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Abstract—Rate-distortion theory-based outlier detection builds upon the rationale that a good data compression will encode outliers

with unique symbols. Based on this rationale, we propose Cluster Purging, which is an extension of clustering-based outlier detection.

This extension allows one to assess the representivity of clusterings, and to find data that are best represented by individual unique

clusters. We propose two efficient algorithms for performing Cluster Purging, one being parameter-free, while the other algorithm has a

parameter that controls representivity estimations, allowing it to be tuned in supervised setups. In an experimental evaluation, we show

that Cluster Purging improves upon outliers detected from raw clusterings, and that Cluster Purging competes strongly against

state-of-the-art alternatives.

Index Terms—Outlier detection, clustering algorithms, rate-distortion theory
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1 INTRODUCTION

IN present days, there exists an abundance of datasets con-
taining individual observations that greatly deviate from

the remaining observations, commonly called outliers or
anomalies. The task of finding such outlying/anomalous
observations in datasets is relevant in a multitude of appli-
cations and has received much attention in the last deca-
des [1]. Traditionally, outlier detection was mostly
approached from a statistical perspective, where data are
modeled with distributions, while recently database-ori-
ented methods that focus on efficiency and scalability have
become more popular [2]. A major part of contemporary
research concentrates on using deep learning to detect out-
liers in semi-supervised [3], [4] or unsupervised [5], [6], [7]
settings. These approaches are well motivated for high-
dimensional datasets and have yielded significantly
improved outlier detection accuracy on benchmark data-
sets [8], [9], [10], yet deep learning techniques are also criti-
cized for being data hungry [11] and lacking
interpretability [12]. Both of these deficits gravely affect out-
lier detection since in many research fields large training
datasets are not available [4]. Further, outlier detection tech-
niques are commonly used in high-risk applications such as
intrusion detection [1], where black-box models should gen-
erally be avoided [13].

In contrast, clustering-based outlier detection methods [1]
resort to very intuitive concepts of what an outlier might
possibly be; for instance observations that have abnormal
local density [14]; or observations that do not fit well into

any cluster [15], [16], [17]. A trait that these methods have in
common is that they detect outliers during clustering, for
instance by assigning outliers to a special outlier cluster.
While this trait can be advantageous in several settings, it
also has the downside that outliers are only detected as a
“side-product” of clustering [1]. As a consequence, outliers
detected by methods such as [14], [15], [16], [17] are obser-
vations that are irregular in the respective clustering, yet
not necessarily irregular with respect to the (unclustered)
data.

Another type of clustering-based methods infers outliers
after the raw data were clustered. For instance, the Cluster-
Based Local Outlier Factor (CBLOF) [18] scales distances
between observations and cluster centers by cluster sizes,
regardless of which clustering technique was used. Hence,
CBLOF allows one to choose a clustering method that is
well-suited for the data at hand. However, outlier detection
techniques such as CBLOF [18], [19], [20] still have the same
drawback as the methods mentioned above: They assume
that the computed clustering is sufficient for describing out-
liers in raw data, which can be problematic in scenarios
where it is challenging to perform a good clustering, e.g., in
high-dimensional data [21].

To address this issue, one may resort to information
theory. From an information-theoretic perspective, a clus-
tering is a lossy compression of the raw data [22], where a
raw observation is represented by the cluster it was
assigned to. The loss (distortion) that occurs during such a
clustering-compression can be combined with a cluster’s
degree of compression (rate) to quantify how well this
cluster represents the observations that are assigned to it.
Further, rate-distortion theory allows one to infer how the
representivity of a clustering would change if one were to
modify this clustering, and which observations would be
better represented by different clusters (cf. [23], [24]).
Observations that are hard to represent by a meaningful
cluster and that are best represented by themselves can
then be considered as outliers.
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This description outlines a technique that we refer to as
Cluster Purging, in analogy to the act of purging in authori-
tarian political systems where deviating individuals that are
not well-represented by such systems are removed from
society.1 In short, Cluster Purging is performed by modify-
ing a clustering (or by analyzing a set of given clusterings),
and then isolating observations that are not represented
well by their cluster, regardless of how one modifies it (or
which of the clusterings one considers). As such, Cluster
Purging is, to the best of our knowledge, a conceptually
novel approach to cluster-based outlier detection, and the
main contributions of this work stem from it:

� Review of related work, outlining the differences
between Cluster Purging and existing methods
(Section 2).

� Theoretical formalization of Cluster Purging and
description of required concepts from information
theory (Section 3).

� Description of a parameter-free algorithm for Cluster
Purging and discussion of various aspects that are
relevant in practice, i.e., efficiency, interpretation of
proposed outliers, how one can introduce parame-
ters for improved performance, and limitations
(Section 4).

� Empirical demonstration that Cluster Purging
improves upon outliers detected from clustering
alone, and that Cluster Purging strongly competes
against state-of-the-art alternatives (Section 5).

2 RELATED WORK

In general, cluster-based outlier detection techniques can be
split into three categories depending on how they define
outliers [1]:

1) Outliers are observations that do not fit into any
cluster.

2) Outliers are far away from their cluster’s centroid.
3) Outliers are assigned to small or sparse clusters.
Conceptually, category 1 is most closely related to Clus-

ter Purging, since in our method outliers are observations
that cannot be represented well by any cluster. There are
several existing methods that fall into category 1, for
instance Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [14], extensions of DBSCAN such
as [25], [26], k-Means–– [15] and k-Means with Outlier
Removal [16]. However, a key difference between these
methods and Cluster Purging is that our method is not
bound to a specific clustering. Even if one bases Cluster
Purging on one of the above clusterings, the results can be
very different since our method does not assume that a sin-
gle clustering necessarily describes outliers in the raw data.

Surprisingly, one can argue that our method should also
fall into category 2, since the theoretical formulation of Clus-
ter Purging permits setups where outliers are observations
that are far away from a centroid (see Section 3). Related
methods from this category are techniques that combine
centroid-based clusterings with a distance threshold, for

instance [20], [27]. One can distinguish Cluster Purging
from these methods by the simple fact that our method does
not require a distance threshold (although Cluster Purging
can be adapted to require one, should an application
demand this (see Section 4)).

Typical methods of the third category are Local Outlier
Factor [28] and its numerous variants, e.g., [29], [30], [31].
The Cluster-Based Local Outlier Factor (CBLOF) [18] is par-
ticularly noteworthy, since this method is directly applica-
ble to any clustering, similar to Cluster Purging. The main
difference between CBLOF and Cluster Purging is that,
while our method can be based on local densities, it does
not require a threshold parameter to infer critical differen-
ces in local densities and does not consider a single cluster-
ing as sufficient for describing outliers.

From a theoretical perspective, the most closely related
method to ours is the one-class rate-distortion model
(OCRD) [32]. The brief description of Cluster Purging given
above can be seen as a single (half-)step of the Blahut-Ari-
moto algorithm [23], [24], [33], which OCRD adapts for one-
class classification. However, while OCRD is optimal in a
rate-distortion theoretic sense, we here do not aim for this
optimality. Instead, Cluster Purging supports arbitrary clus-
tering techniques, allowing for a greater flexibility. In our
experiments, we demonstrate that rate-distortion optimal
clusterings are not necessarily optimal for detecting outliers
in real data (Section 5).

3 THEORETICAL FORMULATION

In this section, the theoretical background of Cluster Purg-
ing is explained and the concept of representivity is intro-
duced. In short, clustering can be interpreted as a form of
data compression that yields cluster assignments and a
representation. One can measure how representative such a
representation is via its surplus complexity when compared
to the most representative clustering at a given inaccuracy.
Since directly finding the most representative clustering is
often infeasible, we show how representivity can be effi-
ciently estimated from a small set of available clusterings.
Finally, we show how one can detect outliers under the
premise that a good clustering would represent outliers by
themselves, i.e., with an additional cluster.

3.1 Background

3.1.1 Data Compression

Let xx ¼ fx1; . . . ; xng be a dataset of n observations in Rd con-
sisting of u � n unique values. A common data analysis
goal is to obtain a representation of xx that has fewer unique
values without losing too much information [34], [35], [36].
In coding theory, the task of finding such a representation
consisting of n� u unique symbols is referred to as lossy
data compression. Clustering can be seen as a typical exam-
ple for lossy data compression. In detail, a successful com-
pression via (non-fuzzy) clustering yields two objects

1) A list of n cluster assignments cc ¼ ðc1; . . . ; cnÞ, where
cj 2 1; . . . ; n is the index of the cluster that contains
observation xj.

2) A low-dimensional representation rr ¼ ðr1; . . . ; rnÞ
describing n different clusters.

1. None of the authors or their affiliations approve of political
purges in any form.
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A visualization can be seen in Fig. 1. Not all clustering
techniques return both of these objects, e.g., DBSCAN only
gives cluster assignments cc yet no representation rr. Details
on how to obtain representations in such cases are given in
Section 4.4.

Further, assume that a small subset of outliers xyxy ¼
fxy1 ; . . . ; xymg with m� n is part of the dataset. Since out-
liers are commonly assumed to deviate significantly from
the remaining observations [37], compressing a dataset that
contains outliers will either require additional unique sym-
bols for outliers or else lead to a less effective compres-
sion [38]. Let

dðxx; rrÞ ¼
Xn
j¼1

dðxj; rcjÞ; (1)

be a separable distortion function, i.e., a measure describing
how accurately rr represents dataset xx. If an outlier is repre-
sented by the same symbol as an inlier, then this will
increase the overall distortion since inliers and outliers are
assumed to be dissimilar. Consequently, one can reduce the
overall distortion by compressing outliers to unique sym-
bols. In the context of clusterings, this translates to assigning
outliers to singleton clusters, i.e., an additional cluster that
only contains xyj . However, adding unique outlier clusters
also increases the overall complexity of the compression.

3.1.2 The Empirical Rate-Distortion Function

Rate-distortion theory seeks to describe this trade-off
between representation complexity (rate) and inaccuracy
(distortion) in the context of random variables. Formally, the
rate-distortion function RðDÞ of a random variable X is
defined as (cf. [33])

RðDÞ ¼ min
P ðX̂jXÞ

HðX̂Þ �HðX̂jXÞ subject to dðX; X̂Þ � D;

(2)

where P ð�Þ and Hð�Þ are the probability and entropy func-
tions, respectively, X̂ is a stochastic compression of X, and
D is a specific distortion value, e.g., the sum of squared
errors in a k-means clustering. Intuitively, the rate-distor-
tion function describes the smallest complexity one can
achieve while compressing X at a given distortion, regard-
less of how the compression is performed.

To transfer this stochastic definition into a real-data con-
text, let

hðccÞ ¼ �
X
f2ffcc

f

n
log

f

n
; (3)

be the empirical counterpart to the theoretical entropyHðX̂Þ
as per [33], where ffcc ¼ ffcc1 ; . . . ; fcc

ng are the numbers of
observations assigned to each cluster. Then, inspired by (2),
we define the empirical rate-distortion function of a dataset
xx as

RðD;xx;CÞ :¼ min
fCðxx;uuÞ:uu2QQg

hðccÞ subject to dðxx; rrÞ � D;

(4)

with Cðxx; uuÞ ¼ ðcc; rrÞ, where Cð�Þ is a deterministic com-
pression function (i.e., a non-fuzzy clustering technique)
and uu are its parameters and where QQ is the set of all
possible parametrizations. Intuitively, the empirical rate-
distortion function can be seen as the strongest degree of
compression one can achieve on a dataset with a fixed
compression method without exceeding the required
distortion.

As such, it describes the trade-off between compression
complexity and inaccuracy for a fixed dataset and a specific
clustering method. The term hðccjxxÞ was omitted from (4),
since hðccjxxÞ ¼ 0 for all non-fuzzy clustering techniques. A
visualization of theoretical and empirical rate-distortion
functions is depicted in Fig. 2.

3.2 Measuring Cluster Representivity

3.2.1 Theoretical Representivity

From a rate-distortion theoretical perspective, there are two
quantities that measure how “good” a clustering ðcc; rrÞ rep-
resents the raw data

1) The degree of compression (the rate), computed via
entropy hðccÞ;

2) How accurate the representation is (the distortion),
computed via distortion dðxx; rrÞ.

While the empirical rate-distortion function RðD;xx;CÞ
describes the best achievable trade-off between these quan-
tities in a given setup, the average result of a clustering algo-
rithm typically offers a worse trade-off. More concretely, for
every clustering Cðxx; uuÞ ¼ ðcc; rrÞ it holds that

Rðdðxx; rrÞ; xx; CÞ � hðccÞ; (5)

since the rate-distortion function describes the global mini-
mum over all parametrizations, i.e the best achievable
representation at distortion dðxx; rrÞ. Due to this inequality

Fig. 1. Compression via k-means clustering. Left : A dataset consisting of
65 observations. Middle : Cluster assignments, indicated by color. Right :
Symbols representing each cluster.

Fig. 2. Comparison of theoretical and empirical rate-distortion functions.
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there is always a nonnegative surplus complexity between
ðcc; rrÞ and (4). Thus, one can measure the theoretical repre-
sentivity of a clustering via

rðxx; cc; rr; CÞ :¼ Rðdðxx; rrÞ; xx;CÞ=hðccÞ: (6)

However, computing Rðdðxx; rrÞ; xx; CÞ and thus rðxx; cc; rr; CÞ is
infeasible for many clustering techniques, since this would
require one to compute Cðxx; uuÞ for all possible clustering
parameters uu. Therefore, it is more practical to estimate clus-
tering representivity relative to a small set of representa-
tions, obtained from parametrizations fuu1; . . . ; uutg. We refer
to this estimate as rate-distortion hull.

Definition 1. Rate-distortion hull. Let cc ¼ ðcc1; . . . ; cctÞ and
rr ¼ ðrr1; . . . ; rrtÞ be a set of clustering assignments and repre-
sentations, respectively, obtained by evaluating clustering tech-
nique Cð�Þ on dataset xx with parametrizations fuu1; . . . ; uutg.
Further, let vv ¼ ½v1; . . . ; vs� be the indices of the lower convex
hull of the arising distortion-entropy pairs f½dðxx; rr1Þ;
hðcc1Þ�; . . . ; ½dðxx; rrtÞ; hðcctÞ�g. Then, the rate-distortion hull of cc
and rr is given by

LðD; cc; rrÞ :¼ kiDþ di 8i 2 f2; . . . ; sg
D 2 ½dðxx; rrv1Þ; dðxx; rrvsÞ�;

(7)

where

ki ¼ hðccviÞ � hðccvi�1Þ
dðxx; rrviÞ � dðxx; rrvi�1Þ

; (8)

and

di ¼ hðccviÞ � ki � dðxx; rrviÞ; (9)

are the slopes and vertical intercepts of the arising linear pieces,
with dðxx; rrv1Þ < � � � < dðxx; rrvsÞ.
Intuitively, a rate-distortion hull is a linear interpolation

of the lower convex hull of the entropy and distortion val-
ues associated with observed clusterings ðcc; rrÞ. A visualiza-
tion of a rate-distortion hull is shown in Fig. 3.

Further, since Lð�; cc; rrÞ ¼ Lð�; ccvv; rrvvÞ, we assume without
loss of generality that vi ¼ i and s ¼ t to keep the notation
simple.

3.2.2 Representivity After Modification

Naturally, it is not possible to directly estimate the theoreti-
cal representivity of clusterings ðcc; rrÞ based on a rate-distor-
tion hull Lð�; cc; rrÞ constructed from the same clusterings.
However, one can use Lð�; cc; rrÞ for estimating how the rep-
resentivity of a particular clustering ðcci; rriÞ 2 ðcc; rrÞ reacts to
arbitrary modifications via

r̂ðxx; cc0i; rr0i; cc; rrÞ :¼ Lðdðxx; rr0iÞ; cc; rrÞ=hðcc0iÞ; (10)

where cc0i and rr0i are arbitrarily modified versions of cci and rri
respectively, with

cc0i =2 cc and rr0i =2 rr:

Note that the error between measurements r̂ðxx; cc0i; rr0i; cc; rrÞ
and rðxx; cc0i; rr0i; CÞ will not only depend on the clusterings
used for constructing the rate-distortion hull. It will also
depend on how many c 2 cci and r 2 rri were modified. Gen-
erally speaking, the more similar modified clustering ðcc0i; rr0iÞ
is to ðcci; rriÞ, the smaller the error between r̂ðxx; cc0i; rr0i; cc; rrÞ and
rðxx; cc0i; rr0i; CÞwill be.

3.3 Detecting Outliers With Cluster Representivity

3.3.1 Definition of Rate-Distortion Outliers

Sincer̂ðxx; �; �; cc; rrÞ allows one tomeasure the effect of arbitrary
modifications to a clustering, one can also measure how
assigning an individual observation to a new, unique cluster
would affect representivity. Now recall from above that an
outlier is an observation that will likely need a unique symbol
for an effective compression [38]. If changing the cluster
assignment of observation xj in cci to a new additional cluster
would improve rri’s representivity, then xj should be labeled
as outlier. This intuition can be formalized as follows.

Definition 2. Rate-distortion outlier. Let xx be a dataset and
ðcc; rrÞ a set of clusterings. Then observation xj is a rate-distor-
tion outlier if

r̂ xx; cc0ði;jÞ; rr
0
ði;jÞ; cc; rr

� �
	 1 8i 2 ½2 . . . ; t�; (11)

with

cc0ði;jÞ ¼ ðci;1; . . . ; ci;j�1; nþ 1; ci;jþ1; . . . ; ci;nÞ; (12)

and

rr0ði;jÞ ¼ ðri;1; . . . ; ri;n; r? Þ; (13)

where r
?
is a representation of xj such that dðxj; r

? Þ ¼ 0.

In simple terms, Definition 2 states that xj is a rate-distor-
tion outlier if assigning it to r

?
would improve the represen-

tivity of all clusterings ðcc; rrÞ.

3.3.2 Computation ofr̂ðxx; cc0ði;jÞ; rr0ði;jÞ; cc; rrÞ
A key advantage of defining outliers as in Definition 2 is
that r̂ðxx; �; �; cc; rrÞ can be computed for cc0ði;jÞ and rr0ði;jÞ from a
set of clusterings ðcc; rrÞ in OðnÞ time. This works, since the
change in entropy from cci to cc0ði;jÞ and the change in distor-
tion from rri to rr0ði;jÞ can be computed independently from
the remaining clusterings in ðcc; rrÞ.

Fig. 3. Comparison of theoretical rate-distortion function, empirical rate-
distortion function and rate-distortion hull. If ideal clusterings are
selected for estimating the empirical rate-distortion function, then the
resulting rate-distortion hull is equal to the lower convex hull of the empir-
ical rate-distortion function.
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Proposition 1. Let cc be a list of cluster assignments and let ffcc ¼
ffcc1 ; . . . ; fcc

ng be the numbers of observations assigned to each
cluster. Then the change in entropy caused by assigning xj to
an additional unique cluster, yielding cc0, depends only on fcc

cj
and is given by

hðcc0Þ � hðccÞ ¼ 1

n
fcc
cj
log fcc

cj
� ðfcc

cj
� 1Þlog ðfcc

cj
� 1Þ

� �
:

(14)

Proof. The entropy of cc as given in (3) can be rewritten as

hðccÞ ¼ logn� 1

n

X
f2ffcc

f log f; (15)

since log f
n ¼ log f � logn. The entropy of cc0 is given by

hðcc0Þ ¼ logn� 1

n

X
f 6¼fcccj

f log f � 1

n
ðfcc

cj
� 1Þlog ðfcc

cj
� 1Þ

� �
;

(16)

since 1 observation is removed from cluster cj and a
unique cluster is added with entropy 1log 1 ¼ 0. Subtract-
ing (15) from (16) yields (14). tu
The change in distortion from rri to rr0ði;jÞ is given by

dðxx; rr0ði;jÞÞ � dðxx; rriÞ ¼ �dðxj; rci;jÞ; (17)

which follows by assumption from Definition 2. Intuitively,
when one assigns xj to a new unique symbol, then this sym-
bol perfectly represents xj and hence the total distortion
decreases by dðxj; rri;jÞ. Note that (17) only depends on
observation xj and the cluster representative xj is assigned
to, i.e., rci;j .

To evaluate r̂ðxx; cc0ði;jÞ; rr0ði;jÞ; cc; rrÞ, one can combine (14) and
(17) in the following way:

Proposition 2. Let xx be a dataset and ðcc; rrÞ a set of clusterings.
If cc0ði;jÞ and rr0ði;jÞ are defined as in (12) and (13), respectively,
then it holds that

r̂ xx; cc0ði;jÞ; rr
0
ði;jÞ; cc; rr

� �
	 1

,

dðxj; rci;jÞ 	
hðcc0ði;jÞÞ � hðcciÞ

�ki ;

(18)

where ki is the slope of the rate-distortion hull between
dðxx; rri�1Þ and dðxx; rriÞ, with i 6¼ 1.

Note that i 6¼ 1 in Proposition 2 is necessary since there is
no slope k0 left of rr1 in the rate-distortion hull.

Proof. Inserting (7) into the left expression of (18) gives

k‘ � dðxx; rr0ði;jÞÞ þ d‘

� �
=hðcc0ði;jÞÞ 	 1; (19)

where ‘ is the index of the slope and vertical intercept at
dðxx; rr0ði;jÞÞ. Since it holds that dðxx; rr0ði;jÞÞ � dðxx; rriÞ and due
to the convexity of Lð�Þ, we can assume without loss of
generality that ‘ ¼ i. Then, inserting (9) into (19) and fac-
torizing ki gives

ki � dðxx; rr0ði;jÞÞ � dðxx; rriÞ
� �

þ hðcciÞ
� �

=hðcc0ði;jÞÞ 	 1: (20)

Finally, after inserting (17) into (20), the resulting expres-
sion can easily be rearranged into the right side of (18). tu
The main point of Proposition 2 is that r̂ðxx; cc0ði;jÞ; rr0ði;jÞ; cc; rrÞ

can be easily computed from the available clusterings. A
visual intuition of how r̂ð�Þ is computed can be seen in
Fig. 4. A concrete algorithm is described in Section 4.2.
Computational speedups implied by (14) and (18) are dis-
cussed in Section 4.3.

Fig. 4. Geometric interpretation of the computation of cluster representivity. For every clustering on the rate-distortion hull, one can compute how the
entropy would change if xj were represented by a new cluster. If this new clustering has a distortion that is sufficiently small to enter the area beneath
the rate-distortion hull, then xj is an outlier that needs to be represented by itself rather than a cluster.
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4 PRACTICAL ASPECTS

After formalizing the theoretical background needed to effi-
ciently perform Cluster Purging, we now address several
practical issues and formulate concrete algorithms for an
efficient computation.

4.1 Interpretation

Recall that any clustering is a representation of the raw data,
and that a cluster is a representation of the data assigned to
it. In essence, the theoretical foundation of Cluster Purging
concerns itself with the representivity of clusterings. If a
cluster would represent its data better if one of them were
removed (purged), then that deviating observation is con-
sidered an outlier. To make the concept of representivity
more tangible, we address four critical questions that may
be non-obvious to the reader.

4.1.1 How can Rate-Distortion Outliers be Interpreted?

In simple terms, a rate-distortion outlier is an observation
that is “far away” from its cluster. How “far” this needs to
be is determined by a threshold that we call purging bound-
ary. This purging boundary is inferred from cluster sizes
and distortions across multiple clusterings, as well as from
the raw dataset (see Eq. (18)). Hence, an accurate interpreta-
tion of rate-distortion outliers depends on how these quanti-
ties are measured. For example, under Manhattan distances
and a k-means clustering, all purging boundaries are hyper-
cubes that are centered at the cluster’s centroid and enclose
inliers. For DBSCAN and Euclidean distance, every obser-
vation within a specific cluster is surrounded by a hyper-
sphere that encloses its nearest neighbor unless it is an
outlier. See Fig. 5 for a visualization.

In the context of high-dimensional data, interpretability is
often addressed via dimensionality reductions such that
every outlier can be described by a small subset of the original
dimensions, see [39], [40]. Similarly, rate-distortion outliers
can be characterized by their low-entropy representation:
They are observations that make the representation unneces-
sarily complicated.

4.1.2 How is Cluster Purging Different From Distance-

Based Outlier Detection With Clustering?

Cluster Purging permits setups, e.g., centroid-based cluster-
ing and euclidean distortion, that are very similar to con-
ventional distance-based outlier detection methods such as
[20], [27]. The main difference between Cluster Purging and
such methods is that purging boundaries are inferred based
on a different clustering, and not based on a parameter. Fur-
ther, Cluster Purging is not limited to distance-based setups
and is compatible with any well-defined dissimilarity mea-
sure and clustering technique, e.g., Kullback-Leibler diver-
gence [41] paired with fuzzy C-means clustering [42].

4.1.3 Isn’ t Cluster Purging Just Another Clustering-

Based Outlier Detection Technique That Fails if

the Clustering is Bad?

Not necessarily. Cluster Purging considers the original raw
data via (18) in addition to all available clusterings. Further,
the rate-distortion hull (7) allows one to determine which
clusterings among the available ones are best in terms of
rate-distortion theory. If all available clusterings are “bad”,
then Cluster Purging may fail to find correct outliers, yet if
a single “good” clustering is available, then Cluster Purging
will identify this clustering and use it for outlier detection.

Fig. 5. Cluster Purging (CP) based on DBSCAN with " ¼ 0:8, minPts ¼ 20 and a max-max perturbation (cf. Section 5.1 ). The parametrization of
DBSCAN is suboptimal, and the clustering representation can be improved by purging (i.e., uniquely encoding) outliers detected by CP. Overlapping
purging boundaries were depicted as union of discs for readability. Note that observations within the " region and purging boundary may also be out-
liers if they are alone in their cluster (cluster size = 1).
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4.1.4 Can Outliers Really be Detected via

Representivity? It Seems Strange That Whether

Data are Outliers Depends on the Size of Their

Cluster

We describe a short example where rate-distortion theory-
based representivity is intuitive for outlier detection: A group
of 100 people is asked to form small “parties” to represent
their political opinions. 95 people consider themselvesmoder-
ate and form a moderate party, whereas 4 people form an
extremist party and 1 person has no opinion. If this 1 person
joined the small extremist party (cluster A), then this would
have a more noticeable (outlying) effect on this party’s politi-
cal orientation than if the 1 person joined the large moderate
party (cluster B). Likewise, purging boundaries grow loga-
rithmically as clusters become larger (see Eq. (14)).

4.2 Algorithms for Cluster Purging

4.2.1 Parameter-Free Cluster Purging

From the theoretical formulations in Section 3, one can
directly derive an algorithm for Cluster Purging. This algo-
rithm takes a dataset xx and a set of clusterings ðcc; rrÞ as input
and returns a set of outliers without requiring any addi-
tional parameters. In simple terms, this algorithm can be
summarized as

1) Compute the entropy and distortion of all clusterings.
2) Find the lower convex hull of the resulting entropy-

distortion pairs to construct a rate-distortion hull.
3) For every cluster in every clustering on this rate-dis-

tortion hull, compute how the entropy would change
if an observation in this cluster were removed.

4) Based on the resulting changes of entropy and the
slope of the rate-distortion hull, compute how much
the distortion must change to pass the “purging
boundary”.

5) Data that, when purged, would be outside of the
purging boundary, as well as clusters of size 1, are
outliers.

A visual intuition of how this computation is performed
is depicted in Figs. 4 and 5, whereas pseudo-code for this
algorithm is listed in Algorithm 1. An R implementation
can be found online.2

Note that the selected distortion measure dð�Þ should be
equal to the distortion measure that was used to compute
clusterings, e.g., for k-means clustering dð�Þ should be
Euclidean distance, for DBSCAN it should be nearest neigh-
bor distance. We confirmed this insight in preliminary
experiments, where it turned out that heterogeneous distor-
tion pairs were inferior to homogeneous distortion pairs in
all settings we tested.

4.2.2 Parametric Cluster Purging

In some settings, it may be desirable to tune cluster purging
to a specific dataset. While the parameter-free nature of the
theoretical formulation of Cluster Purging prevents this,
one can “cheat” by replacing the estimate of cluster repre-
sentivity r̂ð�Þ with its true value rð�Þ. Of course, rð�Þ is not

known, yet in supervised settings it can be learned from a
training set, or a user may simply guess its value or use a
default parametrization.

Algorithm 1. Parameter-Free Cluster Purging

Require: xx; cc; rr
1: outliers ;;
2: for clustering ðcc; rrÞ 2 ðcc; rrÞ do
3: Compute hðccÞ according to (3);
4: Compute dðxx; rrÞ according to (1);
5: end for
6: Set L to the lower convex hull of all h and d;
7: Compute k (the slopes of L) via linear interpolation;
8: Drop clusterings that are not on L;
9: Sort clusterings increasingly according to dðxx; rrÞ;
10: Drop clustering with highest entropy (cf. Proposition 2);
11: for all ðcc; rrÞ do
12: for cluster g 2 ðcc; rrÞ do
13: Compute change of entropy according to (14);
14: end for
15: end for
16: for j 2 ð1; . . . ; nÞ do
17: if any side of (18) holds for all (cc; rr) then
18: outliers outliers [ xj;
19: end if
20: end for
21: return outliers

In particular, the concrete value of rð�Þ at a specific clus-
tering ðcc; rrÞ is not even needed. According to (18), it is suffi-
cient if slope k of the rate-distortion function at dðxx; rrÞ is
passed as parameter, since the remaining quantities needed
to perform Cluster Purging can be easily inferred from k. A
concrete algorithm is listed in Algorithm 2.

Algorithm 2. Parametric Cluster Purging

Require: xx; cc; rr; k
1: outliers ;;
2: for cluster g 2 ðcc; rrÞ do
3: Compute change of entropy Dg according to (14);
4: end for
5: for j 2 ð1; . . . ; nÞ do
6: if dðxj; rcj Þ � k � Dcj then
7: outliers outliers [ xj;
8: end if
9: end for
10: return outliers

A clear advantage of this parametric variant of Cluster
Purging is that, if the true slope is passed to the algorithm,
it will necessarily be superior to the parameter-free variant.
Further, this variant only needs a single clustering, and is
very simple overall. However, we believe that the parame-
ter-free algorithm should generally be preferred over its
parametric counterpart (cf. [43]).

4.3 Efficiency

In the pseudo-code of Algorithms 1 and 2 there are several
verbose instructions whose computational complexity
might be non-obvious. In Algorithm 1, lines 3 and 4 require
OðnÞ steps, whereas all remaining verbose steps in both2. https://tinyurl.com/f59ezjhk
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algorithms require at most OðntdÞ steps. Asymptotically, n
is the largest number of clusters, t the number of cluster-
ings, and d the dimensionality of the dataset. Since all
three of these quantities were assumed to be constant,
these steps can hence be performed in Oð1Þ time. Conse-
quently, the time complexity of both Algorithms can be
reduced to OðnÞ.

In terms of space complexity, one will naturally require
at least OðtnÞ space to store all clusterings. The remaining
memory overhead of both algorithms is constant.

4.4 Obtaining Multiple Clusterings ðcc; rrÞ
In recent years, datasets have become increasingly large and
“in many situations, the knowledge extraction process has to be
very efficient and close to real time because storing all observed
data is nearly infeasible” [44]. Consequently, it may occur in
practice that computing multiple good clusterings of a data-
set may be too costly, although the above formulation of
rate-distortion hulls would require this. To address this
issue, we here discuss methods for efficiently obtaining sim-
ilar clusterings, i.e., perturbations, from a single “seed”
clustering.

In general the theoretical formulations of Cluster Purging
permit arbitrary perturbations. However, the quality of a
clustering representivity estimate depends on how
“strongly” the seed clustering was perturbed. Hence, from
a rate-distortion theoretic perspective, it is desirable that
clustering ðcc; rrÞ and its perturbation ð~c~c; ~r~rÞ are as similar as
possible, yet not identical. To achieve this, it is typically suf-
ficient to modify the cluster assignment and representation
of a single observation xj, given that this change results in a
different entropy-distortion pair, i.e., ½hðccÞ; dðxx; rrÞ� 6¼
½hð~c~cÞ; dðxx; ~r~rÞ�. A concrete change that causes this is typically
given by selecting the cluster with the largest size, i.e.,
argmaxffcc, and removing the observation that causes the
largest distortion in this cluster. At first glance, this may
seem counterintuitive, since the aim of a perturbation is to
cause a small yet sufficiently large change in the clustering,
and hence removing the observation from the smallest clus-
ter with the smallest distortion would seem better. We elab-
orate on this and empirically compare other perturbation
strategies in Section 5.1.

4.5 Nearest Neighbor Representations

A further issue may occur when the selected clustering
technique, e.g., DBSCAN, yields cluster assignments cc yet
no representations rr. In such cases, one can jointly infer rr
from xx and cc based on the following intuition: Since clus-
tering techniques group data according to some similarity
measure [45], this similarity measure implicitly contains
information on what a representation for such a clustering
technique might be. In the case of DBSCAN, which clus-
ters data according to nearest neighbor distances, one can
simply represent every xj by its nearest neighbor within
the cluster of xj. While using such representations leads
to no compression of the data, this is still meaningful if
one wants to detect outliers. We demonstrate this empiri-
cally in Section 5.2, whereas a visualization can be seen in
Fig. 6.

4.6 Rules of Thumb

Since Cluster Purging allows highly diverse setups, we for-
mulate three rules of thumb for guiding practitioners:

First, different clusterings offer different entropy-distor-
tion trade-offs, e.g., a clustering with n clusters leads to a
lossless representation yet no compression, whereas a repre-
sentation with a single cluster leads to good compression
yet large distortion. Since purging boundaries depend on
cluster sizes, they will adapt to different entropy-distortion
trade-offs. Generally speaking, Cluster Purging will work
well under many different trade-offs as long as one avoids
the extremes of the empirical rate-distortion function.

Second, it is desirable that the selected clusterings and/
or perturbations have similar entropy-distortion trade-offs.
The reason for this is that the estimated rate-distortion slope
between two clusterings becomes less accurate the further
these clusterings are apart in rate-distortion space. Hence, it
is generally not a good idea to combine different clustering
techniques, e.g., k-means and DBSCAN. Pairing similar
clusterings is usually better, e.g., 7-means with 8-means.
Fixing a single clustering ðcc; rrÞ and computing a slight per-
turbation ð~cc; ~rrÞ by changing the cluster assignment of a sin-
gle observation is likely best.

Third, the selected distortion measure should be related
to the selected clustering technique. For instance, it is often
better to pair k-means with euclidean distortion than with
Hamming distortion, and for hierarchical clusterings one
should use the same distance function for computing the
clustering and for measuring distortion. For probabilistic
clustering techniques, distortion should likely be measured
via Kullback-Leibler divergence.

4.7 Limitations

The concept of rate-distortion outliers describes individual
observations that are outlying. Collective outliers [1] and
outlying clusters are not covered and will be addressed in
future work. Further, in rare cases it may occur that the
computed rate-distortion hull has an increasing segment. In
such an increasing region (18) does not hold, and it is best
to ignore this region of the rate-distortion hull. Finally,
while Algorithms 1 and 2 can be computed in OðnÞ time,
the computation of the clusterings they are based on may be
more costly.

Fig. 6. Cluster Purging applied to a synthetic dataset [38] clustered with
DBSCAN. Detected outliers are depicted in red (
). Left: For every clus-
ter, a single euclidean centroid was used as representative, resulting in
large, spherical purging boundaries. Right: For every observation, its
nearest neighbor within the same cluster was used as representative,
resulting in tight boundaries that fit the data well.
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5 EXPERIMENTAL EVALUATION

To evaluate the practical applicability and correctness of
rate-distortion theory for outlier detection, we conduct a
case study in which different perturbation strategies are
analyzed (Section 5.1). In Section 5.2, we compare our
method Cluster Purging (CP) with other state-of-the-art out-
lier detection methods in an experimental evaluation on
benchmark datasets. Further, we also analyze how fre-
quently Cluster Purging improves upon outliers detected
by an existing clustering. Throughout all experiments, we
use Euclidean distance as distance measure in all clustering
techniques, and consequently also as distortion measure.
We avoid using non-distance distortion measures such as
Kullback-Leibler divergence, since this would make a fair
comparison of Cluster Purging with distance-based outlier
detectors difficult. Centroids are computed as the arithmetic
mean of all observations in a cluster whenever needed. The
source code for reproducing all results, as well as all data can
be accessed online.3

5.1 Case Study: Perturbation for Map Denoising

From the elaborations made in Section 4.4, one can derive
four different perturbation strategies4

1) min-min: Select smallest cluster, purge least distorted
observation.

2) min-max: Select smallest cluster, purge most dis-
torted observation.

3) max-min: Select largest cluster, purge least distorted
observation.

4) max-max: Select largest cluster, purge most distorted
observation.

We compare all four strategies in a case study, where the
goal is to denoise a dataset via k-means clustering and out-
lier detection. The dataset contains coordinates of a map of
the continent Europe [46] with 100 artificially added noise
points. Since k-means clustering algorithms are sensitive to
the selected initial centers, we fix the number of centroids to
k ¼ 225, and compute 1000 different initializations, each for
10 different initial random seeds. For every computed clus-
tering, we perform Cluster Purging based on all 4 perturba-
tion strategies with noise points considered as outliers. As

evaluation measure, we use F1 ¼ 2 � precision�recallprecisionþrecall . Fur-

ther, since inlier and outlier classes are heavily imbalanced
(169673 : 100) we compute average class-wise F1-scores in
addition to average raw F1-scores. The results of this case

study are reported in Table 1, whereas a visualization can
be seen in Fig. 7.

5.2 Competitive Evaluation on Benchmark Datasets

5.2.1 Setup

We compare both variants of our method, Cluster Purging
(CP) and Parametric Cluster Purging (CPP) against closely
related outlier detection methods mentioned in Section 2:

� The one-class rate-distortion model (OCRD) [32].
� Variants of k-means that detect outliers, i.e.,

k-means�� (KM––) [15] and k-means with outlier
removal (KMOR) [16].

� Raw clusterings, i.e., k-means clustering, Hierarchi-
cal Agglomerative Clustering (HAC) with complete
linkage and DBSCAN [14], with singelton clusters
considered as outliers (these variants are referred to
as Vanilla detectors)

� Cluster-based local outlier factor (CBLOF) [19] based
on all vanilla clusterings and raw local outlier factor
(LOF) [28].

� Outlier detection for high-dimensional data via Local
Projection Score (LPS) [47].

� Cluster Purging (CP) with a single max-max pertur-
bation and Parametric Cluster Purging (CPP), both
based on all vanilla clustering techniques (t ¼ 1 clus-
tering each). Other perturbation methods are
addressed in Section 5.2.4.

We omit [25], [26] since they use soft clusterings; [20]
and [27] because they have high computational cost and
are not reproducible, respectively; [29], [30], [31] since we
found that two variants of the Local Outlier Factor are suf-
ficient. To enable a comparison with LOF, CBLOF and
LPS, which return outlier scores instead of outliers indices,
we take the top m ¼ jyyj scores of these methods, where m
is the true number of outliers in dataset xx. As evaluation
measure, we use F1-score. Further, since all clustering algo-
rithms under consideration (and most outlier detectors)
have parameters, it is difficult to generalize outlier detec-
tion performances based on a single arbitrarily selected
parametrization. Hence, the parameters of all clustering

TABLE 1
Case Study: Average Class-Wise F1-Scores

Perturbation Strategy

Measure min-min min-max max-min max-max

Outlier F1-score 0.17 0.08 0.00 0.16
Inlier F1-score 0.43 0.94 0.16 0.97

Combined F1-score 0.30 0.51 0.08 0.56

Fig. 7. Case Study: Comparison of Purging Boundaries (blue) with
min-min perturbation and max-max perturbation. True noise points are
depicted in red (
), while detected outliers are not depicted for readabil-
ity (the left plot would be covered in outliers). Left: Purging boundaries
derived from amin-min perturbation are so small that they are barely vis-
ible. Right: Purging boundaries derived from amax-max perturbation are
� 67 times larger thanmin-min purging boundaries, almost fully covering
the map of Europe.

3. https://tinyurl.com/f59ezjhk
4. In all four perturbation strategy descriptions, “purge” is short for

“reassign to additional unique cluster”.
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techniques (and outlier detection methods) are grid
searched over their respective parameter space towards
maximizing F1- score. For methods having several parame-
ters where a grid search would be infeasible, some parame-
ters are set according to literature recommendations. The
detailed grid search setups and parametrizations are listed
in Table 2.

Additionally, to evaluate the claimed computational effi-
ciency of CP and CPP, we track the average runtime of each
method per call. We report this quantity instead of overall
runtime since the total number of needed calls to each out-
lier detection method varies for each grid search.

5.2.2 Datasets

The experimental evaluation of all detectors is performed
on 13 publicly available benchmark datasets, taken
from [48]. These datasets come from diverse domains such
as medicine, space, and telecommunications, and were com-
monly used as benchmarks in literature. More detailed
descriptions of the domain background of these datasets
can be found in [48]. For this experimental evaluation, data-
set Arrhymthia is particularly noteworthy since it is high-
dimensional with n � d, and Heart, Pima and Ionosphere
since they have an outlier ratio m

n close to 50 percent.

5.2.3 Main Results

The main results of the competitive evaluation are depicted
in Table 3. Overall, detectors based on k-means clusterings
performed worse than detectors based on other clusterings.
The overall highest average F1-score was achieved by
CBLOF based on HAC clustering. For other clustering
methods, CPP performed best. The average performance of

OCRD, which is bound to a Blahut-Arimoto-like clustering,
was competitive with detectors based on k-means cluster-
ings, yet lower than that of detectors based on HAC and
DBSCAN.

Regarding computational efficiency, vanilla clusterings
were faster than methods based on these clusterings. The
fastest method was vanilla k-means, while CPP had the
overall lowest surplus runtime after its clustering was com-
puted. The slowest method was LOF followed by LPS.

When considering on how many datasets detectors with
exchangeable clusterings did not perform worse than the
respective vanilla clustering, there is a clear ranking. Our
method CPP performed best (100 percent), followed by CP
(85 percent), followed by CBLOF (62 percent).

5.2.4 Detailed Results per Perturbation Method

In the bottom of Table 3, average F1-scores and runtimes of
all four considered perturbation strategies are listed per
clustering. In terms of average F1-scores, the max-max per-
turbation scored highest most often, whereas differences in
runtime between perturbation strategies are negligible. For
this reason and due to lack of space, only the detailed scores
per dataset of CP with max-max perturbations are listed in
Table 3.

6 DISCUSSION

The results of the case study indicate that the max-max per-
turbation is slightly superior over the other considered per-
turbation strategies. This is in accordance with the results of
the competitive evaluation, and hence we overall argue that
max-max perturbations should be preferred.

In the benchmark evaluation, the parameter-free variant
of Cluster Purging seems to be competitive with other
detectors, yet does not demonstrate superior detection per-
formances. However, this lack of superiority may be tolera-
ble when one considers that a parameter-free algorithm was
compared against parametric ones—where CBLOF, the
strongest competitor, received information on how many
outliers are present in the dataset. Of course, one may argue
that Cluster Purging is not truly parameter-free if only a sin-
gle clustering is provided, since the selected perturbation
strategy can also be seen as a parameter. Yet, when one con-
siders that multiple different perturbation strategies may
lead to similar detection results (cf. Table 2 min-max and
max-max), then it can be argued that Cluster Purging is still
“less” parameter-dependent than other competing methods.
Further, if a single parameter is allowed (rate-distortion hull
slope k), then one can use the parametric variant of Cluster
Purging, which overall seems to compete strongly against
the state-of-the-art. The slow runtime of the seemingly effi-
cient method LOF can be explained by the need of comput-
ing up to n� 1 nearest neighbors during parameter
optimization.

It is also noteworthy that Cluster Purging—especially its
parametric variant—performed (or was tied for) best on
high-dimensional and outlier heavy datasets Arrhymthia,
Heart, Pima and Ionosphere. Hence, one can expect Cluster
Purging to tolerate high-dimensional data or high outlier
ratios even if clustering such data is challenging.

TABLE 2
Compared Outlier Detection Methods and Their Parametriza-

tions
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Consequently, we expect Cluster Purging to perform
well in a variety of domains under the premise that a rea-
sonably-working clustering technique is known. Further,
our proposed algorithms, especially the parametric variant,
are efficient in terms of computational complexity, requiring
only OðnÞ time. While at least one clustering is still required
as input, this efficiency can be a key advance in scenarios
where prior clusterings of the data are available.
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F1-score

Arrhymthia 0.68 0.01 0.67 0.63 0.63 0.20 0.69 0.68 0.67 0.70 0.71 0.62 0.66 0.62 0.69 0.69 0.60
Heart 0.65 0.00 0.57 0.62 0.53 0.16 0.63 0.64 0.56 0.64 0.65 0.63 0.54 0.63 0.67 0.55 0.48
Hepatitis 0.43 0.00 0.23 0.41 0.31 0.24 0.34 0.31 0.31 0.32 0.36 0.35 0.31 0.35 0.35 0.31 0.23
Parkinson 0.86 0.00 0.80 0.86 0.78 0.12 0.79 0.86 0.86 0.86 0.86 0.81 0.82 0.81 0.86 0.78 0.73
Pima 0.60 0.00 0.49 0.56 0.47 0.20 0.55 0.52 0.50 0.52 0.56 0.54 0.47 0.53 0.54 0.54 0.43
Stamps 0.59 0.00 0.29 0.51 0.45 0.16 0.38 0.24 0.94 0.33 0.52 0.64 0.42 0.65 0.65 0.39 0.65
Glass 0.18 0.00 0.11 0.24 0.44 0.24 0.34 0.32 0.22 0.33 0.36 0.33 0.44 0.33 0.33 0.33 0.11
Ionosphere 0.69 0.00 0.82 0.77 0.67 0.51 0.80 0.86 0.75 0.84 0.87 0.77 0.85 0.77 0.88 0.83 0.67
Lympho 0.86 0.00 0.33 0.40 0.17 0.67 0.80 0.67 0.33 0.83 0.83 0.29 0.67 0.55 0.62 0.83 0.33
Shuttle 0.32 0.00 0.23 0.21 0.15 0.11 0.20 0.21 0.85 0.21 0.27 0.32 0.15 0.32 0.34 0.31 0.31
WBC 0.70 0.00 0.70 0.78 0.60 0.74 0.78 0.53 1.00 0.64 0.78 0.82 0.50 0.82 0.82 0.80 0.60
WDBC 0.67 0.00 0.80 0.84 0.80 0.80 0.84 0.84 0.90 0.78 0.90 0.84 0.90 0.90 0.90 0.80 0.70
WPBC 0.40 0.00 0.23 0.40 0.34 0.19 0.41 0.39 0.43 0.41 0.42 0.44 0.38 0.44 0.44 0.36 0.28

Average 0.59 0.00 0.48 0.56 0.49 0.33 0.58 0.54 0.64 0.57 0.62 0.57 0.55 0.59 0.62 0.58 0.47

Average runtime per method call (milliseconds)

Arrhymthia 25.48 6.04 274.02 109.27 6.25 6.25 6.27 2.25 28.64 22.11 11.91 97.20 173.57 263.24 109.76 543.70 4065.01
Heart 9.39 0.21 78.56 22.09 0.21 0.21 0.24 0.86 10.88 5.85 2.77 1.06 17.57 23.08 1.65 278.49 29.91
Hepatitis 2.86 0.09 18.03 5.21 0.10 0.09 0.11 0.35 3.48 3.15 1.12 0.40 5.70 7.54 0.65 136.42 11.62
Parkinson 9.97 0.15 29.96 16.91 0.16 0.16 0.19 0.62 8.53 5.43 2.28 0.85 15.26 17.67 1.48 222.19 26.45
Pima 41.37 0.47 405.15 97.74 0.49 0.49 0.56 5.12 33.45 16.09 7.50 2.24 62.45 62.80 4.34 969.16 76.47
Stamps 22.08 0.31 146.76 31.91 0.32 0.32 0.35 1.31 13.58 7.21 3.28 1.86 26.04 29.72 2.04 349.49 34.01
Glass 13.47 0.15 65.98 18.01 0.15 0.15 0.18 0.68 7.96 5.29 2.05 0.80 16.07 18.33 1.32 238.27 24.91
Ionosphere 21.40 0.62 101.73 43.48 0.63 0.63 0.67 1.45 14.15 8.87 4.10 6.81 44.66 44.89 3.00 358.27 123.49
Lympho 5.85 0.10 77.28 11.33 0.10 0.10 0.13 0.38 6.62 3.85 1.75 0.41 7.55 12.89 1.07 172.90 17.45
Shuttle 54.22 0.98 56.49 138.08 1.02 1.02 1.11 9.74 46.86 21.30 10.45 10.19 111.05 112.32 6.25 1447.65 95.85
WBC 11.92 0.18 81.76 20.14 0.19 0.19 0.21 0.70 8.37 5.60 2.23 1.38 16.19 22.96 1.42 250.97 25.09
WDBC 21.38 0.52 140.29 40.72 0.53 0.53 0.58 1.53 16.75 9.67 4.42 2.35 36.57 36.50 2.89 375.74 120.32
WPBC 8.82 0.38 71.80 20.27 0.38 0.38 0.41 0.71 9.19 5.58 2.57 3.00 16.15 23.31 1.75 223.21 33.84

Total average 19.09 0.79 119.06 44.24 0.81 0.81 0.85 1.98 16.04 9.23 4.34 9.89 42.22 51.94 10.59 428.19 360.34

Perturbation Specific Results

k-means HAC DBSCAN
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