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Abstract

We initiate the study of proper losses for eval-
uating generative models in the discrete setting.
Unlike traditional proper losses, we treat both the
generative model and the target distribution as
black-boxes, only assuming ability to draw i.i.d.
samples. We define a loss to be black-box proper
if the generative distribution that minimizes ex-
pected loss is equal to the target distribution. Us-
ing techniques from statistical estimation theory,
we give a general construction and characteriza-
tion of black-box proper losses: they must take a
polynomial form, and the number of draws from
the model and target distribution must exceed the
degree of the polynomial. The characterization
rules out a loss whose expectation is the cross-
entropy between the target distribution and the
model. By extending the construction to arbi-
trary sampling schemes such as Poisson sampling,
however, we show that one can construct such a
loss.

1. Introduction

Generative models are widely used tools in machine learn-
ing and statistics. For example, Generative Adversarial
Networks (GANs) have recently been successful particu-
larly in natural language and image generation. However,
the evaluation of generative models is still an open area of
research, with many evaluation methods proposed (Borji,
2019; Theis et al., 2015). This paper investigates theoretical
foundations for evaluating generative models using a proper
losses approach.

Specifically, we consider evaluating generative models that
aim to match some underlying “target” distribution. For
example, a GAN’s goal may be to produce sentences from
the same distribution as a random sentence drawn from
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Wikipedia; or to produce an image of a human face drawn
from the same distribution as all U.S. passport photos. In
areas such as climate modeling or weather forecasting, the
goal may be to produce possible future trajectories from the
same distribution as the actual climate. We abstract away
from how the model is trained and learned; our focus is only
on methods of evaluating the model. We leave the issue of
training for future investigation.

We take the approach of the proper losses and proper scor-
ing rule literature (McCarthy, 1956; Savage, 1971; Gneiting
& Raftery, 2007), using one or more observations drawn
from the target distribution to evaluate the model. However,
many generative models are essentially “black boxes”. One
typically cannot obtain a closed form expression for the
probabilities a model assigns to different outputs. This rules
out using traditional proper losses for evaluating distribu-
tions, such as ¢ loss or log loss. As a theoretical foundation,
we instead assume only that we can draw independent and
identically-distributed (i.i.d.) observations from the model p
and compare these to observations from the target distribu-
tion ¢q. The question is whether, and/or how, one can design
losses under these restrictions that are proper: the expected
loss is minimized by setting the model’s distribution equal
to the target, i.e. setting p = q.

Our results.  As the initial work taking this approach, we
focus on distributions over discrete, usually finite, sample
spaces. We discuss extensions to the continuous setting in
Section 7. First, we consider an easier problem: If we had
full access to the target distribution g, i.e. in closed form or
as an oracle, can we design proper losses for evaluating the
model p from samples? We call this the report-black-box
(RBB) setting. We show that the naive approach of plugging
the empirical distributions directly into a distance function
such as /5 does not yield a proper loss. However, by using
the samples to construct unbiased estimators of the error
introduced, we can correct for them and produce losses that
are in fact proper.

Extending the unbiased-estimator approach, we characterize
RBB-proper losses as those whose expectation is a polyno-
mial in the model distribution, e.g. expected loss ||p — ql|¥
for even integers k. For such polynomials, we explicitly
construct RBB-proper losses using the classical theory of
unbiased estimators. Furthermore, the minimum number of
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observations that must be drawn from the model is exactly
the degree of the polynomial. On the other hand, the char-
acterization implies impossibility results for many popular
forms of distances, including the cross entropy (expected
log loss).

Second, we consider the full problem: what if we only have
sample access to the target distribution g as well as the
model p? Leveraging the above results, we give a similar
characterization and construction for black-box (BB) proper
losses. Again, the degree of the polynomial in p (respec-
tively, q) governs the the size of the necessary and sufficient
sample that must be drawn.

Generalizing, we consider more general sampling schemes
that do not draw a predetermined number of observations. In
particular, using Poisson sampling, we are able to overcome
the above impossibility result and construct the first black-
box proper loss that in expectation equals the cross entropy
between p and q.

Finally, we experimentally evaluate our losses as a proof of
concept.

1.1. Related Work

Our approach is based on the axiomatic approach in the
proper scoring rule and proper losses literature, e.g. (Gneit-
ing & Raftery, 2007). Most similar to our work in this
tradition is Haghtalab et al. (2019), which examined con-
vergence rates of the log loss for distribution learning in
a setting similar to our simplified setting. Our character-
izations will cover these proper scores as a special case,
along with multi-observation losses that elicit a distribution
(Casalaina-Martin et al., 2017).

There are many losses used in evaluation and training of
GANSs and other Neural Network (NN) based generative
models (Borji, 2019; Theis et al., 2015). In adversarial train-
ing, much attention is given to obtaining unbiased gradients.
These training losses cannot be translated into a proper loss
because the loss is in a variational form that is inherent to
the adversarial training method (Goodfellow et al., 2014;
Binkowski et al., 2018). However, the energy distance, a
special case of the Maximum Mean Discrepancy (MMD)
metric, has been used in its closed form to directly train NN
based generative models (Dziugaite et al., 2015; Li et al.,
2015; Székely & Rizzo, 2005; Binkowski et al., 2018). The
MMD in general is typically only available in a variational
form and thus is not proper in practice. However, the energy
distance actually can be used to construct a loss satisfying
our definition of black-box proper. So it can be viewed
as a pre-existing proof of concept for the ideas formalized
and generalized in this paper. See Appendix G for further
discussion.

In distribution learning (Han et al., 2020) and classical

machine learning (Nguyen et al., 2010; Gyorfi & Van der
Meulen, 1987; Hall & Morton, 1993; Joe, 1989), there is
a line of work devoted to estimating divergences between
pairs of distributions. While these literatures provide conver-
gence and consistency results, the estimators and distances
generally do not result in proper losses.

2. Background

For this work N = {0,1,2,3,...}. We primarily work
with distributions over a finite domain &X’. The set of all
probability distributions over X is denoted by Ay. We
denote a distribution by a vector of probabilities p € Ay C
R, where p,, is the probability p places on x € X'. We use
0, € Ay to denote an indicator vector, i.e., the distribution
placing probability one on . Norms without a subscript are
2-norms: |- || = || - [

In our setting, there is target distribution ¢ € Ay. We
will generally use Y to denote observations drawn from
g. We aim to evaluate a model that we will represent as
p € Ay, also a distribution. We will generally use X
to denote observations drawn from p. Uppercase letters
generally refer to random variables while lowercase letters
are realizations, e.g. X = x.

We will also use various unbiased estimators from classical
statistical estimation theory (see Appendix A). A function
f is an unbiased estimator for a parameter 6 of a family of
distributions {Fy} if, for any ¢ and any random variable
Z ~ Fp, we have E f(Z) = 0. Unless otherwise speci-
fied, we will always use the minimum variance unbiased
estimator (MVUE, see Appendix A).

We next recall the classical approach to evaluating p, which
assumes full access to p in closed form. Then we introduce
our setting, where we cannot access p except by drawing
samples.

2.1. The classical approach: proper losses

We proceed with our theory via the perspective of proper
losses. This literature was developed to elicit and evaluate
general statistical reports or predictions from an agent. In-
troduced in (Brier, 1950), a proper loss (also historically
termed a proper scoring rule) is a function r(p, y) that as-
signs a loss to a model or forecast p on an observation ¥,
where y is drawn from the target q. As we will see, proper
losses do not apply in our setting because they assume abil-
ity to query the value of p, on any x. Nevertheless, they are
a useful starting point.

Definition 2.1. A loss function r : Ay x X — R is proper
if for all p,q € Ay, y]Eqr(q,y) < U]Eqr(p, y). Aloss is

strictly proper if the above inequality is strict for all p # q.

In other words, for any fixed target distribution ¢, the op-
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timal model p (i.e. the one that minimizes expected loss)
is p = gq. A classic result fully characterizes all proper
losses via Bregman divergences, which can be used as mea-
sures of “distance” between two distributions. For reference,
we define Bregman divergences and recall the scoring rule
characterization in Appendix D.

The two most common proper losses are the squared loss
r(p,y) = ||p — &, ||3, where §, is the indicator vector on y;
and the log loss r(p, y) = log p,, whose expectation is the

cross-entropy £(p,q) = — Y 1 Gz Inp,.

3. Report Black Box Proper

To develop our results, in this section we consider a sim-
plified setting where we have full access to the target dis-
tribution g. We aim to evaluate the model p based only on
1.i.d. observations drawn from it. In later sections, we will
assume only sample access to q as well.

3.1. Basic definitions

To evaluate p, we will draw i.i.d. observations from p. For-
mally, we draw a sample (X7, ..., X,,) where the X; are
independent random variables taking values in X, each dis-
tributed according to p. It will be convenient to represent the
sample as a histogram H € N, where H, = [{i : X; =
x}|. Ttis without loss of generality to consider loss functions
that take H as input rather than the individual samples.'

We use H,, to denote the set of histograms arising from n
samples, i.e. H, = {h € N* : ||h||; = n}. We write
H ~ p™ to denote that the random histogram H € H,, is
distributed according to p”, the distribution over all samples
of size n drawn i.i.d. from p. Given a histogram h € H,,,
the empirical distribution is p = Lh.

Definition 3.1. A report-black-box (RBB) loss is a function
L:H, x Ax — R. Here L(h, q) is the loss assigned to a
histogram h of n samples drawn from the model when the
target distribution is q.

Definition 3.2. For a RBB loss L : H,, x Ay — R, the
associated expected loss is L(p, q) = HE L(H,q).
~pn

The key property we want our loss functions to satisfy is
properness, i.e., that expected loss is minimized by setting
the model p equal to the target q. Therefore, the following
definition becomes useful:

Definition 3.3. A function / : Ay x Ay — Ris called a

"By exchangeability of i.i.d. samples, any function f(.S) of the
sample S = (X1, ..., X,,) can be simulated by a function g(H)
of the histogram, where g simply arranges the samples that make
up H in a uniformly random order to obtain S’ and applies f(S’).
Then g(H) has the same distribution as f(.9), because S’ has the
same distribution as S.

proper divergence if for all fixed g,

(Vp).

It is called a strictly proper divergence if the above inequal-
ity is strict for all p # q.

q,q) < (p,q)

Examples of proper divergences are the squared distance
lp — ¢||? and the cross-entropy Y]E log py. A proper di-
~q

vergence ¢ represents our goal: we would like to use such
a divergence to evaluate p. In general, we cannot use /
directly, because evaluating the divergence requires access
to the closed form of p, and we can only draw observations
from p. However, we can implement a divergence / if we
can construct a RBB loss L whose expectation is £. As such,
the following captures what it means for L to be “proper”
in our setting.

Definition 3.4. A report-black-box loss function L is report-
black-box proper (RBB proper) if L(p, q) is a proper diver-
gence. If £ is some proper divergence and there exists L
such that L = ¢, we will say that L implements ¢ and that £
is implementable.

3.2. Proof of concept: squared loss

Is there any proper divergence that is implementable? A
priori, it might seem that given aloss L : H,, Xx Ay — R,
there is always a way to tweak a misreport p to put higher
weight on certain points and improve the expected loss.

Let us begin by investigating the ¢5 divergence ¢(p,q) =
lp — q||3. In the traditional proper loss (or proper scoring
rule) setting, this yields a proper loss 7(p,y) = |[p — &, ||3.
Can we utilize squared loss as a RBB proper loss function
by simply replacing p with p? In fact, no:

Claim 1. The loss L(h,q) = ||p — q||3, where p = Lh is
the empirical distribution, is not RBB proper for any sample
size n.

Sketch. A straightforward calculation, using p = Ep,

shows that E [ — q||* = [p — gl + ) _ Var(,). In

reX
general, this is not minimized by p = ¢; for example, with

a 0.1-weighted coin, the optimal model p is always a coin
with weight strictly less than 0.1 (notice this decreases the
variance of p). O

In summary, the expected loss of this naive approach is the
proper divergence ||p — ¢||3 plus an extra term. However,
the key insight is that the extra term can be estimated unbi-
asedly from a finite number of observations. Let n > 2 and
let s2(a) = == [a(1 — a)? + (1 — a)a?]. Then (Claim
A.2.1) s2 is an unbaised estimator for Var(p,), that is,

"E s2(p,) = Var(p,). This proves the following.
p~p"

n
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Claim 2. The (5 divergence {(p,q) = ||p — q||* is imple-
mentable. In particular, for any n > 2, the following loss is
RBB proper and satisfies L(p, q) = ||p—q||* (here p = 1 h):

Lu(hyq) = 1lp —all* = 3 2.(ba),

X

We discuss the reason underlying the variance term and gen-
eralize this construction to other divergences in Appendix D.
A similar proof of concept can arise from considering the
energy distance in continuous space, as discussed in Section
1.1 and Appendix G.

3.3. Minimum number of draws required

Now that we know it is possible to implement at least some
proper divergences, a natural question is how many observa-
tions one needs to draw from p in order to do so. In cases
where a generative model is expensive to sample, we might
prefer to use RBB proper losses that can utilize a smaller
sample size. To do so, we define the notion of a tight lower
bound on the observations needed to implement a proper
divergence.

Definition 3.5. Let n € N. A proper divergence, /, is n-
minimally-implementable if for all n” > n, there exists a
RBB loss L : H,s x Ay — R that implements ¢ and, for all
k < n, there does not exist aRBB loss L : H, x Ay — R
that implements £.

3.4. Characterization of Discrete Losses

We have seen that naively applying a proper divergence
as a loss function introduces an extra penalty term, which
can be corrected if we can unbiasedly estimate the penalty
from samples. To make this approach fully general, we
turn to the theory of U-estimation, which defines unbiased
estimators. The key idea is that histogram H ~ p™ has a
multinomial distribution. There are classical results (Lemma
A.3.1) describing which functions of multinomials have
unbiased estimators. We utilize these results to characterize
the proper divergences that are n-implementable. Also, we
characterize the minimal-implementability of every such
implementable divergence. We first recall the definition of a
polynomial function of a vector.

Definition 3.6. A function f : Ay — R is a polynomial if
it is of the form

Fo) =" ax [] p¥.

keK zeX

where the sum is over a finite index set K, where each
jr € N¥ is unique, and where each aj, is a nonzero real
number. In this case, the degree of f is maxkek ||jx |1, 1.
the largest sum of exponents of any monomial. We say a
function is a polynomial in its jth argument of degree n

if, for all fixed values of the other arguments, the induced
function of the jth argument alone is a polynomial, and there
exists a maximum degree n of any such induced polynomial.

Theorem 1. Let {(p, q) be a proper divergence. Then { is
implementable if and only if it is a polynomial in its first
argument. Furthermore, if £ is implementable, then { is
n-minimally implementable where n is the degree of the
polynomial.

Given a sample-size budget of n, Theorem 1 tells us which
proper divergences can be implemented in evaluating a
black-box model. Furthermore, the proof will actually con-
struct a loss that minimally-implements the proper diver-
gence.

Proof. Let £ be a proper divergence that is a polynomial in
its first argument, in particular, of degree n. We show / is
implementable using sample size n. Write ¢ in the form of
Definition 3.6, i.e. for each fixed g,

-(q)

T,z

()= af” T] v,
ke K (a) zeX

(9)
k

where K (@ is finite, each a\? is a nonzero constant, and

each \|j,(€q)||1 < n. By classical results (Lemma A.3.1),
any given monomial in p of degree at most n has an un-
biased estimator using n samples from p. In particular,

the minimum-variance unbiased estimator (MVUE) of the
-(q)

. G,
monomial [] . px"* is:

. s
and satisfies H@NEp" [tn’j]@ (H)} = I;IpJc “ (Lemma A.3.1).

Therefore, the loss L(h,q) = >, a,(cq)tnj(@(h) satisfies
Wk

L = ¢, and it implements /.

Now suppose ¢ is not a polynomial of degree at most n in its
first argument. That is, there exists ¢ such that £(p, q) either
has higher degree or is not a polynomial at all. The char-
acterization of the U-estimable functions under the multi-
nomial distribution, Lemma A.3.1, directly implies there
does not exist an unbiased estimator for ¢(-, ¢) using sam-
ple size n, i.e. there does not exist L : H,, Xx Ay — R
such that H/IElpn L(H,q) = ¢(p,q). This shows that non-

polynomials are not implementable; and that polynomials
of degree n’ > n are not implementable with only n ob-
servations. For the other part of minimally-implementable,
our construction above implies that for all n > deg(¢) there
exists aloss L : H, x Ay — R that implements £. O

Corollary 1. Let ¢ be a polynomial divergence as de-
fined in definition 3.6. If L is constructed as according
to Theorem 1 to implement ¥, then L can be computed in

O rex likll) = O(|K|deg(€)) time.
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We immediately obtain some positive examples, such as:

Corollary 2. For any even integer k > 2, the proper diver-
gence |[p — q||f =3, (px — qz)" is implementable, and in
particular, is k-minimally implementable.

However, we also obtain impossibility results:

Corollary 3. The cross-entropy Y, q, 10g p, is not imple-
mentable for any finite sample size.

In Section 5, we will return to this example and show that
cross-entropy actually can be “implemented” with a more
creative approach to sampling.

3.5. Linearly Decomposable Losses

We now examine a special case of the previous characteri-
zation that includes many popular distance metrics. In our
motivating example we found a report-black-box proper loss
that in expectation is the the squared loss. It turns out to
be the sum over all X" of a coordinate-wise loss. We now
leverage this and construct losses that implement certain
distances that are linearly decomposable. We extend these
losses to handle the case when X is countably infinite in
Appendix C.

Corollary 4. A linearly decomposable proper divergence,
Up,q) = >y APz, qz), is n-minimally-implementable if
and only if (-, -) is a polynomial with degree equal to n in
the first argument.

4. Black Box Properness

The RBB setting, while an important step, is not the most
common in evaluating generative models. In this section, the
fully black-box setting, we must evaluate only with samples
from both the candidate model and the target distribution.
We extend our definitions to encompass this setting. The
RBB setting will be a special case of this more general
setting.

Definition 4.1. A black-box (BB) loss is a function L :
H,, X Hy — R where L(hP, h9) is the loss assigned to his-
togram h? of n samples drawn from the model on histogram
h? of m samples drawn from the target distribution.

Definition 4.2. For a black-box loss L : H,, xH,, — R, the

associated expected loss is L(p, q) = HP]E _L(H?,HY).
oo

Definition 4.3. A black-box loss function L is black-box

proper (BB proper) if L is a proper divergence . If £ is

some proper divergence and there exists L such that L = /,

we will say that L implements ¢ and that ¢ is implementable.

We again define the notion of minimal-implementability.
In cases where the target distribution is difficult to sample,
we might prefer to use BB proper losses that can utilize a

smaller target sample size. For example, generative models
for forecasting e.g. climate may only have access to one
observation from g, i.e. the weather that actually occurs on
a given day. On the other hand, other settings may present
other tradeoffs between model and target sample size.

Definition 4.4. A proper divergence, ¢, is (n/,m’)-
minimally-implementable if for all n > n’ and m > m/
there exists a BB loss L : H,, X H,, — R that implements
¢ and for all (k, j) where k < n’ or j < m/, there does not
existaloss L : Hy x H; — R that implements .

4.1. Proof of concept: squared loss

We provide an illustrative example for the /5 proper di-
vergence by extending the techniques we developed in
Theorem 1. Again, the key idea is an unbiased estimator,
namely 67" (t) = % By Lemma A4, if
T ~ Binom(j, ) and j > k, then E 67" (T)] = o*. The
point is that, for any z, the number of observations H? is

distributed Binomially, as is [/, and they are independent.

Claim 3. For distributions over a finite domain X, the
squared loss ||q — pl|? is implementable. In particular, for
anyn > 2 and m > 2, it is implemented by

, HP(H? —1)  2HPHY
Ly (HP, H?) = Z [ nr D m
X
H(HY 1)]
TR A
m(m — 1)

We observe that, although L, ., contains a sum over all
X, only at most n + m terms will be nonzero, so Ly, ., is
efficient to implement regardless of the size of the domain X

Proof. Observe that L, .(HP, HY) =
Y (005 (HE) — 207 (HE)o,7 (HE) + 075 (HE)].

Using that §79"(HP) is an unbiased estimator for
ph. and symmetrically for 077 (HJ), along with
independence of HP? and HY, we immediately get
EL(H?, HY) =Y " (p2 = 2pata +¢2) = lp—ql>. O

The fact that there exists any proper loss with only n = 2
observations from p and m = 2 observations from ¢ is
somewhat remarkable: however large the sample space X,
for example all sentences up to a fixed length or all images
of a certain number of pixels, merely 4 total observations
suffice to incent the learner to exactly set the model p to
match the target ¢. In fact, slightly better is possible: the
Brier score, i.e. the proper divergence Y. 1 p2 — 2pyqq,
is (2, 1)-minimally-implementable, as our next result will

imply.
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4.2. Characterization of Discrete Losses

As in the RBB setting, we utilize the theory of U-estimation
to characterize the proper divergences that are imple-
mentable by BB losses. The proof follows similarly because
HP and H? are independent random variables, so the RBB
analysis above can essentially apply to each separately. The
proof appears in Appendix B.

Theorem 2. Let T be the set of all proper divergences. Let
Fn, be the set of all polynomials in the first argument with
degree < n and F,, be the set of all polynomials in the
second argument with degree < m. The set of all (n, m)-
implementable proper divergences is

BB, ;=T NFyNFp.

Furthermore, a proper divergence { is (j, k)-minimally-
implementable if and only if it has degree in the first ar-
gument equal to j and degree in the second argument equal
to k.

4.3. Consequences and connections to proper scoring
rules

There are a number of consequences and special cases of
note. One class of special cases is m = oo, which we use to
denote the case where we have full access to the target ¢ in
closed form. Then we obtain BB,, o, which reduces to the
report-black-box (RBB) setting. Similarly, n = oo denotes
the case where we have full access to the model p in closed
form, which reduces to the traditional proper loss setting. In
particular, BB ; is the set of proper losses. Furthermore,
by the same reasoning as in Theorem 2, we know that any
¢ € BB, 1 must be linear in the second argument and must
also be a proper divergence. Hence one could follow this
reasoning as an alternative approach to characterizing all
proper scoring rules (Theorem D.0.1).

Corollary 5. Let ¢(BBo 1) be all the proper scoring rules
(in the form of losses). Then

BBui= |J

Lep(BBoo,1)

{L : L is a polynomial in the
first argument with degree < n}.

Corollary 5 is relevant to fields using generative models to
forecast events, such as in weather or climate forecasting.
In these cases, we may be able to draw n i.i.d. observations
from the learner’s model p, but only m = 1 observation
from nature, i.e. the weather that actually occurs. In such
cases, Corollary 5 implies that we can construct a BB proper
loss from any proper scoring rule that is a polynomial in p.
Corollary 6. Forn,m € N, BB, ,, C BB;, o.c N BBo .
In other words, if a divergence is (n, m)-BB implementable
then it is n-RBB implementable and implementable via a
multi-observation proper loss with m observations.

Corollary 7. For n,m € N,BB,,, € BBjjiim,m N
BBn,m+1 g BBn+1,m+1-

Corollary 8. If T in Theorem 2 is the set of all strictly
proper divergences, then BB ,,, = (.

S. Poisson Sampling

So far our results show that proper divergences must all be
polynomial in the distributions in order to be implementable.
As such, cross entropy cannot be (n, m)-implemented for
any finite n, m € N. We now show that cross entropy can
be implemented if we generalize to other sampling schemes.
A sampling scheme is a (possibly randomized) stopping
rule determining the number of samples to draw from a
generative model. In Appendix E, we formally define and
fully characterize implementable proper divergences under
arbitrary sampling schemes. Here, we focus on the example
of Poisson sampling specifically for the cross-entropy diver-
gence. Other sampling schemes admit a multitude of other
distinct classes of U-estimable functions.

We will determine the implementable proper divergences
under Poisson sampling schemes. Poisson sampling gives
us much more powerful estimators than in the scheme
where we draw a deterministic sample size. The Pois-
son distribution is a discrete probability distribution over
N with parameter § > 0 and probability mass function

Fjs0) = Pr[T = j] = 2.

g!

The sampling scheme is as follows. Let o, 5 > 0. First
randomly draw the sample sizes N ~ Poi(«) and M ~
Poi(3). Then draw N observations from p and M obser-
vations from ¢. Poisson sampling gives us two powerful
properties. First, the counts of each outcome, h2 (resp.
h), are independent and distributed according to Poi(ap,,)
(resp. Poi(3q,)). Second, we are able to unbiasedly esti-
mate 0% for any k € N and thus can unbiasedly estimate
any power series involving . This estimation is achieved
by the Poisson estimator:

SOty =ttt —1)--- (t—k+1).

By Lemma A.5.1, if T ~ Poi(f) then E6.°Y(T) = 6"
for any k¥ € N. We will use this estimator extensively in
this section. The first result immediately follows from this
estimator. The second follows from the characterization of
U-estimable functions in Lemma A.5.1.

Corollary 9. Foranyn,m € Nand o, 3 > 0, BBy, C
BBpoi(a),Poi(), the set of all implementable functions with
Poisson sampling from p and q.

Corollary 10. A proper divergence is (Poi(a), Poi(f))-
implementable for any o, 5 > 0 if and only if it has an
equivalent power series expression in the first and second
arguments with non-negative integer powers and the power
series satisfies 1) every coefficient of the first and second
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arguments is finite and 2) if the series diverges for any
argument, the proper divergence also diverges in the same
direction (goes to +00 or —00).

The proof of Corollary 10 appears in Appendix B. Crucially
for implementing the cross entropy, many functions in C*°
have an equivalent (Taylor) series that satisfy the conditions
of corollary 10. We will use the Taylor series for In(z) in
the next section.

5.1. Cross Entropy

As a consequence of Corollary 10, we can construct a
generic-black-box proper loss that implements the cross
entropy. By similar methods we can also implement the
Shannon entropy and the KL divergence. Note that with
deterministic sampling, we cannot construct such a loss.

Lemma 1. Ler h? , = Zy 2 Ny be number of occurences
of all the outcomes except x. Then for any o, 3 > 0 the
loss,

hp hq Z ﬂaPm hq i% 5Poz hp )
k=

(Poi(a), Poi(B))-implements the cross entropy, {(p,q) =
= 2 x 0o In(pa).

We observe that this loss is always finite for a finite sample
because d7 /() = 0 when t < k. In fact, the loss is efficient
to evaluate, i.e. polynomial time in terms of the number
of samples drawn, as that number governs the number of
nonzero terms. Memoization of the infinite sums and the
summands in the infinite sum provides the most efficient
way to compute this loss. Furthermore, the computation is
highly parallelizable.

Corollary 11. Let L be the loss that implements cross en-
tropy in Lemma 1, N ~ Poi(«a), M ~ Poi(f3), and ¢ be
the number of unique non-zero integers in {h* },cx. Then
L can be computed in O(|X| + ¢N) = O(|X| + N'?)
time. If the histogram counts are stored in a dictionary-like
data structure, and an element only has an entry if it was

observed, then the amortized runtime is O(min(|X|, 3) +
al),

In correspondence with the cross entropy, this loss can
equal infinity in expectation for certain p, g, although it
is finite for every hP, h?. We note that the cross entropy can
also be (Poi(«a), m)-implemented, with any m > 1, with
the loss L(hP, h%) = 3" 4o > ey 3 2508 °(R”. ), where
qg= %hq .

Proof. We will use the Taylor expansion for In(t). For
t €10,1],In(t) = — > 72, £(1 — t)*. Note that the series
diverges to —oo at t = 0 but also lim; ¢ In(t) = —oc.

Next, we will use that H? and H? are independent; that
H{ is distributed Poi(8q,); and that H? , is distributed

Poi(a(l — ps)).

—X

E L(H?,HY) =
HP~p"
HI~g™
Z 5Poz Hq ili Poi HP )
prp ko k
Hagm X k=1

—ZQLEZ pac)
X
:_ZQIID px )
X

including the case where both the proper divergence and the
expected value of the BB loss equals co (i.e. there exists =
with g, > 0 and p, = 0). O

We note that the KL-divergence, (p,q) = Y, ¢z In ;17:,
can be implemented as well. In fact, it equals the cross-
entropy plus the Shannon entropy of ¢. Shannon entropy
can be estimated unbiasedly with Poisson sampling because
H4 and H? | are distributed as independent Poissons, so

Z Bi §Pot Hq = Z (1—qz) —Qxln((h)-
1 k=1

w\»—
??‘\»—A

6. Experiments

For a proof of concept, we performed numerical experi-
ments to evaluate our loss functions on a variety of pairs of
distributions. We focused on the black-box setting, since
this evaluation setting is more difficult than the report black-
box setting. For this section we define K := |X| and we
call divergences distances.

We consider the task of distinguishing different power law
distributions, which often arise in connection with natural
language data. Results for other pairs and types of distribu-
tions appear in Appendix H.

For each pair of distributions p and ¢, at each number of
total samples, we measured the absolute deviation between
the loss value and the true distance between the distribu-
tions. We drew up to K '-® total samples. We repeated this
experiment for various batch sizes, where at each iteration,
we drew the same batch size from p and q.

Of course, our losses work even with different batch sizes.
For simplicity we kept the batch sizes the same.

We can discern from our experiments that given a budget
of samples, the black-box loss is generally more accurate
when all the samples are used in the computation of a single
black-box loss value. This is opposed to splitting the sample
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Figure 1. The y-axis is the absolute deviation between the black-box loss value and the true distances (Squared distance and Cross
Entropy). K = 10,000, p and g are Zipfians with parameters 1 and 2, respectively. 30 trials for each parameter setting was recorded
(including batch size). The horizontal bars represent the maximum absolute deviation of any of the 30 trials. The solid markers represent
the average of the trials. Squared distance was estimated using the loss from claim 3. Cross entropy was estimated with a poisson sampling

loss. Batch sizes were the same between draws from p and q.

into smaller batches and computing the average of the BB
loss over all the batches. This suggests a theoretical result
that it is always better to use the largest possible batch size.
Note however that in the squared distance case, varying
the batch size did not change the accuracy much. We also
note that the figures in appendix H show that the Poisson
estimator consistently under-estimates the true loss value.

We also exhibit excellent convergence. In both cases, at
and past K log K total samples, the average value of our
losses over all the trials are within ~=10% of the true distance
between the distributions. The normalized plots showing
multiplicative error are included in the appendix.

7. Discussion

Larger batches are better. As we saw in the experiments,
if one has a budget of samples, it is best to use all those
samples in a single instance of a BB proper loss function,
rather than split those samples up into smaller batches and
taking the average of the loss over all the batches. In general,
a direct extension would be to analyze the variance and
convergence rate of these BB losses with regards to the
batch size.

Losses for continuous domains. We have focused on
the discrete case in this work, leaving the continuous case
to further investigation. However, we illustrate an initial
result in the continuous setting. Let F,(-) be the CDF of
= Hlxnilgx}l be the empirical
(X1,...,X,) where each X is

distribution p and Fs(x)
CDF based on sample S =
drawn i.i.d. from p.

Theorem 3. Let X = R and «; € ]R for all i. Let a
proper divergence be of the form £(p, q fR {Fp(z +
ai) }my, )da. If g(-,-) is apolynomlal in theﬁrst argument

with powersj,iq) € ZL_ | such that HJ ||1 = n, the number
of samples, then g is n-minimally- tmplemenmble.

The proof appears in Appendix B. As a corollary, we are
able to implement the Cramér distance which we exhibit
in Appendix F. These types of distances can easily be ex-
tended to a high dimensional distance by picking a direction
at random and defining the empirical CDFs based on the
hyperplane defined by that random direction. We illustrate
this via a high dimensional version of the Cramér distance
in appendix F.

Future work. A direction of future work is that of con-
structing black-box proper losses for continuous settings,
which is the most common use-case for GANs. Another
important study would be to investigate the properness of
existing losses used in evaluation. Finally, it would be
interesting to investigate the use of BB proper losses in
evaluating implicit distributions of black-boxes for desired
properties. For example evaluating a dice for uniformity or
evaluating prepared quantum states.

Broader Impacts

The evaluation of generative models, such as GANS, is a
very open question with important societal impacts in do-
mains such as climate forecasting. We provide an initial
theoretical foundation for this question. Instead of direct
applications, we anticipate this work leading to further theo-
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retical investigation. It may inform practitioners’ choices of
which losses they use for evaluating generative models. Of
course, such evaluation can be used for ethical or unethical
purposes. We do not know of particular risks or negative
impacts of this work beyond risks of generative models in
general.
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Appendix

A. Results from Statistical Estimation Theory

We have extensively utilized results from Unbiased Estimation (U-Estimation) theory. These estimators are fundamental to
our construction of proper losses for generative models.

A.1. Definitions

Since there are possibly infinitely many U-estimators for many quantities, the literature provides a criteria for the ‘best’
estimator:

Definition A.1.1. Let Y7,Y5,...,Y,, bei.i.d. from some member of a family of densities, pg, 8 € 2. An estimator ¢ is a
Minimum Variance Unbiased Estimator (MVUE) for g() if for some n € N, for all 6 € €,

1. 4 is an unbiased estimator for g(6), Eo(Y7,Ya,...,Y,) = g(0),

2. Var(6(Y1,Ya,...,Yy,)) < Var(6(Y1,Ya,...,Y,)) for any other unbiased estimator 4.

A.2. MVUE for Variance

Fact A.2.1. (Canonical MVUE for Variance) Let (y;)?_,, n > 2, be i.i.d. realizations of a random variable Y. Then the
MVUE for variance is

1 « 1
2 N\ — o 2.
Sn((yz)zzl) . n—1 ;(yz n ZZ/L)
iid

Claim A.2.1. IfY; ¥~ Ber(a)and Z =Y, + Yo + - + Y, then Z ~ Bin(m, ). Let Y = Z/m = % >, Yi. Then for
m > 2,

_ 1 _ _ _
(V)= ——=[Y(1-Y)+(1-Y)(Y)?

2
s
m m—1

is a MVUE for variance. Note that Var(Y') = all=e)

m
Proof.

E _s2(Y)=Var(Y)
Z=mY

=1
1 m
=D _Var(¥i) +_ Cou(Yi, )]
i=1 i#£j
1
= —z[mVar(Yl) + 0]
= —Var(Y1)
1
= EES%(YD
1 1 < _
S Y, — V)2
m m-—1 ;( )
1 1 < _
=—F—— ly._; —Y)?
—E—— ;( vi=1—Y)
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—

A.3. Multinomial Estimator

Lemma A.3.1. (Kolmogorov, 1950) LetY ~ M (m,p) be a multinomial random variable. A real-valued function f(p)
has an unbiased estimator on the basis of an observation from Y if and only if f is a polynomial of degree at most m. The
unique MVUE of such a polynomial is constructed using the following estimators (Hoeffding, 1994),

HX Yo (Yo — 1)+ (Yo — Jka 1)
m(m —1) - (m — [|jxll1 + 1)

Where y, is the number of observations of element © € X in the sample and Et,, ;, (Y Hpj ** . The binomial

distribution is a special case of the multinomial distribution.

A 4. Binomial Estimator
Lemma A.4.1. (Lehmann & Casella, 2006). Let T' ~ Bin(m, «). Then f(«) is unbiasedly estimable if and only if f is a
polynomial with degree < m. The MVUE estimator for f(a) = o, k < m, is

ing it —=1)--(t—k+1)
Ok (1) = mm—1)---(m—k+1)

Hence EdBm( ) =ak.

A.5. Poisson Estimator

Lemma A.5.1. (Glasser, 1962) A function of the Poisson parameter 0 has an unbiased estimator if and only if the function
can be expressed as a series in integer non-negative powers of 0. Let T' ~ Poi(0). Then for all k € N the MVUE estimator
of 0% is

SPoit)y =t(t —1)---(t —k +1).

Note that if t < k then 61°(t) = 0. Hence E 5} °(T) = 6F.

The MVUE for any estimable F'(6) can be constructed by writing the function as a power series and replacing all the 6
with its unbiased estimator given in Lemma A.5.1 (Glasser, 1962). Suppose our random variable for the count of z is
H, ~ Poi(ap,). We can unbiasedly estimate p”:

1
fEéP‘”( H,) = —(aps)* = pl.

B. Omitted Proofs
B.1. Omitted Proofs from Section 4

Proof of Theorem 2. Let ¢ € BB,, ,,. We first show that £ is (n, m)-implementable. ¢ is a proper divergence by definition.
{ is a also a polynomial in both arguments with bounded degree, so let us write it in the following form:

Up,q) = Zaka Hq”””

keK

where K is finite; for all K € K, ay is a nonzero constant; iz, ji € N* with the pair unique for each k; ||i.|; < n and
lix]l1 < m. The construction of the implementing loss is similar to that in the proof of Theorem 1. Again, we have that

11
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H? ~ Multinomial(n,p) and also H? ~ Multinomial(m, q). Hence we use the estimators from classical results, ;,

and ¢;, , to estimate each summand in £:
Hp]gp L(HP, H?) Y arts, (HP)t, (HY) = ((p, q).
HYr~g™ Hqum keK

Where the last equality follows by independence of H? and H?, and Lemma A.3.1. Thus £ is (n, m)-implementable, and a
proper divergence by definition.

For the converse, if ¢ is a proper divergence but ¢ ¢ BB,, ,,, then by the characterization (Lemma A3. 1) of the U estimable

functions under a multinomial distribution, for all k, there does not exist ¢;, or ¢;, such that H plk *

, T

and similarly for ], qj **. Thus £ is not (n, m)-implementable. Minimal-implementability also follows from this
characterization, Lemma A.3.1. O

Proof of Corollary 8. By Lemma A.3.1, the losses in BB ,, that are implementable are {g : g(p,q) = >+ f2(q)Pz}-
Where the degree of each f,(¢) is < m. For a generic g we now find the report that minimizes the expected loss.

d
L) defm
:Zf:c q
X

Thus any report minimizes the expected loss of any function that is (1, m)-implementable hence none of these expected
losses are strictly proper divergences. In other words, all (1, m)-implementable divergences are constant for a fixed g. [
B.2. Omitted Proofs from section 5

Proof of Corollary 10. By characterization in Lemma A.5.1 of functions estimable under a Poisson distribution, Fpy;(q) =
{€(-,-) : £is a power series in the first argument with non-negative integer powers}. Fpo;(g) is similarly defined in terms of
the second argument. The corollary follows by applying Theorem E.O.1. O

B.3. Proof of Lemma 1

Proof. We will use the Taylor expansion for In(z). For z € [0,1],In(z) = >"77; (x — 1)*. Note that the series
diverges to —oo at = 0 but also lim,_,o In(2) = —oo. Shannon entropy is 1mplemented by the fact that H” , is a Poisson
random variable distributed according to Poi(ap_,) that is independent from H?.

-1 1
q Poz POL P
B LCHY HY) = § L S G a —sFem”,)
Hlng™ Hq m X k=

==y % el (o7 (HD)] > %% JE (57 (HE,)]
X
-1
_ngz k pkm
_ZQzZ%(l_pz)k
X k=1
= > ) e - 1)
X k=1
_ZQIL’ ln(pj)
X

12
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B.4. Proofs from section 7

Proof of Theorem 3. We only need to show that we can unbiasedly estimate each term in g. The result then follows by
linearity of expectation. To do this we will show that the vector valued random variable 7' = { Fs(z + o;)}¥_, is a function
of a multinomial random variable. Hence the unbiased estimators and result follows from Lemma A.3.1.

Without loss of generality let oy < g -+ < vy, and define g := —oo. Now define Z ~ Multinomial(n, (Fy(x +
a1), Fp(x + o) — Fp(z + a1),..., Fp(x + o) — Fp(z + aum—1)). Z is a vector valued random variable where the count
Z;, i € {1,2,...m}, corresponds to how many samples fall in the interval [z + «;, x + «;_1]. Hence we can rewrite the
random variable Fis(z + «;) as

1 1
FS(x+az):ﬁ(Zl+ZQ+Zz):EZZJ

Now if g is a polynomial in the first argument, then

g({Fp($+az Yitis) Za(q)HF T+ o) J’”.

(q)

-(q) | . .
Where a.<q) subsumes the second argument. Now we show that the product, H:’il Fy(z+ a;)’%7, is unbiasedly estimable.

The result follows by linearity of expectation. Now by the condition of the theorem, || _](q) i < n so we only have at
most n distinct «; in each product hence we can ignore all the other «; that have a power of 0. Thus now we define a

multinomial random variable as before except now only with the «; that are involved. Let’s reindex J(Q) and « so that all
the entries where ](q) = 0 are above index B. Againlet a; < as < --- < ap, then the corresponding random variable is

Z ~ Multinomial(n s (Fple + a1), Fple + ag) — Fp(z 4+ aq), . .. )) Thus by the multinomial characterization, we can
estimate polynomials of the parameters of this distribution (we know n):

B i Jx(f)
-(q) yi
[T fsto+ i = [T (oo + ) + 30500+ 00) ~ o 50011
i i=1 y=2
-(q)

1:[( iE )Jlm.

%)

Since || J(Q) |li < n forall k, this term will have degree at most n in the parameters of the multinomial distribution and so is

unbiasedly estimable with the multinomial estimator. Each parameter is exactly % E Z;. While this means there are different
multinomial distributions for each product term in the polynomial, each term effectively ‘sees’ these different distributions.
Thus by linearity of expectation this is a valid way to construct the unbiased estimator. O

C. Countably Infinite Domains

Lemma C.0.1. Let X' be countably infinite. Let Xj, C X be a finite subset for all k € N. Let a proper divergence be of the
form

Up.q) =Y ardx, (Pr: qa);
k=1

where Y - | ai, converges and dx, is a (r,t)-implementable divergence on the empirical distribution restricted to Xy, and
bounded for all Xy, p, and q. Then { is (r,t)-implementable.

For example, X could be a set of all english word sentences and X could be the set of all length % sentences.

13
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D. The Variance Bias Term and Connection to Proper Scoring Rules

One explanation of why the variance appears in the calculations for naive squared error has to do with Bregman Divergences
and the Jensen Gap. For this section the empirical distribution is defined as p = Vi |H

We recall the definition of a Bregman divergence:

Definition D.0.1. Let G be a convex, real valued function. Then the Bregman divergence of G is

Da(q,p) = G(a) = [G(p) + (9G(p). a = p)]
where dG(p) is a subgradient of G at p (Rockafellar, 1970).

One reason Bregman divergences are important is because they are known to characterize traditional proper losses:

Theorem D.0.1 (McCarthy (1956); Savage (1971); Gneiting & Raftery (2007)). A loss r is proper if and only if there exists
a convex, real valued function G such that

E r(p.y) = E [Dc(0y,p) — G(6,)].

y~q
Where 6, := e, is the indicator vector for coordinate y.

For the purposes of illustrating the role of the Jensen gap, we show implementation of the divergences D¢ (p, ¢), which
have the arguments in the opposite order to the version implemented by proper losses. Later, we show how to implement the
usual ordering of the arguments, D¢ (p, ¢). We begin with the RBB case for clarity of exposition.

D.1. Jensen Gap

Lemma D.1.1. If Dg(p, q) is a Bregman divergence then it can be RBB-implemented, provided that an unbiased estimator,
3, exists for G(p).

L(p,q) = Da(p, q) — [G(p) — 6(p)]
= G(p) - [G(g) +(0G(9),p — @) = [G(p) — 0 (p)]
P

_l’_
= 6(p) — [G(q) + (0G(q),D — )]

Note that E[G(p) — 0(p)] = E D (D, p), the Jensen gap. This can be interpreted as the expected additional distance the
randomness of p adds.

Proof. Begin with the law of cosines for Bregman divergences and take the expectation of both sides.
e Da(0,9) = EDa(p,p) + Da(p, q) — B — p, 0G(q) — 9G(p))
= EDg(p,p) + Da(p.q) =0 M
[G( ) — [G(p) + (9G(p), 5~ p)]] + Da(p,0)

p—
E[G(p)] — [G(p) + (0G(p),Ep — p)] + Dc(p, q)
E[G(p)] — G(Ep) — 0+ Da(p, q). 2

Let us note several things here. First, line (1) formalizes the intuition we have outlined in the lemma. Second we also clearly
see that the expected Bregman divergence between p and p, E Dg(p, p), is exactly the Jensen gap, E[G(p)] — G(Ep), as
popn

exhibited by the resulting expression in (2). Hence, rearranging for clarity we see that

DG(p7 q) = ngn [DG(ﬁv Q) - DG(ﬁ7p)]

=E Da(p,q) — [EG(H) — G(Ep)].

14
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Which gives us the RBB-implementing loss for D¢ if we have an unbiased estimator § where E 6(p) = G(Ep) = G(p).
O

Example D.1.1. As an example, let’s look at the Jensen Gap for G(z) = ||=||%.

4. G0) =G E 5) =E[|p[*] - | Ep|*
= E[;ﬁi] - ZXjE[mP
= ;E[ﬁi] — E[p.)”
= XXjVar(m

Lemma D.1.2. If D (p, q) is a Bregman divergence then an equivalent divergence can be BB-implemented, provided that
an unbiased estimators 6, and 6’ where E§(p) = G(p), and E§'(§) = 0G(q) exist.

L(p,d) = 8(5) = 8(d) — (5,9'(d).
Proof.
E L(p,d) =E[56) - 5(d) - 5,8'(@))]
= GEp; - G(q) — (p,0G(q))

G(q) + (0G(q),p — a)] — (¢,0G(q))
- (g,0G(q))-

|

>
Q
=
S

O

Note that the divergence implemented by the above loss, D (p, q¢) — (¢, 0G(q)), when considered from the candidate
distributions point of view, is merely the original divergence, D¢ (p, ¢), minus a constant. Thus to the candidate model, the
loss is equivalent up to a constant to the original Bregman divergence. The same idea is used for classical proper losses as
exhibited by Theorem D.0.1.

D.2. Implementing D¢ (q, p)

We will implement the same equivalent divergence as in Theorem D.0.1:

D¢(q,p) — G(q) = G(p) — (0G(p),p) + (0G(p), q)-

Notice that this equivalent divergence can be implemented if each additive term can be unbiasedly estimated on its own.
Thus we will need unbiased estimators for ¢, G(p), G (p), and (p, 0G(p)). In the case of deterministic or Poisson sampling,
if G(p) can be unbiasedly estimated then OG(p) and (p, OG(p)) can be unbiasedly estimated. Estimating g is easy.

We will use the characterization of deterministic sampling and Poisson unbiasedly estimable functions. The following is
applicable to both Poisson and deterministic sampling.

Tk,

Suppose G(p) is unbiasedly estimable. Then G(p) = >, o x ar [[,cr pz"" where | K| is possibly infinite. Then

. k,y—1 Ik,
9G(p)y = Z ar Jrypy" Hpgak'

kEK ji, 4 #0 Ty
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is an (infinite) polynomial, thus it is unbiasedly estimable. Note that if {k € K : ji , # 0} = 0 then OG(p),, = 0, for all p.
Furthermore,

(p,0G(p)) =D _ px0G(p)a
X

is an also an (infinite) polynomial, so unbiasedly estimable.
One can view the following results as corollaries to the characterization of Poisson implementable divergences (Corollary
10).

Lemma D.2.1. Let r be a Poisson sampling scheme and t be any sampling scheme that can estimate q. If Dg(q, p) is a
Bregman divergence then an equivalent divergence can be (r,t)-implemented if and only if G has an equivalent power
series expression in the first and second arguments with non-negative integer powers and the power series satisfies 1) every
coefficient of the first and second arguments is finite and 2) if the series diverges for any argument, the proper divergence
also diverges in the same direction (goes to +00 or —o0).

Corollary D.2.1. Let r be a deterministic size sampling scheme drawing n samples and t be any sampling scheme that can
estimate q. If D(q, p) is a Bregman divergence then an equivalent divergence can be (n,t)-implemented if and only if G is
a polynomial with degree less than or equal to n.

E. General Sampling Schemes

Definition E.0.1. A generic-black-box (GBB) loss is a function L : N¥ x N* — R where L(h?, h?) is the loss assigned to
histogram hP of samples drawn from the model on histogram h?¢ of samples drawn from the target distribution.

The difference between a GBB loss and a BB loss (Definition 4.1) is that we allowed BB losses to be a function of histograms
of a specific, predetermined size (n and m). In contrast, a GBB loss must be defined for histograms of any size. These
functions can also compute N, the sample size.

Definition E.0.2. A sampling scheme r is a stopping rule for the process of drawing observations from a black-box
generative model. The stopping rule may depend on the history of the seen observations and may also use randomness.

Definition E.0.3. Let r, ¢ be sampling schemes for the report and the target distribution, respectively. A generic-black-box

loss L is (r,t)-black-box proper if L(p, q) := Et L(H?, HY) is a proper divergence. If ¢ is some proper divergence and
T)

there exists L such that L = ¢, we will say that L (r, t)-implements ¢ and that £ is (r,t)-implementable.

Given a characterization of the U-estimable functions under certain sampling schemes, we can construct the set of

implementable proper divergences. We can also construct the respective implementing losses from these characterizations.

We do not investigate the sample complexity of the schemes or define minimally-implementable in the generic setting. While

one could consider ordering generic sampling schemes by e.g. expected number of ramples drawn, the most reasonable
ordering of sampling schemes is not always clear, and we leave such investigations to future work.

Theorem E.0.1. Let v, t be sampling schemes. Let T be the set of all proper distances and let
Fr={l(,-) : £ is unbiasedly estimable in the first argument under sampling scheme r}

Fi = {L(-,) : £ is unbiasedly estimable in the second argument under sampling scheme t}.

Then the set of all (r,t)-implementable proper divergences is

BBM:TQ}'TQ}}

Proof. If we can characterize F,. and F; then we have a characterization of the unbiasedly estimable functions under
sampling schemes r and ¢, respectively. These characterizations must provide constructions of the unbiased estimators. Thus
we can construct an unbiased estimator for each ¢ € F,. N F}. Hence ¢ € BB, ; is implementable and a proper divergence,
by definition. O

F. Omitted results from section 7
For this section we consider densities on continuous domains. For a density p over R, F),(-) is the CDF of p.

Definition F.0.1 (Empirical CDF). Given a sample s = {X;}"_, the empirical CDF is defined as F,(z) := X<l

n
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F.1. Implementation of the Cramér Distance

Corollary F.1.1. For densities p, q over [0, 1], let s and u be samples drawn from p and q, respectively. Then the loss

L(s,u) = /(Fs(w‘) = Fu(2))® = sf (Fs(@)) = 87y (Fu(2)) da

(2,2)-minimally-implements the Cramér distance, ((p, q) = [ (Fp(x) — Fy(x))*dx (Cramér, 1928).

Proof of Corollary F1.1. Notice that Fis(z) = X<l js distributed according to  Bin(n, F,(x)).

E L) = E [ (Folo) = Fo(@))? - sty (Fs(w) = sfy (Fo(a) do

E[Fs(z)*] — 2E Fy(z) E Fs(x) + E[Fy (z)]* — Var(Fs(x)) — Var(Fy(x))ds

Where the second equality is by the independence of S and U and the previously defined variance estimator for the binomial
distribution (claim A.2.1). The third equality is by expanding expectation of the squared term and reducing (the second
non-centered moment of a binomial). One could also prove this using the technique from the proof of claim 3. O

The energy distance in one dimension is equivalent to twice the Cramér distance. Thus the energy distance also gives a loss
that implements the Cramér distance. See appendix G for a discussion of the relationships between different types of losses
in the continuous setting

F.2. High Dimensional Extension of the Cramér Distance

Let us now work in a continuous domain where the samples are from R7. Now instead of distributions p, ¢ € Ay we will
have densities p, ¢ on R7. The desired score will again be the Harald Cramér distance. However now we will define a CDF
with respect to a direction and then integrate over all directions.

Definition F.2.1. (Generalized CDF). Let Y be a random variable taking values in R, p be the associated density, and
v € R such that ||v|| = 1. Then the direction v CDF of Y is

Fj(z) = Pr[(v,Y) + 2 <0].
Where x € R.

The distance analogous to the Harald Cramér distance is then

/ / (Fy () — Fy (x))*dz do.
R

vER
[lv]]=1

Now to create a sample proper loss we may again introduce a variance correction term as before. However, we also note that
if we pick a random direction v, then we would not have to integrate over all v since the expectation of the distance under a
random v is the same as the deterministic distance. Below we show the RBB loss, however the result for the BB version is
very similar; one can compare between corollary F.1.1 and the following.

17



Proper Losses for Discrete Generative Models

Claim F.2.1. Let p, q be densities over R? and s be the sample drawn from p. Then the following loss is RBB proper. First
pick a random unit vector v € R7 then

L(s.q) = / (F2(2) — F¥(2))? — 82 (F2(x)) da.

In other words, L implements ((p,q) = [ ,cpi [o(Fy (x) — FY(2))*dz dv.
[lv]l=1

Proof. Let S = (X1, Xo,...,X5).

B ELGa)= E B [(F3) - @) - (@) do

veESI—1 S veSI—1
R
= [ B[ - B - S0 w) deds
vERI R
[lv[|=1
= [ [ErsE - @) - S o) dod
veR?) R
[lv[|=1
= [ [mwe+ PSS neme) + 5 w?
veRI R
[lv[|=1
_BEUFE)
= /Fp(x)2 — 2F) (2)FY(x) + F}(x)* d dv
veR? R
lloT|=1
- /( v(z) — FY())2da dv.
i ™
|v]|=1

Let C ~ Bin(n, Fj(z)). Once again note that F'§(z) = L{X; € S: (v,X;) + © < 0}| = LC. Hence we expand the
expectation with the first and second moment as in Claim F.1.1. O

G. Discussion of other continuous losses

We discuss our results in the previous section in relation to two other methods of generative model evaluation in the
continuous setting. Our results rely on computing losses based on the empirical CDF whether in one or many dimensions.

First, unless estimation/smoothing is done on the empirical density, it is not possible to work with losses that integrate over a
function of the two densities at every point in the outcome space. There is a large body of work on density estimation for
evaluating generative models. However, losses based on kernel density estimation are beyond the scope of this work.

Second, one can trivially construct proper losses based on functions of the random variables associated with densities p and
q. For example the energy distance is

D*(F,G) =2E||X — Y|| ~E| X - X'| ~E||]Y - Y|
Where X, X' and Y, Y’ are independent copies of the random variable associated with density p and g, respectively.

The number of independent copies of a random variable in the expression is exactly the number of independent samples
from that random variable required to unbiasedly estimate the loss. For the energy distance, we need 2 independent samples
from p and g each. In one dimension these can also be written as functions of the empirical CDF.
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G.1. Connection to energy distance in one dimension

In the one dimensional continuous setting, we have densities p, ¢ on R. We repeat the proof that the energy distance is
equal to twice the Cramér distance. We can see from our approach or the form of the energy distance that this loss is
(2,2)-minimally implementable.

Lemma G.1.1. (Székely & Rizzo, 2005) Let X, X' be i.i.d. with CDF F(x) and Y,Y" be i.i.d. with CDF G(y). Then the
energy distance in one dimension is equal to twice the Cramér distance.

2EM>JWfMXfXﬂ7EW7Yﬂ:Z/Ghﬁfm@VM.
R

Proof. We will convert the energy distance into the Cramer distance. First we use the identity

|X—Y\:/]l(XSu<Y)+]l(Y§u<X)du
R

Nowlet A=E|X - Y|,B=E|X — X’'|,C =|Y —Y’|. We then use Fubini’s theorem.

A=E|X Y|

:///]l(Xgu<Y)+]1(Y§u<X)dudasdy
R R R

:///]l(Xgu<Y)+]l(Y§u<X)da?dydu
R R

Pr[X < u]Pr[Y > u] + Pr[X > u] Pr[Y < u]du

F(u)(1=G(uw)+ (1 = F(u)G(u)du

|
B W W W

F(u) — 2F(u)G(u) + G(u)du

Hence by similar derivation, B = [, 2F (u) — 2F (u)*du and C' = [, 2G(u) — 2G(u)?du. The lemma follows by simple
algebra.

O

G.2. Connection to the CRPS

We derived the Cramér distance via extending the Continuously Ranked Probability Score from the proper scoring rules
literature. Intuitively, one can think CRPS as evaluating a distribution against an empirical distribution consisting of a single
sample (Gneiting & Raftery, 2007). Let F;. be the CDF of a density  and again p be the reported distribution and g the true
distribution. Then the CRPS (in terms of a loss to be minimized) for a outcome particular y drawn from the density g is

o0

| @ -1z = [ (Ew) - ) 3

— 00 — 00

Where ¢(x) = H? is the empirical distribution of the data consisting of the single sample y. Note that F;(z) is 0 below y
and 1 when greater than or equal to y. Hence Fy(x) = 1{z > y}. It is easy to see from the form of the CRPS that CRPS
is also (2, 1)-minimally-implementable since the LHS of (3) contains a polynomial of degree 2 in F}, and it requires only
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1 sample from g. There also exists a form of the CRPS derived from the form of the equivalent energy distance that also
shows (2, 1)-minimal-implementability (Gneiting & Raftery, 2007).

To extend CRPS to our setting, in which we have an empirical densities for p and ¢, we derived

Up,q) = / (Fy(x) — Fy(x))2d.

Which is the Harald Cramér distance (Cramér, 1928). The CRPS is a special case when we draw only 1 sample from q. We
give a BB loss that implements this distance in claim F.1.1.

H. Omitted Experiments
H.1. Distribution Definitions
Definition H.1.1 (Spiked Uniform).

1-0.5 .
w5 Ootherwise

{0.1 ifz € {1,2,3,4,5}
Pz =

Definition H.1.2 (Spiked Zipfian(r)). Let z, be the probability mass of = in a Zipfian(r) distribution over an outcome space
{1,...,K}

Za :
T otherwise

. {?2; if z € {5,10,20}
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H.2. Absolute Deviation

Absolute Deviation (Log scale) Absolute Deviation (Log scale)

Absolute Deviation (Log scale)

0.1

0.01

0.001

0.0001

] Batch size
® 2
T VK
4 ! K
True d|stance between p, q 0.27
2 IogK \/? K/IogK K Klogk K%

Total Samples (Log scale)

(a) Squared Distance, p: Zipfian(1), ¢: Zipfian(2)

0.1

0.01

0.001

0.0001

le-05

le-06

le-07

le-08

E Batch size
® 2
i T K
] B K
True dlstance between p, q 0.00
2 IogK \/F K/IogK K Klogk K3

Total Samples (Log scale)

(c) Squared Distance, p: Uniform, ¢: Zipfian(0.01)

0.1

0.01

0.001

0.0001

le-05

le-06

le-07

Batch size
i ® 2
_— T R
] —_— B K
E
T 17 l
- I 3
- A
4 A
E [ |
True dlstance between p, q 0.00
2 IogK \/F K/IogK K Klogk K3

Total Samples (Log scale)

(e) Squared Distance, p: Uniform,
q: Spiked Uniform (definition H.1.1)

Absolute Deviation (Log scale) Absolute Deviation (Log scale)

Absolute Deviation (Log scale)

10 4

0.14

0.01

Batch size
- 3 2
4 T VK
" K
[ ]
r s
x
A |
True dlstance between P, q 2.85
2 IogK \/E K/IogK K Klog K K5

Total Samples (Log scale)

(b) Cross Entropy, p: Zipfian(1), ¢: Zipfian(2)

10 A

10 4

Batch size
e 2
f— I \/F
® K
[ ] [ ] ®
A A A
|
] |
True dlstance between p, q 9.21
2 IogK \/? K/IogK K Klogk  K»»
Total Samples (Log scale)
(d) Cross Entropy, p: Uniform, ¢: Zipfian(0.01)
Batch size
- 3 2
—_ z VK
" K
® ®
A
]
True dlstance between p, q 9.21
2 IogK \/? K/IogK K Klogk  K»

Total Samples (Log scale)

(f) Cross Entropy, p: Uniform,
q: Spiked Uniform (definition H.1.1)




Proper Losses for Discrete Generative Models

Batch size
14 Batch size 1004 ® 2

® 2 @ K
— S Yy K
% 0.1 L VK b B K
a iz T
3 o0.014 :'C’
< S
E % 10
B 0.001 4 2
g g
9 0.0001 5 g ?
=} =
b 2
< 1le-054 E A

14 )
1e-06 4 True distance between p,q: 0.00 True distance between p,q: 6.41
2 logk VK Kllogk K Klogk K5 2 logk VK Kllogk K Klogk K5
Total Samples (Log scale) Total Samples (Log scale)
(g) Squared Distance, p: Zipfian(1), (h) Cross Entropy, p: Zipfian(1),
q: Spiked Zipfian(1) (definition H.1.2) q: Spiked Zipfian(1) (definition H.1.2)

Figure 2. The y-axis is the absolute error deviation the black-box loss value and the true distances (Squared distance and Cross Entropy).
K = 10,000 for all trials. 30 trials for each parameter setting was recorded (including batch size). The horizontal bars represent the
maximum absolute deviation of any of the 30 trials. The solid markers represent the average of the trials. Squared distance was estimated
using the loss from claim 3. Cross entropy was estimated with a poisson sampling loss. Batch sizes were the same between draws from p
and q.
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H.3. Two-sided deviation
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Figure 3. The y-axis is the deviation between the black-box loss value and the true distances (Squared distance and Cross Entropy).
K = 10,000 for all trials. 30 trials for each parameter setting was recorded (including batch size). The horizontal bars represent the
maximum deviation on either side of any of the 30 trials. The solid markers represent the average of the trials. Squared distance was
estimated using the loss from claim 3. Cross entropy was estimated with a poisson sampling loss. Batch sizes were the same between
draws from p and q.
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H.4. Normalized Absolute Deviation
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Figure 4. The y-axis is the normalized absolute deviation between the black-box loss value and the true distances (Squared distance
and Cross Entropy). K = 10, 000 for all trials. The deviations are normalized by the true distance between p and q. 30 trials for each

parameter setting was recorded (including batch size). The horizontal bars represent the maximum normalized absolute deviations of any
of the 30 trials. The solid markers represent the average of the trials. Note that when the squared distance is close to O, the normalized

error becomes very difficult to keep low. The un-normalized error in the previous section is more appropriate in this case. Squared
distance was estimated using the loss from claim 3. Cross entropy was estimated with a poisson sampling loss. Batch sizes were the same

between draws from p and q.
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