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ABSTRACT

Low-rank architectures have become increasingly important for efficient large
language model (LLM) pre-training, providing substantial reductions in both pa-
rameter complexity and memory/computational demands. Despite these advan-
tages, current low-rank methods face three critical shortcomings: (1) compromised
model performance, (2) considerable computational overhead, and (3) limited
activation memory savings. To address these limitations, we propose Cross-layer
Low-Rank residual Network (CR-Net), an innovative parameter-efficient frame-
work inspired by our discovery that inter-layer activation residuals possess low-rank
properties. CR-Net implements this insight through a dual-path architecture that
efficiently reconstructs layer activations by combining previous-layer outputs with
their low-rank differences, thereby maintaining high-rank information with mini-
mal parameters. We further develop a specialized activation recomputation strategy
tailored for CR-Net that dramatically reduces memory requirements. Extensive pre-
training experiments across model scales from 60M to 7B parameters demonstrate
that CR-Net consistently outperforms state-of-the-art low-rank frameworks while
requiring fewer computational resources and less memory.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable success across diverse domains (Brown
et al., 2020; Touvron et al., 2023; Grattafiori et al., 2024; Liu et al., 2024a), with strong empirical
evidence demonstrating that scaling both model parameters and training data consistently improves
model performance (Kaplan et al., 2020; Hoffmann et al., 2022; Rae et al., 2021). However, as model
sizes grow from millions to billions of parameters, the computational requirements for pre-training
increase exponentially in both computation power and memory consumption. This necessitates
months-long training cycles on large clusters of high-performance GPUs, making the process both
time-prohibitive and economically challenging. For example, scaling from GPT-3’s 2.7B parameter
version to its 175B counterpart increases memory requirements from 21GB to 1.4TB (a 66× increase)
and computational costs from 55 to 3,640 petaflop-days (another 66× increase) (Brown et al., 2020).
These challenges underscore the critical need for developing efficient architectures that systematically
leverage the inherent characteristics of LLM model structures to optimize both memory utilization
and computational efficiency while maintaining cost-effectiveness.
Low-rank structures in LLM training. The low-rank property has emerged as one of the most
prominent structural characteristics in transformer-based models, attracting significant research
attention due to its consistent empirical validation. Existing approaches to leveraging this property
can be fundamentally classified based on two principal observations:

(O1). Low-rank parameter. Representative approaches such as Low-Rank Adaptation (LoRA)
and its variants (Hu et al., 2022; Lialin et al., 2023; Zhang et al., 2023; Liu et al., 2025; Xia et al.,
2024; Kamalakara et al., 2022; Miles et al., 2024; Dettmers et al., 2023) utilize learnable low-rank
parameter matrices as memory-efficient substitutes for full-rank weight updates. This design achieves
significant parameter reduction while preserving model capacity and can achieve further memory
savings with quantized parameters (Dettmers et al., 2023). Furthermore, this paradigm demonstrates
strong compatibility with sparsity-inducing techniques (e.g., SLTrain (Han et al., 2024) and LOST
(Li et al., 2025)) to achieve improved model performance under constrained parameter budgets.
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(O2). Low-rank gradient. Recent research has explored the intrinsic low-rank properties of LLM
gradients (Zhao et al., 2024; Chen et al., 2024a; Hao et al., 2024; Huang et al.; Robert et al., 2024;
He et al., 2024; Liang et al., 2024). By projecting optimizer states into low-dimensional subspaces,
these methods achieve significant memory reduction during pre-training. Extensions like RSO
(Chen et al., 2025) provide theoretical convergence guarantees under low-rank gradient constraints.
Advanced approaches such as Apollo (Zhu et al., 2024) demonstrate additional benefits by combining
channel-wise adaptive learning with low-rank gradients, yielding both improved validation accuracy
and optimized memory efficiency throughput the pre-training process.
Limitations in existing literature. Despite their computational and storage efficiency, current
approaches utilizing low-rank LLM structures suffer from several critical limitations:

(L1). Suboptimal performance with low-rank parameter training. Low-rank parameterization
reduces memory and computational costs at the expense of suboptimal performance (Biderman et al.,
2024). Techniques such as full-rank initialization (Hu et al., 2022), update aggregation (Huh et al.,
2021; Lialin et al., 2023), and non-linear operators (Liu et al., 2025) can mitigate this issue but may
diminish computational benefits. Furthermore, recent studies show transformer weights typically
exhibit near-full-rank properties (Aghajanyan et al., 2020; Yu & Wu, 2023; Li et al., 2024), with
higher-rank weights being essential for knowledge representation (Meng et al., 2022) and sensitive to
low-rank approximation (Ji et al., 2024), indicating low-rank parameterization limit LLM capacity.

(L2). Computational bottlenecks with low-rank gradient training. While training approaches
utilizing low-rank gradient empirically achieve better performance than low-rank parameterization,
the gradient compression process itself introduces computational overhead. Approaches such as
GaLore (Zhao et al., 2024) and FIRA (Chen et al., 2024a) exploits Singular Value Decomposition
(SVD) to identify effective low-rank gradient subspace, which would substantially reduce throughput
during training. Other methods like GoLore (He et al., 2024) and RSO (Chen et al., 2025) propose to
use random low-rank gradient subspace, which sometimes leads to suboptimal performance.

(L3). Limitations to save activation memory. Existing approaches reduce memory load across
multiple dimensions: parameters, gradients, and optimizer states. Yet a critical yet often overlooked
memory burden stems from activation storage – intermediate variables cached during forward
propagation required for gradient computation. Empirical studies (Zhao et al., 2024; Han et al., 2024)
reveal that activation memory overhead typically ranges from 1× to 4× the model parameter size,
exhibiting strong dependence on batch size configurations. While low-rank methods such as RSO
(Chen et al., 2025) and CoLA-M (Liu et al., 2025) have been proposed to reduce activation memory,
it remains an open question whether activations still possess potential for further compression.

Main results. Our contributions are threefold, forming a principled framework rather than an ad-hoc
combination:

(C1). Novel Foundational Principle: We propose a novel principle in LLMs: the difference
between activations of adjacent layers exhibits a strong low-rank structure. This phenomenon has
been consistently observed across various models and at different training stages. Unlike low-rank
properties in gradient updates or parameter modifications—such as those exploited by GaLoRE and
LoRA—this structural property of activations represents an previously unreported characteristic of
LLMs. It thereby serves as a foundational basis for more efficient pre-training paradigms.

(C2). Parameter-efficient framework: We propose the Cross-layer low-Rank residual Network
(CR-Net), a pre-training framework that inherently utilizes cross-layer low-rank activation differences.
By computing each linear layer’s activation through a combination of low-rank outputs and preceding
layer activations, our design directly applies the observed low-rank structure while avoiding infor-
mation loss from repeated low-rank approximations in LoRA-based approaches. This addresses
Limitations (L1) and (L2) through reduced parameter complexity and memory/computation costs.

(C3). Activation-efficient Re-computation: we develop a re-computation strategy for CR-Net that
removes activation storage for most layers during backward propagation. Our analysis shows superior
memory efficiency and lower re-computation overhead compared to existing methods like vanilla
gradient checkpointing (GCP) and CoLA-M, resolving Limitation (L3).

(C4). Empirical Validation: Large-scale pre-training experiments demonstrate that CR-Net achieves
better validation performance than existing low-rank parameter methods while maintaining training
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Figure 1: Illustration of CR-Net base on LLaMA-2 architecture with L transformer layers. Layer normalization
and RoPE are omitted for simplicity.

throughput. Integration with our re-computation strategy further reduces memory consumption
without compromising model capability.

2 RELATED WORKS AND PRELIMINARY

2.1 RELATED WORKS

Here we display some prior works of parameter-efficient training for LLMs. More related works can
be found in Appendix A.

Parameter-efficient training for LLMs. The pursuit of reducing memory and computational over-
head in LLM pre-training has driven significant progress in parameter-efficient training frameworks.
Central to these efforts is Low-Rank Adaptation (LoRA) (Hu et al., 2022), which constrains weight
updates to low-rank subspaces through matrix decomposition. This approach fundamentally differs
from sparse training methodologies (Houlsby et al., 2019; Thangarasa et al., 2023) that selectively
update subsets of model parameters. Recent hybrid architectures like SLTrain attempt to syner-
gize low-rank and sparse parameterization, while multi-LoRA update strategies (Lialin et al., 2023;
Xia et al., 2024) aim to recover full-rank expressiveness through sequential low-rank adjustments.
Although introducing nonlinear operations to low-rank activations (Liu et al., 2025) theoretically
enhances model capacity, such innovations often incur prohibitive computational costs that undermine
their practicality for large-scale pre-training scenarios.

2.2 PRELIMINARY

Notations. In this paper, we assume that the amount of transformer blocks of the model is L.
Denote s and h as the sequence length and hidden dimension, respectively. hff stands for the
intermediate dimension of the model. We use Xl ∈ Rs×h to represent the input of layer l. W P

l ,
XP

l and Y P
l stand for the parameters, inputs and outputs of linear layers at the position P. For

example, P ∈ {Q,K,V,O, gate, up, down} in LLaMA-based model and P ∈ {Q,K,V,O, up, down}
in GPT-based model. Finally, we use LRr(A) to denote the optimal approximation of A with rank r
under Frobenius loss as

LRr(A) := argmin
Λ

∥A− Λ∥2F , s.t. rank(Λ) ≤ r.
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Transformer layers. In this paper, we present our proposed CR-Net based on LLaMA architecture
(Touvron et al., 2023; Grattafiori et al., 2024) with SwiGLU activation. And we will present the
pre-training performance of CR-Net based on various architecture in Section 5.

We assume that the batch size is 1, unless indicated otherwise. We omit layer normalization and
rotary position embedding (RoPE) operations for simplicity. Then the multi-head attention can be
summarized as follows:

Attl = softmax

(
(Y Q

l )⊤Y K
l√

h

)
Y V
l ·WO

l +Xl,

where Y Q
l := XlW

Q
l , Y K

l := XlW
K
l , Y V

l := XlW
V
l .

(1)

For W gate
l ,W up

l ∈ Rh×hff and W down
l ∈ Rhff×h as the weight (projection) matrices in the feed-

forward network (FFN) in the layer l, where dff denotes the dimension of projection. Then the FFN
operation can be summarized as:

Xl+1 =
(
SwiGLU(Attl ·W gate

l )⊙ (Attl ·W up
l )
)
W down

l + Attl, (2)
where ⊙ denotes the element-wise production.

3 CR-Net: CROSS-LAYER RESIDUAL NETWORK FOR LLM PRE-TRAINING

3.1 OBSERVATION: PREVIOUS-LAYER AND LOW-RANK TERM PRESENT A BETTER
ACTIVATION APPROXIMATION

Existing studies have demonstrated that the activations in LLMs exhibit intrinsic low-rank structural
properties (Cui et al., 2020; Huh et al., 2021; Yu & Wu, 2023; Liu et al., 2025) and thus low-rank
approximations of activation matrices achieve acceptable reconstruction fidelity, making pre-training
a model with low-rank parameters possible. Furthermore, empirical evidence from (Liu et al.,
2024b; Brandon et al., 2024) highlights inter-layer activation correlations, suggesting that historical
activations from preceding layers may encode critical information for current layer computations.
Unlike existing observations, we have found a critical structural characteristic that the difference
between activations of adjacent layers exhibits a significant low-rank property.

Estimating activation from the historical layer and low-rank difference. For l = 2, 3, · · · , L,
consider the following estimation for the activation Y P

l as follows:

Ỹ P
l,β0

:= β0Y
P
l−1 + LRr(∆β0

Y P
l ), where ∆β0

Y P
l := Y P

l − β0Y
P
l−1. (3)

Here, β0 is a tuned scaling coefficient. We aim to validate that this hybrid approach achieves superior
approximation accuracy compared to direct low-rank approximation Ỹ P

l,lr = LRr(Y
P
l ).

Emprical evaluation for different activation approximation approaches. To compare the perfor-
mance for different methods including Eq. (3) and direct low-rank approximation for the activation
estimation, we conducted comparative experiments by fine-tuning the pre-trained LLaMA-3 8B
(Grattafiori et al., 2024), GPT-2-small (Radford et al., 2019), and models using the TinyShake-
speare dataset. In both schemes we use the same low-rank dimension r = 0.25h and we quantify
approximation quality via relative error defined as follow.

Relative error(Y P
l , Ỹ

P
l ) :=

∥∥∥Ỹ P
l − Y P

l

∥∥∥
F

/∥∥∥Y P
l

∥∥∥
F
, (4)

where Ỹ P
l is an estimation of Y P

l .

Figure 2 illustrates the average relative error of two approaches for activation approximation over
all the transformer layers. It can be observed that the previous-layer-based yields smaller relative
errors, indicating that performing low-rank approximation with the history information provides
better reconstruction capability compared to direct approximation of the original activations when
preserving the same rank r of singular values. Additional evaluation can be fined in Appendix E.1.
We also present a theoretical insight for this observation, whose detail is in Appendix D.

Such an observation forms the foundational insight of CR-Net, as it enables more accurate activation
reconstruction with fewer parameters compared to direct low-rank approximation of Y P

l , making
CR-Net not a simple extension of existing low-rank frameworks for pre-training.
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Figure 2: The average relative error of activation recovery by using low-rank approximation and using (3) over
all transformer layers. (Left: LLaMA-3 8B, right: GPT-2 small.)

3.2 MODEL STRUCTURE

We utilize the empirical observation of low-rank structure for cross-layer activation differences
to guide the architectural design of CR-Net with low-rank parameters. As evidenced by (3), the
matrix ∆β0

Y P
l possesses an intrinsic low-rank property, which motivates the approximation as

Y P
l ≈ β0Y

P
l−1 + LRr(∆β0

Y P
l ).

Motivated by the low-rank cross-layer activation difference, we replace the full-shape weight W P
l ∈

Rhin×hout to two low-rank learnable parameter matrices AP
l ∈ Rhin×r and BP

l ∈ Rr×hout for l =
2, 3, · · · , L, where r < min{hin, hout} is a hyper-parameter. Then the activation of layer l at location
P can be computed by

Y P
l = β0Y

P
l−1 +XP

l A
P
lB

P
l . (5)

Furthermore, to enhance the scalability of the cross-layer residual operation, we let the scaling
factor β0 as a learnable parameter βP

l . With the learnable scaling factor, it can dynamically adjust
the impact of the historical activation and low-rank outputs in the current activation, allowing the
model to balance how much the historical information and incremental information should be carried.
Specifically, when βP

l is near zero, the model relies heavily on the low-rank residual. Otherwise,
the residual becomes a refinement over a strong propagated signal. This spectrum allows CR-Net to
smoothly interpolate between shallow, expressive layers and deeper low-rank transitions, all within a
fixed memory and computation budget. Ablations in Section 5.2 also illustrates that the learnable
scaling factor can improve the training performance of CR-Net.

Moreover, we still use the full-size parameter matrix W P
1 in the first layer. We add a normalization

term ε to avoid βP
l equals to zero, where ε can be set to 10−6 in practical. At this stage, CR-Net

change the standard matrices production to the cross-layer residual operation as follow:

Y P
l =

{
XP

l W
P
l , l = 1,

sign(βP
l )(|βP

l |+ ε)Y P
l−1 +XP

l A
P
lB

P
l , l = 2, 3, · · · , L. (6)

With the low-rank parameters and cross-layer residual, we can present the framework of CR-Net,
which can be illustrated as Figure 1. The full-rank parameter in the first layer as well as the residual
for CR-Net can avoid the information loss by direct training with low-rank parameters.

CR-Net’s Stability Mechanism. CR-Net overcomes the instability of low-rank pretraining by
preserving high-rank activations through a full-rank first layer and modulated residual connections.
A learnable scalar β dynamically balances the high-rank state and low-rank increments, enabling
robust signal reconstruction without collapsing into low-dimensional subspaces. Unlike methods that
enforce strict low-rank constraints via projections or decompositions (e.g., QR, SVD), which often
cause information loss and numerical issues, CR-Net uses standard optimization methods without
additional overhead. This design ensures stable training dynamics, similar to full-rank approaches,
while achieving significant parameter and memory reductions.

3.3 CR-Net WITH ACTIVATION-EFFICIENT RE-COMPUATION

Although CR-Net directly reduces memory and computational costs through its parameter-efficient
framework, activation values during forward propagation still consume significant GPU memory,
particularly under large batch sizes.
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Algorithm 1 The back-propagation of CR-Net with re-computation
Require: Layer inputs Xl for l = 1, 2, · · · , L, low-rank output XP

l A
P
l for l = 1, 2, · · · , L, and

linear layer activations Y P
l for l ∈ A.

for l = L,L− 1, · · · , 1 do
Compute activations of layer l for back-propagation by Xl, XP

l A
P
l and Y P

l .
if l ̸= 1 and l − 1 ̸∈ A then

for P in all linear layers do
Reconstruct the previous-layer activation Y P

l−1 by Eq. (7).
end for

end if
end for

In practice, gradient checkpointing (GCP) (Chen et al., 2016) enhances memory efficiency by storing
only a subset of activations (checkpoints) during forward propagation, with the remaining activations
recomputed during backpropagation. The vanilla GCP implementation requires storing layer-wise
inputs while recomputing other activations through full forward passes. However, CR-Net introduces
a critical architectural dependency: the computation of linear layer activations relies on both current
low-rank outputs and historical activations from preceding layers. This dependency necessitates
full forward passes through all antecedent layers during GCP recomputation, resulting in an O(L2)
computation overhead.

To address this, we propose a tailored recomputation strategy for CR-Net. The core technique of the
strategy is to store a subset of linear activations. Specifically, we select a subset of Transformer layers
indexed by A with L ∈ A and 1 ̸∈ A typically. During forward propagation, we store:

• All layer inputs Xl.
• All linear layer activations Y P

l for layers l ∈ A.

• Low-rank outputs XP
l A

P
l for l = 2, 3, · · · , L to minimize matrix recomputation costs.

During backpropagation (for layers l = 1, 2, · · · , L), we recompute activations using stored inputs
and checkpoints. If Y P

l is stored, we can use it to obtain other activations in this transformer layer.
Otherwise, it can be recovered via the inverse of the cross-layer residual connection in (6):

Y P
l =

1

sign(βP
l+1)(|βP

l+1|+ ε)
(Y P

l+1 −XP
l+1A

P
l+1B

P
l+1). (7)

The back-propagation with re-computation of CR-Net is summarized as Algorithm 1. It enables
full activation recovery using only a stored subset of activation. We also emphasize that such a
storage can effectively reduce the accumulation of prediction error during the activation recovery
process. By setting |A| as L/8 and storing low-rank outputs across multiple layers, such errors
remain controllable (see empirical validation in Section 5.2).

4 COMPLEXITY ANALYSIS

In this section, we present the analysis for the parameter complexity, memory complexity, and
computation complexity of CR-Net based on LLaMA architecture (Touvron et al., 2023; Grattafiori
et al., 2024) and Adam optimizer (Kingma & Ba, 2014). We also present the communication
overhead and HBM memory analysis for CR-Net under multiple GPU training in Appendix G.

4.1 COMPLEXITY ANALYSIS WITHOUT RE-COMPUTATION

Parameter and Memory Complexity. For CR-Net, the parameter complexity of the first layer is
identical to that of the full-rank model. In subsequent layers, CR-Net employs two low-rank matrices
with hr parameters to replace the full-rank matrices in self-attention, and uses two additional low-rank
matrices with hr and hffr parameters respectively for the FFN operators. The overall parameter
complexity is summarized as follows:

4h2 + 3hhff︸ ︷︷ ︸
Parameters in the first layer

+ (L− 1)(11hr + 3hffr).︸ ︷︷ ︸
Parameters in the other layers

(8)
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Table 1: Computation complexity of different efficient pre-training approaches for one gradient step based on
LLaMA architecture. The optimizer are all standard Adam. Lower-order terms are omitted for brevity. The
computation complexity of other methods are referred from (Liu et al., 2025).

Approach FLOPs

Full-rank L(24sh2 + 12s2h+ 18shhff)
(Re)LoRA L(40sh2 + 24s2h+ 30shhff)

SLTrain L(24sh2 + 12s2h+ 18shhff + 24h2r + 18hhffr)
GaLore L(24sh2 + 12s2h+ 18shhff + 16h2r + 12hhffr)
CoLA L(48shr + 12s2h+ 18sr(h+ hff))

CR-Net 24sh2 + 12s2h+ 18shhff + (L− 1)(48shr + 12s2h+ 18sr(h+ hff))

Regarding memory overhead for storing parameters, gradients, and optimizer states with the Adam
optimizer, the requirement is approximately 4 times the parameter count. Consequently, the memory
complexity is:

16h2 + 12hhff︸ ︷︷ ︸
Memory in the first layer

+(L− 1)(44hr + 12hffr).︸ ︷︷ ︸
Memory in the other layers

(9)

With low-rank parameters, the parameter complexity is reduced, particularly if r ≤ h/2. In practice,
setting r ≈ 0.25h achieves approximately 50% saving in parameters while maintaining comparable
pre-training performance to full-rank training, as demonstrated in Section 5.1.

Computational Complexity. For the first transformer layer of CR-Net, the forward- and backward-
propagation process maintains identical computational complexity to full-rank training. In subsequent
layers, CR-Net employs low-rank weights while eliminating the nonlinear activation step applied
to low-rank outputs, combined with cross-layer residual connections in contrast to CoLA (Liu
et al., 2025). Given that both operations introduce lower-order computational complexity terms, we
conclude that these layers maintain equivalent FLOPs to CoLA. Following existing analysis (Liu
et al., 2025), the total computation complexity is (see Appendix B.2 for details):

24sh2 + 12s2h+ 18shhff︸ ︷︷ ︸
FLOPs in the first layer

+(L− 1)(48shr + 12s2h+ 18sr(h+ hff))︸ ︷︷ ︸
FLOPs in the other layers

. (10)

Table 1 demonstrates computational requirements per gradient step. As hff ≈ 8h/3 in LLaMA-based
model with SwiGLU activation, CR-Net achieves complexity reduction over full-rank pre-training
when r < 0.5d. Notably, while CR-Net exhibits marginally higher FLOPs than CoLA with the
same r due to the full-size first layer, it enables superior training performance at lower r values with
reduced computation. See Section 5.1 for empirical validation.

4.2 COMPLEXITY ANALYSIS WITH RE-COMPUTATION

We evaluate recomputation overhead and activation memory costs for CR-Net based on LLaMA-
like architecture in C. Table 2 compares activation memory and recomputation complexity across
frameworks. including practical measurements for LLaMA2-7B (batch size 16). Althrough our
re-computation strategy introduce additional memory overhead than Vanilla GCP and CoLA-M,
CR-Net also achieves a 67.4% reduction in total computation overhead compared to Vanilla GCP and
a 8.0% reduction compared to CoLA with significant memory saves, validating the effectiveness of
our proposed cross-layer framework and re-computation strategy.

5 EXPERIMENTS

This section conducts numerical experiments to systematically assess the efficiency of the proposed
CR-Net methodology. Our evaluation framework encompasses pre-training tasks spanning diverse
model scales. Furthermore, we empirically validate the performance advantages of our innovative re-
computation approach. To substantiate design choices, comprehensive ablation studies are performed
focusing on two critical components: the determination of optimal rank values for low-rank parame-
terization and the adaptive learning dynamics of scaling coefficients βP

l within our parameterization
scheme. More experimental results can be referred in Appendix E.
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Table 2: Activation memory and re-computation complexity of different activation-efficient approaches based on
LLaMA architecture with batch size 1 and BF16 precision. For CR-Net, the notation b represents the elements of
A where b = 4 . The last two column is the evaluated computation and memory of LLaMA2-7B framework with
r = 512, batch size B = 16, and sequence length s = 256. We also add a explanation of the re-computation
complexity of CoLA-M in Appendix C.2.

Algorithms Activation Memory Re-compute Memory (GB) FLOPs (×1015)

Vamilla GCP Lsh 24Lsh2+4Ls2h 51.22 (1.000×) 2.119 (1.000×)
CoLA-M 2Lsh+7Lsr 20.67Lshr+4Ls2h 24.78 (0.484×) 0.752 (0.355×)
CR-Net (L+10b)sh+7(L−1)sr 20.67(L− b)shr+4Ls2h 23.35 (0.456×) 0.692 (0.326×)

Full-rank 20.67Lsh+2Ls2a N.A. 70.97 (1.386×) 1.608 (0.759×)

Table 3: Comparison of validation perplexity (PPL) (↓), parameter complexity (M) (↓) and evaluated memory
overhead (GB) (↓) of parameter, gradients, and optimizer states of different effective training approaches in
the pre-training task of LLaMA model with C4-en dataset. The results of compared methods are referred from
(Huang et al.; Han et al., 2024; Liu et al., 2025; Chen et al., 2025; Zhu et al., 2024; Miles et al., 2024; Mo et al.,
2025). For CR-Net, it is compared with other parameter-efficient methods with aligned parameter complexity
(marked as ♢) and compared with other optimizer-effiencnt methods with aligned memory overhead (marked as
†). N.A. means that the corresponding experiment has not been taken.

Approach
60M 130M 350M 1B

1.1B tokens 2.2B tokens 6.4B tokens 13.1B tokens
PPL Para Mem PPL Para Mem PPL Para Mem PPL Para Mem

Full-rank 34.06 58 0.43 24.36 134 1.00 18.80 368 2.74 15.56 1339 9.98
LoRA 34.99 58 0.37 33.92 134 0.86 25.58 368 1.94 19.21 1339 6.79

ReLoRA 37.04 58 0.37 29.37 134 0.86 29.08 368 1.94 18.33 1339 6.79
VeLoRA 34.35 58 0.37 25.88 134 0.86 N.A. N.A.
FLoRA 33.76 58 0.37 25.29 134 0.86 N.A. N.A.
SLTrain 34.15 44 0.32 26.04 97 0.72 19.42 194 1.45 16.14 646 4.81
CoLA 34.04 43 0.32 24.48 94 0.70 19.40 185 1.38 15.52 609 4.54
LORO 33.96 43 0.32 24.59 94 0.70 18.84 185 1.38 15.19 609 4.54

CR-Net ♢ 32.76 43 0.32 24.31 90 0.67 18.95 183 1.36 15.22 583 4.35

GaLore 34.88 58 0.36 25.36 134 0.79 18.95 368 1.90 15.64 1339 6.60
RSO 34.55 58 0.36 25.34 134 0.79 18.87 368 1.90 15.86 1339 6.60

Apollo 31.55 58 0.36 22.94 134 0.79 16.85 368 1.90 14.20 1339 6.60
CR-Net † 32.76 43 0.32 23.74 106 0.79 17.08 250 1.86 14.05 870 6.48

5.1 PRETRAINING WITH CR-Net

Experiment setup. We evaluate the proposed CR-Net framework by pre-training LLaMA-2 models
(Touvron et al., 2023) with size varying from 60M to 13B. Following the existing experimental
settings (Zhao et al., 2024), we train the model over C4-en dataset (Raffel et al., 2020), which
is primarily intended for pre-training language models and word representations with large scale.
We compared CR-Net with existing parameter-efficient methods including LoRA (Hu et al., 2022),
ReLoRA (Lialin et al., 2023), VeLoRA (Miles et al., 2024), FLoRA (Hao et al., 2024), SLTrain (Han
et al., 2024), SLTrain (Han et al., 2024), CoLA (Liu et al., 2025), LORO (Mo et al., 2025) with
aligned parameter complexity. We also compared CR-Net with other optimizer-efficient algorithms
including GaLore (Zhao et al., 2024), RSO (Chen et al., 2025), and Apollo (Zhu et al., 2024) with
aligned memory overhead. We use the same configurations as those reported in (Zhao et al., 2024),
and the detailed experiment setting are in Appendix E.2.1. For models with sizes ranging from 60M
to 1B parameters, we do not employ the re-computation strategy to maintain consistency with existing
baselines. For the 7B and 13B models, we employ re-computation to reduce memory consumption.

Pre-training results. Table 3 has shown that CR-Net generally outperforms other parameter-efficient
with the same of lower training parameters. It can be observed that CR-Net even achieve a better
performance as full-rank training while reducing the parameter complexity by 56.5% and the per-step
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Table 4: Comparison of validation perplexity (↓) and memory (↓) of different approaches in LLaMA-2 7B
pre-training tasks. The results of compared methods are referred from (Liu et al., 2025; Zhu et al., 2024).

Memory (GB) Training steps
10K 40K 65K 80K

8-bit Adam 72.59 N.A. 18.09 N.A. 15.47
8-bit GaLore 65.16 26.87 17.94 N.A. 15.39

Apollo N.A. N.A. 17.55 N.A. 14.39
CoLA-M 28.82 22.76 16.21 14.59 13.82

CR-Net w. re-computation 27.60 23.11 16.01 14.47 13.72

Training tokens (B) 1.3 5.2 8.5 10.5

Table 5: Comparison of validation perplexity (↓)
of different approaches in LLaMA-2 13B pre-
training tasks.

Steps 40K

8-bit Adam 17.85
CR-Net w. re-computation 18.12

Table 6: Comparison of validation perplexity (↓)
for CR-Net with or without low-rank first layer
in LLaMA-2 350M pre-training tasks.

Training tokens 6.4B

CR-Net w.o. low-rank first layer 18.95
CR-Net w. low-rank first layer 19.68

computation complexity by 63.2% for LLaMA-2 1B network. When aligning the memory overhead,
CR-Net achieves a better validation perplexity than that of optimizer-efficient algorithms especially
with the model size larger than 1B, showing the benefits of CR-Net with large-scale scenarios.

Table 4 illustrates the validation perplexity of CR-Net when training with LLaMA2-7B as well as
other competitive approaches. It can be observed that CR-Net outperforms all baselines in the training
process with a lower memory overhead when using re-computation.

Furthermore, we report the validation perplexity for the pre-training of LLaMA-2 13B after 40,000
initialization steps. Experimental details are provided in Appendix E.2.3. As demonstrated in Table 5,
CR-Net achieves more than 50% reduction in parameters, while incurring only a 2% degradation in
validation performance.

Pre-training and inference throughput. Figure 3 illustrates the throughput performance of our
method alongside comparable approaches in both pre-training and inference tasks, with detailed
experimental configurations provided in Appendix E.2.1. As shown, CR-Net achieves superior
throughput compared to other methods in LLaMA-2 1B pre-training and inference scenarios. Notably,
even when accounting for data-parallel communication overhead across 4 GPUs for LLaMA-2 1B
pre-training, CR-Net demonstrates over 6% improvement relative to state-of-the-art methods that do
not incur such communication costs. Furthermore, CR-Net exhibits an 8.6% throughput enhancement
compared to LORO in LLaMA-2 7B pre-training.

5.2 ABLATIONS

How does rank selection impact pre-training performance? We train the LLaMA-2 350B network
with CR-Net using identical parameters but varying ranks across transformer layers. Experimental
details are provided in Appendix E.2.6. Figure 4 shows that networks with higher ranks in middle
layers and lower ranks in side layers exhibit superior performance.

Whether does the learnable scaling factor βP
l benefit the model convergence? We train the

LLaMA-2 350M network with the same hyperparameters as that in Section 5.1 except make the
scaling βP

l . From the perplexity shown in Figure 5, we can obtain that training CR-Net with a
learnable βP

l can improve the numerical stability as there are spikes in the runs with βP
l fixed. This

match our observation in Section that the best βP
l to achieve the lowest rank varies during the training

process. More discussions can be found in Appendix F.2.

Whether other cross-layer residual strategies do well in pre-training with low-rank parameters?
To compare different cross-layer residual patterns under the same global low-rank parameterization,
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Figure 3: The average throughput (tokens/s) for each device of different algorithms. (Left: LLaMA-2 1B
pre-training on an Nvidia A100 40G GPU, with results of other comparable methods from (Liu et al., 2025).
Middle: LLaMA-2 1B inference on a Nvidia A100 80G GPU. Right: LLaMA-2 7B pre-training on a Nvidia
A100 80G GPU.)
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we implement a Learnable-ResFormer variant that replaces CR-Net’s previous-layer residual term
with a learnable skip from the first layer’s activation across all low-rank linear layers, inspired by the
first-layer value residual in ResFormer (Zhou et al., 2024) and DenseFormer (Pagliardini et al., 2024).
As Figure 6 illustrates, CR-Net outperforms the other two low-rank adaptation under the similar
low-rank parameter budget.

Whether the full-rank first layer is necessary? We trained the LLaMA-2 350M model with either
full-rank or low-rank parameters in the first transformer layer. As shown in Table 6, utilizing a low-
rank first layer introduces a 3.5% degradation in validation perplexity. This finding demonstrates the
critical role of the full-rank first layer in reconstructing high-rank signals from low-rank information.

6 CONCLUSION

We propose CR-Net, a parameter-efficient LLM pretraining framework that computes linear acti-
vations via low-rank transformations with cross-layer residuals. This dual-path design preserves
high-rank capacity using fewer parameters, achieving better validation performance with reduced
computation and memory than conventional low-rank frameworks.

We outline two directions for future work on CR-Net framework. First, system-level implementations
integrating mixed-precision training could alleviate the growing memory overhead encountered when
scaling CR-Net to larger models, particularly for activation recomputation strategies. Second, gener-
alizing the framework’s current multi-head attention foundation to alternative attention architectures,
including multi-head latent attention (Liu et al., 2024a), would broaden its architectural versatility.
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Appendix

A ADDITIONAL RELATED WORKS

Low-rank training for LLMs. Beyond explicit parameter sparsity, low-rank principles permeate
various aspects of optimization mechanics. The Adafactor algorithm (Shazeer & Stern, 2018) pioneers
this direction by replacing full-rank momentum buffers with factorized second-moment estimators,
establishing a blueprint for memory-efficient optimizers. Subsequent developments like Sophia
(Liu et al., 2023) integrate low-rank Hessian approximations with lightweight curvature estimation,
achieving both speed and memory advantages. The Lion optimizer (Chen et al., 2023) takes a radical
approach through sign-based gradient compression, creating natural compatibility with low-rank
parameterization. A paradigm shift occurs with GaLore (Zhao et al., 2024), which projects entire
optimization trajectories into low-rank subspaces via Singular Value Decomposition (SVD). This
framework inspires derivative works (Hao et al., 2024; He et al., 2024; Chen et al., 2025) that replace
computationally intensive SVD with stochastic orthogonal projections. To address information loss
inherent in low-rank approximations, error-feedback mechanisms in (Robert et al., 2024; Chen et al.,
2024a) iteratively compensate for residual gradients. Meanwhile, Apollo (Zhu et al., 2024) reimagines
adaptive learning rates by incorporating projected optimizer states as scaling factors, demonstrating
how traditional algorithms like Adam (Kingma & Ba, 2014) can be retrofitted for low-rank efficiency.

Activation-efficient training for LLMs. Activation memory optimization operates through dual
pathways: algorithmic innovation and system-level engineering. Zero-order optimization methods
(Malladi et al., 2023; Gautam et al., 2024; Chen et al., 2024b) circumvent backpropagation by estimat-
ing gradients through forward pass perturbations, though their adoption is hindered by fundamental
convergence limitations well-documented in optimization theory (Duchi et al., 2015; Berahas et al.,
2022). The randomized subspace optimization (RSO) framework (Chen et al., 2025) offers a middle
ground by performing gradient updates in dimension-reduced spaces, thereby implicitly reducing
activation storage requirements. On the systemic front, gradient checkpointing (GCP) techniques
(Chen et al., 2016; Feng & Huang, 2021; He & Yu, 2023) strategically store partial activations during
forward propagation and recompute missing values during backward passes, achieving linear memory
savings at the cost of increased computation. FlashAttention (Dao et al., 2022; Dao, 2023; Shah
et al., 2024) revolutionizes attention layer implementations through block-wise computation and
dynamic memory management, effectively decoupling peak memory demand from sequence length.
These complementary approaches collectively address the "memory wall" challenge in modern LLM
training.

Cross-layer structure in transformer. Recent research increasingly highlights distinctive data
distribution patterns across transformer layers, particularly in large-scale model optimization. For
inference acceleration, (Liu et al., 2024b) first identified high inter-layer KV-cache similarity, propos-
ing shared caching mechanisms between adjacent layers–an insight further developed by (Brandon
et al., 2024) through cross-layer attention operators for dynamic KV compression. In pre-training
contexts, architectural innovations like token-level attention initialization (Zhou et al., 2024; Pagliar-
dini et al., 2024; Nguyen et al., 2023) enhance information propagation across layers. However, these
innovations predominantly target attention layer optimizations while inadequately addressing two
persistent gaps: the interplay of feed-forward network dynamics across layers remains underexplored,
and existing frameworks demonstrate limited compatibility with low-rank adaptation paradigms,
constraining their applicability to parameter-efficient training scenarios.

B COMPUTATION AND MEMORY ANALYSIS OF CR-Net WITHOUT
RE-COMPUTATION

In this section, we present a detailed computation and memory analysis of CR-Net.
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B.1 TRANSFORMER LAYERS WITH LLAMA ARCHITECTURE

In order to make a Comparison with other efficient methods, the computation and memory analysis
are based on LLaMA framework (Touvron et al., 2023) with L transformer layers. Here, we focus
on the forward- and backward-propagation of CR-Net. It should be reminded that we omit the layer
normalization, rotary position embedding, and in-layer residual for simply.

Forward Propagation. For the input Xl ∈ Rs×h, where s denotes the sequence length and h denotes
the hidden dimension. For the first layer, the transformer block’s attention mechanism implements a
series of linear transformations through three fundamental computational stages:

Y Q
1 = X1W

Q
1 , Y K

1 = X1W
K
1 , Y V

1 = X1W
V
1 , (11)

where WQ
1 ,W

K
1 ,W

V
1 ∈ Rh×h are full-size weight parameters. For the other layers, the weight

matrices of linear transformations are replaced by low-rank weights and the cross-layer residual
should also be taken:

Y Q
l = βQ

l Y
Q
l−1 +XlA

Q
l B

Q
l , Y K

l = βK
l Y

K
l−1 +XlA

K
l B

K
l , Y V

l = βV
l Y

V
l−1 +XlA

V
l B

V
l , (12)

where AQ
l , A

K
l , A

V
l ∈ Rh×r and BQ

l , B
K
l , B

V
l ∈ Rr×h are low-rank parameter matrices. Then for

l = 1, 2, · · · , L, the immediate activations can be combined as follows:

Ãtt
s
l = Y Q

l (Y K
l )⊤, Attsl = softmax

(
Ãtt

s
l√
h

)
, Atthl = AttslY

V
l . (13)

Then for the first layer, the attention output can be obtained by:

Y O
1 = Atth1W

O
1 , (14)

where WO
1 ∈ Rh×h denotes the full-size output matrix. For l = 2, 3, · · · , L, the attention output can

be obtained by:

Y O
l = βO

l Y
O
l−1 + AtthlA

O
l B

O
l , (15)

where AO
l ∈ Rh×r and BO

l ∈ Rh×r denote the low-rank parameter matrices.

Next, the feed-forward network consists of three linear layers. Among them, the gate layer and
up-projection layer are computed in layer 1 as:

Y gate
1 = Y O

1 W gate
1 , Y up

1 = Y O
1 W up

1 , Xdown
1 = SwiGLU(Y gate

1 )⊙ Y up
1 , (16)

where W gate
1 ,W up

1 ∈ Rh×hff are full-size weight matrices. For the other layer, it can be computed as:

Y gate
l = βgate

l Y gate
l−1 + Y O

l Agate
l Bgate

l , Y up
l = βup

l Y up
l−1 + Y O

l Aup
l Bup

l ,

Xdown
l = SwiGLU(Y gate

l )⊙ Y up
l ,

(17)

where Agate
l , Aup

l ∈ Rh×r and Bgate
l , Bup

l ∈ Rr×hff denote low-rank parameters and ⊙ denotes the
element-wise production. Finally, the down-projection in the first layer can be computed as:

Y down
1 = Xdown

1 W down
1 , (18)

where W down
1 ∈ Rhff×h are full-size weight matrices. For the other layer, it can be computed as:

Y down
l = βdown

l Y down
l−1 +Xdown

l Adown
l Bdown

l , (19)

where Adown
1 ∈ Rhff×r and Bdown

1 ∈ Rr×h denote low-rank parameters.

Backward Propagation. For a matrix M and the loss function ℓ, we use DM := ∂ℓ
∂M . To compute

the gradients of all the parameters in layer l, the back propagation begins with the partial gradient of
the loss function ℓ with respect to the input of the next layer, i.e., DXl+1.

Then, for the last layer, the gradient of the output holds that DY down
L = DXL+1, where XL+1 denotes

the input of output layers. However, for the other layer, it holds that:

DY down
l = βdown

l+1 DY down
l+1 +DXL+1. (20)
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For the first layer, the gradient of inputs and weights for down-projection can be computed as:

DXdown
1 = DY down

1 (W down
1 )⊤, DW down

1 = (Xdown
1 )⊤DY down

1 . (21)

For the other layers, the gradient of inputs and weights for down-projection can be computed as:

DXdown
l =DY down

l (Adown
l Bdown

l )⊤, DBdown
l = (Xdown

l Adown
l )⊤DY down

l ,

DAdown
l =(Xdown

l )⊤DBdown
l .

(22)

For the last layer, as the gradient of activations do not rely on the former layers. Thus the gradient of
Y gate
L and Y up

L can be obtained as:

DY up
L = DXdown

L ⊙ SwiGLU(Y gate
L ), DY gate

L = DXdown
L ⊙ Y up

L ⊙ SwiGLU′(Y gate
L ). (23)

For the other layers, the corresponding gradient of activations should combine the back-propagated
gradients and the historical gradients. Thus it holds that:

DY up
l = βup

l+1DY up
l+1 +DXdown

l ⊙ SwiGLU(Y gate
l ),

DY gate
l = βgate

l+1DY gate
l+1 +DXdown

l ⊙ Y up
l ⊙ SwiGLU′(Y gate

l ).
(24)

Then the gradient for parameter of up-projection and gate in the first layer can be computed by:

DY O
1 = βO

2DY O
2 +DY up

1 (W up
1 ) +DY gate

1 (W gate
1 ),

DW up
1 = (Y O

1 )⊤DY up
1 , DW gate

1 = (Y O
1 )⊤DY gate

1 .
(25)

For l = 2, 3, · · · , L− 1, the gradient for parameter of up-projection and gate in the layer l can be
computed by:

DY O
l = βO

l+1DY O
l+1 +DY up

l (Aup
l Bup

l ) +DY gate
l (Agate

l Bgate
l ),

DBup
l = (Y O

l Aup
l )⊤DY up

l , DAup
l = (Y O

l )⊤DBup
l

DBdown
l = (Y O

l Adown
l )⊤DY down

l , DAdown
l = (Y O

l )⊤DBdown
l .

(26)

The gradient for parameter of up-projection and gate in the last layer can be computed by:

DY O
L = DY up

L (Aup
LBup

L ) +DY gate
L (Agate

L Bgate
L ),

DBup
L = (Y O

L Aup
L )⊤DY up

L , DAup
L = (Y O

L )⊤DBup
L

DBdown
L = (Y O

L Adown
L )⊤DY down

L , DAdown
L = (Y O

L )⊤DBdown
L .

(27)

Then for the first layer, the gradients for parameter of output layer in attention can be computed by:

DAtth1 = DY O
1 (WO

1 )
⊤, DWO

1 = (Atth1)
⊤DY O

1 . (28)

For the other layers, the gradients can be computed by:

DAtthl =DY O
l (AO

l B
O
l )

⊤, DBO
l = (AtthlA

O
l )

⊤DY O
l , DAO

l = (Atthl )
⊤DBO

l . (29)

Next, the gradient for Attsl can be computed by:

DAttsl = Atthl (Y
V
l )⊤. (30)

Then for the last layer, the gradient for the activation Y Q
L , Y K

L , Y V
L can be obtained by:

DY V
L = (AttsL)

⊤DAtthL, DY Q
L =

[
DAttsL ⊙ 1√

h
softmax′

(
Ãtt

s
L√
h

)]
Y K
L ,

DY K
L =

[
DAttsL ⊙ 1√

h
softmax′

(
Ãtt

s
L√
h

)]⊤
Y Q
L .

(31)

17



Published as a conference paper at ICLR 2026

And the gradients of the other layers can be obtained by:

DY V
l = βV

l+1DY V
l+1 + (Attsl)

⊤DAtthl ,

DY Q
l = βQ

l+1DY Q
l+1 +

[
DAttsl ⊙

1√
h

softmax′
(

Ãtt
s
l√
h

)]
Y K
l ,

DY K
l = βK

l+1DY K
l+1 +

[
DAttsl ⊙

1√
h

softmax′
(

Ãtt
s
l√
h

)]⊤
Y Q
l .

(32)

Finally, the gradients of the weights for query, key, and value in the first layer can be obtained as:

DWQ
1 =(X1)

⊤DY Q
1 , DWK

1 = (X1)
⊤DY K

1 , DWV
1 = (X1)

⊤DY V
1 ,

DX1 =DY Q
1 (WQ

1 )
⊤ +DY K

1 (WK
1 )

⊤ +DY V
1 (WV

1 )
⊤.

(33)

the gradients of the weights for query, key, and value in the other layers can be obtained as:

DBQ
l =(XlA

Q
l )

⊤DY Q
l , DBK

l = (XlA
K
l )

⊤DY K
l , DBV

l = (XlA
V
l )

⊤DY V
l ,

DAQ
l =(Xl)

⊤DBQ
l , DAK

l = (Xl)
⊤DBK

l , DAV
l = (Xl)

⊤DBV
l ,

DXl =DY Q
l (AQ

l B
Q
l )

⊤ +DY K
l (AK

l B
K
l )

⊤ +DY V
l (AV

l B
V
l )

⊤.

(34)

B.2 COMPUTATION ANALYSIS WITHOUT RE-COMPUTATION

Here we present the computation analysis of CR-Net with re-computation in detail. The brief analysis
is shown in Section 4.1. To begin with, we should remind that the matrices production with size
m× n and n× r need 2mnr FLOPs.

For the first layer, the computation of forward propagation is totally the same as full-rank training.
Thus the computation FLOPs can be computed by:

• Attention Q, K, V: Three matrices productions with size s× h and h× h, 6sh2 FLOPs in total.
• Attention SDP: One matrices production with size s× h and h× s and one matrices production

with size s× s and s× h, 4s2h FLOPs in total.
• Attention O: One matrices production with size s× h and h× h, 2sh2 FLOPs in total.
• FFN gate and up: Two matrices productions with size s× h and h× hff, 4shhff FLOPs in total.
• FFN down: One matrices production with size s× hff and hff × h, 2shhff FLOPs in total.

Thus, the computation complexity of the first layer is

8sh2 + 4s2h+ 6shhff.

For the other layers, we can omit the cross-layer residual operations as its complexity is a lower-order
term. Thus, the computation complexity of different components are as follow:

• Attention Q, K, V: Three matrices productions with size s × h and h × r, and three matrices
productions with size s× r and r × h, 12shr FLOPs in total.

• Attention SDP: The same as that of the first layer, 4s2h FLOPs in total.
• Attention O: One matrices production with size s× h and h× r, and one matrices production with

size s× r and r × h, 4shr FLOPs in total.
• FFN gate and up: Two matrices productions with size s×h and h×r, and two matrices productions

with size s× r and r × hff, 4sr(h+ hff) FLOPs in total.
• FFN down: One matrices production with size s× h and h× r, and one matrices production with

size s× r and r × hff, 2sr(h+ hff) FLOPs in total.

Thus, the computation complexity of the other layers is

16shr + 4s2h+ 6sr(h+ hff).
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Finally, the total computation complexity in the forward-propagation is:

8sh2 + 4s2h+ 6shhff︸ ︷︷ ︸
FLOPs in the first layer

+(L− 1)(16shr + 4s2h+ 6sr(h+ hff)︸ ︷︷ ︸
FLOPs in the other layers

). (35)

Backward-propagation. For backward-propagation. It can be obtained that the toatl computation
FLOPs is twice of that in forward-propagation if we omit the lower-order terms. Thus, the total
computation complexity in the forward-propagation is:

16sh2 + 8s2h+ 12shhff︸ ︷︷ ︸
FLOPs in the first layer

+(L− 1)(32shr + 8s2h+ 12sr(h+ hff)︸ ︷︷ ︸
FLOPs in the other layers

). (36)

Thus, we can obtain that the total computation of CR-Net for one gradient step is:

24sh2 + 12s2h+ 18shhff + (L− 1)(48shr + 12s2h+ 18sr(h+ hff)). (37)

C COMPUTATION AND MEMORY ANALYSIS WITH RE-COMPUTATION

C.1 ACTIVATION MEMORY AND RE-COMPUTATION ANALYSIS OF CR-Net

In this section, we present the computation and memory analysis of CR-Net with re-computation
strategy which has been shown in Section 3.3.

C.1.1 MEMORY ANALYSIS

We first present the analysis of memory overheads of CR-Net with re-computation. In fact, the
following variables need to be stored:

• Inputs for each layer: Lsh parameters in total.

• Low-rank outputs XP
l A

P
l for all linear layers except the first transformer layer: 7(L − 1)sr

parameters in total.

• Linear outputs XP
l A

P
lB

P
l for l ∈ A: 5|A|sh+ 2|A|shff parameters in total.

Thus, the total memory overhead of CR-Net with re-computation is:

(L+ 5|A|)sh+ 2|A|shff + 7(L− 1)sr. (38)

C.1.2 COMPUTATION ANALYSIS

Then we present the analysis of re-computation overheads of CR-Net, which can be computed by:

• Attention Q, K, V: If l ∈ A, no FLOPs need as all the activation with is necessary for the backward-
propagation has been stored. If l + 1 ̸∈ A, the linear combination between low-rank output and
the matrix BQ

l , B
K
l , B

V
l and the stored matrices XlA

Q
l , XlA

K
l , XlA

V
l respectively. The shape of the

multiplied matrices are s× r and r × h respectively. Thus the total FLOPs is 6(L− |A|)shr.

• Attention SDP: All the layers should take one matrices production with size s× h and h× s and
one matrices production with size s× s and s× h. Thus the total FLOPs is 4Ls2h.

• Attention O: It is the same as the discussion for attention Q, K, V. Thus the total FLOPs is
2(L− |A|)shr.

• FFN gate and up: It is the same as the discussion for attention Q, K, V. Note that the size of the
multiplied matrices are s× r and rtimeshff respectively, thus the total FLOPs is 4(L− |A|)shffr.

• FFN down: It is the same as the discussion for attention Q, K, V. Note that the size of the multiplied
matrices are s× r and rtimesh respectively, thus the total FLOPs is 2(L− |A|)shr.

Thus, the total re-computation complexity is:

10(L− |A|)shr + 4(L− |A|)shffr + 4Ls2h. (39)

19



Published as a conference paper at ICLR 2026

C.2 RE-COMPUTATION COMPLEXITY OF COLA-M

Table 2 presents the recomputation complexity of activation-effective approaches, including CoLA-M.
In fact, the re-computation complexity of CoLA-M can be obtained by the similar analysis process of
CR-Net in Appendix C.1.2. The total re-computation complexity for one gradient step of CoLA-M is:

10Lshr + 4Lshffr + 4Ls2h. (40)

When taking the intermediate dimension hff = 8h/3, the total re-computation complexity for one
gradient step of CoLA-M is:

20.67Lshr + 4Ls2h. (41)

In Liu et al. (2025), the re-computation FLOPs of CoLA-M is obtained as the re-computation only
takes half of total flops of linear layers with the assumption. However, for gate and up-projection layer,
the production of Xgate

l ∈ Rs×h (Xup
l ) and Agate

l ∈ Rh×r (Aup
l ) takes 2shr FLOPs while production

of Xgate
l Agate

l ∈ Rs×r (Xup
l Aup

l ) and Bgate
l ∈ Rr×hff (Bup

l ) takes 2shffr FLOPs. For down-projection
layer, the production of Xdown

l ∈ Rs×hff and Adown
l ∈ Rhff×r takes 2shffr FLOPs while production

of Xdown
l Adown

l ∈ Rs×r and Bdown
l ∈ Rr×h takes 2shr FLOPs. Thus, the computational FLOPs of

the FFN are not given by 3shffr + 3shr—half of the total FLOPs—but rather by 4shffr + 2shr.

D THEORETICAL INSIGHT: RESIDUAL SUBTRACTION IMPROVES LOW-RANK
APPROXIMATION

In this section, we present a theoretical insight to explain the phenomenon we observed in Section 3.1.
To begin with, we present an assumption of the cosine similarity of the activations for adjacent layers.
Assumption 1 (Cosine similarity of adjacent activations). For l = 2, 3, · · · , L, let Y P

l ∈ Rd×d as the
activation of the linear of position P for the l-th layer. There exists a constant ε ∈ (0, 1) such that:

⟨Y P
l , Y

P
l−1⟩F

∥Y P
l ∥F · ∥Y P

l−1∥F
≥ 1− ε,

where ⟨·, ·⟩F denotes the inner production of matrices induced by Frobenius norm.

Assumption 1 illustrates that the activation of Transformer-based models have a high cosine similarity.
Such a characteristic have been observed in different kinds of models and different positions (Liu
et al., 2024b; Hao et al., 2025; Jiang et al., 2024).

Moreover, we present the definition of the stable rank.
Definition 1 (Stable rank). For A ∈ Rd×d, the stable rank of A (represented as φ(A)) is denoted as
the ratio between the square of Frobenius norm of A and the square of ℓ2-norm of A. Specifically, it
holds that

φ(A) =
||A||2F
||A||22

.

Remark 1. The stable rank can be also defined as the ratio between the quadratic sum of singular
values and the square of the maximum singular value.

Then we can obtain the theorem that the approximation in Eq. (3) is a better estimator than low-rank
approximation, especially with a small rank r.
Theorem 1. Suppose Assumption 1 holds. Then there exists r0 > 0 such that the approximation
Ỹ P
l,β obtained by Eq. (3) has a lower error than the direct low-rank approximation LRr(Y

P
l ) by a

properly-selected β if r < r0. Specifically, it holds that:∥∥∥Y P
l − Ỹ P

l,β

∥∥∥2
F
≤
∥∥Y P

l − LRr(Y
P
l )
∥∥2
F
.

Proof. First, we denote σi(·) as the i-th singular value of a matrix, which is listed in descending
order. Then, the term ∆βY

P
l holds that:∥∥∆βY

P
l

∥∥2
F
=
∥∥Y P

l − βY P
l−1

∥∥2
F
=
∥∥Y P

l

∥∥2
F
− 2β

〈
Y P
l , Y

P
l−1

〉
+ β2

∥∥Y P
l−1

∥∥2
F
. (42)
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Thus ∥∥Y P
l

∥∥2
F
−
∥∥∆βY

P
l

∥∥2
F
= 2β

〈
Y P
l , Y

P
l−1

〉
− β2

∥∥Y P
l−1

∥∥2
F
. (43)

From Weyl’s inequality, the i-th singular value of Y P
l and ∆βY

P
l holds that:

|σi(Y
P
l )− σi(∆βY

P
l )| ≤

∥∥Y P
l −∆βY

P
l

∥∥
2
≤ β

∥∥Y P
l−1

∥∥
2
. (44)

Thus, it holds that:

σ2
i (Y

P
l )− σ2

i (∆βY
P
l ) =(σi(Y

P
l )− σi(∆βY

P
l ))(σi(Y

P
l ) + σi(∆βY

P
l ))

≤β
∥∥Y P

l−1

∥∥
2
(σi(Y

P
l ) + σi(∆βY

P
l ))

≤β
∥∥Y P

l−1

∥∥
2

(
2σi(Y

P
l ) + β

∥∥Y P
l−1

∥∥
2

)
.

(45)

Taking summation over i = 1, 2, · · · , r, where 1 ≤ r ≤ d, it holds that:

r∑
i=1

(
σ2
i (Y

P
l )− σ2

i (∆βY
P
l )
)2 ≤β

∥∥Y P
l−1

∥∥
2

(
2

r∑
i=1

σi(Y
P
l ) + βr

∥∥Y P
l−1

∥∥
2

)

≤β
∥∥Y P

l−1

∥∥
2

2
√
r

(
r∑

i=1

σ2
i (Y

P
l )

)1/2

+ βr
∥∥Y P

l−1

∥∥
2


≤β
∥∥Y P

l−1

∥∥
2

(
2
√
r
∥∥Y P

l

∥∥
F
+ βr

∥∥Y P
l−1

∥∥
2

)
,

(46)

where the second inequality is due to Cauchy-Schwarz inequality.

Next, we consider the approximation error for LRr(Y
P
l ) and Ỹ P

l,β . We can obtain that:∥∥∥Y P
l − Ỹ P

l,β

∥∥∥2
F
−
∥∥Y P

l − LRr(Y
P
l )
∥∥2
F

=

(∥∥∆βY
P
l

∥∥2
F
−

r∑
i=1

σ2
i (∆βY

P
l )

)
−

(∥∥Y P
l

∥∥2
F
−

r∑
i=1

σ2
i (Y

P
l )

)
≤− 2β

〈
Y P
l , Y

P
l−1

〉
+ β2

∥∥Y P
l−1

∥∥2
F
+ 2β

√
r
∥∥Y P

l−1

∥∥
2

∥∥Y P
l

∥∥
F
+ β2r

∥∥Y P
l−1

∥∥2
2

≤− 2β(1− ε)
∥∥Y P

l−1

∥∥
F

∥∥Y P
l

∥∥
F
+ β2

∥∥Y P
l−1

∥∥2
F
+ 2β

√
r
∥∥Y P

l−1

∥∥
2

∥∥Y P
l

∥∥
F
+ β2r

∥∥Y P
l−1

∥∥2
2

=β2
(∥∥Y P

l−1

∥∥2
F
+ r

∥∥Y P
l−1

∥∥2
2

)
− 2β

(
(1− ε)

∥∥Y P
l−1

∥∥
F

∥∥Y P
l

∥∥
F
−
√
r
∥∥Y P

l−1

∥∥
2

∥∥Y P
l

∥∥
F

)
=β2

(∥∥Y P
l−1

∥∥2
F
+ r

∥∥Y P
l−1

∥∥2
2

)
− 2β

(
(1− ε)

√
φ(Y P

l−1)−
√
r
)∥∥Y P

l−1

∥∥
2

∥∥Y P
l

∥∥
F
,

(47)

where the second inequality is due to Assumption 1.

Taking r0 = (1− ε)2φ(Y P
l−1). If r ≤ r0, then
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l,β

∥∥∥2
F
≤
∥∥Y P

l − LRr(Y
P
l )
∥∥2
F

holds if

β =

(
(1− ε)

√
φ(Y P

l−1)−
√
r
)∥∥Y P

l−1

∥∥
2

∥∥Y P
l

∥∥
F∥∥Y P

l−1

∥∥2
F
+ r

∥∥Y P
l−1

∥∥2
2

.

Thus, we finish the proof of this theorem.

E EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

E.1 EXPERIMENTAL DETAILS FOR THE OBSERVATION OF CROSS-LAYER LOW-RANK
STRUCTURE

To empirically validate the cross-layer low-rank structure in different models and training periods.,
we conducted comparative experiments by fine-tuning the pre-trained LLaMA-3 8B (Grattafiori et al.,
2024) and GPT-2-small (Radford et al., 2019) models. And we also pre-training a LLaMA-3 8B
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Table 7: Hyperparameter configurations for Qwen-3-based model with MoE architecture.
Hidden Intermediate MoE intermediate KV Heads Heads

1024 2736 704 8 16

Layers Experts Activated experts Steps Training tokens (B)
28 24 4 60K 7.8

Table 8: Hyperparameters for fine-tuning experiments for the low-rank observation.
Hyperparameters LLaMA-3 8B GPT-2 small Qwen-3 MoE
Optimizer AdamW
Learning rate 1e-5 1e-5 2.5e-3
Total batch size 128 1024 256
Sequence length 64 512 256
Warmup iterations 500 500 1000
Evaluate every steps 20 10 500
Update Steps for fine-tuning 2000 2000 N.A.
Update Steps for pre-training♢ 100 N.A. 100
♢ Here we aim to validate the cross-layer low-rank property in the initial period of pre-training

process. Thus we only need to train the model with fewer steps.
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Figure 7: The average relative error of activation recovery by using low-rank approximation and
using (3) over all transformer layers. (Left: LLaMA-3 8B, right: Qwen-3-MoE.)

model as well as a model built from Qwen-3-MoE model (Yang et al., 2025). The hyperparameter
configurations for Qwen-3-based model is as Table 7. We use the TinyShakespeare dataset for both
pre-training and fine-tuning.

We subsequently quantified the activation approximation errors through two distinct methodologies:
(a) direct low-rank estimation LRr(Y

P
l ) and (b) matrix recovery via Equation (3). The rank parameter

r = 0.25h, 0.5h respectively. For Ỹ P
l,β0

defined in Eq. (3), the scaling factor β0 is selected from
the set {0, 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 5} to minimize the relative error given by (4). And the other
hyperparameters can be referred from Table 8.

Figure 8 also presents a detailed relative error of activation approximation for each layer in fine-
tuning tasks. For LLaMA-based models, the linear layers at position V, up, down suffer from a higher
approximation error, calling for a higher rank to enhance the model performance. For GPT-based
models, the linear layers at position V and down-projection suffer from a higher approximation error
than the other layers.

Furthermore, Figure 7 illustrates the average relative error of activation recovery by using low-rank
approximation and using (3) over all transformer layers in pre-training tasks. Same as the observation
in Section 3.1, it can be observation a uniform advantage for estimating activation by the previous
layer and a low-rank approximation of the difference between the layers, which illustrates that the
cross-layer low-rank structure for activation exists in the initial stage of training.
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Figure 8: The relative error of activation approximation by using (3) for each transformer layers.
‘Ratio’ stands for the ratio between the low-rank dimension r and the hidden dimension h. (Top:
LLaMA-3 8B, bottom: GPT-2 small.)

Table 9: Hyperparameter configurations for LLaMA-2 models of different scales, along with the
corresponding number of training steps.

Parameters Hidden Intermediate Heads Layers Steps Training tokens (B)
60M 512 1376 8 8 10K 1.3B

130M 768 2048 12 12 20K 2.6B
350M 1024 2736 16 24 60K 7.8B

1B 2048 5461 32 24 100K 13.1B
7B 4096 11008 32 32 150K 19.7B

13B 5120 13653 40 40 200K 26.2B

Table 10: Layer rank selections for pre-training LLaMA models with CR-Net under the scenario of
aligned parameters (marked as ♢ in Table 3) and aligned memory (marked as † in Table 3).

Parameters Rank for aligned parameters♢ Rank for aligned memory†

60M Layer 2-4: 96. Layer 5-8: 112. Layer 2-4: 96. Layer 5-8: 112.
130M Layer 2-4: 192. Layer 5-12: 224. Layer 2-4: 192. Layer 5-12: 256.
350M Layer 2-16: 224. Layer 17-24:256. Layer 2-24: 384.

1B Layer 2-24: 448. Layer 2-24: 768.
7B Layer 2-32: 896. N.A.

13B Layer 2-40: 1260. N.A.

E.2 EXPERIMENTAL DETAILS FOR C4 PRE-TRAINING TASKS

E.2.1 BASIC EXPERIMENTAL SET UP

During pre-training across all LLaMA model scales, we implement the standardized configuration
framework from (Zhao et al., 2024), with key technical specifications comprising a 256-token
maximum sequence length and a global batch size of 512 samples, translating to 13.1K tokens per
batch. The learning rate scheduling integrates two-phase optimization: initial linear warm-up during
the first 10% of training iterations, succeeded by cosine decay gradually reducing the learning rate to
10% of its initial magnitude. Complete architectural configurations and training protocol details are
systematically documented in Table 9.
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Table 11: Comparison of validation perplexity (↓) of different approaches in LLaMA-2 1B pre-
training tasks. The results of compared methods are referred from (Liu et al., 2025; Zhu et al., 2024).

Training tokens (B) 3.5 10.7 13.1

LoRA N.A. N.A. 19.21
CoLA N.A. N.A. 15.52

CR-Net 19.20 15.52 15.22

Table 12: Comparison of validation perplexity (↓) of different approaches in LLaMA-2 13B pre-
training tasks.

Steps 10K 20K 30K 40K

Full-rank with 8-bit Adam 24.31 20.53 18.84 17.85
CR-Net with re-computation 25.99 21.73 19.32 18.12

As for CR-Net, we turn the learning rate over {0.0003, 0.0006, 0.001, 0.005, 0.01, 0.012, 0.015, 0.02}
and select the learning rate that achieve the lowest validation perplexity over 10% training steps for
the whole training process. For low-rank parameter matrices, the learning rate is multipled by 0.25
for scaling. The selection of ranks of CR-Net when training with aligned parameter and aligned
memory are listed in Table 10.

Experimental setup for training and inference throughput evaluation. To measure throughput
performance, we pre-trained the LLaMA-2 1B model on an A100 40G GPU with a batch size of
16. For CR-Net , we evaluated both single-GPU configurations and multi-GPU scenarios employing
data parallelism across 4 GPUs. For inference throughput measurements, we utilized a A100 80G
GPU with a microbatch size of 64. Additionally, when assessing throughput for the LLaMA-2 7B
model, we employed a A100 80G GPU with a batch size set to 512. In all experiments, we utilized
the maximum microbatch size that could be accommodated without triggering out-of-memory errors.

E.2.2 CR-Net ACCELERATES THE PRE-TRAINING TASKS

According to the evaluation perplexity results in Table 3, CR-Net achieves a perplexity of 15.22 when
training the LLaMA-2 1B model on 13.1B tokens, representing an approximately 2% improvement
over both full-rank training and CoLA. Regarding pre-training acceleration, a comparison of validation
perplexity during the training of LLaMA-2 1B is provided in Table 11. CR-Net reaches the same
perplexity as LoRA and CoLA with only 29.02% and 81.52% of their training steps, respectively.
When considering the per-step computational FLOPs listed in Table 19, CR-Net achieves a 1.326×
acceleration over CoLA and a 18.489× acceleration over LoRA.

E.2.3 SCALING CR-Net TO A LARGER MODEL SIZE

To validate the performance of CR-Net with a larger model size, we pre-train a LLaMA-2 13B model
under 8-bit Adam and CR-Net separately. We use the re-computation present in Section 3.3 for
CR-Net and save a series of full activation every 8 layers. We trained 40K steps due to the time
limitation. The hyperparameter r in CR-Net is set to 1260.

The evaluation perplexity shown as Table 12 illustrates the performance of CR-Net in 13B model,
which demonstrates that CR-Net achieves more than 50% reduction in parameters, while incurring
only a 2% degradation in validation performance.

E.2.4 PRE-TRAINING CR-Net WITH ACTIVATION QUANTIZATION

To validate the performance of CR-Net with activation quantization, we pre-train a LLaMA-2 350M
model under activation quantization. We adopt the same quantization scheme as Q-LoRA Dettmers
et al. (2023), which employs NF4 precision and the DoubleQuant strategy with a block size of 16.
Table 13 presents the evaluation perplexity of CR-Net with and without activation quantization,
compared to full-rank training. The results indicate that CR-Net with 4-bit activation quantization
achieves additional activation memory savings while incurring less than a 3% increase in perplexity.
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Table 13: Comparison of validation perplexity (↓) for CR-Net with and without activation quantization
in LLaMA-2 350M pre-training tasks.

Training tokens 6.4B

Full-rank 18.80
CR-Net 18.95

CR-Net with activation quantization 19.32

Table 14: Comparison of validation perplexity (↓) and accuracy (↑) of fine-tuning tasks with different
approaches.

Dataset Wikitext ArXiv

perplexity accuracy perplexity accuracy

GaLore 21.98 40.86% 25.17 40.59%
CR-Net 20.66 41.14% 24.48 41.00%

E.2.5 DOWNSTREAM PERFORMANCE

To examine the downstream performance of our proposed framework, we fine-tune LLaMA-2 1B
models pre-trained by GaLore and CR-Net for 15.6B tokens. The training set up is the same as that in
the manuscript. The fine-tune datasets consist of Wikitext-2 dataset (Merity et al., 2016) and 30K
arXiv abstracts (Wang et al., 2022). We tune each data for 8 epochs. Table 14 presents the evaluation
perplexity and accuracy of these tasks, which illustrates that CR-Net has better performance than
GaLore in these downstream tasks.

E.2.6 EXPERIMENTAL SETTING AND ADDITIONAL RESULTS FOR THE ABLATIONS

In this section, we present the experimental setting and additional results for the ablations we
presented in Section 5.2.

How does rank selection impact pre-training performance? In this ablation, we train LLaMA-2
350M with CR-Net for 60K iterations. The max learning rate is set to 0.01 and all the other configs is
the same as that in Appendix E.2.1. For the selection of layer ranks, we present the following three
strategies to ensure the their parameters are all the same:

• S1: r = 256 in Layer 2-8. r = 192 in Layer 9-24.

• S2: r = 256 in Layer 10-16. r = 192 in Layer 2-9 and Layer 17-24.

• S3: r = 256 in Layer 18-24. r = 192 in Layer 2-17.

Whether does the learnable scale factor βP
l benefit the model convergence? In this ablation,

we use CR-Net to train LLaMA-2 350M and LLaMA-2 1B model with a learnable βP
l and a series

of fixed βP
l for l = 2, 3, · · · , L and P ∈ {Q,K,V,O, gate, up, down}, respectively. The fixed βP

l

varies from 0.1, 0.2, 0.5, 1.0, 2.0 for LLaMA-2 350M and βP
l = 1.0 for LLaMA-2 1B. We trained

40000 iterations for LLaMA-2 350M and 80000 iterations for LLaMA-2 1B, respectively. Figure 9
illustrates the evaluation perplexity of each cases, shown the benefit of letting βP

l learnable as the
higher validation performance.

Whether other cross-layer residual strategies do well in pre-training with low-rank parameters?
To compare CR-Net with different efficient cross-layer residual strategies for LLMs pre-training
including ResFormer (Zhou et al., 2024) and DenseFormer (Pagliardini et al., 2024), we pre-trained a
LLaMA-2 1B model with CR-Net, Learnable-ResFormer, and DenseFormer using low-rank parame-
ters. The rank r for transformer layers (except the first layer) is set to 448, while all other configs are
the same as those in Appendix E.2.1. We stopped training early at the 50,000-th step.

Figure 6 illustrates the evaluation perplexity of CR-Net and other cross-layer residual strategies for the
LLaMA-2 1B training task. It can be observed that CR-Net outperforms the ResFormer architecture
and DenseFormer in pre-training with low-rank parameters.
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Figure 9: The Comparison of evaluation perplexity for CR-Net in pre-training tasks with fixed βP
l and

learnable βP
l . (Left: LLaMA-2 350M, right: LLaMA-2 1B.)

Table 15: Comparison of validation perplexity (↓) of different approaches in LLaMA-2 pre-training
tasks with longer sequence length and more training tokens.

Model size 130M 350M 1B

Training tokens (B) 2.9 8.0 29.5

GaLore 25.14 18.87 15.03
CR-Net 23.73 18.86 14.79

E.2.7 PRE-TRAINING WITH LONGER SEQUENCE AND MORE TRAINING TOKENS

To align with the basic experimental setup of existing efficient frameworks for LLMs pre-training
like LoRA and GaLore, we follow the setup in Zhao et al. (2024) and use a short sequence length, to
validate the pre-training performance in long training tokens as well as more training tokens. We
pre-trained LLaMA-2 models using the C4-en dataset with maximum sequence length set to 2048.
The total training tokens are more than 22× the parameter size to follow the Chinchilla scaling law
(Hoffmann et al., 2022). As shown in Table 15, CR-Net outperforms GaLore in this scenario.

E.3 PRE-TRAINING GQA AND MOE MODELS WITH CR-Net

In this section, we present additional experiments on pre-training the LLaMA-3 model (Grattafiori
et al., 2024) with a grouped query attention (GQA) (Ainslie et al., 2023) architecture, as well as
pre-training a Qwen-3-based (Yang et al., 2025) model with a mixture of experts (MoE) architecture,
to validate the proposed framework across different model structures.

Pre-training LLaMA-3 with GQA architecture. We pre-trained a 1B-parameter LLaMA-3 model
on 15.6B tokens from the C4-en dataset using both GaLore and CR-Net methods. The model
hyperparameters are shown in Table 16. The low-rank coefficient rr was set to 512 for GaLore and
448 for CR-Net. The remaining configuration follows the same setup as the LLaMA-2 pre-training
task described in Appendix E.2. The evaluation perplexity results are presented in Table 17, indicating
that CR-Net outperforms GaLore in pre-training tasks on the LLaMA-3 model.

Pre-training models with MoE architecture. We pre-trained a Qwen-3-based model under the
MoE architecture, containing 1.8B total parameters with 650M activated parameters, on 7.8B tokens
from the C4-en dataset. Training was conducted under both full-rank and CR-Net settings. The
model hyperparameters are provided in Table 7. The low-rank coefficient rr in CR-Net was set to
224. For CR-Net, we replaced the parameter matrices within the linear operators of the MoE layers.
Each MoE layer was treated as a unified operator, and cross-layer residual connections were applied
after obtaining the output of the MoE operators. The remaining experimental setup matches that
of the LLaMA-2 pre-training task in Appendix E.2. The evaluation perplexity, shown in Table 18,
demonstrates the competitive performance of CR-Net compared to full-rank training.
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Table 16: Hyperparameter configurations for LLaMA-3 model.
Parameters Hidden Intermediate KV Heads Heads Layers

8B 2048 7168 8 32 32

Table 17: Comparison of validation perplexity (↓) of different approaches in LLaMA-3 pre-training
tasks.

40K 80K 100K 110K

GaLore 19.29 16.89 16.47 16.40
CR-Net 18.29 16.05 15.70 15.65

Training tokens (B) 5.2 10.5 13.1 14.4

F ADDITIONAL DISCUSSIONS

F.1 PER-STEP COMPUTATION ACCELERATION ANALYSIS.

To illustrate the computation efficiency of CR-Net in practical training tasks, we provide the com-
putation complexity of different efficient pre-training approaches for one gradient step (based on
LLaMA-2 architecture) in Section 5.1 as Table 19. It can be observed that CR-Net achieves the same
training performance as full-rank training with 36.8% computation overhead for both LLaMA-2 1B
and 7B models.

F.2 ADDITIONAL DISCUSSION FOR THE LEARNABLE SCALING FACTOR βP
l .

The layer-specific learnable scaling factor βP
l serves as a critical dynamic balancing mechanism

between historical information propagation and new low-rank feature generation, rather than a
conventional hyperparameter. When exceeds appropriate ranges (e.g., βP

l > 2.0), low-rank features
dominate current activations, whereas values approaching zero excessively prioritize historical
information - both scenarios are demonstrated in Figure 5 to adversely impact model performance.

Notably, βP
l exhibits multidimensional adaptability requirements: optimal values vary across layers,

spatial positions, and temporal phases of training. This intrinsic variation motivates our proposal
for learnable βP

l parameterization. As evidenced by Figure 5 and 6, dynamic βP
l adaptation yields

consistent performance improvements across model scales compared to static configurations.

To examine the empirical value distribution for beta terms, we obtain the distribution of all βP
l terms

in a pre-trained LLaMA-2 350M model with 20,000 steps. As shown in Table 20, the βP
l terms mostly

range from 0.20 to 1.00, where the model may not suffer from the negative impact of extreme betas.

G MULTI-GPU TRAINING: AN ANALYSIS FOR CR-Net WITH PIPELINE
PARALLELISM

While the single-GPU throughput results (Figure 3) validate the computational efficiency of CR-Net ,
multi-GPU training—especially with parallelism strategies like Pipeline Parallelism (PP) (Narayanan
et al., 2019; 2021; Huang et al., 2019; Ryabinin et al., 2023)—introduces critical considerations
around communication overhead. Cross-layer residual connections, a core component of CR-Net,
could theoretically increase data transmission between GPUs, as forward/backward passes require
sharing activation residuals across worker nodes. To address this concern, we conduct a quantitative
analysis of computation-communication tradeoffs for CR-Net in PP-enabled multi-GPU setups
as well as an empirical verification. We also present an analysis of HBM memory with pipeline
parallelism.

Basic setup. We conducted a pre-training task of CR-Net with re-computation and full-rank training
with vanilla in pipeline parallel deployment on A100 80G GPUs for LLaMA-2 models with 13B
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Table 18: Comparison of validation perplexity (↓) of different approaches in Qwen-3-based pre-
training tasks.

10K 20K 30K 40K

Full-rank 24.31 20.53 18.84 17.85
CR-Net 25.99 21.73 19.32 18.12

Training tokens (B) 1.3 2.6 3.9 5.2

Table 19: Computation complexity of different efficient pre-training approaches for one gradient step
based on LLaMA architecture for the task in Section 5.1. Lower-order terms are omitted for brevity.
The selection of the rank r for CR-Net are based on Table 10 while that of the other algorithms are
based on (Zhao et al., 2024; Liu et al., 2025).

Approach LLaMA-2 350M LLaMA-2 1B LLaMA-2 7B

Full-rank 4.838× 1011 (1.000×) 2.525× 1012 (1.000×) 1.005× 1013 (1.000×)
(Re)LoRA 8.128× 1011 (1.674×) 4.226× 1012 (1.673×) 1.678× 1013 (1.670×)

SLTrain 9.482× 1011 (1.960×) 7.473× 1012 (2.959×) 4.984× 1013 (4.959×)
GaLore 7.934× 1011 (1.640×) 5.824× 1012 (2.306×) 3.658× 1012 (3.639×)
CoLA 1.934× 1011 (0.400×) 1.005× 1012 (0.398×) 0.398× 1013 (0.396×)

CR-Net 1.985× 1011 (0.410×) 0.930× 1012 (0.368×) 0.369× 1013 (0.367×)

Table 20: Distributions of beta values for a pre-trained LLaMA-2 350M model.
Beta [0.00, 0.20) [0.20, 0.60) [0.60, 1.00) [1.00, 1.25)

Frequency 0.05625 0.2625 0.55 0.13125

and 70B parameters. We assume the intermediate dimension of FFN layers is 8/3 times the hidden
dimension. The other model hyperparameters are listed in Table 21.

For CR-Net, we set the low-rank coefficient r = 0.25h and save the entire series of activations
every 8 layers for re-computation. We ignore higher-order computation overhead in the complexity
analysis. Following the analysis in our manuscript, the computation complexity of CR-Net and
full-rank training for one gradient step can be obtained.

Communication overhead. Then, when using BF16 precision, the communication overhead can be
computed by:

Volume (GBytes) =
Microbatch × Communication dimension × 2× 3

109
, (48)

where the multiplication by 2 is due to the 2-byte requirement for storing each parameter in the BF16
precision, and the multiplication by 3 accounts for the communication overhead incurred during the
forward pass, backward pass, and re-computation 1.

Using the peak computation performance of A100 with BF16 (312 TFLOPS) and PCIe 4.0 bandwidth
(64 GB/s), the computation and communication times per gradient step are shown in Table 22. Notably,
CR-Net’s computation time savings are overwhelmingly significant—exceeding about 30 times
of the additional communication time for 13B and 70B models respectively—far outweighing the
minimal communication overhead. Moreover, when using a GPU-connection strategy with higher
bandwidth (e.g., NVLink), the communication time can be further reduced, allowing computation
time to dominate the training process even more significantly. This results in greater total time
savings due to CR-Net’s computational efficiency. Since inference mirrors the forward pass of
pre-training, these findings directly validate that CR-Net’s computation efficiency gains surpass trivial
communication costs, confirming its superiority in multi-GPU deployment.

1For full-rank training, if we split the model as the end of a transformer layer, then the re-communication
may not lead to communication overhead here.

28



Published as a conference paper at ICLR 2026

Table 21: Hyperparameter configurations for LLaMA-2 models of different scales, along with the
corresponding number of devices for a propagation pipeline. ‘Microbatch’ denotes the size of
one microbatch. ‘PP size’ number of devices for a GPU pipeline for the forward- and backward-
propagation of one microbatch.

Parameters Hidden Heads Layers Sequence length Microbatch PP size
13B 5120 40 40 4096 16 2
70B 8192 64 80 4096 16 8

Table 22: Computation and communication times for one gradient step. CR-Net achieves time saving
of 13.42s and 127.63s in 13B and 70B training tasks per step, respectively.

Parameters Methods Computation
FLOPs (×1015)

Computation
time (s)

Communication
overhead (GB)

Communication
time (s)

13B Full-rank 7.48 23.97 1.88 0.029
CR-Net 3.19 10.23 (13.74-) 22.5 0.352 (0.323+)

70B Full-rank 36.67 177.53 21.00 0.328
CR-Net 14.51 46.51 (131.02-) 238.0 3.719 (3.391+)

Empirical verification. To empirically validate communication efficiency, we pre-trained a LLaMA-
2 70B model with CR-Net under pipeline parallelism using 8 NVIDIA A800 GPUs interconnected
via NVLink, on the C4-en dataset (sequence length=256). Pipeline parallel training was implemented
with the torch.distributed.pipelining library, with each GPU handling 10 transformer layers.

The measured communication time for one forward and backward step was 1.380 seconds, yielding
a bandwidth of 192.5 GB/s. This bandwidth is approximately three times higher than the PCIe
bandwidth assumed in our theoretical analysis (Table 22). These findings demonstrate that under
NVLink connectivity, CR-Net achieves shorter communication times than theoretically projected,
further confirming that for large scale models, the communication volume does not substantially
impair overall efficiency, thus supporting our theoretical conclusions.

HBM memory. We also clarify that CR-Net ’s low-rank parameterization inherently reduces overall
HBM memory requirements. For the pre-training tasks for LLaMA-2 70B with BF16 precision, under
the configuration outlined in Table 21, CR-Net introduces 11.3GB additional activation memory
per device versus 1GB in full-rank training. Meanwhile, CR-Net achieves about 50% reduction in
memory for parameters, gradients, and optimizer states, yielding a net 29.6GB HBM saving per
device. This memory efficiency enables LLM training with fewer devices, fundamentally alleviating
both communication overhead and collective HBM demands.

LLMS USAGE.

In this paper, generative LLMs were used solely for writing polishing, such as grammar and wording
improvements. All LLM-edited content was manually verified to ensure compliance with ICLR
policies, and authors bear full responsibility for the submission.
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