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Abstract
Non-parametric detection of change points in
streaming time series data that belong to Eu-
clidean spaces has been extensively studied in the
literature. Nevertheless, when the data belongs to
a Riemannian manifold, existing approaches are
no longer applicable as they fail to account for the
structure and geometry of the manifold. In this
paper, we introduce a non-parametric algorithm
for online change point detection in manifold-
valued data streams. This algorithm monitors the
generalized Karcher mean of the data, computed
using stochastic Riemannian optimization. We
provide theoretical bounds on the detection and
false alarm rate performances of the algorithm,
using a new result on the non-asymptotic con-
vergence of the stochastic Riemannian gradient
descent. We apply our algorithm to two different
Riemannian manifolds. Experimental results with
both synthetic and real data illustrate the perfor-
mance of the proposed method.

1. Introduction
Change point detection (CPD) is the problem of find-
ing abrupt variations in a property of time series data,
which may be indicative of transitions between different
states (Aminikhanghahi & Cook, 2017). This question often
plays a central role in the modeling, analysis and prediction
of time series data, and it has been addressed in many ap-
plications ranging from remote sensing (Zeng et al., 2020)
and climatology (Reeves et al., 2007) to financial data anal-
ysis (Bai & Perron, 1998). Research on this topic can be
categorized into two primary branches: offline and online.
Offline CPD necessitates access to all received samples, as
extensively covered in the literature (Truong et al., 2020). In
contrast, online CPD methods process data in real-time and
aim to detect change points with minimal delay after their
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occurrence. In numerous real-world scenarios, the pursuit
of non-parametric CPD is also highly relevant since it can
be challenging to possess prior knowledge of the data dis-
tribution. However, even with the longstanding history and
continued interest in CPD techniques, it is noteworthy that
the overwhelming majority of existing algorithms assume
that the data resides in Euclidean spaces.

Recent developments in statistical learning and signal pro-
cessing have increasingly confronted the analysis of data
residing in non-Euclidean spaces. Among these spaces,
Riemannian manifolds have garnered attention due to their
wide-ranging applications, such as in diffusion tensor imag-
ing (Pennec et al., 2006), pedestrian detection (Tuzel et al.,
2008), and human behavior understanding (Kacem et al.,
2018). Consequently, Riemannian optimization (Absil et al.,
2009; Boumal, 2023) has emerged as an area of significant
interest, offering essential and potent tools for handling
data on manifolds, especially with the recent advancements
in Riemannian stochastic gradient descent (R-SGD) algo-
rithms (Bonnabel, 2013; Zhang & Sra, 2016). While the
detection of change points in Euclidean spaces has been no-
tably successful, it is noteworthy that only a limited number
of CPD methods have been specifically crafted for Rieman-
nian manifolds (Bouchard et al., 2020; Dubey & Müller,
2020; Wang et al., 2023a), and these still lack theoretical
analyses or online operation. The main hurdles stem from
the need to account for the intrinsic non-linear geometry
of these spaces and the absence of a vector space structure
in the data, making the adaptation of algorithms originally
conceived for Euclidean spaces a complex undertaking.

In response to the aforementioned challenges, the objective
of this paper is to introduce a unified framework for non-
parametric and online CPD on Riemannian manifolds. Our
contributions are as follows:

1. General non-parametric framework: We propose
a comprehensive non-parametric framework for CPD
by monitoring central values within Riemannian mani-
folds. Our framework places particular emphasis on the
generalized Karcher mean. We update two estimates
of the generalized Karcher mean using the R-SGD al-
gorithm, each with distinct constant step sizes. These
two estimates, one with longer memory and the other
more adaptive, are compared to construct an online
CPD statistic.
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2. Theoretical analyses: We provide theoretical analyses
related to the proposed CPD statistic. We establish
non-asymptotic convergence results for R-SGD with
a curvature-dependent linear rate under the condition
of constant step size (Theorem 4.1). Additionally, in
the absence of any change, we derive an upper bound
for the false alarm rate (Theorem 4.2). Furthermore, in
the presence of a change, we establish a lower bound
for the detection rate (Theorem 4.3).

3. Application to specific manifolds: We tailor our al-
gorithm to suit two common instances of Riemannian
manifolds, specifically, the manifold of symmetric pos-
itive definite (SPD) matrices and the Grassmann man-
ifold. We then provide empirical illustrations of the
performance of our CPD algorithm on these manifolds
through numerical experiments on synthetic and real-
world datasets.

By introducing this framework and offering theoretical in-
sights into its performance, we aim to contribute to the ad-
vancement of non-parametric and online CPD methods for
data residing on Riemannian manifolds, which can impact a
range of applications such as, e.g., voice activity detection,
pedestrian detection and subspace change detection.

2. Related work
In this section, we review related works on online change
point detection and Riemannian optimization which are
connected to the proposed approach.

Online CPD: Online CPD methods can be broadly catego-
rized into two main groups: parametric and non-parametric,
depending on whether prior knowledge about the data distri-
bution is available. Parametric CPD techniques, illustrated
by methods such as the cumulative sum (CUSUM) (Page,
1954; Tartakovsky et al., 2014) and the generalized likeli-
hood ratio test (GLRT) (Gustafsson, 1996), assume that the
data distribution conforms to a known parametric family.

In many applications, prior knowledge of the data distribu-
tion cannot be guaranteed, leading to the development of
non-parametric methods. These approaches encompass var-
ious techniques, including monitoring changes in the mean
or variance of a data stream, as seen in methods like the
Exponentially Weighted Moving Average (EWMA) (Costa
& Rahim, 2006), and the use of kernel maximum mean
discrepancy (MMD) derived from the data stream (Gretton
et al., 2006). Recent advancements in this field have intro-
duced innovative non-parametric methods. For instance, the
NEWMA algorithm (Keriven et al., 2020) was introduced to
detect change points without the necessity of retaining his-
torical data samples. This is achieved by comparing two EW-
MAs of data stream statistics, each computed with distinct

forgetting factors. The non-parametric kernel MMD statistic
initially introduced for hypothesis testing in (Gretton et al.,
2006) has recently been widely employed in the context of
kernel CPD with both offline (Harchaoui et al., 2008; Sinn
et al., 2012) as well as online algorithms (Gong et al., 2012;
Li et al., 2019). Kernel extensions of the CUSUM statistic
have also been considered in (Madrid Padilla et al., 2023;
Arlot et al., 2019; Wei & Xie, 2022). A computationally
efficient approximation of the kernel MMD based on the
neural tangent kernel has also been proposed (Cheng & Xie,
2021). Another non-parametric online algorithm was de-
veloped in (Ferrari et al., 2022), making use of adaptive
kernel density ratio estimation. The capabilities of neural
networks were explored in (Wang et al., 2023b) to enhance
the effectiveness of non-parametric online CPD.

These algorithms, however, assume that the data belongs
to an Euclidean space. While some non-parametric on-
line CPD algorithms have been extended to specific non-
Euclidean domains, such as graphs (Ferrari & Richard,
2020) and categorical data (Ienco et al., 2014), very few
works have investigated scenarios where the data belongs
to a Riemannian manifold. In (Bouchard et al., 2020), an
online CPD algorithm was specifically designed for the com-
pound Gaussian distribution, which, however, is parametric
and not broadly applicable. For data lying on manifolds, a
non-parametric offline algorithm (Duan et al., 2019) was de-
veloped to detect change points of rigid body motions in the
special Euclidean group. Another non-parametric technique,
monitoring changes in the Fréchet means and variances, was
proposed in (Dubey & Müller, 2020). However, it can only
detect a single change point and operates offline. A work
extending NEWMA to manifolds was introduced in (Wang
et al., 2023a), but the algorithm is not general and does not
have any theoretical analyses.

This paper presents a general formulation for CPD on mani-
folds based on the generalized Karcher mean, a discussion
of its related existence and uniqueness questions, theoretical
results related to the convergence, false alarm, and detection
performance of the algorithm, and exemplifies its applica-
tion to different manifolds with challenging examples.

Riemannian optimization: Riemannian optimization has
recently garnered significant interest as it takes into account
the geometry of data manifolds, which is prevalent in many
practical applications. Both the books (Absil et al., 2009)
and (Boumal, 2023) provide detailed presentations on Rie-
mannian optimization. Substantial work has also been under-
taken in order to extend optimization algorithms that were
originally developed in Euclidean spaces, such as steep-
est descent (Smith, 1994) and quasi-Newton (Huang et al.,
2015) algorithms, to Riemannian manifolds, as well as to
study their convergence behavior.

The R-SGD algorithm, as presented in (Bonnabel, 2013),

2



Non-parametric Online Change Point Detection on Riemannian Manifolds

has gained significant attention for its capability to handle
noisy gradient estimates. Sophisticated variance reduction
techniques have been recently introduced to provide algo-
rithms with accelerated convergence rate (Zhang et al., 2016;
2018; Zhou et al., 2019). While the asymptotic convergence
of the R-SGD was studied in (Bonnabel, 2013) for diminish-
ing step sizes, explicit convergence rates were not provided.
Results on the sublinear convergence rates of first-order
Riemannian optimization on geodesically convex problems
were recently obtained in (Zhang & Sra, 2016). However,
these rates were derived under the assumption of diminish-
ing step sizes or deterministic gradients.

3. Background
This section introduces some basic concepts of Riemannian
geometry, focusing on the essential tools for optimization
on manifolds. Detailed presentations can be found in (Absil
et al., 2009) and (Boumal, 2023).

A Riemannian manifold (M, g) is a constrained set M en-
dowed with a Riemannian metric gx(·, ·) : TxM×TxM →
R, defined for every point x ∈ M, with TxM the so-called
tangent space of M at x. A geodesic γ : [0, 1] → M is
the curve of minimal length linking two points x,y ∈ M
such that x = γ(0) and y = γ(1), with v ∈ TxM the
velocity of γ at 0 denoted by γ̇(0). The geodesic distance
dM(· , ·) : M × M → R is defined as the length of the
geodesic linking two points x,y ∈ M. It satisfies all the
conditions to be a metric.

The exponential map w = expx(v) is defined as the point
w ∈ M located on the unique geodesic γ(t) with end-
points x = γ(0), w = γ(1) and velocity v = γ̇(0). Since
calculating the exponential map can be computationally
demanding, in practice it is common to employ a retrac-
tion Rx : TxM → M instead, defined at every x ∈ M,
which consists of a second-order approximation to the ex-
ponential map, satisfying dM(Rx(tv), expx(tv)) = O(t3).
Consider a smooth function f : M → R. The Riemannian
gradient of f at x ∈ M is defined as the unique tangent
vector ∇f(x) ∈ TxM satisfying d

dt

∣∣
t=0

f(expx(tv)) =
⟨∇f(x),v⟩x, for all v ∈ TxM.

4. Proposed method
4.1. Problem Background

Consider a sequence of statistically independent samples xt

belonging to a Riemannian manifold M. The Riemannian
CPD problem consists of estimating time index tr ∈ N,
referred to as the change point, at which the probability
measure of xt undergoes a change (Pennec, 2004):

t < tr : xt ∼ P1(x) ,
t ≥ tr : xt ∼ P2(x) .

(1)

Here, P1(x) and P2(x) are probability measures on M,
such that P1(x) ̸= P2(x), representing how xt is dis-
tributed before and after the change point, respectively.
Throughout this paper, it is assumed that the difference be-
tween the generalized Karcher means of P1(x) and P2(x)
(see Section 4.2 for a definition) is sufficiently large, to make
this problem tractable. While the CPD problem as defined
in (1) presents only a single change point for simplicity,
CPD algorithms are typically designed to handle multiple
change points.

CPD algorithms aim to compute an estimate t̂r of the change
point. These algorithms have two primary objectives: first,
to minimize the delay between the occurrence of a change
point and its detection by the algorithm, and second, to
minimize the probability of generating false alarms on time
steps when no actual change has occurred. While various
CPD algorithms have been proposed for Euclidean spaces,
the constraint that the data xt belongs to a Riemannian
manifold M, which typically lacks a vector space struc-
ture, presents challenges for algorithm design. Furthermore,
many applications involve streaming data and require the
online resolution of the CPD problem. In other words, an al-
gorithm must determine whether a recent time index t′ ≤ t
is a change point based solely on past data {xs}ts=1 for
every t ∈ N+ while minimizing the detection delay.

4.2. The algorithm

In this study, we introduce a non-parametric CPD strategy
designed for situations where there is no prior knowledge
about the probability measures of the data. In Euclidean
spaces, this has been accomplished in particular by moni-
toring changes in either the mean or the variance (Costa &
Rahim, 2006), or in a generalized statistics (Gretton et al.,
2006) of the data stream. We propose to extend such strate-
gies to Riemannian manifolds by monitoring changes in a
generalized moment of xt ∈ M. This generalized moment
can include the Fréchet mean (Fréchet, 1948), which ex-
tends the concept of the Euclidean mean to metric spaces.
In a broader sense, we consider a generalized Fréchet mean
of M, as defined in (Schötz, 2019):

m∗ ∈ arg min
m∈M

f(m) , (2)

where f(m) is given by:

f(m) = Ex∼P (x)

{
c(x,m)

}
=

∫
c(x,m)dP (x) ,

with c : M × M → [0,+∞) the cost. This framework
generalizes several important central values on Rieman-
nian manifolds, including the Fréchet mean by consider-
ing c(x,m) = d2M(x,m) where dM(x,m) denotes the
geodesic distance between x and m, and the median by
setting c(x,m) = dM(x,m).
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The existence and uniqueness of minimizers for (2) is not
guaranteed in general, even in the case of the Fréchet mean.
When c = d2M, the Karcher mean relaxes this definition
by considering the local optima of f(m) rather than only
the global one. This allows us to establish existence and
uniqueness conditions (Kendall, 1990) and compute m by
solving (2) locally using Riemannian optimization meth-
ods (Pennec, 2004). In particular, if the support of P (x) is
included in a regular geodesic ball (Pennec, 2006, defini-
tion 5), then the Karcher mean exists and is unique (Kendall,
1990). This condition is satisfied for connected manifolds
with non-positive curvature (Afsari, 2011), referred to as
Hadamard manifolds (Shiga, 1984). In this work, we extend
this concept by defining the generalized Karcher mean as
the set of local minimizers of (2) with various central val-
ues. Although our framework is considered in a broader
sense, we will focus on the case of Karcher mean in Sec-
tion 4.3, as discussed in (Wang et al., 2023a), for the sake
of convenience and to facilitate the theoretical analysis.

The proposed CPD strategy on manifolds will be designed
to monitor abrupt changes in a generalized Karcher mean.
An important requirement is that change points must be de-
tected in an online manner, meaning that they are based only
on past data. Consequently, we will adopt stochastic Rie-
mannian optimization to estimate the generalized Karcher
mean of the streaming data xt in an online manner. This
will constitute a fundamental component of our approach.

4.2.1. ONLINE ESTIMATION

In a non-parametric setting, it is not possible to compute
the solution to the optimization problem in (2) explicitly
because P (x) is unknown. Instead, we assume that we
have access to observations xt and can evaluate both the
cost function c(m,xt) and its Riemannian gradient for any
parameter m and sample xt. This enables us to construct
a stochastic approximation of the gradient ∇f(m) using
the input xt. Consequently, we can utilize the R-SGD algo-
rithm (Bonnabel, 2013) to compute an online solution to (2).
An update of m can be computed on M as:

mt+1 = expmt

(
− αH(mt,xt)

)
, (3)

with α > 0 a constant step size. In this expression, expm
denotes the exponential map at m, and H(m,x) is the
stochastic Riemannian gradient, assumed to be an unbiased
estimate of the full gradient ∇f(m),

Ex∼P (x)

{
H(m,x)

}
=

∫
H(m,x)dP (x) = ∇f(m) .

The exponential map in (3) can also be replaced by a com-
putationally simpler retraction Rmt

. It is important to note
that we are considering R-SGD in a non-standard setting.
The estimates provided by this algorithm should be able to

adapt to changes in the data distribution and, consequently,
to the underlying cost function f(m). This necessitates
the use of a constant (instead of diminishing) step size α,
which will impact the theoretical analysis in Section 4.3
since non-asymptotic convergence results will be required.

4.2.2. AN ADAPTIVE CPD

Our goal is to detect change points by monitoring abrupt
changes in the value of m over time. In simpler terms, we
label a time index t′ as a change point if there is a sudden
shift in the value of m at that time. This requires knowl-
edge of two quantities of interest, mbef and maft, which
respectively represent the generalized Karcher mean before
and after a candidate change point t′. First, we propose an
approach to compute estimates of these quantities, denoted
as m̂bef and m̂aft. Then, a test statistic is designed to com-
pare these two quantities using the Riemannian distance,
specifically dM(m̂bef , m̂aft). The larger the Riemannian
distance between the generalized Karcher mean estimates
before and after time instant t′, the higher the likelihood of
identifying t′ as a change point.

The challenge is to find a computationally efficient on-
line method for calculating m̂bef and m̂aft. Previ-
ous work (Dubey & Müller, 2020) proposed dividing a
data stream {xt}Nt=1 with N samples into two segments,
{1, . . . , t′ − 1} and {t′, . . . , N} for every t′, and testing
for differences between their Karcher mean and variance.
However, this approach is not suitable for processing data
streams on the fly or detecting multiple change points.
In (Keriven et al., 2020), estimates of m̂bef and m̂aft were
computed considering the data xt to belong to a Euclidean
space. This was achieved using two EWMAs with different
forgetting factors: one adapting quickly to track m̂aft after
a change point, and another adapting slowly to keep track
of m̂bef . However, this approach cannot be directly applied
to Riemannian manifolds due to its lack of accounting for
manifold geometry. Instead, we propose using two iterative
estimates computed using R-SGD algorithms, described in
Section 4.2.1, with two different fixed step sizes λ < Λ. The
generalized Karcher mean estimates are updated according
to (3) as:

mλ,t+1 = expmλ,t

(
− λH(mλ,t,xt)

)
, (4)

mΛ,t+1 = expmΛ,t

(
− ΛH(mΛ,t,xt)

)
, (5)

with initialization mλ,0 = mΛ,0 = x0. The convergence
of the updates (4) and (5) is directly influenced by λ and Λ,
with a larger step size typically resulting in faster conver-
gence, as we will demonstrate in Theorem 4.1 in the next
section. Therefore, having 0 < λ < Λ means that mΛ,t

is more likely to adapt to new data and quickly approxi-
mate m̂aft, while mλ,t has a longer memory and is better
suited for estimating m̂bef . Using constant step sizes is
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Algorithm 1 Online CPD on Riemannian manifolds
Input: {xt}, step sizes λ,Λ, threshold ξ.
Initialization: mλ,0 = mΛ,0 = x0.
for t = 1, 2, 3, . . . do

Update the generalized Karcher mean estimates mλ,t

and mΛ,t using (4) and (5);
Compute the test statistic gt = dM(mλ,t,mΛ,t);
if gt > ξ then

Flag t as a change point;
end if

end for

crucial to allow the algorithm to adapt to changes in the data
distribution and detect multiple change points.

Based on the estimates provided in (4) and (5), we can
formulate an adaptive CPD statistic by calculating the dif-
ference between mλ,t and mΛ,t using the Riemannian dis-
tance on M as follows:

gt = dM(mλ,t,mΛ,t) . (6)

The CPD procedure involves comparing the statistic gt to a
given threshold ξ. The complete CPD procedure is outlined
in Algorithm 1. It is important to note that the selection
of ξ directly impacts its average run length and detection
delay, as will be shown in Theorems 4.2 and 4.3, which give
bounds on the probability of a false alarm and of detecting
a true change point. Moreover, as in (N)EWMA methods,
the time interval between change points must be sufficiently
large so that the algorithms converge to obtain adequate
detection and false alarm performance.

4.3. Theoretical analysis

In this section, we will assess the performance of the pro-
posed CPD algorithm in two main aspects: i) the likelihood
of a false alarm, which refers to the probability of incor-
rectly identifying a time step as a change point, and ii) the
probability of correctly identifying a change point when
there is a shift in the generalized Karcher mean of the data
stream. To achieve this, we will also need a supplementary
outcome, iii) the non-asymptotic convergence analysis of
the R-SGD algorithm with a constant step size.

For the sake of feasibility in our theoretical analysis, we
will concentrate on the Karcher mean with c = d2M, and the
R-SGD cost function f(m) = E

{
d2M(m,x)

}
, which cor-

responds to the Karcher variance, which is minimized using
the iteration (3). However, it is important to note that our
convergence analysis of R-SGD will not be limited to this
particular cost function. We will also focus on Hadamard
manifolds as in (Zhang & Sra, 2016). The proofs of all the
results are provided in Appendix A. Before presenting the
theoretical results, let us introduce some definitions related

to the cost function f and its properties as follows.

Definition 1 (Geodesically strong convexity) A function
f : M → R is geodesically µ-strongly convex if for any
x,y ∈ M, we have:

f(y) ≥ f(x) + ⟨∇f(x), exp−1
x (y)⟩+ µ

2
∥ exp−1

x (y)∥2 .
(7)

Definition 2 (Lipschitz gradients) The gradient of a func-
tion f : M → R is said to be L-Lipschitz if, for any
x,y ∈ M in the domain of f , it satisfies:∥∥∇f(x)− Γx

y∇f(y)
∥∥ ≤ LdM(x,y) , (8)

where Γx
y denotes the parallel transport from y to x.

Definition 3 (Smoothness) Any differentiable function f :
M → R is geodesically L-smooth if its gradient is L-
Lipschitz, i.e., for any x,y ∈ M, it satisfyies:

f(y) ≤ f(x) + ⟨∇f(x), exp−1
x (y)⟩+ L

2
∥ exp−1

x (y)∥2 .
(9)

4.3.1. NON-ASYMPTOTIC CONVERGENCE OF R-SGD

The following theorem shows that the R-SGD algorithm (3)
with a fixed step size α > 0 has a curvature-dependent linear
rate of convergence for geodesically strongly convex and
smooth functions on Riemannian manifolds.
Theorem 4.1. Assuming that f : M → R is geodesi-
cally µ-strongly convex with geodesically L-Lipschitz gra-
dient, the diameter of the domain is bounded by D, the
sectional curvature of the manifold is bounded below by κ,
and the stochastic gradient is an unbiased estimator of the
gradient, namely, E

{
H(mt,xt)

}
= ∇f(mt) with vari-

ance E{∥∇f(mt) −H(mt,xt)∥2} ≤ σ2 and magnitude
bounded by ∥H(mt,xt)∥ < ρ. We assume that the step
size satisfies 0 < α ≤ min{ 1

2L ,
I
ρ}, where I is the injec-

tivity radius of M. Then, for any s ∈ N∗, the stochastic
Riemannian gradient descent algorithm satisfies:

E{f(ms)− f(m∗)} ≤ (1− ϵ)(s−1)D2

2α
+
ασ2

2ϵ
, (10)

with ϵ = min{ 1
ζ(κ,D) , αµ} and ζ(κ,D) =

√
|κ|D

tanh (
√

|κ|D)
.

The proof is provided in Appendix A.1, based on certain
results in (Boumal, 2023) and the trigonometric distance
bound, specifically, Corollary 8 in (Zhang & Sra, 2016).
However, it is important to note that Theorem 4.1 differs
from Theorem 14 (diminishing step sizes) and 15 (deter-
ministic optimization) in (Zhang & Sra, 2016). In our case,
we consider a stochastic optimization method with a con-
stant step size to compute the CPD statistics gt. If f is
geodesically strongly convex and smooth and the manifold
satisfies the conditions in Theorem 4.1, convergence can be
guaranteed for sufficiently small step sizes α.
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4.3.2. PERFORMANCE GUARANTEE

We now provide two performance guarantees of our CPD
statistics gt as defined in (6). These guarantees consist of an
upper bound on the false alarm rate under the null hypothesis
(i.e., when no change point has occurred) and a lower bound
on the detection rate under the alternative hypothesis.
Theorem 4.2. We assume that, under the null hypothesis
H0, x0,x1, . . . ,xt−1 are drawn i.i.d. from P (x) with the
Karcher mean m∗. We also assume that the conditions in
Theorem 4.1 on f(m), H(m,xt), M and the step sizes λ
and Λ hold. At a steady state (i.e., when t→ ∞), the false
alarm rate can be upper bounded by:

P
(
g∞ ≥ ξ

∣∣H0

)
≤ 2

ξ

(
f(m∗) +

(λ+ Λ)σ2

4ϵ

) 1
2

, (11)

with ϵ = min
{

1
ζ(κ,D) , λµ

}
and ξ the detection threshold.

The proof of this theorem is provided in Appendix A.2.
Theorem 4.2 shows that when no change occurs, a higher
detection threshold ξ leads to a lower upper bound on the
false alarm rate. It is worth noting that the bound on the
false alarm rate is influenced by the Karcher variance term,
which implies that the bound will be tighter when the data
distribution has lower dispersion. Smaller values of λ and Λ
are also recommended for a tighter bound because they re-
duce the impact of gradient noise captured by σ2. However,
choosing larger detection thresholds and smaller step sizes
also reduces the probability of detecting an actual change
point, as indicated by the following theorem.
Theorem 4.3. We assume that, under the alternative hypoth-
esis H1, x0,x1, . . . ,xt−B−1 are drawn i.i.d. from P1(x)
with Karcher mean m∗

1, and xt−B ,xt−B+1, . . . ,xt−1 are
drawn i.i.d. from P2(x) with Karcher mean m∗

2. We
also assume that the conditions in Theorem 4.1 on f(m),
H(m,xt), the manifold M and the step sizes λ and Λ hold,
and that t is sufficiently large such that the algorithms con-
verged before the change point. Then, the detection rate can
be lower bounded as:

P(gt > ξ|H1) ≥
dM(m∗

1,m
∗
2)− ψ(λ)− ϕ(Λ)− ξ

D − ξ
,

(12)

where ψ(λ) =

(
2fbef(m

∗
1) +

λσ2

ϵ

) 1
2

+ λρB ,

ϕ(Λ) =

(
2faft(m

∗
2) +

(1− ϵ)BD2

Λ
+

Λσ2

ϵ

) 1
2

,

with fbef(m
∗
1) = minm∈M Ex∼P1(x){d2M(m,x)} and

faft(m
∗
2) = minm∈M Ex∼P2(x){d2M(m,x)} the Karcher

variances of the data before and after the change point.

The proof of this theorem is provided in Appendix A.3.
Theorem 4.3 shows that smaller values of ξ and larger values

of dM(m∗
1,m

∗
2) make the lower bound on the detection rate

tighter when a change point occurs. Moreover, the bound
also gets tighter as λ gets smaller and Λ gets bigger, which
is intuitive since, when B is not too large, a small λ assures
mλ,t will still be close to the Karcher mean of the data
before the change point, whereas a large Λ means that mΛ,t

will converge faster to the Karcher mean of the data after the
change point, their distance being thus more effective for
change detection. However, one should note that λ being
too small can hurt the adaptability of the method and its
capability to detect multiple change points. Thus, the step
sizes should be selected to ensure a sufficiently fast speed
of convergence for the desired application.

The increase in the number of samples B after a change
point has a twofold effect on the lower bound to the de-
tection rate in (12). On the one hand, the estimate of the
Karcher means before the change point from the “slow” al-
gorithm gets polluted by samples following the post-change
distribution, causing the term ψ(λ) to increase with B. On
the other hand, the “fast” algorithm will converge to the
Karcher means of the post-change data, causing the term
ϕ(Λ) to decrease with B. The bound also gets larger as the
Karcher variances of the data, the gradient noise, and the
bound on the diameter of the domain decrease. Note that
these quantities are the main sources of stochasticity in the
proposed algorithm, and as the uncertainty decreases the
theoretical detection performance of the algorithm improves.
A similar behavior is also observed for the upper bound to
the false alarm rate in (11).

One challenge in applying CPD algorithms is the selection
of the detection threshold ξ without prior knowledge of
the data distribution. In real use cases, a simple yet effec-
tive procedure is to adjust ξ so as to achieve some desired
performance in the absence of change points. We provide
an heuristic procedure for the adaptive threshold selection
based on this idea in Appendix B.

5. Application to specific manifolds
In this section, we tailor Algorithm 1 to two common in-
stances of Riemannian manifolds for the case of the Karcher
mean cost function c = d2M, which will later be illustrated
through numerical experiments in Section 6. The first one is
the manifold of p× p SPD matrices, denoted by S++

p . The
second is the Grassmann manifold, a set of k-dimensional
linear subspaces of Rp, denoted by Gk

p . We refer the in-
terested reader to (Boumal, 2023; Collas, 2022) for more
details. Note that although Gk

p is not a Hadamard mani-
fold, Algorithm 1 still performs empirically well as will
be presented in Section 6. In practice, these manifolds can
appear as natural representations of the data (e.g., in diffu-
sion tensor imaging) or as feature embeddings thereof. For
computational simplicity, we will replace the exponential
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maps in the R-SGD updates (4) and (5) with approximate
retractions Rmλ,t

and RmΛ,t as in (Bonnabel, 2013).

5.1. The manifold of SPD matrices

The manifold S++
p consists of the set of SPD matrices en-

dowed with an appropriate metric. When considering the
affine invariant metric, the geodesic distance between two
SPD matrices Σ and Σt ∈ S++

p can be computed as (Pen-
nec et al., 2006):

dS++
p

(Σ,Σt) =
∥∥ log(Σ− 1

2
t ΣΣ

− 1
2

t )
∥∥
F
, (13)

where ∥ · ∥F denotes the Frobenius norm. In this case,
the Riemannian gradient H(Σ,Σt) of the loss function
d2S++

p
(Σ,Σt) at Σ ∈ S++

p is obtained by applying the

transformation 1
2Σ (GT +G)Σ to its Euclidean gradient

G (Bhatia, 2009), which gives us:

H(Σ,Σt) = 2 log(ΣΣ−1
t )Σ . (14)

Finally, a second-order retraction on S++
p is given by:

RΣ,S++
p

(ξ) = Σ+ ξ +
1

2
ξΣ−1ξ . (15)

With {Σt}t∈N lying in S++
p and the metric defined

in (13), the Karcher means were estimated by min-
imizing the following objective function f(Σ) =

EΣt∼P (Σ)

{∥∥ log(Σ− 1
2

t ΣΣ
− 1

2
t )

∥∥2
F

}
. Note this cost func-

tion is known to be geodecially strong convex and smooth
as discussed in (Zhang & Sra, 2016). The R-SGD algo-
rithms in (4) and (5) with the stochastic gradient (14) and
the retraction (15) were used to compute the online CPD
statistic in (6).

5.2. The Grassmann manifold

We consider the Grassmann manifold Gk
p endowed with

the canonical metric. The Grassmann manifold is typically
characterized as a smooth quotient of the Stiefel manifold
Sk
p = {U ∈ Rp×k : UTU = Ik}. This way, by defining

the surjective map π : Sk
p → Gk

p as follows: π(U) =

{UO : O ∈ Rk×k,OTO = Ik}, every point π(U) ∈ Gk
p

can be equivalently represented by the orthonormal matrix
U whose columns form its basis. We spare the reader of
the technical details, which can be found in (Absil et al.,
2009; Boumal, 2023). To proceed, let us first denote by
V 1 diag(θt)V

T
2 the singular value decomposition (SVD)

of UTUt. The geodesic distance between π(U) ∈ Gk
p and

π(Ut) ∈ Gk
p can be defined as (Edelman et al., 1998):

dGk
p
(U ,Ut) = ∥ cos−1(θt)∥2 . (16)

The Riemmanian gradient H(U ,Ut) of the loss function
d2Gk

p
(U ,Ut) at π(U) ∈ Gk

p can be computed by applying

the transformation (I −UUT )G to its Euclidean gradient
G. Using results from matrix calculus, this results in:

H(U ,Ut) =

− (I −UUT )U tV 2 diag
(
2
(
1− θ2

t

)− 1
2
)
V T

1 . (17)

Let ξ ∈ Tπ(U)Gk
p , and let XΥY T = U + ξ be the thin

SVD of U + ξ ∈ Rp×k. A second-order retraction on the
Grassmann manifold is given by (Boumal, 2023)

Rπ(U)(ξ) = π
(
XY T

)
. (18)

With {π(Ut)}t∈N lying in Gk
p and the metric de-

fined in (16), the Karcher means were estimated
by minimizing the objective function f(π(U)) =
Eπ(Ut)∼P (π(U))

{∥∥ cos−1(θt)∥22
}

. Accordingly, the R-
SGD algorithms in (4) and (5) with the stochastic gradi-
ent (17) and the retraction (18) were used to compute the
online CPD statistic in (6).

6. Experiments
In this section, we present numerical experiments using the
manifolds S++

p and Gk
p discussed in Section 5. Our method

was implemented in Python using Pymanopt (Townsend
et al., 2016). The step sizes of our method were set as
λ = 0.01 and Λ = 0.02. Open-source code to reproduce the
results is publicly available at https://github.com/
xiuheng-wang/CPD_manifold_release. Here
we briefly describe the baselines and evaluation metrics.

Baselines: We selected four CPD methods Scan-B (Li
et al., 2019), NEWMA (Keriven et al., 2020), the Fréchet
CPD (F-CPD) (Dubey & Müller, 2020) and NODE (Wang
et al., 2023b) as baselines for comparison with our method.
Scan-B, NEWMA, and NODE are online algorithms origi-
nally designed for Euclidean spaces but were adapted to the
manifold setting in this study. We applied Scan-B, NEWMA,
and NODE to the vectorization of the lower triangular por-
tion of each SPD matrix Σt and to each entire matrix Ut for
the SPD and Grassmann manifolds, respectively. In Scan-
B, the number of reference blocks was set to 3. NEWMA
was implemented with Random Fourier features using the
Gaussian kernel. The window size of Scan-B and NEWMA
were both set to 50. The reference and test window lengths
of NODE were both set to 64. F-CPD was designed to
operate on manifolds but can only detect a single change
point and operates offline. To address these limitations, we
computed statistics in F-CPD to compare data distributions
in two consecutive sliding windows, each with 64 samples.
We provide a discussion on the computational complexity
of our method compared to baselines in Appendix C.

Metrics: To evaluate the performance of the methods, we
considered three metrics: the Average Run Length (ARL),

7

https://github.com/xiuheng-wang/CPD_manifold_release
https://github.com/xiuheng-wang/CPD_manifold_release


Non-parametric Online Change Point Detection on Riemannian Manifolds

0.00 0.25 0.50 0.75 1.00
False alarm rate

0.0

0.2

0.4

0.6

0.8

1.0

De
te

ct
io

n 
ra

te

F-CPD
NODE
Scan-B
NEWMA
Our

0 200 400 600 800 1000
Average run length

0

10

20

30

40

50

M
ea

n 
de

te
ct

io
n 

de
la

y

F-CPD
NODE
Scan-B
NEWMA
Our

Figure 1. ROC curves, ARL versus MDD for the compared algo-
rithms on synthetic data on S++

p .
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Figure 2. ROC curves, ARL versus MDD for the compared algo-
rithms on synthetic data on Gk

p .

Mean Detection Delay (MDD), and Receiver Operating
Characteristic (ROC) curves. ARL represents the expected
time before incorrectly announcing a change point when
none has occurred, and is related to the false alarm rate.
MDD signifies the expected time the algorithm needs to
flag a detection after a change point occurs, reflecting its
sensitivity. The ROC curve is a graphical representation of
the detection rate versus the false alarm rate.

6.1. Validations on synthetic data

We first present results over sequences of i.i.d. synthetically
generated data in S++

p and Gk
p .

Manifold S++
p : We sampled matrices Σt ∈ S++

p with
p = 8 from a Wishart distribution with a randomly gener-
ated scaling matrix V and p + 2 degrees of freedom. We
generated 2000 samples and set a change point at tr = 1500
where we reset V .

Manifold Gk
p : The data π(Ut) ∈ Gk

p with p = 15, k = 5
was generated in two steps. First, we generated matrices Zt

following a matrix Gaussian distribution (Gupta & Nagar,
1999) with random mean and row/column covariance ma-
trices. Then, the orthonormal matrices Ut were generated
as the left singular vectors corresponding to the k largest
singular values of Zt. We generated 2000 samples and set
a change point at tr = 1500 where we reset the mean of the
matrix Gaussian distribution of Zt.

0.00 0.25 0.50 0.75 1.00
False alarm rate

0.0

0.2

0.4

0.6

0.8

1.0

De
te

ct
io

n 
ra

te

Scan-B
NEWMA
Our-sub
Our-cov

0 200 400 600 800 1000
Average run length

0

10

20

30

40

50

M
ea

n 
de

te
ct

io
n 

de
la

y

Scan-B
NEWMA
Our-sub
Our-cov

Figure 3. ROC curves, ARL versus MDD for the compared algo-
rithms on real data for voice activity detection.

Results: The ROCs, MDD as a function of ARL for all
methods, averaged over 104 Monte Carlo runs, are depicted
in Figure 1 and 2 for both manifolds. It is evident that the
proposed method results in a significantly lower detection
delay for a fixed ARL when compared to Euclidean meth-
ods Scan-B, NEWMA, and NODE, which does not consider
manifold geometry, and F-CPD, which does not benefit
from long time series through a recursive operation. The
compared methods exhibited similar behavior in both man-
ifolds, although the proposed method resulted in slightly
lower MDDs for Gk

p . This underscores the importance of
accounting for manifold geometry and utilizing an efficient
online estimation framework. Illustrations of the mean and
standard deviation and further comparisons between his-
tograms of the test statistics for all compared methods are
provided in Appendix D.1 and D.2, respectively.

6.2. Voice activity detection

We now present results on real data on both S++
p and Gk

p

by considering the task of voice activity detection on audio
signals. We first added 4 seconds of real speech extracted
from the TIMIT database (Garofolo, 1993) to 15 seconds of
background noises in real street environments from the QUT-
NOISE database (Dean et al., 2010), with −3 dB Signal-to-
Noise Ratio. The goal is to detect the speech segments in the
noise background. Then, we used the Short Time Fourier
Transform (STFT) (Cohen, 1995) on a one-dimensional
audio signal to extract on-the-fly frequency information and
form a d = 128 dimensional time series st ∈ Rd. The
two methods with the best performance in the experiments
with synthetic data, Scan-B and NEWMA, were used as
baselines in this experiment. They were directly applied on
st as they are designed to operate on Euclidean spaces.

Manifold S++
p : We averaged the neighboring channels

of st in the frequency domain to obtain its down-sampled
version with 16 channels. We then generated data points
Σt ∈ S++

p with p = 16 by computing the covariance
matrices in sliding windows, each with 32 samples. The
proposed method on such covariance descriptors is denoted
as “Our-cov”.
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Figure 4. ROC curves, ARL versus MDD for the compared algo-
rithms on real data for skeleton-based action recognition.

Manifold Gk
p : We also applied the truncated SVD with

k = 1 singular values to the samples in the same sliding
windows to obtain orthonormal matrices Ut defining the
subspaces π(Ut) ∈ Gk

p . We denote our method on these
subspaces as “Our-sub”.

Results: The ROCs and MDD as a function of ARL for
all methods, averaged over 104 Monte Carlo runs, are de-
picted in Figure 3. It is important to note that the problem
setting is challenging due to the complexity of real acoustic
signals and the non-i.i.d. nature of the extracted features.
Nevertheless, one can observe that the proposed strategy
exhibits a higher detection rate for a given false alarm rate
and better performance on MDD versus ARL when com-
pared to both Scan-B and NEWMA, except for very small
ARLs where Scan-B has a lower MDD. This behavior oc-
curs since both the covariance and subspace descriptors are
computed over a sliding window, which introduces a small
detection delay in our method when the ARL is small1. How-
ever, its performance is significantly better for larger ARLs.
This illustrates the superior performance of our method.
Furthermore, the performance was slightly superior in the
covariance descriptors on S++

p compared to the subspace
representations on Gk

p .

6.3. Skeleton-based action recognition

We also present results on real data on the S++
p manifold

by considering the problem of detecting change points in
skeleton-based action recognition using the HDM05 motion
capture database (Müller et al., 2007). In this database, we
identified action categories and preprocessed the data as de-
scribed in (Huang & Van Gool, 2017) to generate data points
Σt ∈ S++

p with p = 93 by computing the joint covariance
descriptor (Hussein et al., 2013) of 3D coordinates of the
31 joints. The aim is to flag a change point at the border
of two different action categories. We randomly selected

1Although a shorter sliding window is preferred to introduce
a smaller delay, the window length has to be long enough to pro-
vide enough samples for an accurate estimation of these statistical
descriptors.

the sequences corresponding to action categories containing
more than 200 samples and then concatenated them. The
parameters of the compared algorithms were appropriately
re-adjusted for this example since there were fewer samples
between change points, requiring a faster convergence.

Results: The ROC and MDD versus ARL curves of the
compared methods (Scan-B, NEWMA, and our algorithm),
averaged over 103 Monte Carlo runs, can be seen in Fig-
ure 4. Note that the problem setting is challenging due to
the high data dimension. It can be seen that our method
achieves a significantly higher detection rate compared to
the Scan-B and NEWMA, which had very similar ROCs2.
Moreover, for ARLs smaller than 40 samples, the proposed
method and NEWMA obtained similar MDDs. However,
when the ARL was higher, the proposed method performed
significantly better. This further illustrates the effectiveness
of our method.

7. Discussion
This paper presented a general approach for non-parametric
online CPD on Riemannian manifolds. An adaptive test
statistic was computed using stochastic Riemannian opti-
mization to monitor the generalized Karcher mean of data
streams. Performance guarantees for detection and false
alarm rates were established based on a theoretical analysis
of the non-asymptotic convergence of the R-SGD algorithm.
Experimental results on the manifold of SPD matrices and
the Grassmann manifold demonstrated the superiority of
the proposed algorithm on synthetic and real-world datasets.
We also identify the main limitations of our work:

• The number of samples needs to be large enough for
the “slow” algorithm to converge to the Karcher mean
of the data before a new change point occurs to perform
well. This is a limitation of our method and also of
other recursive algorithms.

• Although S++
p and Gk

p are selected to illustrate our
approach, our framework is more general and can in-
deed be applied to other manifolds. The main possible
hurdle is related to the convergence rate of the R-SGD
algorithm affected by the manifold curvature, being
slower for higher curvature values. This in turn can
negatively impact the detection delay.

• For the theoretical analysis, we make additional as-
sumptions on the manifold (e.g., Hadamard). Although
this does not limit the practical applicability to other
manifolds, manifolds with complex geometries can in-
troduce additional challenges such as non-convexity of
the cost function.

2The mean and standard deviation of the test statistic of all
methods for this example can also be seen in Appendix D.1.
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A. Proofs of the main results
A.1. Theorem 4.1

Assume f is a geodesically L-smooth function, that is, its gradient is geodesically L-Lipschitz. As this property is related to
deterministic gradient ∇f(x), we shall first reformulate it with respect to the stochastic gradient. Replacing y = mt+1,
x = mt in (9), denote ∆t = f(mt)− f(m∗), and considering the fact ⟨a, b⟩ ≤ α

2 a
2 + 1

2αb
2, we have:

∆t+1 −∆t = f(mt+1)− f(mt)

≤ ⟨∇f(mt), exp
−1
mt

(mt+1)⟩+
L

2
∥ exp−1

mt
(mt+1)∥2

= ⟨H(mt,xt), exp
−1
mt

(mt+1)⟩+ ⟨∇f(mt)−H(mt,xt), exp
−1
mt

(mt+1)⟩+
L

2
∥ exp−1

mt
(mt+1)∥2

≤ ⟨H(mt,xt), exp
−1
mt

(mt+1)⟩+
α

2
∥∇f(mt)−H(mt,xt)∥2 +

(
L

2
+

1

2α

)
∥ exp−1

mt
(mt+1)∥2. (19)

Assuming ∥H(mt,xt)∥ < ρ and 0 < α ≤ I
ρ where I is the injectivity radius of M, we have ∥αH(mt,xt)∥ < I .

By Proposition 10.22 of (Boumal, 2023), exp−1
mt

(mt+1) = exp−1
mt

(expmt
(−αH(mt,xt)) = −αH(mt,xt), taking the

expectation w.r.t. {xs}ts=0, one obtains:

E∆t+1 − E∆t ≤ −αE∥H(mt,xt)∥2 +
ασ2

2
+

(
L

2
+

1

2α

)
α2E∥H(mt,xt)∥2

=
ασ2

2
+
(αL+ 1

2
− 1

)
αE∥H(mt,xt)∥2. (20)

Assuming 0 ≤ α ≤ 1
2L , we have:

E∆t+1 − E∆t ≤
ασ2

2
− α

4
E∥H(mt,xt)∥2. (21)

Assume f is a geodesically µ-strongly convex function, replacing y = m∗, x = mt in (7), we have:

f(mt)− f(m∗) ≤ ⟨−∇f(mt), exp
−1
mt

(m∗)⟩ − µ

2
∥ exp−1

mt
(m∗)∥2

= ⟨−∇f(mt), exp
−1
mt

(m∗)⟩ − µ

2
d2M(mt,m

∗) . (22)

Assume the diameter of the domain is bounded above by D, and the sectional curvature lower-bounded by κ < 0, use the
trigonometric distance bound, i.e., Corollary 8 in (Zhang & Sra, 2016), we have:

⟨−∇f(mt), exp
−1
mt

(m∗)⟩ ≤ 1

2α

(
d2M(mt,m

∗)− d2M(mt+1,m
∗)
)
+
ζ(κ,D)α

2
∥∇f(mt)∥2. (23)

Combining (22) and (23), we have:

E∆t = E{f(mt)− f(m∗)} ≤
(1− αµ

2α

)
Ed2M(mt,m

∗)− 1

2α
Ed2M(mt+1,m

∗) +
ζ(κ,D)α

2
E∥∇f(mt)∥2

≤
(1− αµ

2α

)
Ed2M(mt,m

∗)− 1

2α
Ed2M(mt+1,m

∗) +
ζ(κ,D)α

2
E∥H(mt,xt)∥2 .

(24)

Multiplying (21) by 2ζ(κ,D) and adding to (24), we have:

2ζ(κ,D)E∆t+1 − (2ζ(κ,D)− 1)E∆t ≤
(1− αµ

2α

)
Ed2M(mt,m

∗)− 1

2α
Ed2M(mt+1,m

∗) + ασ2ζ(κ,D) . (25)

Multiplying (25) by (1− ϵ)−t, we have:

2(1− ϵ)−tζ(κ,D)E∆t+1 − 2(1− ϵ)−t
(
1− 1

2ζ(κ,D)

)
ζ(κ,D)E∆t ≤ (1− ϵ)−t

(
1− αµ

) 1

2α
Ed2M(mt,m

∗)

−(1− ϵ)−t 1

2α
Ed2M(mt+1,m

∗) + (1− ϵ)−tασ2ζ(κ,D) . (26)
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We want to sum (26) from t = 0 to t = s − 1. However, to simplify the summation, we consider the case t = 0 and
t ≥ 1 separately, because in the latter case, we can get a simpler upper bound. First, let us consider the case t ≥ 1. Let
ϵ = min{ 1

2ζ(κ,D) , αµ} (Zhang & Sra, 2016), this implies ϵ ≤ 1
2ζ(κ,D) and ϵ ≤ αµ. For t ≥ 1, from (26) we have:

2(1− ϵ)−tζ(κ,D)E∆t+1 − 2(1− ϵ)−(t−1)ζ(κ,D)E∆t ≤ (1− ϵ)−(t−1) 1

2α
Ed2M(mt,m

∗)

− (1− ϵ)−t 1

2α
Ed2M(mt+1,m

∗)

+ (1− ϵ)−tασ2ζ(κ,D) . (27)

Now, let us consider the case t = 0. This case is simple, directly from (26) we have:

2ζ(κ,D)E∆1 − (2ζ(κ,D)− 1)E∆0 ≤
(1− αµ

2α

)
Ed2M(m0,m

∗)− 1

2α
Ed2M(m1,m

∗) + ασ2ζ(κ,D) . (28)

Finally, summing (26) over t from t = 0 to t = s− 1, and using the previous results, we have:

2(1− ϵ)−(s−1)ζ(κ,D)E∆s − (2ζ(κ,D)− 1)E∆0 ≤
(1− αµ

2α

)
Ed2M(m0,m

∗)− (1− ϵ)−(s−1)

2α
Ed2M(ms,m

∗)

+

s−1∑
t=0

(1− ϵ)−tασ2ζ(κ,D)

≤
(1− αµ

2α

)
Ed2M(m0,m

∗) +

s−1∑
t=0

(1− ϵ)−tασ2ζ(κ,D) , (29)

and plugging in dM(m0,m
∗) ≤ D (the diameter of the domain is bounded above by D), we have:

2(1− ϵ)−(s−1)ζ(κ,D)E∆s − (2ζ(κ,D)− 1)E∆0 ≤
( 1

2α
− µ

2

)
D2 +

s−1∑
t=0

(1− ϵ)−tασ2ζ(κ,D)

≤ D2

2α
+

s−1∑
t=0

(1− ϵ)−tασ2ζ(κ,D) . (30)

Replacing y = m0, x = m∗ in (9), considering an alternative definition of geodesic L-smoothness (Proposition 4.5 and 4.6.
of (Boumal, 2023)) and plugging in dM(m0,m

∗) ≤ D and ∇f(m∗) = 0, we have:

∆0 = f(m0)− f(m∗) ≤ ⟨∇f(m∗), exp−1
m∗(m0)⟩+

L

2
∥ exp−1

m∗(m0)∥2

= ⟨∇f(m∗), exp−1
m∗(m0)⟩+

L

2
d2M(m0,m

∗) ≤ LD2

2
. (31)

This ensures E∆0 ≤ LD2

2 ≤ LD2 so that we have E∆0 ≤ D2

2α since 0 ≤ α ≤ 1
2L , one can obtain from (30) that

E∆s = E{f(ms)− f(m∗)} ≤ (1− ϵ)(s−1)D2

2α
+

s−1∑
t=0

(1− ϵ)t
σ2

2

≤ (1− ϵ)(s−1)D2

2α
+

∞∑
t=0

(1− ϵ)t
σ2

2

≤ (1− ϵ)(s−1)D2

2α
+
ασ2

2ϵ
, (32)

as desired.
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A.2. Theorem 4.2

Using Markov’s inequality with ξ > 0,

P(gt ≥ ξ|H0) ≤
1

ξ
E{gt|H0} . (33)

Now, it remains to find an upper bound to E{gt|H0}. Let us ignore the conditioning of the expectation on H0 to simplify the
notation. The rest of the analysis is built upon the triangle inequality and the definition of gt, which is,

gt = dM(mλ,t,mΛ,t) ≤ dM(mλ,t,x) + dM(mΛ,t,x) (34)

for any x ∈ M. Take the expectation w.r.t. {xs}t−1
s=0, with Theorem 4.1, Jensen’s inequality and the fact

(√
a+

√
b

2

)2

≤ a+b
2

for nonnegative a and b, we can upper bound E{gt} as

E{gt} ≤ E{dM(mλ,t,x)}+ E{dM(mΛ,t,x)} (35)

≤ E{d2M(mλ,t,x)}
1
2 + E{d2M(mΛ,t,x)}

1
2 (36)

=(E{f(mλ,t)})
1
2 + (E{f(mΛ,t)})

1
2 (37)

≤
(
f(m∗) +

(1− ϵ)t−1D2

2λ
+
λσ2

2ϵ

) 1
2

+

(
f(m∗) +

(1− ϵ′)t−1D2

2Λ
+

Λσ2

2ϵ′

) 1
2

(38)

≤ 2

(
f(m∗) +

(1− ϵ)t−1(λ+ Λ)D2

4λΛ
+

(λ+ Λ)σ2

4ϵ

) 1
2

, (39)

with ϵ′ = min{ 1
ζ(κ,D) ,Λµ} satisfying ϵ′ ≥ ϵ due to the step size condition λ < Λ. Taking the limit as t→ ∞, we get the

following bound for E{gt} at steady state:

lim
t→∞

E{gt} ≤ 2

(
f(m∗) +

(λ+ Λ)σ2

4ϵ

) 1
2

. (40)

Combining this bound with (33) we obtain the desired result.

A.3. Theorem 4.3

Let us ignore the conditioning of the expectation on H1 to simplify the notation. Since the diameter of the domain is bounded
above by D, gt ≤ D, thus, we can apply Markov’s inequality to the nonnegative random variable D − gt to obtain

P(D − gt ≥ D − ξ) ≤ D − E{gt}
D − ξ

, (41)

which leads to

P(gt > ξ) ≥ E{gt} − ξ

D − ξ
. (42)

We now have to lower bound E{gt}. Using the reverse triangle inequality:

E{gt} = E{dM(mλ,t,mΛ,t)} ≥ E{dM(mλ,t,m
∗
2)} − E{dM(mΛ,t,m

∗
2)} , (43)

with m∗
2 being the Karcher mean after the change point.

Notice the procedure of optimizing the Karcher mean loss function faft(m) = Ex∼P2(x){d2M(m,x)} after the change
point (i.e., where the expectation is defined w.r.t. P2(x)), with solution m∗

2, by the SGD algorithms (4) and (5) can be
recognized as started from xt−B . Let us take the expectation w.r.t. {xs}t−1

s=t−B in the following steps.
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Now we can upper bound E{dM(mΛ,t,m
∗
2)} with Jensen’s inequality, Theorem 4.1, and the fact

(√
a+

√
b

2

)2

≤ a+b
2 for

nonnegative a and b, leading to

E{dM(mΛ,t,m
∗
2)} ≤ E{dM(mΛ,t,x)}+ E{dM(m∗

2,x)} (44)

≤ E{d2M(mΛ,t,x)}
1
2 + E{d2M(m∗

2,x)}
1
2 (45)

≤
(
faft(m

∗
2) +

(1− ϵ′)BD2

2Λ
+

Λσ2

2ϵ′

) 1
2

+ (faft(m
∗
2))

1
2 (46)

≤
(
faft(m

∗
2) +

(1− ϵ)BD2

2Λ
+

Λσ2

2ϵ

) 1
2

+ (faft(m
∗
2))

1
2 (47)

≤
(
2faft(m

∗
2) +

(1− ϵ)BD2

Λ
+

Λσ2

ϵ

) 1
2

, (48)

where x ∼ P2(x), and ϵ′ = min{ 1
ζ(κ,D) ,Λµ} satisfying ϵ′ ≥ ϵ due to the step size condition λ < Λ.

To lower bound E{dM(mλ,t,m
∗
2)}, we can use the reverse triangle inequality, which gives us

E{dM(mλ,t,m
∗
2)} ≥ E{dM(mλ,t−1,m

∗
2)} − E{dM(mλ,t−1,mλ,t)}

≥ E{dM(mλ,t−B−1,m
∗
2)} −

t∑
u=t−B

E{dM(mλ,u−1,mλ,u)}. (49)

Using the stochastic gradient update equation, mλ,t = expmλ,t−1
(−λH(mλ,t−1,xt−1)), we can express

dM(mλ,u−1,mλ,u) as:

dM(mλ,u−1,mλ,u) = dM
(
mλ,u−1, expmλ,u−1

(−λH(mλ,u−1,xu−1))
)
. (50)

Since the injectivity radius of the manifold is assumed to be globally bounded above by I , the condition λ ≤ I
ρ implies that

∥λH(mλ,u−1,xu−1)∥ < I . Thus, by proposition 10.22 of (Boumal, 2023),

dM
(
mλ,u−1, expmλ,u−1

(−λH(mλ,u−1,xu−1))
)
= λ∥H(mλ,u−1,xu−1)∥ (51)

≤ ρλ . (52)

The term E{dM(mλ,t−B−1,m
∗
2)} can be lower bounded as

E{dM(mλ,t−B−1,m
∗
2)} ≥ dM(m∗

1,m
∗
2)− E{dM(mλ,t−B−1,m

∗
1)} , (53)

with m∗
1 being the Karcher mean of distribution P1(x) of the data before the change point.

Knowing that the change point occurred at time t − B, and since the algorithms are assumed to have asymptotically
converged before the change point happened (i.e., t−B− 1 is large), we can upper bound E{dM(mλ,t−B−1,m

∗
1)} in (53)

using Jensen’s inequality, Theorem 4.1, and the fact
(√

a+
√
b

2

)2

≤ a+b
2 for nonnegative a and b, which gives us

E{dM(mλ,t−B−1,m
∗
1)} ≤ E{d2M(mλ,t−B−1,x

′)} 1
2 + E{d2M(m∗

1,x
′)} 1

2 (54)

≤
(
fbef(m

∗
1) +

(1− ϵ)t−B−1D2

2λ
+
λσ2

2ϵ

) 1
2

+ (fbef(m
∗
1))

1
2 (55)

≤
(
2fbef(m

∗
1) +

λσ2

ϵ

) 1
2

, (56)

where x′ ∼ P1(x) and the expectation above is now taken w.r.t. the distribution P1(x), before the change point; we used
that fact (1− ϵ)t−B−1 → 0 due to the large t−B − 1, and fbef(m) = Ex∼P1(x){d2M(m,x)} denotes the Karcher mean
loss function before the change point (i.e., where the expectation is defined w.r.t. P1(x)), with solution m∗

1.
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Algorithm 2 Adaptive threshold selection
Input: {gt}, forgetting factor α, quantile q.
Initialization: βg

t = g1, γgt = g21 .
for t = 1, 2, 3, . . . do
βg
t = (1− α)βg

t−1 + αgt;
γgt = (1− α)γgt−1 + αg2t ;
ξ̂t = βg

t +
√
γgt − (βg

t )
2
√
2erf−1(2q − 1);

end for

Combining the bounds in (49), (52), (53), (56) leads to the following lower bound:

E{dM(mλ,t,m
∗
2)} ≥ dM(m∗

1,m
∗
2)−

(
2fbef(m

∗
1) +

λσ2

ϵ

) 1
2

− ρλB . (57)

Finally, combining the bounds (42), (43), (48) and (57), we obtain

P(gt > ξ) ≥ 1

D − ξ

[
dM(m∗

1,m
∗
2)−

(
2fbef(m

∗
1) +

λσ2

ϵ

) 1
2

− ρλB −
(
2faft(m

∗
2) +

(1− ϵ)BD2

Λ
+

Λσ2

ϵ

) 1
2

− ξ

]
,

(58)

which is the desired result.

B. Adaptive threshold selection
One challenge with applying CPD algorithms is the selection of the detection threshold ξ for a given problem. A classical
approach consists of adjusting ξ such that the algorithm achieves some desired performance under the null hypothesis (i.e.,
in the absence of change points), such as a given probability of false alarms (Keriven et al., 2020). For a false alarm rate
of, e.g., 0.05, ξ can be set as the 95-th quantile of gt. The performance of the algorithm under the null hypothesis can be
computed using training data or based on a theoretical analysis, such as the result given in Theorem 4.2. However, threshold
selection approaches based on theoretical analyses are hard to apply in practice as they require strong prior knowledge of the
statistical distribution of the data, such as the Karcher variance f(m) and gradient noise σ2 in our case.

A more practical approach is to set ξ as an estimate of the q-th quantile of gt obtained using a recursive algorithm. Although
efficient algorithms have been proposed for recursive quantile estimation (Chen et al., 2023), we use a simpler alternative by
approximating gt by a Gaussian distribution (the validity of this hypothesis illustrated empirically in Figure 8), as also done
in (Keriven et al., 2020). This way, computing only its first two moments is sufficient to compute the q-th quantile, which
is given by the mean plus the standard deviation multiplied by

√
2erf−1(2q − 1), where erf is the Gauss error function.

A simple recursive implementation of this strategy is shown in Algorithm 2, which is based on EWMAs of the first two
moments of gt. Experiments illustrating the validity of the Gaussian hypothesis over gt and the performance of Algorithm 2
can be found in Appendix D.3.

C. Computational complexity
The computational complexity of our method consists mainly of the cost of implementing the two R-SGD algorithms used
to estimate the generalized Karcher means. The R-SGD algorithm is a first-order method that is computationally efficient
compared to other manifold optimization algorithms. It comprises two main steps: 1) computation of the Riemannian
gradient of the loss function, and 2) computing the exponential or retraction to map the gradient back to the manifold.

The computational complexity involved with these steps depends on the choice of the manifold as it affects both the loss
function (and therefore the gradient) and the retraction/exponential map. However, for many manifolds of great practical
interest, including the SPD and the Grassmann, computing these operations is relatively efficient, and for these two manifolds,
we can compute the complexity explicitly.

Complexity for the SPD manifold: The operations involved in implementing the R-SGD on the manifold of p× p SPD
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matrices consist of five matrix multiplications, a matrix inverse, and a matrix logarithm. Thus, the computational cost is
given by O(p3) operations.

Complexity for the Grassmann manifold: The operations involved in implementing the R-SGD on the Grassmann
manifold of k-dimensional subspaces in Rp consists of two SVDs, five matrix products, and the evaluation of O(k)
arithmetic functions. Thus, the computational cost is given by O(p2k).

Comparison to baselines: We briefly compare the complexity with respect to the baselines F-CPD (Dubey & Müller,
2020) and NEWMA (Keriven et al., 2020). F-CPD is an offline method designed to operate on manifolds and detects a
change point based on a two-sample test. For every candidate change point, the test statistic is computed as a function of
the Karcher means and variances of the data before and after the candidate change point, which is computationally very
intensive to implement. NEWMA, on the other hand, is an online method designed to operate on Euclidean spaces, by
comparing exponentially weighted moving averages of generalized moments of the data computed based on the random
features framework. Thus, the cost of NEWMA is dominated by the cost of computing the random features (Keriven et al.,
2020). For random Fourier features (Rahimi & Recht, 2007), the computation complexity scales as O(Sd) operations,
where d is the dimension of the input data, and S is the number of random samples (the dimension of the feature space),
which are sampled from a probability measure related to the kernel. Thus, depending on the choice of kernel and the feature
dimension NEWMA can be efficient, although it does not take the manifold geometry into account.

D. Additional results
D.1. Mean and standard deviation of the test statistics

In Figure 5, we plot the mean and standard deviation of the test statistics of all the compared algorithms for the examples with
synthetic data. It can be seen that for the synthetic example the test statistic of the proposed strategy required approximately
200 samples to converge after a change point occurs. The algorithm achieves good performance for detecting multiple
change points as long as the interval between them is sufficiently large compared to the time it requires to converge. By
comparison, we also plot in Figure 7 the test statistic for the compared methods for the skeleton-based action recognition
example, in which the parameters of the algorithms had to be readjusted to achieve faster convergence since the number of
samples between change points is smaller. It can be observed that the algorithms converge significantly faster (requiring
only approximately 80 samples), however, the variances of the test statistic, particularly after the change point, are also
much higher. This illustrates the trade-off between detection performance and adaptability of the proposed method.

D.2. Comparisons between the histograms of the test statistics on synthetic data

To get a deeper insight into the behavior of the ROC curves in the examples with synthetic data (Figures 1 and 2), where our
method had an area under curve close to one, we compared the histograms of the test statistics of all methods under the null
hypothesis and at their peak value after a change point. The result can be seen in Figure 6. One can observe that different
from the competing methods, the histogram of the test statistic of our method under the null shows almost no overlap with
its counterpart at peak value after a change point. This explains the behavior seen in the ROC curves.

D.3. Histogram of the test statistic, Gaussian fit, and illustration of the adaptive threshold procedure

To illustrate the validity of the Gaussian hypothesis of gt, in Figure 8, we plot the histogram of gt for 1000 Monte Carlo
runs, computed based on samples of gt under the null hypothesis when the algorithm is tested for the synthetic example on
S++
p , after the algorithms converge (with step sizes λ = 0.01 and Λ = 0.02). It can be observed that the histogram and its

Gaussian fit are very close, which justifies the approximations in Algorithm 2.

We illustrate the performance of Algorithm 2 with α = 0.005 and q = 0.95 (5% of false alarms). We considered the same
setup as in the synthetic example in S++

p , but here we added multiple change points, spaced by 200 samples to allow
the algorithm to converge. The test statistic and the adaptive threshold are shown in Figure 9 (results are shown after the
steady-state convergence of both the CPD and adaptive threshold selection algorithms), where it can be seen that the dynamic
threshold can successfully adapt to detect multiple change points in a continuous run.
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Figure 5. Illustration of the mean and standard deviation of all the compared detection statistics for the experiments on synthetic data on
both S++

p (left) and Gk
p (right). The red line indicates the change point.
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Figure 6. Histograms of all the compared detection statistics for the experiments on synthetic data on both S++
p (left) and Gk

p (right). The
blue histograms are under the null hypothesis and the pink histograms are at their peak values after the change point.
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Figure 7. Illustration of the mean and standard deviation of the compared detection statistics for the experiments on real data for skeleton-
based action recognition. The red line indicates the change point.
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Figure 8. Histogram of gt under the null hypothesis for synthetic data on S++
p and its Gaussian fit.
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Figure 9. Illustration of the adaptive threshold procedure. The dotted gray lines indicate change points.
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