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Abstract

Large Language Models (LLMs) have become foundational in the realm of natural lan-
guage processing, demonstrating performance improvements as model sizes increase. The
Mixture-of-Experts (MoE) approach offers a promising way to scale LLMs more efficiently
by using fewer computational FLOPs through sparse activation. However, it suffers from
significant memory overheads, necessitating model compression techniques. Post-training
quantization, a popular method for model compression, proves less effective when directly
applied to MoE models due to MoE’s overlooked inherent sparsity. This paper explores sev-
eral MoE structure-aware quantization heuristics, ranging from coarse to fine granularity,
from MoE block to individual linear weight. Our investigations reveal critical principles:
different MoE structures (i.e., blocks, experts, linear layers) require varying numbers of
weight bits for effective and efficient quantization. Conclusions are supported by extensive
benchmarking across two representative MoE models and six tasks. We further introduce
novel enhancements to more accurately identify the most critical weights in MoE quanti-
zation that necessitate higher bit allocations, including the linear weight outlier scorer and
MoE block scorer. Additionally, subsequent experiments validate our findings in the context
of both weight and activation quantization. Our code for reproducing all our experiments
is provided as supplemental material.

1 Introduction

Large Language Models (LLMs) have achieved remarkable success in various natural language processing
tasks, such as language understanding, reasoning, and generation, demonstrating superior performance and
adaptability Brown et al. (2020); Jiang et al. (2023); Kaplan et al. (2020); OpenAI et al. (2024); Touvron
et al. (2023). However, the rapid growth in model size, with state-of-the-art LLMs containing billions of
parameters, poses significant challenges to computational resources and memory consumption Aminabadi
et al. (2022); Lin et al. (2024); Shoeybi et al. (2020). The Mixture of Experts (MoE) Shazeer et al. (2017)
architecture has emerged as a promising solution to address these challenges. MoE allows for the scaling
up of LLMs while maintaining roughly constant FLOPs. By incorporating multiple expert networks and
employing a sparse gating mechanism, MoE achieves efficient computation, enabling the development of
larger models within the constraints of limited computational resources Dai et al. (2024); Fedus et al. (2022);
Jiang et al. (2024).

Despite its advantages, MoE suffers from extensive memory costs, which hinder its practical deployment and
widespread adoption. For example, the Mixtral-8x7B Jiang et al. (2024) MoE model takes around 180 GB
memory while only 28 GB parameters are activated for each input token1. Model compression techniques
tailored to MoE architectures are essential to address this issue. Existing MoE compression methods can
be categorized into two main approaches: merging and pruning. Expert merging, such as MC-MoELi et al.
(2024), aims to reduce the memory footprint by combining similar experts based on routing policy and
compressing the resulting model using low-rank decomposition. On the other hand, expert pruning, such as
task-specific pruning Chen et al. (2022), focuses on identifying and removing the least important experts or

1This is evaluated in full precision (float32).
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connections based on their contribution to a specific task. However, these approaches ① necessitate model
retraining, which is both extremely costly and time-consuming, particularly for state-of-the-art MoE LLMs
of billion-size scale, and ② operate under task-specific settings, which limits their practicality for real-world
applications.

Post-training quantization has emerged as a promising compression method widely applied to dense LLM
models. Recent works, such as GPTQ Frantar et al. (2023a), which adapts quantization intervals based
on the Hessian information, SmoothQuant Lin et al. (2024), which jointly quantizes the model weight and
activation by offline migrating the activation outliers, have demonstrated the effectiveness of post-training
quantization for LLMs toward 4 bits compression.

However, directly applying existing quantization methods to MoE models in a more extreme quantization
setting, e.g. under 3 bits, leads to suboptimal results, potentially due to the overlooked sparsity nature of the
MoE architecture. The sparse activation patterns and the dynamic routing mechanism in MoE pose unique
challenges and opportunities for quantization, requiring novel approaches to utilize it effectively. The sparse
expert activations in MoE models exhibit different statistical properties methodologies compared to dense
activations, making conventional quantization methods difficult. Moreover, the dynamic routing mechanism,
which selects a subset of experts for each input token, introduces additional complexity in terms of quantizing
the routing weights and maintaining the sparsity pattern during inference. This yields the primary question
to be explored:

(Q) Can we leverage the sparsity nature of MoE architecture to establish more efficient and effective coarse-
grained mixed-precision MoE quantization methods?

To answer (Q), we explore a wide range of MoE structure-aware quantization heuristics, ranging from coarse
to fine granularity. We conduct a detailed comparative analysis of each of them, revealing critical principles:
different MoE structures (i.e., blocks, experts, linear layers) require varying numbers of weight bits for
effective and efficient quantization. Extended from the gained insights, we propose methods to further
improve the efficiency and effectiveness of mixed-precision quantization, including linear weight quantization
scorer and MoE block quantization scorer.

In summary, our key contributions are listed below:

1. We establish the first benchmark for post-training quantization specifically designed for the Mixture-
of-Experts architecture. This benchmark encompasses investigations into four critical MoE-related
heuristics, evaluations across two MoE LLMs, six benchmark tasks, and a combination of both
weight and activation quantization.

2. Our benchmark study uncovers a range of previously unexplored quantization principles and in-
sights for MoE. These insights include empirical rules supporting optimal bit allocation strategies,
highlighting the trade-offs such us those between attention and FFNN layers, and among different
experts.

3. Leveraging the insights from our benchmark study, we introduce novel enhancements to improve
existing heuristics. These include the development of linear-weight and MoE block scorers to identify
the most critical components of the MoE model, thereby guiding more effective quantization bit
assignments.

2 Related Works

Mixture-of-Experts. The Mixture-of-Experts (MoE) approach Shazeer et al. (2017) enhances neural
network scalability by using router networks to activate model segments according to input tokens selectively.
As the dominant architecture in NLP, numerous efforts have adapted feed-forward neural networks (FFNNs)
within Transformers to incorporate MoE layers, constructing MoE language modelsDai et al. (2024); Fedus
et al. (2022); Jiang et al. (2024). Additionally, several variants of the standard MoE architecture exist. For
example, DeepSeek-MoE Dai et al. (2024) employs numerous finely segmented experts and designates a select
few as shared experts to capture common knowledge. MoE’s application in LLMs is widely acknowledged for
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its superior generative abilities and remarkable computing efficiency Artetxe et al. (2022); Dai et al. (2024);
Fedus et al. (2022); Jiang et al. (2024); Krajewski et al. (2024); Rajbhandari et al. (2022). The recent work
Mixtral Jiang et al. (2024) illustrates that MoE can match the performance of equivalent full-parameter
LLMs while utilizing far fewer active parameters. However, MoE suffers from significant memory overhead
issues, posing challenges to its efficient deployment Li et al. (2024).

MoE Compression. MoE models benefit from reduced FLOPs but are constrained by their significant
memory overhead. Current works to reduce the memory overhead of MoE models mainly focus on reducing
the number of experts. An earlier approach Chen et al. (2022) involves pruning non-essential experts for
a specific downstream task during fine-tuning, utilizing statistics based on cumulative usage frequency.
Another method, MC-SMoE Li et al. (2024), introduces a pipeline that identifies and groups similar experts,
subsequently merging them and further decomposing the merged expert into low-rank components within
each group. However, these approaches are developed under task-specific fine-tuning settings and do not
explore the development of the MoE compression towards a general post-training model.

Post-Training Quantization. Post-training quantization reduces computational and storage demands
by converting pre-trained models from high-precision to lower-precision formats without extensive retrain-
ing Frantar et al. (2023b;a). It has been widely applied to LLMs, optimizing them for deployment on
resource-constrained devices. Techniques like layer-wise quantization and mixed-precision schemes are de-
signed for minimal performance degradation while reducing model size and computational requirements effi-
ciently Liu et al. (2023); Pan et al. (2023); Sharify et al. (2024). Recent methods such as SmoothQuant Xiao
et al. (2024), GPTQ Frantar et al. (2023a), AWQ Lin et al. (2024), and address specific challenges for LLMs.
SmoothQuant Xiao et al. (2024) ensures smooth precision transitions across layers, reducing quantization
errors and maintaining performance. GPTQ Frantar et al. (2023a) employs layer-wise and mixed-precision
quantization to balance efficiency and accuracy. AWQ Lin et al. (2024) adapts to weight sensitivity, preserv-
ing critical weights’ precision while aggressively quantizing less sensitive ones. These advancements in PTQ
enable significant reductions in computational and storage requirements while preserving LLM performance.

3 Reviewing Quantization and MoE

3.1 Quantization Method

The primary objective of this work is to benchmark several MoE-related heuristics combined with established
LLM quantization techniques. Given that the substantial memory overhead of MoE models predominantly
originates from their weights, we adopt GPTQ Frantar et al. (2023a), a popular weight quantization method.
GPTQ executes layer-by-layer weight quantization by addressing a specific reconstruction problem for each
layer. Specifically, let W represent the weights of a linear layer and X denote the input to that layer derived
from a small subset of calibration data, the reconstruction problem is defined as follows:

argminŴ, ||WX− ŴX||22. (1)

This objective, being the sum of squared errors, forms a quadratic equation, allowing the greedy-optimal
update of weights to be calculated element-by-element using the Hessian information, H = 2XX⊤. GPTQ
further enhances this process by incorporating a lazy-batch update and a Cholesky reformulation, to improve
scalability and numerical stability for LLM quantization.

3.2 Mixture-of-Experts

There are several variants of MoE in the context of LLMs, such as attention MoE and FFNN MoE. In this
work, we explore the quantization of MoE models that utilize router networks to selectively activate FFNNs
for different input tokens. Specifically, for the i-th expert’s feed-forward function at the l-th transformer
layer, denoted as FFNNil(·), the output of the MoE layer for the input hidden states X is given by:

FFNNl
MoE(X) =

l∑
i=1
G(WlX) · FFNNl

i(X), (2)
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Figure 1: Visualization of expert usage of the two MoE models used in this work. It is evaluated on the
quantization calibration data, i.e., 512 random 4096 token sequences from the WikiText dataset Merity et al.
(2016).

where Wl represents a linear routing matrix and G(·) is a routing function that typically employs a top-k
selection mechanism, resulting in a sparse output. Due to the duplication of FFNN layers, the principal
memory overhead in the MoE model is attributed to the FFNN component.

3.3 Expert Usage as A Heuristic

As the routing of experts in MoE models is not ideally balanced, expert usage frequency and its variants have
emerged as prevalent heuristics for measuring the importance of different experts within an MoE block Chen
et al. (2022); Li et al. (2024). For instance, task-specific expert pruning proposed by Chen et al. (2022) uses
a criterion based on cumulatively calculated expert routing probabilities for pruning during fine-tuning on a
specific task. In this paper, focusing on post-training quantization, we utilize the routing distribution from
the calibration data as the heuristic for expert usage. Specifically, for the l-th MoE block, equipped with a
routing matrix Wl ∈ Re×d and input hidden states X ∈ Rb×d from the calibration data, the expert usage
heuristic is calculated as follows:

usage = normalize

(∑
i

G(WlXi)
)

, (3)

where G(·) is the routing function employing a top-k selection mechanism that yields a sparse binary output.
We visualize the calculated expert usage of Mixtral-8x7B and DeepSeek-MoE-16B-base MoE models on the
quantization calibration data, as shown in Figure 1. Note that Mixtral-8x7B demonstrates a more balanced
routing distribution than DeepSeek-MoE-16B-base.

4 Benchmark Post-Quantization Methods for MoE

In this section, we present several heuristics for MoE quantization and the empirical performance of them.
Our benchmarking covers two MoE models and six popular tasks.

4.1 Benchmark Setups

MoE Models. We select two representative MoE models for our benchmark evaluation, i.e.,
Mixtral-8x7B Jiang et al. (2024) and DeepSeek-MoE-16B-base Dai et al. (2024). Mixtral-8x7B sub-
stitutes every FFNN with a MoE block and has 8 experts per MoE block with top-2 routing, while
DeepSeed-MoE-16B-base uses a fine-grained MoE architecture by including 64 experts with top-6 rout-
ing and 2 shared experts per MoE block. Notably, the DeepSeek-MoE-16B-base model incorporates a dense
architecture in its first transformer block while employing an MoE architecture in subsequent blocks for
better training stability.
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Quantization. We mainly focus on weight-only grouped mixed-precision quantization, though we also
extend our experiments and conclusions to its combination with activation quantization in Section 5. The
weight-only experiments utilize GPTQ Frantar et al. (2023a), while those that combine weight and activation
quantization utilize SmoothQuant Xiao et al. (2024), without loss of generality. Throughout this work, we
use a group size of 128. Our experiments emphasize an extreme quantization scenario, where most weights
are quantized to either 2 or 4 bits.

Calibration and Evaluation Details. We use the calibration data consisting of 512 random 4096 token
sequences from the WikiText dataset Merity et al. (2016), following GPTQ Frantar et al. (2023a). Unlike
previous literature that focuses on language modeling benchmarks Xiao et al. (2024); Lin et al. (2024);
Frantar et al. (2023a), we evaluate all the methods on six popular LLM tasks for a practical benchmark-
ing: WinoGrande ai2 (2019), COPA Gordon et al. (2012), OpenBookQA (OBQA) Mihaylov et al. (2018),
HellaSwag Zellers et al. (2019), and MMLU Hendrycks et al. (2021). We report the performance on MMLU
with 5-shot and all others with zero-shot. All experiments are conducted with PyTorch on 3 NVIDIA H100,
and we utilize lm-evaluation-harness 2 for the evaluation of all tasks.

4.2 Benchmark Results

We first evaluate several MoE heuristics quantization methods based on GPTQ on Mixtral-8x7B and
DeepSeek-MoE-16B. We present our benchmark conclusions by answering the following research questions.

Q1: Is expert usage frequency a good quantization heuristic? A: Fairly good. Expert usage fre-
quency is a popular heuristic in the compression of MoE models, predicated on the insight that less frequently
used experts are likely less crucial. Our experiments, detailed in Table 1, corroborate its effectiveness as a
quantization heuristic for MoE models. In particular, for the DeepSeek-MoE-16B-base model, this heuristic
markedly outperforms the strategy of randomly allocating more bits to experts, likely due to the model’s
unbalanced routing distribution. However, with the Mixtral-8x7B model, where the routing distribution is
more balanced, the advantage of using expert usage frequency over random allocation is less significant.

Table 1: Comparison of the expert usage frequency heuristic v.s. random allocation. For the Mixtral-8x7B
model, we compare the allocation of 4 bits to the top-{2, 4} most frequently used experts per MoE block
against randomly selecting {2, 4} experts for the same bit allocation. For the DeepSeek-MoE-16B-base
model, we keep shared expert {8} bits and compare between top-{10, 15, 20, 25} most frequently used
experts against randomly selecting {10, 15, 20, 25} experts per MoE block. The remaining experts are
quantized to 2 bits, while all attention layers are uniformly quantized to 4 bits. All random experimental
results in the format of a±b provide the mean value a and its standard deviation b over 3 independent trials.

Methodology Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)
Mixtral-8x7B

Random 2 2.54 58.59± 2.57 68.00± 11.27 33.00± 1.78 46.60± 18.21 60.14± 9.32 28.26± 4.64 49.10± 7.73
Frequent 2 2.54 58.33 76.00 32.00 56.62 66.21 36.01 54.20
Random 4 3.03 67.77± 0.36 86.33± 3.51 38.47± 0.31 67.48± 0.52 73.99± 0.52 48.13± 2.57 63.70± 0.49
Frequent 4 3.03 68.82 86.00 38.80 67.68 72.20 49.42 63.82

DeepSeek-MoE-16B-base

Random 10 2.53 67.28± 0.04 88.50± 1.50 38.40± 0.80 70.99± 0.50 76.74± 0.84 35.23± 0.09 62.86± 0.60
Frequent 10 2.53 66.46 87.00 39.60 70.31 76.71 37.84 62.99
Random 15 2.68 67.25± 0.47 84.50± 2.50 40.00± 0.60 71.79± 0.43 76.85± 0.08 35.71± 0.82 62.68± 0.71
Frequent 15 2.68 67.17 88.00 39.00 71.09 76.93 40.59 63.80
Random 20 2.83 67.25± 0.47 84.50± 2.50 40.00± 0.60 71.79± 0.43 76.85± 0.08 35.71± 0.82 62.68± 0.71
Frequent 20 2.83 67.25 86.00 40.40 72.06 77.58 40.78 64.01
Random 25 2.97 67.72± 0.24 89.00± 1.00 40.70± 0.10 71.98± 0.19 77.04± 0.05 36.54± 1.55 63.83± 0.04
Frequent 25 2.97 67.72 90.00 39.20 72.83 77.15 41.06 64.66

2https://github.com/EleutherAI/lm-evaluation-harness
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Figure 2: Comparison of quantizing
more bits for attention vs. FFNN.
It is evaluated on the Mixtral-8x7B
model. FFNN results show the mean
and standard deviation (error bars)
from 3 independent trials.

Q2: Attention vs. FFNN: Which Deserves More Bits in
MoE? A: Attention layers are more bit-efficient. Because of
the unique characteristics of the feedforward neural network (FFNN)
within the mixture of experts (MoE) framework. we explore the at-
tention layer and the feedforward neural network layer, which de-
serves more bits. We compare the performance evaluated by quan-
tizing the attention layers with more bits v.s. randomly selecting
experts in the FFNN layers with more bits, maintaining the same
average bits of the entire MoE model for a fair comparison. Specifi-
cally, we quantize the attention weight or randomly selected FFNN
weight to {2, 4, 8} bits, while All other weights are quantized to
2 bits by default. As illustrated in Figure 2, quantizing attention
weights to higher bit levels (i.e., 4 or 8 bits) consistently results in
significant performance gains (over 5%) under each average bit allo-
cation for the MoE model. This greater efficiency likely stems from
the fact that attention weights are activated for every token, while
FFNN weights only engage with a subset of the input tokens. Con-
sequently, increasing the quantization bits for FFNN weights does not benefit all inputs. Based on these
findings, attention weights are quantized to 4 bits by default in all following experiments.

Table 2: Comparison between quantizing first k v.s. last k MoE blocks with higher (i.e. 4) bits. All
weights in attention layers are quantized to 4 bits, and the other weights are quantized to 2 bits. In
DeepSeek-MoE-16B-base model, we keep the first block that is dense block as 4 bits by default. We evaluate
k of 4 and 8. The higher performance of each comparison pair is marked as bold.

Methodology Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)
Mixtral-8x7B

First 4 2.30 57.85 72.00 32.80 52.80 61.59 29.65 51.12
Last 4 2.30 53.75 60.00 27.80 46.25 58.87 26.56 45.54
First 8 2.54 62.11 85.00 35.80 62.72 67.74 35.61 58.16
Last 8 2.54 52.09 69.00 29.60 47.87 59.58 26.03 47.36

DeepSeek-MoE-16B-base

First 4 2.29 65.27 85.00 38.40 64.42 72.74 28.88 59.12
Last 4 2.29 62.90 83.00 36.00 64.41 74.65 27.38 58.06
First 8 2.63 64.09 86.00 38.75 67.84 75.35 30.12 60.36
Last 8 2.63 62.83 83.00 37.80 65.94 75.73 31.00 59.38
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Figure 3: Comparison of quantizing
more bits for shared experts vs. oth-
ers experts. “Others” results show
the mean and standard deviation from
3 independent trials of random 2 ex-
perts of the non-shared experts.

Q3: Do the model’s first or last MoE blocks deserve more
bits in quantization? A: The first MoE blocks. As more and
more Mixture-of-Experts (MoE) architectures emerge, we investigate
which layer of the MoE block is more critical and thus deserves
more bits during the quantization process. As shown in Table 2, we
evaluate the performance of allocating more bits to the first k blocks
versus the last k blocks in quantization. The results consistently
indicate that higher bit quantization of the first few blocks yields
better performance, suggesting that we can allocate more bits to
the quantization of the first blocks of the model. This observation
aligns with prior studies that have empirically confirmed the greater
importance of the first few Transformer blocks Dai et al. (2024); Ma
et al. (2023).

Q4: Does the shared expert always deserve more bits? A:
Yes. The DeepSeek-MoE-16B-base model includes two shared ex-
perts within each MoE block to obtain common knowledge across
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varying domains and alleviate the parameter redundancy. To evaluate their role in quantization, we com-
pare quantizing these two shared experts with more bits v.s. randomly selecting two non-shared experts for
more bit allocation, maintaining the same average bits for a fair comparison. The shared or random non-
shared experts are quantized to 2, 4, 8 bits, while attention weights are set to 4 bits and all other weights to
2 bits. As depicted in Figure 3, allocating higher bit levels (i.e., 4 or 8 bits) to shared experts consistently
yields superior performance. This enhanced efficiency and effectiveness are attributed to the shared experts
being activated for every input token, unlike non-shared experts, which only engage with specific subsets of
the tokens. Allocating more quantization bits to shared experts thus proves to be both more efficient and
effective.

5 Extended Study to Improve MoE Quantization

In this section, we expand our benchmark results from weight quantization to include activation quantization.
Additionally, we introduce two novel algorithmic advancements aimed at enhancing the effectiveness of
identifying crucial components within MoE models for improved quantization performance.

5.1 Quantizing Both Weight and Activation

We further expand our study by simultaneously including weight and activation quantization to validate
our conclusions. Specifically, we employ SmoothQuant Xiao et al. (2024) combined with our expert-usage-
frequency heuristic. It selects the top-2 experts’ weights per MoE block in the Mixtral-8x7B model and
the top-16 experts’ weights per MoE block in the DeepSeek-MoE-16B-base for quantization to 4 bits, while
quantizing all other weights to 2 bits. The evaluation results, presented in Table 3, reveal the marginal per-
formance gap across different activation quantization bits. This demonstrates that our conclusions regarding
weight quantization are robust and can be reliably extended to various activation quantization scenarios as
well.

Table 3: Combination of activation quantization with the expert-usage-based heuristic. We evaluate it on
the top-2 most frequently used experts per MoE block in Mixtral-8x7B and the top-16 frequent experts
per MoE block in DeepSeek-MoE-16B-base, quantizing these experts to 4 bits. All attention weights are
also quantized to 4 bits, while all other weights are quantized to 2 bits. The higher performance of each
comparison pair is marked as bold.

Weight Bits Activation Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)
Mixtral-8x7B

2.54
4 50.28 51.00 26.80 25.99 51.90 23.85 38.30
8 50.04 60.00 26.80 26.55 51.58 23.77 39.79
16 49.41 60.00 26.60 26.53 51.85 23.86 39.71

DeepSeek-MoE-16B-base

2.71
4 48.22 53.00 27.20 26.12 50.65 26.86 38.67
8 49.96 51.00 27.60 26.58 53.86 25.91 39.15
16 50.19 51.00 27.60 26.43 53.70 25.16 39.01

5.2 Concentrating Linear Layers with Larger Weight Outliers

Insight. From the quantization perspective, the larger the range of a weight magnitude group, the more
difficult it will be for quantization. We found that, in MoE, each FFNN linear weight matrix consists
predominantly of values within a narrow range, interspersed with a few significant outliers. Consequently,
we propose a weight-magnitude-based metric to identify those linear layers that are challenging to quantize
effectively, thereby necessitating a higher allocation of quantization bits.

Methodology. We define the metrics to estimate the outliers of weights by the maximum ratio of the
largest to the average absolute magnitude within each column. Specifically, for a weight matrix W ∈ Rm×n,
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we compute the metric outlier-score(W) as follows:

outlier-score(W) = maxj

(
max(|W:, j|)
mean(|W:, j|)

)
, (4)

where |W:, j| is the absolute value of W’s j-th column. With this metric, we can identify those linear layers
that require more quantization bits and allocate more to them, providing an effective trade-off between
performance and efficiency. The overall procedure is detailed in Algorithm 1.

Algorithm 1 The Procedure of MoE Mixed-Precision Quantization with outlier-score.
1: Initialize: A MoE model with l linear layers across all the FFNN experts, the number of linear layers

for 4 bit quantization k.
2: Let M and S represent the set of each linear layer matrix in FFNN and its score, respectively.
3: for linear layer i = 1, . . . , l do
4: W←M[i]
5: S[i]← maxj

(
max(|W:,j|)
mean(|W:,j|)

)
6: end for
7: α← sorted(S)[k]
8: 4bits-quantize ({M[i] | S[i] >= α})
9: 2bits-quantize ({M[i] | S[i] < α})

10: Return: A quantized mixed-precision MoE model.

Experiments. We evaluate this metric by comparing its application for the top-p% of linear layers against
randomly selecting linear layers, using percentages of 25% and 50%. In DeepSeek-MoE-16B-base model, we
also involve shared experts using this metric. As illustrated in Table 4, our proposed scorer consistently
outperforms the random baseline on both models and almost all tasks (except HellaSwag and MMLU). This
is particularly evident in the DeepSeek-MoE-16B-base model, where it achieves an average performance
improvement of about 3%, aligning with our expectations.

Table 4: Comparison between using our linear weight scorer vs. random selection of linear layers for bit
allocation in quantization. We evaluate by quantizing 25% of the linear layers across all MoE blocks (i.e.,
FFNN) to 4 bits. All attention weights are quantized to 4 bits, and all other weights are quantized to 2 bits.
In each comparison pair, the higher performance is highlighted in bold. All random experimental results in
the format of a± b provide the mean value a and its standard deviation b over 3 independent trials.

Methodology Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)
Mixtral-8x7B

Random 25% 2.54 60.74± 0.63 78.67± 4.62 34.07± 1.63 57.36± 0.53 68.19± 0.74 32.49± 1.60 55.25± 0.95
Ours top-25% 2.54 62.19 83.00 35.80 57.04 68.23 30.95 56.20

DeepSeek-MoE-16B-base

Random 25% 2.54 64.04± 0.78 84.67± 4.73 37.53± 0.46 67.39± 0.71 74.61± 0.60 29.43± 1.31 59.61± 0.76
Ours top-25% 2.54 66.14 85.00 38.80 71.65 76.82 36.19 62.43

Visualization. As shown in Figure 4, we visualize the proposed outlier-score for each FFNN linear
weight within the Mixtral-8x7B model. Given that each FFNN expert includes three linear layers, namely
the gate projection, up projection, and down projection, we visualize these components separately to ensure
clarity. Notably, many of the down projection linear layers, particularly those positioned later in the MoE
model, exhibit significantly higher outlier-scores compared to others.

5.3 Training Block Quantization Importance Score Predictor.

Inspired by Q3 in Section 4.2, which demonstrates that allocating more bits to different MoE blocks yields
variable performance improvements, we propose a novel method to identify and quantize those critical blocks
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Figure 4: Visualization of the outlier-score metric applied to each FFNN linear weight matrix within
the Mixtral-8x7B model. For clearer visualization, we present separate components, including the gate
projection (left), up projection (middle), and down projection (right) in FFNN experts.

with additional bits. Specifically, this section outlines our approach to calculating importance scores for bit
allocation using a data-driven method with a lightweight predictor.

Insight. We find an increasing cosine similarity between the tensors generated before and after the FFN
blocks for some of the MoE blocks, indicating less important computation results produced by these blocks.
This observation also aligns with observations on dense models in previous literature Jaiswal et al. (2024).
Therefore, the basic idea is that less accurate output of these blocks producing tokens with high cosine simi-
larity will not affect the overall model performance much, thus lower weight bits might not hurt performance
much.

Methodology. To capture the generalized hidden states’ dynamic information of each MoE block, we
train a small two-layer FFNN with a tangent activation function. This network predicts the cosine similarity
between the input and output hidden states. We utilize a dataset of 400 random sequences, each containing
1024 tokens from the WikiText dataset Merity et al. (2016), for training. The detailed training procedure
is in Algorithm 2. During quantization, we employ this predictor to run inference on the calibration data,
computing the average predicted score for each MoE block across all tokens. A higher predicted score
indicates less important and fewer bits for quantization.

Algorithm 2 The Training Procedure of Block Score Predictor.
1: Initialize: A MoE block M , token input and output embedding set at block M {(xi, yi)}i∈[N ].
2: Let BSP denotes the block score predictor.
3: X ← {xi | i ∈ [N ]}
4: S ← {cosine(xi, yi) | i ∈ [N ]}
5: BSP ← train(X ,S)
6: Return: The importance score predictor BSP for MoE Block M .

4 8 12 16 20 24
MoE Block

0.7

0.8

0.9

1.0

Sc
or

e

Figure 5: Visualization of the predicted MoE block
importance score using our trained predictors.

Experiments. In Table 5, we compare the per-
formance of using our block importance predictor
to select k MoE blocks for 4 bits and others for 2
bits quantization with two other baselines: ① ran-
dom selecting k MoE blocks, and ② first k MoE
blocks (as it is the best in Q3 in Section 4.2). Evalu-
ation results on the DeepSeek-MoE-16B-base model
are presented in Table 5, showing the superiority of
our method against the other two baselines.

Visualization. We visualize the predicted scores
of each MoE block using our trained predictors in
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Table 5: Comparison between using our MoE block importance predictor v.s. two baselines: ①random
selecting and ②first k MoE blocks. The predicted or selected MoE blocks are quantized to 4 bits, all
attention weights are quantized to 4 bits, and all other weights are quantized to 2 bits. In each comparison,
the highest performance is highlighted in bold. All random experimental results in the format of a ± b
provide the mean value a and its standard deviation b over 3 independent trials.

Methodology Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)
DeepSeek-MoE-16B-base

Random 4 2.29 61.09± 0.78 83.00± 0.00 37.20± 0.85 64.88± 0.30 74.21± 0.08 27.82± 0.46 58.03± 0.13
First 4 2.29 65.27 85.00 38.40 64.42 72.74 28.88 59.12
Predicted 4 2.29 65.27 83.00 36.60 64.88 74.54 37.75 60.34
Random 8 2.63 64.48± 0.83 85.33± 3.21 38.73± 0.95 67.57± 0.40 75.43± 0.14 31.41± 2.17 60.49± 0.56
First 8 2.63 64.09 86.00 38.75 67.84 75.35 30.12 60.36
Predicted 8 2.63 65.35 86.00 38.00 68.77 75.35 30.01 60.58
Random 12 2.92 64.64± 0.89 83.50± 0.71 39.60± 2.83 69.51± 0.56 75.98± 0.42 32.57± 0.30 60.97± 0.62
First 12 2.92 67.48 88.00 38.60 70.59 75.95 39.25 63.31
Predicted 12 2.92 68.11 88.00 39.20 71.82 76.66 38.45 63.71

the DeepSeek-MoE-16B-base model, as shown in
Figure 5. Notably, MoE blocks situated in the middle of the model, which exhibit higher scores, are re-
garded as less critical. Consequently, these blocks will be quantized with fewer bits (specifically, 2 bits),
reflecting their lower importance. Besides, Figure 5 also demonstrates that the first few MoE blocks are
more important aligned with Q3. Interestingly, the last two blocks of the DeepSeek-MoE-16B-base model
are also crucial, thereby allocating more bits and yielding better performance.

6 Conclusion

This work investigates various heuristic-based MoE quantization methods in the post-training setting. While
vanilla quantization techniques (e.g., GPTQ) prove less effective and efficient when applied directly to MoE
models, determining which MoE model components should be allocated more quantization bits remains an
open question. We present the first benchmark study on MoE quantization, revealing critical heuristic-based
principles, such as the importance disparities among different MoE blocks. Drawing on these insights, we
introduce innovative techniques, including a block importance predictor and a linear layer outlier range
scorer, to more precisely identify components that benefit from increased bit quantization. These methods
substantially improve the quantization process’s effectiveness and efficiency for MoE models.
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Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mixtral of experts, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models, 2020.

Jakub Krajewski, Jan Ludziejewski, Kamil Adamczewski, Maciej Pióro, Micha l Krutul, Szymon Anto-
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A Appendix

A.1 Evaluation Datasets

In this section, we introduce details of the datasets in our evaluation. For a more comprehensive study, we
have selected six popular benchmark tasks: WinoGrande, COPA, OpenBookQA (OBQA), HellaSwag, and
MMLU.

WinoGrande ai2 (2019) is a large-scale dataset designed for commonsense reasoning, consisting of pronoun
resolution problems. Each instance in the dataset presents a sentence with an ambiguous pronoun that needs
to be resolved based on context. This task tests the model’s ability to understand and reason about everyday
situations.

The Choice of Plausible Alternatives (COPA) dataset Gordon et al. (2012) focuses on causal reasoning.
Each question in COPA consists of a premise and two choices, where the model must select the more
plausible alternative. This task evaluates the model’s understanding of cause-and-effect relationships in
natural language.

OpenBookQA Mihaylov et al. (2018) is a multiple-choice question-answering dataset that requires the
model to use both scientific facts and commonsense knowledge. The dataset challenges the model’s ability
to combine factual knowledge with reasoning to answer questions correctly.

HellaSwag Zellers et al. (2019) is a benchmark for commonsense NLI (Natural Language Inference) that
tests the model’s ability to predict the most plausible continuation of a given sentence. The dataset contains
scenarios from various domains, such as cooking and sports, requiring the model to understand context and
plausibility.

The Massive Multitask Language Understanding (MMLU) benchmark Hendrycks et al. (2021)
evaluates models across a wide range of subjects, from elementary mathematics to law. For this study, we
report performance on MMLU with a 5-shot setting, where the model is given five examples per task before
evaluation, allowing us to gauge the model’s few-shot learning capabilities.

We perform a zero-shot evaluation on WinoGrande, COPA, OpenBookQA, and HellaSwag, where the model
is not provided with any task-specific training examples. For MMLU, a 5-shot evaluation protocol is adopted,
providing five examples per task. This setup helps us assess the generalization ability of the models across
different types of reasoning and knowledge-based tasks.

A.2 Random Seed

For all the random selection experiments, we use random seeds {42, 43, 44} to conduct three independent
trials and then report the standard deviation and mean.
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A.3 Further Discussion

In this section, we present further discussion of the DeepSeek-MoE-16B-base performance across different
bits.

Expert usage frequency. As shown by Q1 in Section 4.2, expert usage frequency is a critical metric
in the compression of MoE models, predicated on the insight that less frequently used experts are likely
less crucial. We present further discussion of ablation on the bits allocation in the expert-frequency-based
methods.

Table 6: Ablation on the allocated bits for the selected top-k experts based on frequency. We compare the
allocation of {4, 8} bits of the top-k experts based on frequency, and all other experts are quantized to 2
bits.

Top Top-k bits Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

1
4 2.29 66.30 83.00 39.00 69.28 75.03 35.02 61.27
8 2.35 66.14 87.00 39.80 69.44 75.30 34.04 61.95

2
4 2.32 66.38 88.00 38.60 69.44 76.06 36.49 62.49
8 2.44 65.98 90.00 38.60 69.77 76.33 35.82 62.75

5
4 2.41 66.54 87.00 38.40 70.13 76.12 38.02 62.70
8 2.70 64.96 89.00 39.40 70.56 75.90 38.56 63.06

10
4 2.55 67.17 86.00 39.20 70.55 76.55 39.11 63.10
8 3.14 66.06 88.00 39.00 70.81 76.71 39.30 63.31

15
4 2.70 67.17 83.00 39.00 71.72 76.93 40.41 63.04
8 3.58 65.75 85.00 41.00 71.34 76.39 40.48 63.33

20
4 2.85 67.88 84.00 40.20 72.35 77.69 41.25 63.90
8 4.02 66.61 89.00 38.00 72.58 77.64 41.25 64.18

25
4 2.99 67.17 87.00 40.00 73.26 78.07 42.38 64.65
8 4.46 68.67 86.00 41.00 73.00 78.67 41.79 64.86

30
4 3.14 69.69 89.00 40.60 73.92 77.53 42.82 65.59
8 4.90 67.56 88.00 40.80 73.88 78.56 41.94 65.12

2 3 4
Average Bits

60.00

67.81

Pe
rf

or
m

an
ce

 (%
)

Mixed
8 Bits

Figure 6: Performance of different quantization bits
on DeepSeek-MoE-16B-base model.

In Table 6, we compare the allocation of {4, 8} bits
of the selected top-k experts, while all other experts
are quantized to 2 bits. We quantize the shared
experts and attention weights to 8 bits. Table 6
indicates that increasing the bit width of frequently
activated experts improves performance. However,
the gain from increasing the top-k expert bits from
4 to 8 is minimal.

We summarize all experimental results and illus-
trate the relationship between bit width and average
performance in Figure 6. Overall, we observe that
as the bit width increases, the performance is im-
proved. As highlighted by the red cross mark ✕ in
the figure, achieving an average MoE bit width of
2.12 results in a performance score of 61.11, which
marks a 5% improvement over the model quantized
to 2 bits. This underscores the effectiveness of MoE
blocks in settings with limited bit width.

Combination of the weight outlier and expert usage frequency. We conducted additional ex-
periments on the DeepSeek-MoE-16B-base model by integrating bit-width allocation based on layers with
significant weight outliers with allocation based on expert usage frequency to explore the trade-off between
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them. Specifically, we aimed for a total average bit budget of 2.97. We selected portions of the model to
be quantized to 4 bits using a combination of the two heuristics, while quantizing all attention weights to 4
bits and all other weights to 2 bits. For selecting the 4-bit weights, we introduced a hyper-parameter, α (0
¡ α ¡ 1), representing the proportion of weights chosen based on expert usage frequency, with the remainder
selected based on weight outliers. We varied α to illustrate the trade-off between these methods, as detailed
above. As shown in Table 7, the optimal combination of these two methods occurs when alpha is set to
0.1. This means that 20% of the 4-bit MoE weights are selected based on expert usage frequency, while the
remaining 80% are chosen according to weight outliers.

Table 7: The combination of weight outlier and expert usage frequency, evaluated on the
DeepSeek-MoE-16B-base model.

Bits α WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

2.97

0.0 67.72 90.00 39.20 72.83 77.15 41.06 64.66
0.1 68.11 89.00 41.60 72.88 77.80 41.84 65.21
0.2 69.21 89.00 41.20 72.60 76.93 41.60 65.09
0.3 68.92 88.00 42.00 72.06 76.65 41.21 64.81
0.4 67.48 89.00 41.40 71.88 76.71 40.96 64.57
0.5 67.32 90.00 40.80 71.89 76.93 40.21 64.52
0.6 65.90 87.00 39.40 71.86 76.76 38.67 63.27
0.7 66.21 87.00 41.40 71.45 76.87 36.98 63.32
0.8 66.45 89.00 41.00 70.89 76.60 37.67 63.60
0.9 66.37 84.00 40.20 70.83 76.87 39.84 63.02
1.0 68.19 87.00 41.60 71.01 76.11 40.81 64.12

Baseline results of low-precision quantization. We provide the 16-bit (FP16), 4-bit, and 2-bit base-
lines of both Mixtral-8x7B and DeepSeek-MoE-16B-base models in Table 8.

Table 8: Baseline results of the 16-bit (FP16), 4-bit, and 2-bit quantization.

Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)
Mixtral-8x7B

16 76.48 93.00 47.00 83.98 82.37 70.35 75.33
4 74.98 92.00 46.20 81.65 80.85 67.65 73.89
2 49.33 63.00 25.40 28.18 52.99 24.29 40.53

DeepSeek-MoE-16B-base

16 70.40 91.00 44.20 77.35 78.72 44.77 67.74
4 71.35 87.00 43.20 76.39 78.51 44.22 66.78
2 53.28 76.00 30.20 45.33 66.54 25.28 49.44
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