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Abstract

Neural models learn representations of data that lie on low dimensional manifolds. Multiple
factors, including stochasticities in the training process may induce different representations,
even when learning the same task on the same data. However when there exist a latent
structure shared between different representational spaces, recent works have showed that is
possible to model a transformation between them. In this work we show how by leveraging
the differential geometrical structure of latent spaces of neural models, it is possible to capture
precisely the transformations between model latent spaces. We validate experimentally
our method on autoencoder models and real pretrained foundational vision models across
diverse architectures, initializations and tasks.

Recent research reveals that neural models often develop similar internal representations
when exposed to similar inputs, a phenomenon observed in both biological (Laakso and
Cottrell, 2000; Haxby et al., 2001) and artificial systems (Li et al., 2015; Moschella et al., 2023;
Huh et al., 2024; Kornblith et al., 2019a). This suggests a certain consistency in how NNs
encode information, emphasizing the importance of studying these internal representations,
and the transformations that relate them. A simple and effective recipe to do this is the one of
relative representations (Moschella et al., 2023), where samples are represented as a function
of a fixed set of latent representations. The similarity function employed is cosine similarity,
hinting at the fact that representations across distinct models are subject to angle preserving
transformations. However, the choice of similarity function should not be limited to capture
invariances to one class of transformations, as shown in Cannistraci et al. (2024)In this paper
we employ geodesic distance in the latent space as a metric for relative representations. This
approach ensures that the relative space remains approximately invariant to the isometries
of the data’s manifold, as characterized by a Riemannian structure. Our contributions can
be summarized as follows: (i) We propose a new representation that capture the isometric
transformation between data manifolds learned by distinct models. (ii) We test relative
geodesics on retrieval and stitching tasks on autoencoders and real vision foundation models,
across different seeds, architectures and training strategies, outperforming previous methods.

Relative geodesic representation

Notation and Background Neural networks (NNs) can be viewed as parametric functions
Fθ, which are composed of an encoding map and a decoding map, represented as Fθ = Dθ2◦Eθ1 .
The encoder Eθ1 : X 7→ Z generates a latent representation z = Eθ1(x), where x ∈ X to the
input domain X , and the latent space Z. The decoder Dθ2 is responsible for performing
the task at hand, such as reconstruction or classification. For simplicity, we will omit the
parameter dependence (θ) in our notation moving forward. For any single module E (or
equivalently D), we will use EX to denote that the module E was trained on the domain X .
We provide the necessary background to introduce our method in Appendix A.
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Relative geodesics representations When considering a differential geometry perspective,
the problem of latent space communication can be interpreted as finding a transformation
between the data manifolds M1,M2 approximated by two neural models F1, F2. The
relative representation framework can capture this transformation implicitly if equipped
with the right metric. A natural candidate for this metric is the geodesic distance defined on
M1,M2, respectively. This choice make the relative representations invariant to isometric
transformation of the manifolds M1,M2. However, for high dimensional problems, the
high cost of computing the geodesic renders the above methods inappropriate (Shao et al.,
2018; Chen et al., 2019). Furthermore, one can argue against directly using the latent
geometry induced by deterministic models from a theoretical perspective (Hauberg, 2019),
as it may result in undesirable properties, e.g. the resulting geodesics going outside of the
data manifold. We therefore consider using the approximate curve energy of the straight
line (in the Euclidean sense) connecting the representations in the latent space:

RRgeo(z;AX ) =
⊕

ai∈AX

E(γ̃(z, EX (ai)))

where γ̃(z1, bz2) = (1 − α)z1 + αz2 is the convex combination between the points z1, z2.
Further descriptions on our method for obtaining the geometric representations can be found
in Section A.1.

Experiments

In the following we will evaluate relative geodesic representations on the latent communication
problem across models trained with different initializations, architectures, and tasks.

Aligning neural representational spaces trained independently
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Figure 1: Aligning latent spaces of autoencoders: MRR score as a function of the number
of anchors on pairs of autoencoders trained with different initializations on the MNIST

(left), FashionMNIST (center), CIFAR10 (right) datasets respectively. In green, we plot the
performance of Moschella et al. (2023), in blue, our method. Shaded area indicates standard
deviation across different random set of anchors. Relative geodesics consistently outperform
the cosine baseline, obtaining peak performance.

Experimental setting For the following experiment we trained pairs of convolutional
autoencoders (F1, F2) with different initializations on the MNIST (Deng, 2012), FashionMNIST
(Xiao et al., 2017), CIFAR10(Krizhevsky, 2009) datasets. The architecture of the convolutional
autoencoder is detailed in the Appendix. After training we extracted 10k samples from
the test set, and map them to the latent spaces of the two models, to representations
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Z1 = E1(X),Z2 = E2(X) respectively. Starting from a small set of anchors in correspondence
AX 7→ AY , the objective is to evaluate how well from the relative representations is possible
to recover the full correspondence between the representations Z1,Z2. As baseline we
compare with relative representations using cosine similarity (Moschella et al., 2023).

Analysis of results In Figure 1 we plot the performance in terms of MRR on MNIST,
FashionMNIST, CIFAR10 datasets. To obtain the score we first compute similarity ma-
trices between relative representations of the two spaces as D(Z1,Z2) where Di,j =

RR(Z1))Ti RR(Z2)j
∥RR(Z1)i∥2∥RR(Z2)j∥2 . Then we compute the Mean Reciprocal Rank (MRR, see Appendix

B.1) on top of the similarity matrix. In the figure we plot MRR as a function of a random
set of anchors, where the shaded areas indicate the standard deviations over 5 different set
of random anchors with the same cardinality. Our method consistently performs better than
Relative Representation, saturating the score with few anchors on all the domains, despite
the different degree of complexity of the latent spaces. In addition, our method show way
less variance in the result, being more robust to the choice of the anchor set.

Takeaway: Relative geodesic representation capture almost perfectly the transformations
between representational spaces of models initialized differently, outperforming Moschella
et al. (2023) in terms of number of anchors needed and robustness.

Stitching autoencoder models

Figure 2: Stitching on Autoencoders: We visualize qualitative reconstructions of sam-
ples, stitching autoencoders of models trained with different initializations on MNIST (left),
FashionMNIST (center), CIFAR10 (right). The first two column shows reconstructions from
the original models; middle columns represent baselines Maiorca et al. (2024a); Lähner
and Moeller (2024); Moschella et al. (2023); the rightmost column is our method. Relative
geodesics yield the best stitching results using just 5 anchors.
Experimental setting For this experiment we consider the same pairs of autoencoders
trained on the MNIST,FashionMNIST, CIFAR10 datasets of section . Starting from a set of five
random anchors we want to estimate a transformation T between the model representational
spaces Z1, Z2. Differently from Moschella et al. (2023), in which zero shot stitching was
achieved by training once a decoder module with relative representations and then exchanging
different encoder modules, here we achieve stitching without training any decoder. We
compute relative representation with respect to the set of anchors, and then compute a
similarity matrix D(Z1,Z2). Then we compute the vector c = argmaxi(D) representing a
correspondence between the two representations matrices Z1, Z2, and use c to fit a linear
transformation T to approximate the transformation between the two domains. We perform
stitching by performing the following operation for a sample x ∈ X : x̃ = D2 ◦ T ◦ E1(x)
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Analysis of results We visualize the results of reconstructions of random samples in Figure
2, comparing with Moschella et al. (2023); Lähner and Moeller (2024); Maiorca et al. (2024a).
For each dataset, each column represents respectively: (i) the original autoencoding mapping
for a sample x of model F1, D1(E1(x)) (ii) D2(E2(x)) (iii) the mapping D2(E1(x)) (iv) the
mapping D2(TanchorsE1(x)) where Tanchors is estimated on the five available anchors, (v)
the mapping D2(TcosineE1(x)) where Tcosine is estimated among all 10k samples with the
correspondence c obtaining in the relative space of Moschella et al. (2023) (vi) Our result
D2(TrelgeoE1(x)) where Trelgeo is estimated from the correspondence obtained in the relative
geodesic space. While the baselines do not reach a good enough reconstruction quality, our
method reconstructions are almost perfect in accordance with results in Figure 1.

Takeaway: The relative geodesic space enables to stitch together neural modules trained
on different seeds.

Zero shot Stitching of vision foundation models

ResNet-50
ViT-16

ViT-32
DinoV2

ResNet-50

ViT-16

ViT-32

DinoV2

0.90 0.73 0.75 0.71

0.95 0.97 0.96 0.94

0.94 0.94 0.96 0.93

0.96 0.96 0.95 0.98

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Accuracies

ResNet-50
ViT-16

ViT-32
DinoV2

ResNet-50

ViT-16

ViT-32

DinoV2

0.91 0.91 0.91 0.91

0.97 0.97 0.97 0.97

0.97 0.97 0.97 0.97

0.98 0.98 0.98 0.98

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Accuracies

ResNet-50
ViT-16

ViT-32
DinoV2

ResNet-50

ViT-16

ViT-32

DinoV2

0.91 0.90 0.89 0.88

0.97 0.97 0.97 0.97

0.96 0.96 0.97 0.96

0.98 0.98 0.98 0.98

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Accuracies

Figure 3: Stitching of vision foundation models: We visualize the accuracies of models
stitched together on a classification task on CIFAR10. We plot cos (Moschella et al., 2023)
(left), geo2 (center), geo1 (right) representations. geo1 results in accuracies that are not
significantly degraded even when performing model stitching.

Experimental setting We perform experiments on pretrained classifiers from Hugging Face,
investigating the accuracies of stitching together different backbones with classfication heads,
on CIFAR10 dataset. For this experiment we follow the stitching procedure of Moschella
et al. (2023), section 5. We consider ResNet-50 (He et al., 2016), Vision Transformers
(ViT) (Dosovitskiy et al., 2021), with both patch 16-224 and patch 32-384, and DinoV2
(Oquab et al., 2024). These models differ in architecture and pretraining tasks (classification,
self supervised contrastive learning). We mainly compare cosine relative representation
(cos)(Moschella et al., 2023), relative geodesic representation assuming Euclidean geometry
on the logits with 20 discretization steps of Equation 1 (geo1) and directly using the
distance of the corresponding logits (geo2) as relative representations, corresponding to 1
discretization step.

Analysis of results The accuracies are shown in Figure 3. We plot confusion matrices
of accuracies indicating that the performance of stitching the backbone of model on each
with the classification head of each column. The accuracies are shown in Figure 3, while the
MRR with respect to cosine similarity are shown in Figure 4 .

Takeaway: Using geometric relative representations yields better accuracies, avoiding
downgrading of performance when performing model stitching.
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Appendix A. Background

Latent Space Communication Given a pair of domains X ,Y, a pair of neural models
trained on them F 1

X , F
2
Y , and a partial correspondence between the domains Γ : AX 7→ AY

where AX ⊂ X and AY ⊂ Y , the problem of latent space communication is the one of finding
a full correspondence Λ : E1(X ) 7→ E2(Y) between the two domains, from Γ. In a simplified
setting, e.g. two models trained with different initialization or architectures on the same
data X = Y and the correspondence is the identity. When X ≠ Y the problem becomes
multimodal.

Relative representations The relative representations framework Moschella et al. (2023)
provides a straightforward approach to represent each sample in the latent space according
to its similarity to a set of fixed training samples, denoted as anchors. Representing samples
in the latent space as a function of the anchors corresponds to transitioning from an absolute
coordinate frame into a relative one defined by the anchors and the similarity function.
Given a domain X , an encoding function EX : X → Z, a set of anchors AX ⊂ X , and a
similarity or distance function d : Z ×Z → R, the relative representation for a sample x ∈ X
is:

RR(z;AX , d) =
⊕

ai∈AX

d(z, EX (ai)),

where z = EX (x), and
⊕

denotes row-wise concatenation. In Moschella et al. (2023), d was
set as cosine similarity. This choice induces a representation invariant to angle-preserving
transformations. In this work, our focus is to leverage the intrinsic geometry of latent spaces
to capture isometric transformations between data manifolds approximations.

Latent space geometry For the latent space of a neural network, it is in general hard to
reason about its Riemannian structure. However, it is often easier to assign a Riemannian
structure to the output space. As such, one can define a pullback metric from the output
space to the latent space, which is a standard operation in Riemannian geometry (see e.g.
Ch.2.4 of Do Carmo and Flaherty Francis (1992)).

Formally, considering the decoder D : Z 7→ X takes as input a latent representations z ∈ Z
and outputs x. Given a Riemannian metric defined on x as GX (x). Then, the Riemannian
metric at z can be obtained as:

GZ(z) =

(
∂x

∂z

)⊤
GX (x)

∂x

∂z
= Jz(D)TJz(D)
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where Jz(D) is the Jacobian of D evaluated at z. The metric tensor GX is useful to compute
quantities such lengths, angles and areas on M. Given a smooth curve γ : [a, b] 7→ M one
can compute the energy E of γ as follows (Shao et al., 2018)

E(γ) =
∫ b

a
v(t)⊤G(t)v(t)⊤dt (1)

which can be approximated using finite difference approaches. Geodesics are minimizers of
this energy Shao et al. (2018).

A.1. Obtaining geometric representations

We use the curve energy / length of a curve to form the relative representations. One can
consider two cases, using Euclidean geometry on the logits and using the Fisher Information
Matrix induced by the output probabilities.

The energy / length of a curve is given by (Shao et al., 2018)

E(γ) = 1

2

∫ b

a
v(t)⊤G(t)v(t)⊤dt, (2)

d(γ) =

∫ b

a

√
v(t)⊤G(t)v(t)⊤dt. (3)

The energy / length can be approximated using discretizations as follow

E(γ) =
N∑
i=1

Ei =
1

2

N∑
i=1

v(ti)
⊤G(ti)v(ti)∆t,

d(γ) =

N∑
i=1

di =

N∑
i=1

√
v(ti)⊤G(ti)v(ti)∆t,

where ∆t = 1
N , with N being the number of discretization steps.

When the step size is small enough, the geodesic energy / length on the latent space can
be approximated by the geodesic energy / length on the output space (Shao et al., 2018).
For Euclidean geometry, the geodesic energy / length is clearly given in closed-form as
the geodesics are straight lines. For certain Fisher-Rao geometries, e.g. the one induced
by categorical distributions, one can derive closed-form expressions of the (approximate)
geodesic energy / length of a curve (Arvanitidis et al., 2022; Miyamoto et al., 2024).

Appendix B. Additional details

B.1. Mean Reciprocal Rank

Mean Reciprocal Rank (MRR) is a commonly used metric to evaluate the performance
of retrieval systems (Moschella et al., 2023). It measures the effectiveness of a system by
calculating the rank of the first relevant item in the search results for each query.
To compute MRR, we consider the following steps:

1. For each query, rank the list of retrieved items based on their relevance to the query.
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2. Determine the rank position of the first relevant item in the list. If the first relevant

item for query i is found at rank position ri, then the reciprocal rank for that query is
1
ri
.

3. Calculate the mean of the reciprocal ranks over all queries. If there are Q queries, the
MRR is given by:

MRR =
1

Q

Q∑
i=1

1

ri
(4)

Here, ri is the rank position of the first relevant item for the i-th query. If a query has
no relevant items in the retrieved list, its reciprocal rank is considered to be zero.

MRR provides a single metric that reflects the average performance of the retrieval system,
with higher MRR values indicating better performance.

B.2. Architectural details

We provide here the architectural details of the convolutional Autoencoders employed in
experiments in Figures 1 and 2

Encoder

3× 3 conv. 32 stride 2-ReLu
3× 3 conv. 64 stride 2-ReLu
Flatten
(64 ∗ k ∗ k)× h Linear
Latents

Decoder

h× (64 ∗ k ∗ k) Linear
Unflatten
3× 3 conv. 64 stride 2-ReLu
3× 3 conv. 32 stride 2-ReLu
Sigmoid

Table 1

For the classifier experiment, in order to obtain geometric representations we need a decoder.
The architecture is shown in Table 2.

Classification head

input dim LayerNorm
input dim× 500 Linear-Tanh
500× 10 Linear

Table 2
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For evaluating the performances of the representations, we train a classifier with the same
architecture as used by Moschella et al. (2023).

Appendix C. Related Works

Representation alignment: There is a growing evidence that neural networks trained
under different settings still tend to generate similar internal representations (Bonheme and
Grzes, 2022; Kornblith et al., 2019b; Klabunde et al., 2023; Li et al., 2015; Bengio et al.,
2014; Maiorca et al., 2024b; Huh et al., 2024), which is shown to be more evident in wide and
large networks Barannikov et al. (2022); Morcos et al. (2018); Somepalli et al. (2022). These
aligned representations make it possible to stitch models together (Lenc and Vedaldi, 2015;
Bansal et al., 2021; Csiszárik et al., 2021), allowing the swapping of components between
different networks.
Latent geometries Shao et al. (2018); Tosi et al. (2014) considered the latent space of
autoencoders, proposing to use a pullback metric, assuming the output space is Euclidean.
For classifiers one can obtain a Riemannian metric primarily using two approaches (Grosse,
2022), either by pulling back the Fisher Information Matrix (Amari, 2016; Arvanitidis et al.,
2022) or by assuming an Euclidean geometry on logit space and pulling back the metric.

Appendix D. Additional results

We show the MRR results of the representations on real models in Figure 4. Surprisingly,
using relative geodesic representations results in loss of MRR.
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Figure 4: MRR of classifiers: cos (left), geo1 (center), geo2 (right)

Conclusive remarks
In this work we explored the framework of relative representation equipped with geodesic
energy to capture the trasformations occuring between neural manifold learn by distinct
neural architecture. As limitation we observe that the evaluation results depend on the
number of discretization steps when evaluating the representations. Future steps include
exploring the multimodal case, when X ≠ Y, different formulation of the energy, and
considering different architectures e.g. VAEs as in (Shao et al., 2018; Arvanitidis et al., 2018,
2022).
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