
Distributions for Compositionally Differentiating Parametric Discontinuities

Jesse Michel 1 Kevin Mu 2 Xuanda Yang 3 Sai Praveen Bangaru 1 Elias Rojas Collins 1 Gilbert Bernstein 2

Jonathan Ragan-Kelley 1 Michael Carbin 1 Tzu-Mao Li 3

Abstract
Computations in computer graphics, robotics, and
probabilistic inference often require differentiat-
ing integrals with discontinuous integrands. Pop-
ular differentiable programming languages do not
support the differentiation of these integrals. To
address this problem, we extend distribution the-
ory to provide semantic definitions for a broad
class of programs in a programming language,
Potto. Potto can differentiate parametric discon-
tinuities under integration, and it also supports
first-order functions and compositional evalua-
tion. We formalize the meaning of programs us-
ing denotational semantics and the evaluation of
programs using operational semantics. We prove
correctness theorems and show that the opera-
tional semantics is compositional, enabling sep-
arate compilation and overcoming compile-time
bottlenecks. Using Potto, we prototype a differen-
tiable renderer with separately compiled shaders.

1. Introduction
The advent of deep learning frameworks supporting auto-
matic differentiation—the automated computation of deriva-
tives of a function given just the definition of the function
itself—within general-purpose programming languages has
opened up new avenues to build large-scale applications for
differentiable programming, including in deep learning, op-
timization, and uncertainty quantification. However, these
techniques have traditionally been limited to continuous
processes, excluding a variety of natural phenomena that
are typically modeled as discontinuous functions.

*Equal contribution 1CSAIL, MIT, 32 Vassar Street in Cam-
bridge, Massachusetts 02139, USA 2Computer Science and En-
gineering, University of Washington, University of Washington,
3800 E Stevens Way NE, Seattle, WA 98195, USA 3Computer Sci-
ence and Engineering, University of California San Diego, 9500
Gilman Drive, La Jolla, CA 92093, USA. Correspondence to: Jesse
Michel <jmmichel@csail.mit.edu>.

Published at the Differentiable Almost Everything Workshop of the
40 th International Conference on Machine Learning, Honolulu,
Hawaii, USA. July 2023. Copyright 2023 by the author(s).

(a) Depth shader (b) Depth shader deriv.

(c) Thresh. Lambert shader (d) Thresh. Lambert deriv.

Figure 1. Potto can separately compile and swap between different
shaders, making the design process tractable. The sparsity pattern
of the derivative shaders are displayed—the derivative shader is
displayed red, say, if the derivative is nonzero in the red channel.

Such discontinuous functions arise in computer graphics
and vision (Li et al., 2018), robotics (Hu et al., 2020; Ban-
garu et al., 2021), and probabilistic inference (Lee et al.,
2018). In computer graphics, discontinuities arise from
object boundaries, occlusion, and sharp changes in color.
Robot controllers and computer simulations often model
contact, which introduces discontinuities. In probabilistic
inference, the models often have discontinuities, e.g., a prob-
abilistic simulation of a controller that regulates room tem-
perature is discontinuous due to switching a heater on/off.

Consider a program that models contact, such as a simula-
tion or animation of a robot walking (Stengel, 1994; Witkin
& Kass, 1988). Such a program might compute the inte-
gral

∫ 1

0
[x < θ] dx, where the Iverson bracket [P ] is one if

P is true and zero otherwise. The parameter θ represents
the time the ball hits the wall and x < θ is a parametric
discontinuity. Although the derivative with respect to θ

is Dθ

∫ 1

0
[x < θ] dx = [0 < t < 1], popular differentiable

programming languages return zero because they do not ac-
count for parametric discontinuities (Bradbury et al., 2018;
Paszke et al., 2019).

Teg (Bangaru et al., 2021) automatically differentiates para-
metric discontinuities, providing an unbiased estimation of

1



Distributions for Compositionally Differentiating Parametric Discontinuities

(a) Scene (b) Shaders change how light attenuates (c) The derivative w.r.t. light position
Figure 2. We implement a differentiable renderer in Potto and render a scene depicting a single line of light pointing diagonally downward
(a) with different light attenuations (b). Swapping between different shaders is an example of how designers modify a scene for an artistic
effect. In Potto, programs and their derivatives (c) can be separately compiled and composed to efficiently swap among shaders.

a program with integrals. However, their approach requires
global program transformations, leading to long compile
times. Our programming language, Potto, avoids these prob-
lems leading to an 81x and 441x speedup in compile time
in an application to image stylization.

Moreover, global program transformations prevent separate
compilation—the ability to compose compiled code snip-
pets. For a renderer, this means that when an artist tweaks
the scene, such as changing the color of an object (swap
between shaders), the whole scene must be recompiled.

Figure 1 shows the result of using a renderer implemented
in Potto to swap between two shaders applied to the same
triangle in 3D space. Both the triangle and shaders can be
separately compiled and composed in Potto, but not in Teg.

2. Related Work
Most automatic differentiation methods ignore discontinu-
ities, such as if-else branches, during differentiation (Paszke
et al., 2019; Bradbury et al., 2018). Normally, doing so
is correct almost everywhere (Lee et al., 2020). However,
when the problem specification involves integration, as in
computer graphics, robotics, and probabilistic inference,
ignoring the discontinuities produces incorrect gradients.
In practice, these incorrect gradients results in slower con-
vergence or even divergence during optimization (Bangaru
et al., 2021; Li et al., 2018; Lee et al., 2018).

Many works account for parametric discontinuities by hand-
deriving application-specific derivatives (Loper & Black,
2014; Li et al., 2018; Hu et al., 2020; Loubet et al., 2019;
Bangaru et al., 2020). Emerging research accounts for para-
metric discontinuities: Lee et al. (2018) proposes a solution
for affine discontinuities, while Yang et al. (2022); Liu et al.
(2019); Chen et al. (2019); Petersen et al. (2022) support a
wider class of discontinuities but introduces bias. In contrast,
Teg (Bangaru et al., 2021) directly samples discontinuous
surfaces that arise from differentiation, providing an unbi-
ased, low-variance integral estimation.

Subsequent work uses distributional semantics to build
an equational theory, but lacks an operational seman-
tics (Azevedo de Amorim & Lam, 2022).

3. Case Study
We motivate our language by implementing a differentiable
renderer (de La Gorce et al., 2011; Loper & Black, 2014; Li
et al., 2018; Zhao et al., 2020; Li et al., 2020). Applications,
ranging from autonomous driving and robotics to CGI, use
differentiable renderers to e.g. recognize the 3D shapes of
cars, signs, and pedestrians, reconstruct the 3D scene for the
robot to interact with, and motion capture actors’ faces.

A renderer is a program which takes in the geometry and
color of each object in the scene and outputs an image.
Renderers are built out of programs called shaders. A dif-
ferentiable renderer computes the change in the color of a
pixel with respect to the change of a parameter, such as the
location or color of an object.

Figure 2 depicts images generated by a differentiable ren-
derer implemented in Potto. The scene contains a single
object—a line of light shining diagonally downward. The
color of a single pixel is the average of light within the pixel
area:

f(c, s) =

∫ 1

0

∫ 1

0

s(x, y, c)[x+ y + c ≥ 0] dxdy (1)

We use the convention that the origin is in the top left corner
and the y-axis points down. The half plane [x+y+c ≥ 0] is
the visibility shader for the light. The function s : R3 → R
is the color shader for the light that depends on the point
(x, y) and parameter c.

The goal is to optimize the parameter c so that the renderer
generates a pixel with color a. We use gradient descent to
minimize the loss function L(c, s) = (f(c, s)− a)

2 with
derivative DcL(c, s) = 2(f(c, s)− a)Dcf(c, s), where Dc

represents the partial derivative with respect to c. A differ-
entiable renderer computes the derivative Dcf(c, s).

In order to easily iterate on designs, a user should be able to
efficiently replace the visibility shader and the color shader
to change the shape and color of the object, respectively.

Differentiating Parametric Discontinuities We give an
informal description of the differentiating parametric dis-
continuities and give a formal treatment in the following

2



Distributions for Compositionally Differentiating Parametric Discontinuities

section. In Figure 2, the image using the constant shader
s(x, y, c) = 1 shows a half plane and its derivative is a line
along the boundary of the half plane. Since the derivative
is the change resulting from perturbing the parameter c in
f(c, s). The half-plane shifts diagonally downward, making
the boundary the only region with a non-zero derivative.
The linear shader s(x, y, c) = (

√
2(x+ y + c) + 2)−1 and

the quadratic shader s(x, y, c) = (
√
2(x + y + c) + 2)−2

have the same boundary contribution to the derivative, but
also have a non-zero interior derivative.

The derivative of the renderer decomposes into the interior
and boundary contributions:

Dcf(c, s) =

∫
S

Dcs(x, y, c)[x+ y + c ≥ 0]︸ ︷︷ ︸
interior

+ s(x, y, c)δ(x+ y + c)︸ ︷︷ ︸
boundary

d(x, y).
(2)

The Dirac delta distribution δ in the integrand can be thought
of as zero everywhere and approaching infinity along the
line x+ y + c = 0. This shows up as the diagonal yellow
line in the derivative of all three shaders.

Automatic Differentiation of Parametric Discontinuities
A naı̈ve implementation would discretize the integral to a
sum and use automatic differentiation to compute the deriva-
tive of the discretization. The resulting program would
approximate the interior term of Equation 2, but ignore the
second due to the Dirac delta distribution, producing an
incorrect result.

Recent work accounts for both terms by introducing an in-
tegral primitive to a differentiable programming language,
Teg (Bangaru et al., 2021). Teg performs a series of code
transformations such as distributing multiplication over addi-
tion, performing a global change of variables, and applying
a global symbolic rule to eliminate Dirac delta terms.

This global rewriting approach fundamentally relies upon
having the syntax of the whole expression. These rules are
not compositional and do not allow for separate compilation.
As a result, they are a barrier to performance.

For example, separately compiling shaders is critical
in video games, animation, photo-editing software, and
computer-generated imagery, allowing users/designers to
see multiple variants of a scene or video without requiring
compiling the whole scene again. Likewise, users often run
a differentiable renderer with multiple shaders.

Our differentiable programming language, Potto, has an
integral primitive and can separately compile programs. We
implement the renderer specified in Equation 1 and demon-
strate separate compilation by writing the renderer (and
visibility shader) and color shaders in separate files.

The following code snippet shows a differentiable renderer:
1 # renderer.po
2 from half_plane import cond
3 def renderer(c, shader)
4 integral ([0,1],[0,1])
5 ((shader (x,y)) c)
6 *(((cond (x, y)) c)?1:0) d(x,y)
7 drenderer = deriv(renderer)

Derivatives, integrals, and discontinuities Line 2 im-
ports the invertible, differentiable function (diffeomorphism)
\(x,y).\c.(x+y+c,x-y+c) from the half_plane.

diffeo file, where the \(x, y) notation declares an
anonymous function with parameters x and y. For instance,
in Python, we write lambda x, y:... to declare an
anonymous function. It takes in variables of integration x, y
and variable c, and returns an affine combination of the three.
Line 4 declares the integral to be estimated (Equation 1).
The first argument specifies that x, y each range from zero to
one, the second argument is the integrand, and the d(x,y)
declares that x and y are variables of integration. In Line
5, the deriv operator specifies the dual number derivative
of drenderer. The derivative drenderer takes in pairs
of an input and an infinitesimal perturbation to that input
and produces a pair of the outputs for the evaluation of the
renderer and its derivative.
1 # color_shaders.po
2 dconst_shader = deriv(\(x,y).\c.1)
3 dlin_shader = deriv(\((x,y).\c.
4 1/(sqrt(2)*(x+y+c)+2))
5 dquad_shader = deriv(\(x,y).\c.
6 1/(sqrt(2)*(x+y+c)+2)ˆ2)

The three shaders are first-order functions that model how
quickly light attenuates. The const_shader corresponds
to no attenuation—intensity is invariant to the distance from
the light. While in lin_shader and quad_shader, the
attenuation is linear and quadratic, respectively.
1 # main.po
2 from color_shaders import dconst_shader,

dlin_shader, dquad_shader
3 from renderer import drenderer
4 for dshader in [dconst_shader,

dlin_shader, dquad_shader]:
5 print(drenderer(dc=(-2,1), dshader))

A differentiable renderer In main.po, we compose the
derivative of the renderer with the derivative of each of the
color shaders to compute the color of a single pixel. We
evaluate the resulting expression at a base point −2 with
infinitesimal 1, producing a number representing the deriva-
tive. We can use the differentiable renderer in a derivative-
based optimization procedure, such as gradient descent, to
find the value of c that results in a pixel that is most similar
to the pixel provided.

3



Distributions for Compositionally Differentiating Parametric Discontinuities

Figure 3. A bar chart, where smaller is better, comparing Potto to Teg on a rendering task for image stylization. Potto is so much faster in
compile time that the bars on not visible. Compile time was the bottleneck in Teg.

Separate compilation Potto separately compiles (calcu-
lates the derivative of) the renderer and color shaders. As a
result, it only compiles the renderer and each of the shaders
once. In contrast, Teg must compile the renderer three
times—once for each of the shaders.

4. Potto programming language
We introduce a differentiable programming language, Potto,
that is the first with an integration primitive, to have first-
order functions, and to support compositional evaluation. A
first-order function takes in values of base types and pro-
duces values of base types. For instance, in Potto, a user
can specify a function of type real to real, but not a function
that that takes in another function as an argument. Com-
positional evaluation means that a compiler can evaluate
programs independently, passing values between modules.

We present a first-order functional language for program-
ming with distributions. The language has constants c,
variables x, sums and products of arbitrary terms t1 + t2
and t1 · t2, conditionals if t1 then t2 else t3, diffeomor-
phic conditionals if ⌊Ψ⌋(x1, . . .) then t1 else t2, integrals
int t d(x1, . . . , xn), pairs (t1, t2), and applications of first-
order functions ⌊f⌋(t). The function Ψ is a differentiable,
invertible function, taking in variables of integration and
free parameters written as (x1, . . .) and f is a piecewise
differentiable function with piecewise invertible pieces. The
type system (not shown) prevents variables of integration
from occurring in the condition t1 of if t1 then t2 else t3.

Denotational semantics Building on our extension of
distribution theory, we present a novel denotational seman-
tics for programs and derivatives of programs. We prove
a soundness theorem that shows that the derivative of the
denotation is equivalent to the separately defined derivative
denotation under mild conditions.

Operational semantics We present a novel operational se-
mantics that we prove accords with the denotational seman-

tics, providing unbiased estimates of the denoted program.
The operational semantics is compositional and therefore
supports separate compilation.

Implementation and applications We implement a pro-
totype system, Potto, and use it to build a renderer with
multiple shaders. We show that the renderer supports sepa-
rate compilation, enabling interactive workflows that would
otherwise be computationally intractable.

5. Empirical Results
Figure 1 depicts a differentiable ray tracing renderer of
a triangle tilted in 3D space, colored using two different
shaders that can be separately compiled. These toon shaders
are 1) a z-depth shader that assigns color to objects based on
their distance from the camera, and 2) a thresholded Lambert
shader that models the reflectance of a matte surface under
a point light in front of the triangle (Lake et al., 2000).

We compare the performance of Potto to previous work,
Teg (Bangaru et al., 2021), on a rendering benchmark for
image stylization. The results in Figure 3 show that Potto
outperforms Teg in all areas: compile time, evaluation time,
total time, and AST size. Most striking is the 88x and 441x
compile time speed up of Potto relative to Teg.

6. Conclusion
In our work, we extend the scope of differentiable program-
ming languages to handle integrals and parametric discon-
tinuities. Potto supports compositional evaluation and as a
result, transformations that were once global can be made
local. This enables separate compilation. We envision that
our theoretical approach and programming language design
will lead to more expressive differentiable programming
languages that better serve application domains including
graphics, robotics, and probabilistic inference.

4



Distributions for Compositionally Differentiating Parametric Discontinuities

References
Azevedo de Amorim, P. H. and Lam, C. Distribution Theo-

retic Semantics for Non-Smooth Differentiable Program-
ming. arXiv e-prints, 2022.

Bangaru, S., Michel, J., Mu, K., Bernstein, G., Li, T.-M.,
and Ragan-Kelley, J. Systematically differentiating para-
metric discontinuities. In Special Interest Group on Com-
puter Graphics and Interactive Techniques, 2021.

Bangaru, S. P., Li, T.-M., and Durand, F. Unbiased warped-
area sampling for differentiable rendering. Special Inter-
est Group on Computer Graphics and Interactive Tech-
niques in Asia, 2020.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., and Wanderman-Milne, S. JAX: com-
posable transformations of Python+NumPy programs,
2018.

Chen, W., Gao, J., Ling, H., Smith, E., Lehtinen, J., Jacob-
son, A., and Fidler, S. Learning to predict 3d objects
with an interpolation-based differentiable renderer. In Ad-
vances In Neural Information Processing Systems, 2019.

de La Gorce, M., Fleet, D. J., and Paragios, N. Model-based
3D hand pose estimation from monocular video. IEEE
Trans. Pattern Anal. Mach. Intell., 2011.

Hu, Y., Anderson, L., Li, T.-M., Sun, Q., Carr, N., Ragan-
Kelley, J., and Durand, F. DiffTaichi: Differentiable
programming for physical simulation. International Con-
ference on Learning Representations, 2020.

Lake, A., Marshall, C., Harris, M., and Blackstein, M. Styl-
ized rendering techniques for scalable real-time 3d anima-
tion. In International Symposium on Non-Photorealistic
Animation and Rendering, pp. 13–20, 2000.

Lee, W., Yu, H., and Yang, H. Reparameterization gradient
for non-differentiable models. In Neural Information
Processing Systems, 2018.

Lee, W., Yu, H., Rival, X., and Yang, H. On correctness of
automatic differentiation for non-differentiable functions.
In Neural Information Processing Systems, 2020.

Li, T.-M., Aittala, M., Durand, F., and Lehtinen, J. Differ-
entiable Monte Carlo ray tracing through edge sampling.
Special Interest Group on Computer Graphics and Inter-
active Techniques in Asia, 2018.

Li, T.-M., Lukáč, M., Michaël, G., and Ragan-Kelley, J. Dif-
ferentiable vector graphics rasterization for editing and
learning. Special Interest Group on Computer Graphics
and Interactive Techniques in Asia, 2020.

Liu, S., Li, T., Chen, W., and Li, H. Soft rasterizer: A differ-
entiable renderer for image-based 3d reasoning. The IEEE
International Conference on Computer Vision (ICCV),
Oct 2019.

Loper, M. M. and Black, M. J. OpenDR: An approximate
differentiable renderer. In European Conference on Com-
puter Vision, 2014.

Loubet, G., Holzschuch, N., and Jakob, W. Reparameteriz-
ing discontinuous integrands for differentiable rendering.
Special Interest Group on Computer Graphics and Inter-
active Techniques in Asia, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An imperative
style, high-performance deep learning library. In Neural
Information Processing Systems. 2019.

Petersen, F., Goldluecke, B., Borgelt, C., and Deussen,
O. GenDR: A Generalized Differentiable Renderer. In
IEEE/CVF International Conference on Computer Vision
and Pattern Recognition (CVPR), 2022.

Stengel, R. F. Optimal control and estimation. Courier
Corporation, 1994.

Witkin, A. and Kass, M. Spacetime constraints. Special
Interest Group on Computer Graphics and Interactive
Techniques, 1988.

Yang, Y., Barnes, C., Adams, A., and Finkelstein, A. Aδ:
Autodiff for discontinuous programs - applied to shaders.
In Special Interest Group on Computer Graphics and
Interactive Techniques, 2022.

Zhao, S., Jakob, W., and Li, T.-M. Physics-based differ-
entiable rendering: From theory to implementation. In
SIGGRAPH Courses, 2020.

5


