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Abstract: Scaling robot learning requires vast and diverse datasets. Yet
the prevailing data collection paradigm—human teleoperation—remains costly
and constrained by manual effort and physical robot access. We introduce
Real2Render2Real (R2R2R), a novel approach for generating robot training
data without relying on object dynamics simulation or teleoperation of robot hard-
ware. The input is a smartphone-captured scan of one or more objects and a single
video of a human demonstration. R2R2R renders thousands of high visual fidelity
robot-agnostic demonstrations by reconstructing detailed 3D object geometry and
appearance, and tracking 6-DoF object motion. R2R2R uses 3D Gaussian Splatting
(3DGS) to enable flexible asset generation and trajectory synthesis for both rigid
and articulated objects, converting these representations to meshes to maintain
compatibility with scalable rendering engines like IsaacLab but with collision
modeling off. Robot demonstration data generated by R2R2R integrates directly
with models that operate on robot proprioceptive states and image observations,
such as vision-language-action models (VLA) and imitation learning policies.
Physical experiments suggest that models trained on R2R2R data from a single
human demonstration can match the performance of models trained on 150 human
teleoperation demonstrations. Project page: https://real2render2real.com
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1 Introduction

The great power of general purpose methods ... [is that they] continue to scale
with increased computation.

— Richard Sutton, The Bitter Lesson (2019)

Robotics has long benefited from computational scalability—methods like probabilistic planning,
trajectory optimization, and reinforcement learning have driven significant progress in agile locomo-
tion [1, 2, 3, 4, 5, 6, 7]. Dexterous manipulation, however, presents unique challenges: it requires
fine-grained visual perception that is tightly coupled with robot control and kinematics to interact
with objects and alter the environment. Many systems address this by explicitly separating perception
from planning and control, achieving strong performance in structured environments [8, 9, 10, 11], es-
pecially when assumptions about scene geometry, object placement, and sensing modalities hold. Yet
such pipelines often rely on task-specific perception modules and carefully controlled environments,
limiting flexibility in more unstructured, dynamic, or visually diverse settings.

In the hope of addressing open-world manipulation tasks, inspired by large language models (LLMs)
and vision-language models (VLMs) [12, 13, 14, 15], recent efforts have explored end-to-end
generalist robot policies [16, 17, 18, 19, 20, 21, 22, 23, 24, 25]—models that learn directly from
raw sensory input and promise capabilities like language instruction following, task transfer, and
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Figure 1: Real2Render2Real generating robot training data for the task of “Put the Mug on the Coffee Maker”.
R2R2R takes as input a multi-view object scan and a monocular human demonstration video. R2R2R then
synthesizes diverse, domain-randomized robot executions through parallel rendering and outputs paired image-
action data for policy training. This pipeline enables scalable learning across tasks and embodiments without
teleoperation or object dynamics simulation.

in-context learning. Yet training such models at scale remains limited by data: the largest human
teleoperation datasets are over 100,000x smaller than the corpora used to train frontier LLMs and
VLMs [26, 27], and are constrained by the cost, speed, and embodiment-specific nature of human
teleoperated data collection.

Other vision-language subfields have faced similar data scarcity—and overcome it through com-
putational data generation. Structure-from-motion, detection, and depth pipelines now routinely
produce pseudo-labels to bootstrap large models; for instance, Spatial VLM synthesizes two billion
spatial-reasoning QA pairs [28], while RAFT [29], DUSt3R [30], MonST3R [31], Zero-1-to-3 [32],
and MVGD [33] all rely on pseudo ground-truth derived from multi-view geometry pipelines (e.g.,
COLMAP [34]) to supervise dense 3D prediction tasks. These successes suggest an analogous
question for robotics:

Can we computationally scale robot vision-action data — while not requiring dynamics simulation or
human teleoperation — to train robot learning models?

Prior efforts have turned to physics-based simulation, where trajectories are synthesized via reinforce-
ment learning or motion planning in virtual environments [35, 36, 37]. While modern simulators offer
high throughput and support large-scale parallelization, they face several fundamental limitations:
many commonly used simulators fail to satisfy basic Lagrangian mechanics, such as conservation of
energy or momentum [38]; accurately modeling complex object interactions often demands extensive
parameter tuning and hand-crafting of contact properties [39]; generating high-quality, compliant,
and intersection-free assets for simulation remains labor-intensive, as collision modeling requires
careful handling of geometry, friction, and deformation [40, 41]. R2R2R avoids these challenges
by discarding dynamics: instead of simulating forces or contacts, we directly set object and robot
poses per frame using the IsaacLab package [42] purely as a photorealistic, parallelized rendering
engine by setting all objects as kinematic rather than dynamic bodies. This approach respects robot
kinematics while avoiding the complexities of contact modeling, naturally aligning with contemporary
vision-based policies trained from RGB images and proprioceptive inputs.

We introduce Real2Render2Real (R2R2R), a pipeline for generating large-scale synthetic robot
training data from a smartphone object scan and a human demonstration video. R2R2R scales
trajectory diversity while preserving visual accuracy: it extracts 6-DoF object part trajectories from
the video and generates corresponding robot executions via inverse kinematics under randomized
object initializations. Starting from a multi-view scan, it reconstructs 3D object geometry and
appearance, supports both rigid and articulated objects via part-level decomposition, and uses 3D
Gaussian Splatting to produce mesh assets. The resulting trajectories include robot proprioception,
end-effector actions, and paired RGB observations rendered under varied lighting, camera pose,
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Figure 2: Data Generation Efficiency and Average Policy Performance Across Manipulation Tasks.
(Left) Performance visualization displaying both task-specific outcomes (faint background lines) and cross-task
averages (bold lines with error shading) for policies trained on real (1 human teleoperator) vs. synthetic data
(1 human, 1 GPU). The points labeled by demonstration count (50-1000) highlight the scaling in performance
and R2R2R’s significant throughput advantage, with individual task trajectories illustrating the variance across
different manipulation scenarios. (Right) Log-log scale comparison showing data generation throughput between
R2R2R (1-100 GPUs) and human teleoperation (1-100 operators) over a 12-hour period. R2R2R needs an
upfront time of 10 minutes for human to scan the objects, demonstrate the task, reconstruct the objects and
track their trajectory, where subsequentially no human is involved. On a single NVIDIA 4090 GPU, on average,
trajectories will be generated at 27x the speed of a single human teleoperator without needing robot hardware.

and object placement—making them directly compatible with modern imitation learning policies
such as vision-language-action models and diffusion models. By eliminating the need for dynamics
simulation or robot hardware, R2R2R enables accessible and scalable robot data collection, allowing
anyone to contribute by capturing everyday object interactions with a smartphone.

This paper makes three contributions. First, we present Real2Render2Real (R2R2R), a novel frame-
work that synthesizes diverse, physically grounded observation—action pairs using only smartphone-
captured videos: a multi-view object scan and a human demonstration video—without requiring
dynamics simulation or robot hardware. Second, we demonstrate that this data is compatible with
modern vision-language-action (VLA) and imitation learning policies, including both transformer-
based and diffusion-based architectures that operate from RGB and proprioceptive input. Third, we
show that policies trained on R2ZR2R-generated data based on one human demonstration can match
the performance of those trained on 150 human teleoperation demonstrations, across 1,050 physical
robot evaluations, while requiring significantly less time to generate.

2 Related Work

Robot Data Collection Paradigms. Scaling robot learning has traditionally relied on two paradigms:
data from industrial deployments and data from human teleoperation. Industrial robot logs [43, 44, 45]
scale with production throughput but are often task- and embodiment-specific. In contrast, tele-
operation datasets [46, 47, 48, 49, 50] offer greater visual and task diversity but remain bottle-
necked by human effort and real-time collection. At the same time, the rise of generalist robot
policies [16, 19, 51, 17, 18, 20, 21, 22, 23, 24, 25]—capable of performing diverse manipulation
tasks from raw observations—has amplified the need for scalable, diverse, and high-quality training
data. Yet the scale of current robot datasets remains orders of magnitude below that of their vision
and language counterparts [26, 27].

Procedural Robot Data Generation. To address the challenge of robot data scaling, many works
have studied procedural data generation to automate robot data collection for pre-defined tasks.
Many works [52, 53, 54, 55, 56, 57] use pre-defined motion primitives, optionally with a perception
module, to automate data collection using a real robot, with automatic scene reset. While reducing
human interventions, they still require robot hardware for data collection, limiting scalability. More
recently, simulation data generation has emerged as a scalable alternative to real-world collection,



Tele-Op RL  Phys. Engine  Robot  One-to-Many Articulated

Free Free Free Agnostic  Trajectories Objects
CASHER [39] X X X v v v
RoboVerse [38] X X X v X v
RoboGSim [61] X v v X X X
RoVi-Aug [62] X v v v X v
Video2Policy [37] v X X v v v
MimicGen [58] X v X v v X
DexMimicGen [63] X v X v v X
Phantom [64] Ve v v v X v
DemoGen [65] X v v X v X
AR2-D2 [66] v v v v X v
Real2Render2Real v v v v v v

Table 1: Comparison of Robot Data Generation Methods. Real2Render2Real requires no teleoperation,
eliminates reliance on reward engineering, reinforcement learning, or accurate asset physics modeling, and
provides object-centric demonstrations directly extracted from a video where humans interact with the objects. It
also supports various robot embodiments, and generates multiple varied trajectories from a single demonstration.

parallelizing data generation without physical robot hardware. Utilizing the privileged information
from the simulator, Mahler et al. [10] generates large and diverse data for robot grasping. Katara
et al. [35], Wang et al. [36] generate large-scale robot data in simulation using reinforcement learning,
trajectory optimization, and motion planning. MimicGen [58] synthesizes diverse simulations from a
single human tele-operation sequence, combining motion planning and trajectory replaying. Despite
efforts to bridge the sim-to-real gap through domain randomization [59], improved asset and scene
generation [35, 36], the resulting simulation data often exhibit significant visual discrepancies from
real-world observations, requiring co-training on real data to enable effective transfer [60].

Real2Synthetic Data Generation. To mitigate this visual domain gap, some works augment and
repurpose real RGB data instead of synthesizing it from scratch. For example, Chen et al. [62]
employs generative models for inpainting robot embodiment features into real images, enabling data
synthesis for robots with different morphologies. However, such approaches still require human
teleoperation for initial demonstrations. Further, they lack the ability to generate additional diverse
trajectories beyond the provided demonstrations. Similarly, Lepert et al. [64], Duan et al. [66] use
hand-pose tracking to guide inpainted robot end-effector trajectories from human demonstrations.
While these methods reduce the need for direct teleoperation, they typically generate only a single
trajectory per video and lack support for computationally-scaled trajectory diversity. In contrast,
R2R2R can generate multiple, diverse robot trajectory renderings and action rollouts from a single
human demonstration. Policies trained solely on R2R2R-generated data achieve comparable real-
world performance with those trained on human teleoperation data.

Real2Sim2Real Data Generation. To generate diverse trajectories from a single demonstration while
bridging the sim-to-real gap, many methods follow a Real2Sim2Real paradigm—using real-world
observations to build simulated environments to train policies deployed back in the real-world. Prior
work [67] shows that tuning physics parameters can reduce dynamics mismatch, but large visual
domain gaps often still necessitate test-time perception modules. Recent methods [37, 68, 38, 63]
reduce this visual gap by constructing digital twins or “digital cousins”’[69] from real scans. These
approaches vary in their reliance on teleoperation, simulation, and trajectory diversity—but many
still depend on teleoperated demos, handcrafted rewards, or accurate physics models, limiting
scalability. For example, DexMimicGen[63] uses fixed simulation assets; RoboVerse [38] supports
only rigid objects; and RialTo [70] and CASHER [39] require manual articulation labeling and
reward engineering. While Video2Policy [37] avoids reward tuning via vision-language models,
it still requires test-time object detection due to visual mismatches. These pipelines also rely on
physics engines, which demand high-fidelity meshes for collision checking and extensive tuning.
RoboGSim [61] avoids simulation but lacks support for trajectory diversity from a single demo. In
contrast, R2ZR2R addresses these limitations by: (1) extracting object trajectories from human videos,
(2) segmenting object parts automatically, (3) rendering realistic observations to remove reliance on
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Figure 3: 3D Gaussian Splat Object Reconstructions with part-level segmentations derived from feature-based
grouping. Objects are reconstructed and segmented into rigid or articulated components using GARField [74].

additional perception models, (4) eliminating the need for collision modeling and detailed meshes,
and (5) generating diverse trajectories from a single demonstration.

3 Assumptions

We assume objects are rigid or articulated, and manipulated on a table-top setup under quasi-static
conditions. Object surfaces are assumed to exhibit low specularity to support robust geometry
reconstruction and visual feature extraction. We also assume that during human demonstrations,
objects are not placed in configurations that lead to complete mutual occlusion. Approximate camera
poses relative to the robot in the physical setup are assumed to be available, enabling the generation
of observations from nearby viewpoints during data collection. Learned policies take RGB image
observations and robot’s proprioceptive states as inputs.

4 Method

Real2Render2Real (R2R2R) is a data generation pipeline for synthesizing diverse robot demonstration
data consisting of RGB-action pairs from a single human demonstration and multi-view object scan.
R2R2R consists of three primary stages: (1) real-to-sim asset and trajectory extraction, where
rigid or articulated object geometry and part trajectories are extracted from real-world smartphone
captures; (2) augmentation, where object initialization is randomized and object motion trajectories
are interpolated if appropriate; and (3) parallelized rendering, where diverse photorealistic robot
executions are generated using IsaacLab [42], scalable with the amount of available GPU memory
and the numbers of GPUs.

4.1 Real-to-Sim Asset Extraction

We extract 3D object assets from smartphone scans using a two-stage process inspired by [71, 72].
First, we reconstruct object geometry and appearance using 3D Gaussian Splatting (3DGS) [73],
then apply GARField [74] to segment the scene into semantically meaningful parts by lifting 2D
masks into 3D. This enables both object-level and part-level decomposition, including articulated
components. To support mesh-based rendering, the resulting Gaussian groups are converted into
textured triangle meshes via an extended version of [75].

4.2 Real-to-Sim Trajectory Extraction

Given a smartphone video of a human manipulating the scanned objects, R2R2R extracts the 6-DoF
part motion of the object and its parts using 4D Differentiable Part Modeling (4D-DPM) introduced
in [71]. Each 3DGS object part is embedded with pre-trained DINO features, enabling part pose
optimization through differentiable rendering. We extend [71]’s implementation to track single or
multiple rigid objects, as well as articulated ones, from demonstration videos.

While there are many alternative pipelines that convert real images into 3D assets, we adopt 3DGS-to-
mesh conversion for two key reasons: (1) it enables background—foreground segmentation and part
decomposition via 3D grouping [74], which is critical for extracting object part-specific trajectories
from monocular human demonstrations; and (2) it maintains compatibility with both 4D-DPM trajec-
tory reconstruction and instanceable mesh-based rendering engines, allowing seamless integration



into our large-scale rendering pipeline. This process requires no fiducials or hardware beyond a
smartphone camera, making it well-suited for scalable and accessible real-to-sim data generation.

Interpolation Methods for Object Trajectory Diversity: A key contribution of Real2Render2Real
is the ability to synthesize multiple valid 6-DoF object trajectories from a single human
demonstration. In the case of multiple rigid objects that interact, (e.g. putting a mug
on a coffee-maker) the original demonstration is valid only for a specific initial object
configuration, and naively replaying it from a new initial pose would fail. To address
this, we introduce a suite of trajectory interpolation and resampling techniques that adapt
the original trajectory to new start and end poses while preserving its semantic intent.

We begin with a reference trajectory 7 € R” %7 consisting
of T" waypoints provided by the part tracking from the
demonstration video, each encoding an object orientation
(quaternion) and position. Given a new initial pose Xggar
and the desired end pose X¢pg from human demonstration,
we apply a spatial normalization that transforms the original
trajectory into a canonical space. We compute the affine
transform between the original and target endpoint poses, Figure 4: Trajectory Interpolation
apply it to the translational component of the trajectory, R2R2R adapts object motion to varied
and interpolate keyframe orientations using spherical linear ~start/end configurations via spatial normal-
interpolation (Slerp). This results in a new trajectory 7/ that 1zation and Slerp.

begins and ends at the desired poses while respecting the

structure of the original motion. While these trajectories preserve high-level semantic intent, they
are generated without explicit collision avoidance and may result in infeasible paths when initialized
behind occluding objects. To mitigate this, we apply a sampling heuristic that biases the distribution
of initial placements away from the goal pose (see Fig 4).

Grasp Pose Sampling: R2R2R estimates 3D hand keypoints from the demonstration video using [76],
then determines object-hand interactions by computing the Euclidean distance between keypoints
(index fingertip and thumb) and the centroids of all segmented object parts. This produces a distance
matrix indexed over time and object parts. We identify the grasped part as the one with the minimum
aggregate distance across the trajectory, effectively selecting the object most consistently proximal to
the hand throughout the demonstration. To generate physically plausible grasps, we sample 3DGS
means to construct a coarser triangle mesh (distinct from the high-resolution rendering mesh), apply
surface smoothing and decimation to obtain consistent normals, and use an analytic antipodal grasp
sampler following [10] to determine candidate grasp axes. For bimanual tasks, this process is applied
independently per hand to infer separate object associations and grasps, supporting coordinated
actions such as lifting or stabilization.

Differential Inverse Kinematics: For each grasp and object trajectory pair, we solve a differentiable
inverse kinematics problem using PyRoki [77]. The solver computes smooth joint-space trajectories
that induce the desired object motion across the pre-grasp, grasp, and post-grasp phases. Crucially,
our method does not require modeling object dynamics or simulating physics interactions. Instead of
solving for joint torques that would physically induce object movement (as in dynamic simulation),
we assume the object rigidly follows the trajectory during contact. This kinematic assumption avoids
challenges like contact modeling, compliance, or friction estimation. The solver simply ensures
that robot kinematics can track the desired object motion subject to joint limits, and during pre- and
post-grasp phases we additionally add smoothness and velocity costs to the differentiable IK problem,
which generates valid grasp approach motions.

Rendering Diverse Environment Contexts: We apply domain randomization across both scene
geometry and rendering parameters. This includes randomized lighting conditions (e.g., intensity,
color temperature, background images), camera extrinsics (uniformly sampled up to 2cm translation
and 5° rotation), and object initial poses (sampled within a workspace-relevant range). By modeling
3D object-centric representations, we can apply these augmentations directly during rendering.
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Figure 5: Physical Experiments Comparing Real2Render2Real to Human Teleoperation Data Efficiency
Task success rate is plotted against data generation time in hours. Solid lines represent performance averaged
across mo-FAST and Diffusion Policy. The Real2Render2Real line (blue square) includes points corresponding
to 50, 100, 150, and 1000 trajectories generated by a single Nvidia RTX 4090. The Human Teleoperation
line ( square) includes points corresponding to 50, 100, and 150 trajectories. For each task, each model
is evaluated 15 times on the same set of pre-determined, in-distribution object pose. The Real2Render2Real
data generation time includes a 10-minute setup cost, while the Human Teleoperation time is based on the
real trajectory collection time of 150 demonstrations. Exact numbers for evaluation results can be found in
Section 9.1.

Changes in camera pose or lighting do not affect the underlying kinematic rollout, allowing R2ZR2R
to generate diverse visual contexts from a single demonstration. These augmentations expand the
data distribution and improve generalization by mitigating the appearance gap and covariate shift
between synthetic demonstrations and real-world deployment.

High-Throughput Rendering: IsaacLab [42] supports GPU-parallel execution of multiple envi-
ronment contexts using tile-based rendering, deep-learning super sampling (DLSS), and mesh asset
instancing. On a single NVIDIA RTX 4090, R2R2R uses the IsaacLab framework to render complete
robot demonstrations at an average rate of 51 demonstrations per minute—compared to 1.7 demon-
strations per minute via human teleoperation—yielding over a 27 x speedup. This throughput scales
linearly with the number of rendering GPUs, as depicted in Figure 2. Data generation/collection time
per task can be found in Table 7.

4.3 Policy Learning

We consider two modern imitation learning architectures: Diffusion Policy [20] and 7mo-FAST [78].
We train Diffusion Policy from scratch for 100k steps conditioned on a 4-timestep history of propri-
oception and 448px RGB observations to iteratively denoise 16 future absolute end-effector poses
in SE(3). We finetune my-FAST for 30k steps using Low Rank Adaptation (LoRA) [79] (rank=16),
which takes 224px square image observations (to match pretraining resolution) and predicts a 10-step
relative joint angle action-chunk. Training the diffusion policy takes approximately 3 hours on a
single NVIDIA GH200, while m-FAST finetuning takes 11 hours. At deployment, both models
receive raw RGB images and robot proprioception—SE(3) absolute end-effector pose for diffusion
and joint positions for my-FAST—and output the corresponding action targets. To improve temporal
consistency between actions predicted at different timesteps, we apply temporal ensembling [23] to
predicted action-chunks during execution for both models. More training details can be found in
Section 9.7.



5 Experiments

We conduct 1,050 physical robot evaluations on an ABB YuMi IRB 14000 Bimanual Robot (a robot
embodiment unseen during mo-FAST pre-training) across five manipulation tasks using the trained
policies. Policies are trained on either human teleoperation data or synthetic demonstrations generated
by R2R2R. To assess how policy performance scales with training data, we train models with 50, 100,
150, and 1,000 rendered trajectories and up to 150 teleoperation trajectories per task. To ensure a fair
comparison, all models are trained for a fixed number of training steps using only third-person RGB
observations. For each task, each model is evaluated 15 times on the same set of pre-determined,
in-distribution object pose.

We deliberately selected tasks to highlight R2R2R’s ability to scale across diverse manipulation
scenarios that involve varying physical and kinematic structures. Specifically, the tasks span: single-
object picking (“pick up the toy tiger”), multi-object interaction (“put the mug on the coffee maker”),
articulated object manipulation ( “turn the faucet off” and “open the drawer”), and bimanual coordi-
nation ( “pick up the package with both hands”). These categories correspond directly to R2R2R ’s
support for part-level segmentation, articulated object reconstruction, and multi-arm grasp planning,
and are visualized in appendix Sections 9.3.1 to 9.3.5. We provide additional ablation experiments
on trajectory interpolation (Section 9.2.1), increased background randomization (Section 9.2.2), and
sim-real co-training (Section 9.2.3) in the appendix.

5.1 Performance Scaling and Comparison

To evaluate how well R2ZR2R-generated data supports policy learning compared to human teleoperated
data, we analyze performance trends as a function of dataset size across the five tasks described above.
Results are summarized in Figure 5. We observe that R2ZR2R-generated data scales predictably with
dataset size: success rates increase monotonically for most tasks as the number of demonstrations
grows. On the “Put the mug on the coffee maker” task (see Figure 5b), performance of Diffusion
Policy trained on R2R2R data improves from 33.3% at 150 demos to 53.3% at 1000 demos, while -
FAST jumps from 33.3% to 80.0%. While higher quality, real-world data offers better performance
in low-data regimes (e.g., mo-FAST reaches 73.3% at 150 real demos vs. 33.3% at 150 R2R2R
demos as shown in Figure 5b), as the scale increases to 1000 demos, R2R2R achieves performance
that matches or surpasses teleoperation across multiple tasks. This suggests that while real data is
more efficient per demonstration, R2ZR2R’s generation enables scaling trajectory diversity far beyond
human throughput, achieving competitive final performance with less collection effort.

To assess whether this performance is statistically comparable, we conduct formal significance and
equivalence testing across all tasks and models. Appendix 9.9 shows that on the evaluated tasks,
there are no statistically significant differences between policies trained on R2R2R versus human
teleoperation data on the tasks we evaluated. Two One-Sided Tests (TOST) further suggest that the
observed differences fall within a £5% margin, indicating similar overall performance.

6 Conclusion

We propose R2R2R, a scalable data generation pipeline that creates robot training data from an object
scan and a human demonstration video. R2R2R mitigates limitations of prior work by removing the
need for teleoperation, robot hardware, or dynamics simulation. It leverages 3D Gaussian Splatting
to represent both rigid and articulated objects, enabling parallel rendering using Gaussian-converted
meshes and scalable rendering engines. These realistic renderings serve as visual observations for
policy training. Given the robot’s URDF, R2R2R synthesizes diverse robot trajectories with extracted
object motion from one human demonstration using differential inverse kinematics. Experiments on
five robotic tasks suggest that policies trained on data generated by R2R2R scale with data volume
and perform comparably to those trained on teleoperated demonstrations, demonstrating that RZR2R
is a practical and scalable pipeline for real-world robot dexterous manipulation policy learning.



7 Limitations

Real2Render2Real (R2R2R) enables scalable data generation and competitive real-world performance,
but several limitations remain.

Reconstruction and Simulation Fidelity. R2R2R relies on vision-based reconstruction meth-
ods—such as 3D Gaussian Splatting and mesh conversion—that yield high-fidelity appearance but
often lack watertight or physically plausible geometry. These limitations make it difficult to simulate
realistic physical interactions, especially in contact-rich settings. As a result, RZR2R forgoes physics
simulation entirely. While this design choice boosts scalability, it also restricts modeling of important
dynamics such as friction, compliance, and force feedback. As real-to-sim pipelines mature in their
physical realism [80], we anticipate extending R2R2R toward non-prehensile and dynamic tasks.

Two-Stage Input. While a single dynamic video (moving objects, moving camera) as input would
offer higher scalability, current image-to-mesh pipelines lack the necessary multi-view consistency
and self-supervised articulated part segmentation, both crucial for tasks like opening drawers or
turning faucets. Future directions include unified pipelines based on emerging 4D-tracking and
reconstruction works.

Scene Diversity and Collision Awareness. Trajectory generation in R2R2R is performed via
geometric interpolation, without considering environmental context such as distractor objects or
obstacles. As a result, synthesized trajectories may intersect with the scene geometry, leading to
physically infeasible plans. Incorporating fast motion planning techniques during trajectory synthesis
could improve collision avoidance and robustness, particularly in cluttered or multi-object scenes.

Scope of Manipulation Tasks. The current framework focuses exclusively on rigid and articulated
objects using prehensile manipulation. It does not support deformable object handling or non-
prehensile strategies such as pushing, toppling, or sliding. These interactions often demand accurate
metric depth estimates and fine-grained physical modeling—both of which are challenging with
monocular video and approximate geometry. Extending R2R2R to these broader manipulation
regimes remains an open direction.

Grasping Generality. R2R2R’s grasp generation module currently uses antipodal grasp sampling,
which limits compatibility to parallel-jaw grippers. This restricts the generality of trained policies
and excludes multi-fingered or anthropomorphic hands, which require richer grasp representations
and contact models. Supporting these more complex end-effectors would require advances in grasp
synthesis and simulation.

Tracking Robustness. Like other object-centric pipelines, R2ZR2R is vulnerable to tracking failures
under fast motion, heavy occlusion, poor texture, or reflective surfaces. In such cases, object
reconstructions and pose tracks may be inaccurate, resulting in degraded data quality. These failures
can lead to invalid grasps or trajectories that do not transfer well to the real world. Robustifying
tracking and adding confidence-aware filtering or correction is an important area for future work.

Policy Failure. Precise perception is still a major issue for visual imitation learning models (i.e. they
will still miss the handle of the mug; sometimes an off-center grasp will lead to rotation of the object,
resulting in missed grasps). Since we are only using third-person cameras, we hypothesize the models
may achieve better performance by adding wrist cameras to increase grasp approach precision.

Addressing these limitations—through richer physical modeling, context-aware planning, expanded
manipulation capabilities, and improved reconstruction robustness—offers a plausible path toward
more general and reliable robot learning at scale.
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9.1 Raw Evaluation Results

We report raw task success rates for each policy in Table 2.

. Teleop Trajectories R2R2R Trajectories
Task / Policy 50 100 150 50 100 150 1000
Pick up the tiger
Diffusion Policy 6.7% 66.7% 733% | 0.0% 26.7% 40.0% 66.6%
mo-FAST (Finetuned) 26.7% 40.0% 733% | 0.0% 0.0% 6.7%  80.0%
Put the mug on the coffee maker
Diffusion Policy 133% 333% 40.0% | 133% 133% 333% 53.3%
7o-FAST (Finetuned) 6.6% 133% 733% | 0.0% 0.0% 333% 80.0%
Pick up the package with both hands
Diffusion Policy 66.7% 66.7% 80.0% | 20.0% 333% 20.0% 73.3%
mo-FAST (Finetuned) 6.7% 46.7% 60.0% | 6.6% 133% 6.6% 66.7%
Open the drawer
Diffusion Policy 20.0% 60.0% 66.7% | 133% 333% 46.7% 66.7%
mo-FAST (Finetuned) 0.0% 40.0% 60.0% | 0.0% 20.0% 13.3% 86.6%
Turn the faucet off
Diffusion Policy 20.0% 46.7% 66.7% | 20.0% 333% 533% 80.0%
7o-FAST (Finetuned) 353% 60.0% 80.0% | 0.0% 133% 13.3% 80.0%

Table 2: Comparison of Physical Policy Success Rates Across Training Sources. Task success rates for
Diffusion Policy and 7-FAST trained exclusively on either human teleoperation data (left) or R2ZR2R-generated
data (right). Each policy was evaluated on 15 trials per task using a binary success metric: a score of 1 is
assigned for successful task completion, and O otherwise.
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9.2 Additional Ablation Experiments
9.2.1 Trajectory Interpolation

R2R2R generates diverse trajectories by adapting a single human demonstration to new object poses
through interpolation and spatial transformation (see Section 4.2 and Figure 4 for visualization). To
evaluate the impact of this trajectory interpolation step, we ablate it by replaying only the original
object motion track without adapting to varied initial and goal poses. Table 3 shows a substantial
drop in performance when interpolation is disabled: on the “Put the mug on the coffee maker” task,
success rates fall from 80.0% to 0.0% for my-FAST and from 53.3% to 6.7% for Diffusion Policy.
This highlights that simply replaying object motion from a single demonstration is insufficient for
generating transferable robot behaviors—trajectory adaptation is crucial to scaling data diversity in
object-centric manipulation.

Policy w/o Trajectory Interpolation (1k)  w/ Trajectory Interpolation (1k)
7o-FAST (Finetuned) 0.0% 80.0%
Diffusion Policy 6.7% 53.3%

Table 3: Success rates on “Put the mug on the coffee maker” using R2R2R-generated data with and without
trajectory interpolation (1,000 demos). Interpolation enables adapting object motion to varied contexts, which is
critical for policy generalization.

9.2.2 Background and Tabletop Texture Augmentation

Our default data generation pipeline includes moderate visual augmentation, such as randomized
lighting, camera pose, and object placement, as well as sampling from a limited set of lightbox-style
background environments. To study the effect of stronger visual perturbations, we apply more
aggressive augmentation that includes a wider variety of lightbox backgrounds and diverse tabletop
textures (see Figure 6).

Table 4 reports the success rates on the task Put the mug on the coffee maker under this more
varied visual setting. We observe a consistent drop in policy performance across both my-FAST and
Diffusion Policy when trained on data with aggressive background and surface augmentation. This
result suggests that while visual diversity is generally beneficial, overly strong appearance pertur-
bations may harm policy learning when not properly balanced. Future work may investigate more
principled augmentation schedules or adaptive augmentation strategies to preserve generalization
while maintaining performance.

Figure 6: Background and Tabletop Texture Augmentation — Each image corresponds to a different
environment.
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Policy Less Background Aug. (1k) More Background Aug. (1k)

7o-FAST (Fine-tuned) 73.3% 35.3%
Diffusion Policy 53.3% 33.3%

Table 4: Success rate comparison on Put the mug on the coffee maker with and without background and tabletop
texture augmentation. We generated 1000 trajectories for each setting and evaluated across 15 trials.

9.2.3 Sim-and-Real Co-training

While sim-and-real co-training is not the main focus of this paper, we included additional results
comparing policies exclusively on either R2ZR2R-generated data, human teleoperation data, and
co-training setup that combines data from both sources. Specifically, for the task Put the mug on
the coffee maker, we trained a policy using 1,000 R2ZR2R-generated demonstrations together with
150 human teleoperation demonstrations. We do not perform additional importance sampling or
re-weighting of human teleoperation data. For the my-FAST policy, co-training achieved a success
rate of 73.3%, which is on par with training using only R2R2R data or only real demonstrations
individually. Co-training for diffusion policy yields a significant improvement over either real data
only or R2ZR2R-generated data only, where the performance improved from 40.0% to 86.7%. We
hypothesize that since LoRA [79] serves as a significant regularizer for my-FAST, end-to-end fine-
tuning with completely unfrozen model with additional hyperparameters tuning could lead to better
performance. For more in-depth analysis on how co-training can improve policy performance, please
refer to [60, 81].

Policy Real Data Only (150) R2R2R Data Only (1k) Co-Training (150+1k)
7o-FAST 73.3% 80.0% 73.3%
Diffusion Policy 40.0% 53.3% 86.7 %

Table 5: Success rate comparison on Put the mug on the coffee maker under different training datasets mixtures.
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9.3 Task Visualizations

Physical policy rollout figures show model input RGB frames from real policy evaluation successes
using either Diffusion Policy [20] or mo-FAST [78]. The depicted policies were trained exclusively
on R2R2R synthetic data.

9.3.1 Put the Mug on the Coffee Maker

Se i . TN < SN

Figure 9: Put the Mug on the Coffee Maker — Physical Policy Rollout.
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9.3.2 Turn off the Faucet

Figure 11:

Figure 12: Turn off the Faucet - Physical Policy Rollout.

Note: For human teleoperated demonstrations, the teleoperator would push down on the faucet handle
in a non-prehensile motion to turn it off instead of grasping the handle and twisting it closed as is
done with R2R2R—where only prehensile grasping is currently supported.
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9.3.3 Open the Drawer

Figure 13: Open the Drawer - Demonstration Video Frames. Note: The true video order—and thus the
tracked trajectory—was in reverse, as a full multi-view scan for the inner drawer requires it to first be in an open
configuration.

Figure 15: Open the Drawer - Physical Policy Rollout.
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9.3.4 Lift up the Package with Both Hands

Figure 18: Lift up the Package with Both Hands - Physical Policy Rollout.
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9.3.5 Pick up the Tiger

diiiess: Sk

Figure 21: Pick up the Tiger - Physical Policy Rollout.
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9.3.6 Put the Mug on the Coffee Maker (Franka Robot Embodiment)

Unlike vanilla 7y-FAST (DROID) [78], which operates under joint velocity control, RZR2R records
only joint positions. To accommodate this difference, we fine-tuned 7y-FAST (DROID) to predict
delta joint positions (and absolute gripper position, consistent with [78]). Since Franka’s impedance
control mode can be imprecise, we apply blocking control with temporal ensembling to improve
execution accuracy.

Although the learned policy occasionally completes the task successfully, we observe several consis-
tent failure modes, largely stemming from limitations of the default Franka gripper:

1. Collision during grasping: The grasp approach that is near parallel to the table often causes
the gripper to collide with the table surface during mug pickup.

2. Off-center grasp: The gripper’s wide jaws tend to produce asymmetric contacts, with one
pad closer to the mug than the other. This imbalance induces rotation, leading to slippage.

3. Difficulty in precise placement: The wide gripper also makes it challenging to release the
mug accurately onto the coffee machine.

To mitigate these issues, we recommend using the Robotiq 2F-85 gripper in future experiments. Its
smaller form factor and improved grasping precision may reduce failure rates and improve placement
consistency.

Figure 23: Put the Mug on the Coffee Maker (Franka Robot) - Physical Policy Rollout.
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9.4 Qualitative Ablations

Figure 24: Real2Render2Real (Views From Both Cameras Shown). Base augmentations used in the main
R2R2R experiments include: random sphere lighting, camera pose perturbation, robot initial joint perturbation,
and randomized object initialization uniformly distributed via manual parameters.

Figure 25: Trajectory Interpolation Turned Off (Top Camera Views Shown). Note the fixed configuration of
the mug with respect to the coffee maker. With trajectory interpolation off for multiple rigid bodies, we may
only densely follow the tracked trajectories shown in the video demonstration. Without it, the only method
for increasing trajectory diversity would be to augment with part trajectories from adding/tracking additional

demonstration videos.

Figure 26: Random Lighting Augmentation Turned Off (Top Camera Views Shown). We turn off the
randomized sphere light sources with varying colors and intensities. Uniform lighting is available from the only
light source in the render scene — the skybox/dome-light asset.
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9.5 Upfront Processing Time Until Generation

Task Time to Complete
Scanning 1 min
Demonstration <10 sec
GARField Segmentation [74] 2 min
3DGS Optimization 1 min
4D-DPM Tracking [71] 3 mins
SuGaR [75] Meshification 2 mins
Asset into IsaacLab 1 min

Table 6: Upfront Processing Time per Task Prior to R2ZR2R Data Generation. Breakdown of one-time
preprocessing steps required to convert a demonstration video and scanned asset into a renderer-ready format for
R2R2R. These steps include segmentation, tracking, meshification, and asset import.

9.6 Data Collection and Generation Time

Task Teleop, 150 demos, 1 operator R2R2R, 1k demos, 1 GPU
Pick up the tiger 60 mins 26.15 mins
Put the mug on the coffee maker 86 mins 38.22 mins
Pick up the package with both hands 90 mins 13.97 mins
Open the drawer 71 mins 16.95 mins
Turn the faucet off 104 mins 16.67 mins

Table 7: Time taken per task to either collect 150 demos through teleoperation with one human operator or

to generate 1000 synthetic demos with R2ZR2R. Note: R2R2R generation times do not include the upfront
processing time until generation.
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9.7 Extended Training Details

We provide hyperparameters for training diffusion policy [20] from scratch and fine-tuning -
FAST [78] with LoRA in Table 8 and Table 9.

Config Value
optimizer AdamW [82]
base learning rate 2e-4
learning rate schedule cosine decay [83]
batch size 64
weight decay 0.09
optimizer momentum B1, B2 =0.9, 0.999 [84]
warm up steps [85] 500
total steps 100,000
observation history 4
action dimension 20 (YuMi)
proprio format absolute eef xyz, 6d rotation, absolute gripper position
action format delta eef xyz, 6d rotation, absolute gripper position
action horizon 16
observation resolution 448

Table 8: Diffusion Policy Hyperparameters

Config Value
optimizer AdamW [82]
base learning rate 2.5e-5
learning rate schedule cosine decay [83]
batch size 32
weight decay 0.09
LoRA Rank 16
LoRA Alpha 16
optimizer momentum 51, B2 =0.9, 0.95 [84]
warm up steps [85] 1000
total steps 30,000
action/proprio dimension 16 (YuMi) 8 (Franka)
proprio format absolute joints positions, absolute gripper position
action format delta joints, absolute gripper position
action horizon 10
observation resolution 224

Table 9: 7o-FAST hyperparameters

9.8 Extended Inference Details

In experiments, we use a Pi0-FAST model to predict robot actions as frequency-space tokens. While
effective as an out-of-the-box VLA model, its autoregressive decoding procedure is inherently slow.
Each token must be generated sequentially before the trajectory can be reconstructed. During
evaluation, this latency posed a practical bottleneck: the raw observation-to-action inference time
was high and resulted in slow experimental evaluations. We investigated whether it was possible to
reduce inference latency without retraining the core model.

Our solution is a VLM early-stopping trick that exploits the frequency coefficient token ordering in the
FAST implementation (Oth and lower harmonics first) and energy compaction property of the Discrete
Cosine Transform (DCT). Robot action trajectories tend to be smooth and temporally correlated,
meaning that most of their information is concentrated in the low-frequency coefficients. Instead of
waiting for the model to decode the full set of coefficients, we stop decoding early, reconstruct the
trajectory using only the first few frequency coefficients, and immediately issue the action.
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This trades a small increase in trajectory reconstruction mean squared error (since high-frequency
details are dropped) for a substantial reduction in latency—often cutting inference time nearly in half.
In practice, the essential structure of the action are preserved with just the first few DCT harmonics,
making the trade-off favorable in latency-critical evaluation settings. Optional refinements, such as
action-chunk ensembling or other smoothing techniques, can be added to compensate for missing
fine-grained detail. We leave as future work more extensive evaluations of this test-time compute to
reconstruction error trade-off.
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9.9 Statistical Comparison Between Teleoperation and R2R2R Data Efficacy

To evaluate whether R2ZR2R-generated data yields performance comparable to human teleoperation,
we apply the Two One-Sided Tests (TOST) procedure across all tasks and policies. Unlike traditional
significance tests that ask whether two conditions differ, TOST tests whether the difference between
them is small enough to be considered practically negligible. Specifically, we test whether the absolute
difference in success rates falls within a +5% margin—chosen to reflect a practically insignificant
difference for robot policy success rates.

As shown in Table 10, no individual task satisfies both conditions required for statistical equivalence
(i.e., both p-values below 0.05). However, the results consistently show no strong evidence that
either R2R2R or teleoperation outperforms the other. In particular, the global test across all tasks
yields one p-value below 0.05 and one above, suggesting performance is similar but not provably
equivalent under the chosen threshold. These results support the interpretation that R2ZR2R can match
the effectiveness of teleoperation across the evaluated tasks, while offering a significantly more
scalable method for data generation.

Task Policy TOST lower p TOST upper p
Pick un the tov tiser Diffusion Policy 0.2656 0.5359
P yug 7o-FAST (Finetuned) 0.6891 0.1429
Diffusion Policy 0.5349 0.2712
Put the mug on the coffee maker 70-FAST (Finetuned) 0.6891 0.1429
Diffusion Policy 0.6891 0.1429
Turn the faucet off 7o-FAST (Finetuned) 0.3729 03729
Open the Drawer Diffusion Policy 0.2656 0.5359
P 7o-FAST (Finetuned) 0.8051 0.0806
. . Diffusion Policy 0.1429 0.6891
Pick up the package with both hands - " o1 (Finetuned) 0.3955 0.3955
Overall (All Tasks) - 0.4271 0.0497

Table 10: Equivalence testing (TOST) between human teleoperation (150 trajectories) and R2R2R-
generated data (1,000 trajectories). We report the p-values from Two One-Sided Tests (TOST) applied to each
task and policy, using a 5% success rate margin as the equivalence threshold. The “lower p” tests whether
R2R2R performs no worse than teleoperation by more than 5%, while the “upper p” tests whether teleoperation
performs no worse than R2R2R. Statistical equivalence is only confirmed when both p-values fall below 0.05.
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