaluation test-bed (Sec.[4.4).

4.1 Evaluation Setting

COCOy,q: + LVIS. We re-purpose COCO 2017 [43]] and LVIS v1 [24] datasets for running ablations
and comparisons with baselines and prior art. We use annotations for 80 COCO classes during the
supervised training phase, aiming at further classifying additional 1000+ LVIS classes. COCO
dataset contains 123K images with modal bounding box and segmentation mask annotations for
80 classes. The LVIS dataset contains a subset of 120K COCO images with annotations for 1203
classes that include all classes from COCO. We follow LVIS training and validation splits for our
experiments, resulting in 100K training images and 20K validation images. In our NCDL setup, we
further split 100K training images in half. We use only 50K images with 80-class annotations from
COCO during the supervised training phase. We treat the rest of 50K images as additional unlabeled
data used during self-supervised training (the discovery phase).

LVIS + Visual Genome. We perform a large-scale generalization experiment by using annotations
for 1203 LVIS classes during the supervised learning (i.e., treating LVIS classes as labeled), aiming
to learn to discover extra 2700+ classes from the Visual Genome (VG) v1.4 dataset [37] (i.e., treating
VG classes as unlabeled). We provide dataset details and splits (that ensure LVIS and VG class
vocabularies do not overlap) in the supplementary. We note that annotations provided in VG are not
exhaustive per class, and many of its classes are abstract or semantically overlapping both within VG
and when compared to LVIS. We thus mainly focus on qualitative results.

Implementation details. We base our model on Mask R-CNN [27]] and FPN [44] implementations
from Detectron2 [69]. We discuss implementation details in Sec. ?? of the appendix.

Evaluation metrics. For quantitative evaluation, we follow [25] 26} [19] [68]] and match predicted
cluster assignments with annotated semantic classes (Sec. [3.4). We follow common practice and
report mean average precision (mAP@[.5:.95]) [43]]. For qualitative results, we include instances
of classes that were matched to annotated classes only. We detail our evaluation procedure in the
supplementary.
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Baselines. We compare our end-to-end trainable detector with prior work by Weng et al. [68]],
NCD methods ORCA [7], UNOJ[19], and k-means [47]] baseline that all operate on cropped object
proposals, provided by RPN. For NCD methods, we use labeled instance annotations from COCOp,q;
dataset as labeled images pool and cropped RPN proposals as unlabeled images pool. We extract
proposals using the same R-CNN base network trained on COCOyp,q, ¢ to ensure comparable evaluation
conditions. After training NCD classifiers, we use the same R-CNN to generate object proposals for
the validation images, apply the classifiers on top of the proposals, and continue with the standard
R-CNN post-processing steps. We provide more details in Sec. ?? in the appendix.

4.2 Model Ablations

We ablate single and multi-phase training, the impact of keeping supervised loss in the loop, the num-
ber of novel categories, pseudo-labeling prior, model architecture decisions, and backbone pretraining.
In Sec. ?? in the appendix, we provide further results on experiments with hyperparameters for
proposals extractor and how class-agnostic heads affect the performance of the supervised baseline.

Single-phase training and unfreezing R-CNN components during discovery. As shown in Table
we observe that training the network with both supervised and discovery losses from the beginning,
summed up without any scaling, leads to divergence. We hypothesize that this is due to noisy
gradients from our self-supervised signal, with R-CNN being very sensitive to the choice of losses
and hyperparameters [53]. To further support this claim, we experiment with a standard supervised
phase followed by a discovery phase without freezing any components. We observe that such a setup
also leads to divergence. Unfreezing only the Rol heads during the discovery phase does not lead
to divergence, however, it reduces the score by 1.32 mAP. We thus keep all the components frozen
during the discovery phase, apart from known and novel classification heads.

The strength of the supervised loss. We ablate the strength of the supervised classification loss that
is used along with the discovery loss during the discovery phase. We vary the strength from 0 (no
supervised loss) to 1 (no downscaling) and provide the results in Table[T] We observe that excluding
supervised loss completely degrades the network’s performance for the known classes and benefits
the performance of the novel classes, while keeping the full supervised loss introduces a bias towards
the known classes. This indicates a tradeoff between performance on known and novel classes. We
set the strength of the supervised loss to 0.5 in all experiments.

Sensitivity to the number of novel classes. In Table 2| we experiment with varying the number of
novel classes we use for the novel classification head. We observe that the best number of classes
for the COCO + LVIS setup is 3000, while other choices result in lower scores. We conjecture that
such scores are sensitive to the semantic classes defined by the target dataset — with 3000 classes,
the model learns the granularity and grouping that matches closest to the LVIS classes, but that does
not necessarily mean that a finer or coarser granularity categorization is incorrect. In Sec. ?? in the
appendix, we also experiment with attaching and training multiple heads jointly during the discovery
phase and observe that scores slightly degrade in such setup but do not observe a significant drop in
results.

Clustering prior. In Table[3] we experiment with using uniform prior distribution for class-marginals
during pseudo-labels generation, as proposed in [2,[10]. We observe degradation of the score by 1.17
mAP, which confirms our hypothesis that a non-uniform log-normal prior distribution better models a
real-world long-tailed class distribution. We use k-means for the online pseudo-labels generation as
an additional ablation instead of constrained clustering. As a result, we observe a significant score
degradation by 4.86 mAP, especially notable for the novel classes.



Table 3: Additional ablations. We experiment with ~ 1able 4: Comparison with state-of]:the—art mod-
removing individual components from the network ~ €IS- ~ as per open source code. " adapted to

and their impact on the overall performance. support known classes in the target dataset. i
randomly initialized novel head.

Method mAP.; MAPijpown  MAPhopel

RNCDL 6.92 25.00 5.42 Method mAPq;  mMAPpnown  MAPpope
- Methods that operate on cropped proposals

Single-phase framework n/a n/a n/a k-means [47] 133 15.61 0.14

Unfreeze all layers n/a n/a n/a Weng et al. [68]* 1.62 17.85 0.27

Unfreeze Rol heads 5.60 20.55 4.37 ORCA (7] 2.03 20.57 0.49

Uniform class prior 575 24.11 423 UNO [19]* 218 21.09 0.61

k-means [47] pseudo-lab. 2.06 21.13 0.48 Methods that operate on FPN-based features

W/o projection MLP 5.30 26.13 3.58 k-means [47] 1.55 17.77 0.20

W/o swapped assignments 6.74 26.02 5.14 RNCDL w/ random init.} 1.95 23.51 0.17

‘W/o memory 2.83 24.19 1.06 RNCDL 6.92 25.00 5.42

W/o MoCo pretraining 4.77 16.92 3.77

Fully-supervised 18.47 39.38 16.74

Embedding projector and swapped assignments. In Table[3| we demonstrate the effect of adding
an MLP feature projector on top of Rol box features for novel head classification. We observe that the
performance of the network improves by 1.62 mAP. Furthermore, the same table shows that swapping
pseudo-labels between proposals under multiple augmentations helps boost the score by 0.18 mAP.

Feature memory module. We demonstrate the importance of the memory module in Table 3} In all
our experiments, we used the memory size of 100 batches unless stated otherwise. Removing the
memory module significantly drops the performance by 4.09 mAP, especially for the novel classes.

Self-supervised pretraining matters. We compare the results of our framework under different
backbone initialization employed for the supervised pretraining stage. For the randomly initialized
backbone, we set all layers as trainable, while during the MoCo initialization, the first two convolu-
tional blocks are kept frozen (c.f, [28]]). In Table[3|we observe that the MoCo-initialized backbone
improves the score by 2.15 mAP over randomly initialized backbone mode. We only pre-train our
network using ImageNet dataset [15], and not on the source or target object detection dataset.

Proposals extractor hyperparameters. We observe that when extracting the RPN proposals for
self-supervised learning during the discovery phase, the absence of NMS yields the best results, and
the optimal number of proposals per image is 50. We thus use such parameters for all the experiments.

4.3 Comparison to Prior Art

In Tabled] we compare our method with k-means baselines and three recent state-of-the-art methods
that we adapted to our scenario. We present the results for both known (COCO) and unknown (the rest
of LVIS) classes. Our method significantly outperforms the previous best NCD method UNO [[19]]
by reaching 4.74 higher overall mAP. Furthermore, we outperform UNO in both the known and
especially novel classes, where we reach 4.81 higher mAP. We also significantly outperform the
approach by Weng et al. [68]. Our method is the only method to reach over 1 mAP in novel classes,
where we reach 5.42 mAP. We believe the main advantages of our method to be the memory module,
critical for effective self-supervision, and a backbone trained in an end-to-end manner with the aid
of class-agnostic losses, frozen during the discovery phase. Further, our backbone benefits from
high-level semantic features via FPN that are critical for the classification of small objects [44]. We
provide more comparison details in the supplementary. We note that as our method heavily relies on
the generated region proposals, we are limited by the performance of the region proposal network (i.e.,
we cannot detect objects not detected by the RPN network). We do not update the backbone feature
extractor during self-supervised training. Successfully doing so could further boost the performance,
including the localization and segmentation components.

4.4 Cross-dataset Generalization and Qualitative Results

We analyze the generalization properties of our framework by training on LVIS and evaluating on
Visual Genome (VG) dataset. We present quantitative results in Table 5]



a) COCO — LVIS b) LVIS — VisualGenome

Figure 3: Visualization of predictions for validation images of the fully-supervised model and our
RNCDL framework. We color the discovered novel classes in red.
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a) COCO — LVIS b) LVIS — VisualGenome

Figure 4: Visualization of the common novel classes discovered in LVIS and VisualGenome datasets.

In Figure[3] we provide qualitative results with Taple 5: LVIS — VisualGenome comparisons
novel classes discovered. In Figure [ we also  ith a fully-supervised method.

visualize the commonly discovered categories. Method MAP., mAPr.n.  mAP...
Upon manual examination of the clusters from RNCDL w/ random init. 2,13 771 081
the LVIS + VG experiment, we observe that RNCDL 4.46 12.55 256
many novel classes are synonyms, hyponyms, Fully-supervised 452 13.72 235

or hypernyms of known classes appearing in the
LVIS dataset.

5 Conclusions

In this paper, we introduce an end-to-end RNCDL network for novel class discovery, detection, and
localization tasks. Our model is a two-stage object detection network that can classify both instances
of the labeled, known classes and those of unlabeled, novel classes. At the core of our method is a
self-supervision guided by features of region proposals and a constraint for the class assignments
to follow a long-tail distribution. In our experiments, we demonstrate a significant improvement
over the previous state-of-the-art. Furthermore, we demonstrate the ability to detect semantic classes
without any supervision at a large scale on the Visual Genome dataset.

Broader Impact

The real world contains a vast number of object categories, but labeling them all is impractical and
costly. Most deep learning models for object detection are trained on datasets that cover only a fixed
and limited set of categories, and they cannot generalize to novel classes that are not seen during
training. This limits their applicability in scenarios where objects of interest are unknown or rare.
Therefore, there is a need for methods that can discover and detect novel classes without relying on
labeled data supervision. This work presents a novel end-to-end method that addresses this problem
and significantly improves over previous approaches. We hope our work will inspire more research
on this challenging problem and lead to more general and robust object detection models.
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Kovalevskaja Award. DR would like to acknowledge the CMU Argo Al Center for Autonomous
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