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Abstract

The technique of Cross-Lingual Word Embedding (CLWE) plays a fundamental role in tackling Nat-
ural Language Processing challenges for low-resource languages. Its dominant approaches assumed
that the relationship between embeddings could be represented by a linear mapping, but there has
been no exploration of the conditions under which this assumption holds. Such a research gap be-
comes very critical recently, as it has been evidenced that relaxing mappings to be non-linear can
lead to better performance in some cases. We, for the first time, present a theoretical analysis that
identifies the preservation of analogies encoded in monolingual word embeddings as a necessary
and sufficient condition for the ground-truth CLWE mapping between those embeddings to be lin-
ear. On a novel cross-lingual analogy dataset1 that covers five representative analogy categories for
twelve distinct languages, we carry out experiments which provide direct empirical support for our
theoretical claim. These results offer additional insight into the observations of other researchers and
contribute inspiration for the development of more effective cross-lingual representation learning
strategies.

1 Introduction

Cross-Lingual Word Embedding (CLWE) methods encode words from two or more languages in a shared high-
dimensional space in which vectors representing lexical items with similar meanings (regardless of language) are
closely located. Compared with alternative techniques, such as cross-lingual pre-trained language models, CLWE
is orders of magnitude more efficient in terms of training corpora2 and computational power requirements3. As a re-
sult, the topic has received significant attention as a promising means to support Natural Language Processing (NLP)
for low-resource languages (including ancient languages) and has been used for a range of applications, e.g., Machine
Translation (Herold et al., 2021), Sentiment Analysis (Sun et al., 2021), Question Answering (Zhou et al., 2021) and
Text Summarisation (Peng et al., 2021).

The most successful CLWE approach, CLWE alignment, learns mappings between independently trained monolingual
word vectors with very little, or even no, cross-lingual supervision (Ruder et al., 2019). One of the key challenges of
these algorithms is the design of mapping functions. Motivated by the observation that word embeddings for different
languages tend to be similar in structure (Mikolov et al., 2013b), many researchers have assumed that the mappings
between cross-lingual word vectors are linear (Faruqui & Dyer, 2014; Lample et al., 2018b; Li et al., 2021).

Although models based on this assumption have demonstrated strong performance, it has recently been ques-
tioned. Researchers have claimed that the structure of multilingual word embeddings may not always be
similar (Søgaard et al., 2018; Dubossarsky et al., 2020; Vulić et al., 2020), which led to the emergence
of approaches relaxing the mapping linearity (Glavaš & Vulić, 2020; Wang et al., 2021a) or using non-
linear functions (Mohiuddin et al., 2020; Ganesan et al., 2021). These new methods can sometimes out-
perform the traditional linear counterparts, causing a debate around the suitability, or otherwise, of linear

1This dataset and our code will be made publicly available upon the acceptance of this manuscript.
2For example, Kim et al. (2020) show that inadequate monolingual data size (fewer than one million sentences) is likely to lead to collapsed

performance of XLM (Lample & Conneau, 2019) even for etymologically close language pairs. Meanwhile, CLWE can easily align word embeddings
for languages such as African Amharic and Tigrinya for which only have millions of tokens (Zhang et al., 2020) are available.

3For example, XLM-R (Conneau et al., 2020) was trained on 500× Tesla V100 GPUs, whereas the training of VecMap (Artetxe et al., 2018) can
be finished within minutes on a single Titan Xp GPU.
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mappings. However, to the best of our knowledge, the majority of previous CLWE work has focused on
empirical findings, and there has been no in-depth analysis of the conditions for the linearity assumption.
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Figure 1: Wiki vectors (see § 4.3) of English (left) and
French (right) analogy word pairs based on PCA (Wold
et al., 1987). NB: We manually rotate the visualisation to
highlight structural similarity.

This paper approaches the problem from a novel per-
spective by establishing a link between the linearity of
CLWE mappings and the preservation of encoded mono-
lingual analogies. Our work is motivated by the observa-
tion that word analogies can be solved via the composi-
tion of semantics based on vector arithmetic (Mikolov
et al., 2013c) and such linguistic regularities might be
transferable across languages. More specifically, we no-
tice that if analogies encoded in the embeddings of one
language also appear in the embeddings of another, the
corresponding multilingual vectors tend to form simi-
lar shapes (see Fig. 1), suggesting the CLWE mapping
between them should be approximately linear. In other
words, we suspect that the preservation of analogy en-
coding indicates the linearity of CLWE mappings.

Our hypothesis is verified both theoretically and empirically. We make a justification that the preservation of analogy
encoding should be a sufficient and necessary condition for the linearity of CLWE mappings. To provide empirical
validation, we first define indicators to qualify the linearity of the ground-truth CLWE mapping (LMP) and its preser-
vation of analogy encoding (PAE). Next, we build a novel cross-lingual word analogy corpus containing five analogy
categories (both semantic and syntactic) for twelve languages that pose pairs of diverse etymological distances. We
then benchmark LMP and PAE on three representative series of word embeddings. In all setups tested, we observe
a significant correlation between LMP and PAE, which provides empirical support for our hypothesis. With this
insight, we offer explanations to why the linearity assumption occasionally fails, and consequently, discuss how our
research can benefit the development of more effective CLWE algorithms. We also recommend the use of PAE to
assess mapping linearity in CLWE applications.

This paper’s contributions are summarised as: (1) Introduces the previously unnoticed relationship between the lin-
earity of CLWE mappings and the preservation of encoded word analogies. (2) Provides a theoretical analysis of this
relationship. (3) Describes the construction of a novel cross-lingual analogy test set with five categories of word pairs
aligned across twelve diverse languages. (4) Provides empirical evidence of our claim and introduces PAE to estimate
the analogy encoding preservation (and therefore the mapping linearity). (5) Discusses implications of these results,
regarding the interpretation of previous results and as well as the future development of cross-lingual representations.

2 Related Work

Linearity of CLWE Mapping. Mikolov et al. (2013b) discovered that the vectors of word translations exhibit similar
structures across different languages. Researchers made use of this by assuming that mappings between multilingual
embeddings could be modelled using simple linear transformations. This framework turned out to be effective in
numerous studies which demonstrated that linear mappings are able to produce accurate CLWEs with weak or even no
supervision (Artetxe et al., 2017; Lample et al., 2018b; Artetxe et al., 2018; Wang et al., 2020; Li et al., 2021).

One way in which this is achieved is through the application of a normalisation technique called “mean centring”,
which (for each language) subtracts the average monolingual word vector from all word embeddings, so that this mean
vector becomes the origin of the vector space (Xing et al., 2015; Artetxe et al., 2016; Ruder et al., 2019). This step has
the effect of simplifying the mapping from being affine (i.e., equivalent to a shifting operation plus a linear mapping)
to linear by removing the shifting operation.

However, recent work has cast doubt on this linearity assumption, leading researchers to experiment with the use of
non-linear mappings. Nakashole & Flauger (2018) and Wang et al. (2021a) pointed out that structural similarities
may only hold across particular regions of the embedding spaces rather than over their entirety. Søgaard et al. (2018)
examined word vectors trained using different corpora, models and hyper-parameters, and concluded configuration
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dissimilarity between the monolingual embeddings breaks the assumption that the mapping between them is linear.
Patra et al. (2019) investigated various language pairs and discovered that a higher etymological distance is associated
with degraded the linearity of CLWE mappings. Vulić et al. (2020) additionally argued that factors such as limited
monolingual resources may also weaken the linearity assumption.

These findings motivated work on designing non-linear mapping functions in an effort to improve CLWE performance.
For example, Nakashole (2018) and Wang et al. (2021a) relaxed the linearity assumption by combining multiple linear
CLWE mappings; Patra et al. (2019) developed a semi-supervised model that loosened the linearity restriction; Lubin
et al. (2019) attempted to reduce the dissimilarity between multilingual embedding manifolds by refining learnt dictio-
naries; Glavaš & Vulić (2020) first trained a globally optimal linear mapping, then adjusted vector positions to achieve
better accuracy; Mohiuddin et al. (2020) used two independently pre-trained auto-encoders to introduce non-linearity
to CLWE mappings; Ganesan et al. (2021) obtained inspirations via the back translation paradigm, hence framing
CLWE training as to explicitly solve a non-linear and bijective transformation between multilingual word embeddings.
Despite these non-linear mappings outperforming their linear counterparts in many setups, in some settings the linear
mappings still seem more successful, e.g., the alignment between Portuguese and English word embeddings in Ganesan
et al. (2021). Moreover, training non-linear mappings is typically more complex and thus requires more computational
resources.

Albeit at the significant recent attention to this problem by the research community, it is still unclear under what
condition the linearity of CLWE mappings holds. This paper makes the first attempt to close this research gap by
providing both theoretical and empirical contributions.

Analogy Encoding. Analogy is a fundamental concept within cognitive science (Gentner, 1983) that has received
significant focus from the NLP community, since the observation that it can be represented using word embeddings
and vector arithmetic (Mikolov et al., 2013c). A popular example based on the analogy “king is to man as queen is
to woman” shows that the vectors representing the four terms (𝒙𝒌𝒊𝒏𝒈, 𝒙𝒎𝒂𝒏, 𝒙𝒒𝒖𝒆𝒆𝒏 and 𝒙𝒘𝒐𝒎𝒂𝒏) exhibit the following
relation:

𝒙𝒌𝒊𝒏𝒈 − 𝒙𝒎𝒂𝒏 ≈ 𝒙𝒒𝒖𝒆𝒆𝒏 − 𝒙𝒘𝒐𝒎𝒂𝒏. (1)

Since this discovery, the task of analogy completion has commonly been employed to evaluate the quality of pre-
trained word embeddings (Mikolov et al., 2013c; Pennington et al., 2014; Levy & Goldberg, 2014a). This line of
research has directly benefited downstream applications (e.g., representation bias removal (Prade & Richard, 2021))
and other relevant domains (e.g., automatic knowledge graph construction (Wang et al., 2021b)). Theoretical analysis
has demonstrated a link between embeddings’ analogy encoding and the Pointwise Mutual Information of the training
corpus (Arora et al., 2016; Gittens et al., 2017; Allen & Hospedales, 2019; Ethayarajh et al., 2019; Fournier & Dunbar,
2021). Nonetheless, as far as we are aware, the connection between the preservation of analogy encoding and the
linearity of CLWE mappings has not been previously investigated.

3 Theoretical Basis

We denote a ground-truth CLWE mapping as  ∶ 𝐗 → 𝐘, where 𝐗 and 𝐘 are monolingual word embeddings
independently trained for languages LX and LY, respectively.

Proposition. Encoded analogies are preserved during the CLWE mapping ⟺  is affine.

Remarks. Following Eq. (1), the preservation of analogy encoding under a mapping can be formalised as

𝒙𝜶 − 𝒙𝜷 = 𝒙𝜸 − 𝒙𝜽 ⟹ (𝒙𝜶) −(𝒙𝜷 ) = (𝒙𝜸) −(𝒙𝜽), (2)

where 𝒙𝜶 ,𝒙𝜷 ,𝒙𝜸 ,𝒙𝜽 ∈ 𝐗.

If  is affine, for 𝑑-dimensional monolingual embeddings 𝑋 we have

(𝒙) ∶= 𝑀𝒙 + 𝒃, (3)

where 𝑥 ∈ 𝑋, 𝑀 ∈ ℝ𝑑×𝑑 , and 𝒃 ∈ ℝ𝑑×1 (ℝ is the set of real numbers).
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Proof: Eq. (2) ⟹ Eq. (3) (i.e., the forward implication). To begin with, by adopting the mean centring operation
in § 2, we shift the coordinates of the space of 𝐗, ensuring

(0⃗) = 0⃗. (4)

This step greatly simplifies the derivations afterwards, because from now on we just need to demonstrate that  is a
linear mapping, i.e., it can be written as 𝑀𝒙. By definition, this is equivalent to showing that  preserves both the
operations of addition (a.k.a. additivity) and scalar multiplication (a.k.a. homogeneity).

Additivity can be proved by observing that (𝒙𝒊 + 𝒙𝒋) − 𝒙𝒋 = 𝒙𝒊 − 0⃗ and therefore,

(𝒙𝒊 + 𝒙𝒋) − 𝒙𝒋 = 𝒙𝒊 − 0⃗
Eq. (2)
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒(𝒙𝒊 + 𝒙𝒋) −(𝒙𝒋) = (𝒙𝒊) −(0⃗)

Eq. (4)
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒(𝒙𝒊 + 𝒙𝒋) = (𝒙𝒊) +(𝒙𝒋). (5)

Homogeneity needs a proof that seems more complex, which consists of four steps.

∙ Step 1: Observe that 0⃗ − 𝒙𝒊 = −𝒙𝒊 − 0⃗, similar to Eq. (5) we can show that

0⃗ − 𝒙𝒊 = −𝒙𝒊 − 0⃗
Eq. (2)
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒(0⃗) −(𝒙𝒊) = (−𝒙𝒊) −(0⃗)

Eq. (4)
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒
×(−1)

(𝒙𝒊) = −(−𝒙𝒊). (6)

∙ Step 2: Using mathematical induction, for arbitrary 𝒙𝒊, we show that

∀𝑚 ∈ ℕ+, (𝑚𝒙𝒊) = 𝑚(𝒙𝒊) (7)

holds, where ℕ+ is the set of positive natural numbers, as
Base Case: Trivially holds when 𝑚 = 1.
Inductive Step: Assume the inductive hypothesis that 𝑚 = 𝑘 (𝑘 ∈ ℕ+), i.e.,

(𝑘𝒙𝒊) = 𝑘(𝒙𝒊). (8)

Then, as required, when 𝑚 = 𝑘 + 1,


(

(𝑘 + 1)𝒙𝒊
) Eq. (5)
===== (𝑘𝒙𝒊) +(𝒙𝒊)

Eq. (8)
===== 𝑘(𝒙𝒊) +(𝒙𝒊) = (𝑘 + 1)(𝒙𝒊).

∙ Step 3: We further justify that

∀𝑛 ∈ ℕ+, (
𝒙𝒊
𝑛
) =

(𝒙𝒊)
𝑛

, (9)

which, due to Eq. (4), trivially holds when 𝑛 = 1; as for 𝑛 > 1,

(
𝒙𝒊
𝑛
) = 

(

𝒙𝒊 + (−𝑛 − 1
𝑛

𝒙𝒊)
) Eq. (5)
===== (𝒙𝒊) +(−𝑛 − 1

𝑛
𝒙𝒊)

Eq. (6)
===== (𝒙𝒊) −(𝑛 − 1

𝑛
𝒙𝒊)

Eq. (7)
===== (𝒙𝒊) − (𝑛 − 1)(

𝒙𝒊
𝑛
)

directly yields (𝒙𝒊𝑛 ) =
(𝒙𝒊)

𝑛 , i.e., Eq. (9).

∙ Step 4: Considering the set of rational numbers ℚ = {0} ∪ {±𝑚
𝑛 |∀𝑚, 𝑛}, Eqs. (4), (6), (7) and (9) jointly justifies the

homogeneity of  for ℚ. Because ℚ ⊂ ℝ is a dense set, homogeneity of  also holds over ℝ, see Kleiber & Pervin
(1969).

Finally, combined with the additivity that has been already justified above, linearity of CLWE mapping  is proved,
i.e., Eq. (2) ⟹ Eq. (3).
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Proof: Eq. (3) ⟹ Eq. (2) (i.e., the reverse direction). Justifying this direction is quite straightforward:

𝒙𝜶 − 𝒙𝜷 = 𝒙𝜸 − 𝒙𝜽 ⟹𝑀𝒙𝜶 −𝑀𝒙𝜷 = 𝑀𝒙𝜸 −𝑀𝒙𝜽
⟹𝑀𝒙𝜶 + 𝒃 − (𝑀𝒙𝜷 + 𝒃) = 𝑀𝒙𝜸 + 𝒃 − (𝑀𝒙𝜽 + 𝒃)
⟹(𝒙𝜶) −(𝒙𝜷 ) = (𝒙𝜸) −(𝒙𝜽).

Summarising the proofs for both the forward and reverse directions, we conclude that the proposition holds.

Please note, the high-level assumption of our derivations is that word embedding spaces can be treated as continuous
vector spaces, an assumption commonly adopted in previous work, e.g., Levy & Goldberg (2014b), Hashimoto et al.
(2016), Zhang et al. (2018), and Ravfogel et al. (2020). Nevertheless, we argue that the inherent discreteness of word
embeddings should not be ignored. The following sections complement this theoretical insight via experiments which
confirm the claim holds empirically.

4 Experiment

Our experimental protocol assesses the linearity of the mapping between each pair of pre-trained monolingual word
embeddings. We also quantify the extent to which this mapping preserves encoded analogies, i.e., satisfies the condition
of Eq. (2). We then analyse the correlation between these two indicators. A strong correlation provides evidence to
support our theory, and vice versa. The indicators used are described in § 4.1. Unfortunately, there are no suitable
publicly available corpora for our proposed experiments, so we develop a novel word-level analogy test set that is fully
parallel across languages, namely XANLG (see § 4.2). The pre-trained embeddings used for the tests are described in
§ 4.3.

4.1 Indicators

4.1.1 Linearity of CLWE Mapping

Direct measurement of the linearity of a ground-truth CLWE mapping is challenging. One relevant approach is to
benchmark the similarity (sometimes described as “isomorphism” in previous work) between multilingual word em-
bedding, where the mainstream and state-of-the-art indicators are the so-called spectral-based algorithms (Søgaard
et al., 2018; Dubossarsky et al., 2020). However, such methods assume the number of tested vectors to be much larger
than the number of dimensions, which does not apply in our scenario (see § 4.2). Therefore, we choose to evaluate
linearity via the goodness-of-fit of the optimal linear CLWE mapping, which is measured as

LMP ∶= −||𝑀⋆𝑋 − 𝑌 ||𝐹 with 𝑀⋆ = argmin
𝑀

||𝑀𝑋 − 𝑌 ||𝐹 ,

where || ⋅ ||𝐹 denotes the Frobenius norm. To obtain matrices 𝑋 and 𝑌 , from 𝐗 and 𝐘 respectively, we first retrieve the
vectors corresponding to lexicons of a ground-truth LX-LY dictionary and concatenate them into two matrices. More
specifically, if two vectors (represented as rows) share the same index in the two matrices (one for each language),
their corresponding words form a translation pair, i.e., the rows of these matrices are aligned. Then “mean centring”
is applied to satisfy Eq. (4) and the matrices are normalised by scaling their Frobenius norm to 1 for fair comparisons
across different mapping pairs. Gradient descent is applied to find 𝑀⋆, the matrix that determines the optimal linear
mapping (Mikolov et al., 2013b).

Large absolute values of LMP mean that the optimal linear mapping is an accurate model of the true relationship
between the embeddings, and vice versa. LMP therefore indicates the degree to which CLWE mappings are linear.

4.1.2 Preservation of Analogy Encoding

To assess how well analogies are preserved across embeddings, we start by probing how analogies are encoded in the
monolingual word embeddings. We use the set-based LRCos, the state-of-the-art analogy mining tool for static word
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Figure 2: An example of solving  𝐏
▱(⋅) in Eq. (11), with 𝐏 = {(𝒙1,𝒙2), (𝒙3,𝒙4), (𝒙5,𝒙6), (𝒙7,𝒙8)}. In the figure we

adjust the position of 𝒙1, 𝒙3, 𝒙5 and 𝒙7 in the last step, but it is worth noting that there also exists other feasible  𝐏
▱(⋅)

given 𝒑⋆, e.g., to tune 𝒙2, 𝒙4, 𝒙6 and 𝒙8 instead.

embeddings (Drozd et al., 2016).4 It provides a score in the range of 0 to 1, indicating the correctness of analogy
completion in a single language. For the extension in a cross-lingual setup, we further compute the geometric mean:

PAE ∶=
√

LRCos(𝐗) × LRCos(𝐘),

where LRCos(⋅) is the accuracy of analogy completion provided by LRCos for embedding𝐗. To simplify our discussion
and analysis from now onward, when performing CLWE mappings, by default we select the monolingual embeddings
that best encode analogy, i.e., we restrict LRCos(𝐗) ≥ LRCos(𝐘). PAE = 1 indicates all analogies are well encoded
in both embeddings, and are preserved by the ground-truth mapping between them. On the other hand, lower PAE
values indicate deviation from the condition of Eq. (2).

4.1.3 Validity of PAE

As an aide, we explore the properties of the PAE indicator to demonstrate its robustness for the interested reader.
The score produced by LRCos is relative to a pre-specified set of known analogies. In theory, a low LRCos(𝐗) score
may not reliably indicate that 𝐗 does not encode analogies well since there may be other word pairings within that set
that produce higher scores. This naturally raises a question: does PAE really promise the validity as the indicator of
analogy encoding preservation? In other words, it is necessary to investigate whether there exists an unknown analogy
word set encoded by the tested embeddings to an equal or higher degree. If there is, then PAE may not reflect the
preservation of analogy encoding completely, as unmatched analogy test sets may lead to low LRCos scores even for
monolingual embeddings that encode analogies well. We demonstrate that the problem can be considered as an optimal
transportation task and PAE is guaranteed to be a reliable indicator.

As analysed by Ethayarajh et al. (2019), the degree to which word pairs are encoded as analogies in word embeddings is
equivalent to the likelihood that the end points of any two corresponding vector pairs form a high-dimensional coplanar
parallelogram. More formally, this task is to identify

𝐏⋆ = argmin
𝐏

∑

𝒙∈𝐗

(

 𝐏
▱(𝒙)

)

, (10)

where 𝐏 is one possible pairing of vectors in 𝐗 and (⋅) is the cost of a given transportation scheme.  𝐏
▱(⋅) denotes the

corresponding cost-optimal process of moving vectors to satisfy

∀{(𝒙𝜶 ,𝒙𝜷 ), (𝒙𝜸 ,𝒙𝜽)} ⊆ 𝐏,
 𝐏
▱(𝒙𝜶) −  𝐏

▱(𝒙𝜷 ) =  𝐏
▱(𝒙𝜸) −  𝐏

▱(𝒙𝜽), (11)

i.e., the end points of  𝐏
▱(𝒙𝜶),  𝐏

▱(𝒙𝜷 ),  𝐏
▱(𝒙𝜸) and  𝐏

▱(𝒙𝜽) form a parallelogram.

Therefore, in each language and analogy category of XANLG, we first repeatedly redo the vector pairing to traverse
all 𝐏. Next, we need to obtain  𝐏

▱(⋅) that minimises
∑

𝒙∈𝐗 
(

 𝐏
▱(𝒙)

)

in Eq. (10). Our algorithm is explained using
the example in Fig. 2, where the cardinality of 𝐗 and 𝐏 is 8 and 4, respectively.

4We have tried alternatives including 3CosAdd (Mikolov et al., 2013a), PairDistance (Levy & Goldberg, 2014a) and 3CosMul (Levy et al., 2015),
verifying that they are less accurate than LRCos in most cases. Still, in the experiments they all exhibit similar trends as shown in Tab. 2.
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∙ Step 1: Link the end points of the vectors within each word pair, hence our target is to adjust these end points so
that all connecting lines not only have equal length but also remain parallel.

∙ Step 2: For each vector pair (𝒙𝜶 ,𝒙𝜷 ) ∈ 𝐏, vectorise its connecting line into an offset vector as 𝒗𝜶−𝜷 = 𝒙𝜶 − 𝒙𝜷 .
∙ Step 3: As the start points of all such offset vectors are aggregated at 0⃗, seek a vector 𝒑⋆ that minimises the total

transportation cost between the end point of 𝒑⋆ and those of all offset vectors (again, note they share a start point at
0⃗).

∙ Step 4: Perform the transportation so that all offset vectors become 𝒑⋆, i.e.,

∀(𝒙𝜶 ,𝒙𝜷 ) ∈ 𝐏,  𝐏
▱(𝒙𝜶) −  𝐏

▱(𝒙𝜷 ) = 𝒑⋆.

In this way, the tuned vector pairs can always form perfect parallelograms. Obviously, as 𝒑⋆ is at the cost-optimal
position (see Step 3), this vector-adjustment scheme is also cost-optimal.

Solving 𝒑⋆ for high dimensions is non-trivial in real world and is a special case of the NP-hard Facility Location
Problem (a.k.a. the P-Median Problem) (Kariv & Hakimi, 1979). We, therefore, use the scipy.optimize.fmin
implementation of the Nelder-Mead simplex algorithm (Nelder & Mead, 1965) to provide a good-enough solution. We
experimented with implementing (⋅) using Euclidean, Taxicab and Cosine distances. For all analogy categories in all
languages, 𝐏⋆ coincides perfectly with the pre-defined pairing of XANLG. This analysis provides evidence that the
situation where an unknown kind of analogy is better encoded than the ones used does not occur in practice, therefore,
PAE is trustworthy.

4.2 Datasets

Calculating the correlation between LMP and PAE requires a cross-lingual word analogy dataset. This resource would
allow us to simultaneously (1) construct two aligned matrices 𝑋 and 𝑌 to check the linearity of CLWE mappings, and
(2) obtain the monolingual LRCos scores of both 𝐗 and 𝐘. Three relevant resources were identified, although none of
them is suitable for our study.

∙ Brychcín et al. (2019) described a cross-lingual analogy dataset consisting of word pairs from six closely related
European languages, but it has never been made publicly available.

∙ Ulčar et al. (2020) open-sourced the MCIWAD dataset for nine languages, but the analogy words in different lan-
guages are not parallel5.

∙ Garneau et al. (2021) produced the cross-lingual WiQueen dataset. Unfortunately, a large part of its entries are proper
nouns or multi-word terms instead of single-item words, leading to low coverage on the vocabularies of embeddings.

Consequently, we develop XANLG, which we believe to be the first (publicly available) cross-lingual word analogy
corpus. For consistency with previous work, XANLG is bootstrapped using established monolingual analogies and
cross-lingual dictionaries. XANLG is constructed by starting with a bilingual analogy dataset, say, that for LX and
LY. Within each analogy category, we first translate word pairs of the LX analogy corpus into LY, using an available
LX-LY dictionary. Next, we check if any translation coincides with its original word pair in LY. If it does, such a word
pair (in both LX and LY) will be added into the bilingual dataset. This process is repeated for multiple languages to
form a cross-lingual corpus.

We use the popular MUSE dictionary (Lample et al., 2018a) which contains a wide range of language pairs. Two
existing collections of analogies are utilised. (1) Google Analogy Test Set (GATS) (Mikolov et al., 2013c), the de
facto standard benchmark of embedding-based analogy solving. We adopt its extended English version, Bigger Anal-
ogy Test Set (BATS) (Gladkova et al., 2016), supplemented with several datasets in other languages inspired by the
original GATS: French, Hindi and Polish (Grave et al., 2018), German (Köper et al., 2015) and Spanish (Cardellino,
2019). (2) The aforementioned Multilingual Culture-Independent Word Analogy Datasets (MCIWAD) (Ulčar
et al., 2020).

Due to the differing characteristics of these datasets (e.g., the composition of analogy categories), they are used to
produce two separate corpora: XANLGG and XANLGM. Only categories containing at least 30 word pairs aligned
across all languages in the dataset were included. For comparison, 60% of the semantic analogy categories in the
commonly used GATS dataset contains fewer than 30 word pairs. The rationale for selecting this value was that it allows

5Personal communication with the authors.
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♷A
NL

G G
Category # ♣♤ ♤♭ ♤♲ ♥♱ ♧♨ ♯♫
CAP† 31 Budapest

Ungarn
Budapest
Hungary

Budapest
Hungría

Budapest
Hongrie

Budapeszt
Węgry

GNDR† 30 sohn
tochter

son
daughter

hijo
hija

fils
fille

syn
córka

NATL† 34 Peru
Peruanisch

Peru
Peruvian

Perú
Peruano

Pérou
Péruvien

Peru
Peruwiański

G-PL‡ 31 kind
kinder

child
children

niño
niños

enfant
enfants

dziecko
dzieci

♷A
NL

G M

Category # ♤♭ ♤♳ ♥♨ ♧♱ ♫♵ ♱♴ ♲♫
ANIM† 32 eagle

bird
kotkas
lind

kotka
lintu

orao
ptica

ērglis
putns

орёл
птица

orel
ptica

G-PL‡ 31 machine
machines

masin
masinad

kone
koneet

stroj
strojevi

mašīna
mašīnas

машина
машины

stroj
stroji

Table 1: Results

बुडापे⡰ट
हंगरी
बेटा
बेटी
पे⣶
पे⣶
ब⡜चा
ब⡜चे

बुडापे⡰ट
हंगरी
बेटा
बेटी
पे⣶
पे⣶
ब⡜चा
ब⡜चे

बुडापे⡰ट
हंगरी
बेटा
बेटी
पे⣶
पे⣶
ब⡜चा
ब⡜चे

Table 1: Summary of and examples from the XANLG corpus. # denotes the number of cross-lingual anal-
ogy word pairs in each language. †Semantic: animal-species|ANIM, capital-world|CAP, male-female|GNDR,
nation-nationality|NATL. ‡Syntactic: grammar-plural|G-PL.

a reasonable number of analogy completion questions to be generated.6 Information in XANLGG and XANLGM for
the capital-country of Hindi was supplemented with manual translations by native speakers.

The XANLG dataset contains five distinct analogy categories, including both syntactic (morphological) and semantic
analogies, and twelve languages from a diverse range of families (see Tab. 1). From Indo-European languages, one be-
longs to the Indo-Aryan branch (Hindi|HI), one to the Baltic branch (Latvian|LV), two to the Germanic branch (English|EN,
German|DE), two to the Romance branch (French|FR, Spanish|ES) and four to the Slavonic branch (Croatian|HR, Polish|PL,
Russian|RU, Slovene|SL). Two non-Indo-European languages, Estonian|ET and Finnish|FI, both from the Finnic branch
of the Uralic family, are also included. In total, they form 15 and 21 languages pairs for XANLGG and XANLGM,
respectively. These pairs span multiple etymological combinations, i.e., intra-language-branch (e.g., ES-FR), inter-
language-branch (e.g., DE-RU) and inter-language-family (e.g., HI-ET).

4.3 Word Embeddings

To cover the language pairs used in XANLG, we make use of static word embeddings pre-trained on the twelve lan-
guages used in the resource. These embeddings consist of three representative open-source series that employ different
training corpora, are based on different embedding algorithms, and have different vector dimensions.

∙ Wiki7: 300-dimensional, trained on Wikipedia using the Skip-Gram version of FastText (refer to Bojanowski et al.
(2017) for details).

∙ Crawl8: 300-dimensional, trained on CommonCrawl plus Wikipedia using FastText-CBOW.
∙ CoNLL9: 100-dimensional, trained on the CoNLL corpus (without lemmatisation) using Word2Vec (Mikolov et al.,

2013c).

5 Result

Both Spearman’s rank-order (𝜌) and Pearson product-moment (𝑟) correlation coefficients are computed to measure the
correlation between LMP and PAE. Note that, it is not possible to compute the correlations between all pairs due to
(1) the number of dimensions varies across embeddings series, and (2) the source and target embeddings have been
pre-processed independently for different mappings. Instead, results are grouped by embedding method and analogy
category.

630 word pairs can be used to generate as many as 3480 unique analogy completion questions such as “king:man :: queen:?” (see Appendix A).
7https://fasttext.cc/docs/en/pretrained-vectors.html
8https://fasttext.cc/docs/en/crawl-vectors.html
9http://vectors.nlpl.eu/repository/
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X
A

N
LG

G

ρ = 0.65
r = 0.58

ρ = 0.78
r = 0.71

ρ = 0.96
r = 0.88

ρ = 0.59
r = 0.65

ρ = 0.60
r = 0.65

ρ = 0.87
r = 0.80

Wiki: CAP Crawl: CAP CoNLL: CAP Wiki: GNDR Crawl: GNDR CoNLL: GNDR

ρ = 0.80
r = 0.59

ρ = 0.70
r = 0.74

ρ = 0.67
r = 0.76

ρ = 0.83
r = 0.62

ρ = 0.84
r = 0.86

ρ = 0.78
r = 0.81

Wiki: NATL Crawl: NATL CoNLL: NATL Wiki: G-PL Crawl: G-PL CoNLL: G-PL

X
A

N
LG

M

ρ = 0.59
r = 0.67

ρ = 0.75
r = 0.73

ρ = 0.58
r = 0.62

ρ = 0.65
r = 0.65

ρ = 0.59
r = 0.74

ρ = 0.58
r = 0.76

Wiki: ANIM Crawl: ANIM CoNLL: ANIM Wiki: G-PL Crawl: G-PL CoNLL: G-PL

Table 2: Correlation coefficients (Spearman’s 𝜌 and Pearson’s 𝑟) between LMP and PAE. For all groups, we conduct
significance tests to estimate the 𝑝-value. Empirically, the 𝑝-value is always less than 1e-2 (in most groups it is even
less than 1e-3), indicating a very high confidence level for the experiment results. To facilitate future research and
analyses, we present the raw LMP and LRCos data in Appendix B.

Figures in Tab. 2 show that a significant positive correlation between PAE and LMP is observed for all setups. In
terms of the Spearman’s 𝜌, among the 18 groups, 5 exhibit very strong correlation (𝜌 ≥ 0.80) (with a maximum at
0.96 for CoNLL embeddings on CAP of XANLGG), 4 show strong correlation (0.80 > 𝜌 ≥ 0.70), and the others
have moderate correlation (0.70 > 𝜌 ≥ 0.50) (with a minimum at 0.58: CoNLL embeddings on ANIM and G-PL of
XANLGM). Interestingly, although we do not assume a linear relationship in § 3, large values for the Pearson’s 𝑟 are
obtained in practice. To be exact, 4 groups indicate very strong correlation, 6 have strong correlation, while others
retain moderate correlation (the minimum 𝑟 value is 0.58: Wiki embeddings on CAP and G-PL of XANLGG). These
results provide empirical evidence that supplements our theoretical analysis (§ 3) of the relationship between linearity
of mappings and analogy preservation.

In addition, we explored whether the analogy type (i.e., semantic or syntactic) affects the correlation. To bootstrap the
analysis, for both kinds of correlation coefficients, we divide the 18 experiment groups into two splits, i.e., 12 semantic
ones and 6 syntactic ones. After that, we compute a two-treatment ANOVA (Fisher, 1925). For both Spearman’s 𝜌
and Pearson’s 𝑟, the results are not significant at 𝑝 < 0.1. Therefore, we conclude that the connection between CLWE
mapping linearity and analogy encoding preservation holds across analogy types. We thus recommend testing PAE
before implementing CLWE alignment as an indicator of whether a linear transformation is a good approximation of
the ground-truth CLWE mapping.
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Figure 3: Illustration of example scenarios where the CLWE mapping is non-linear. Translations of English (left) and
Chinese (right) terms are indicated by shared symbols. Upper: The vector for “blueberry” (shadowed) is ill-positioned
in the embedding space, so the condition of Eq. (2) is no longer satisfied. Lower: In the financial domain some Eastern
countries (e.g., China and Japan) traditionally use “red” to indicate growth and “green” for reduction, while Western
countries (e.g., US and UK) assign the opposite meanings to these terms, also not satisfying the condition of Eq. (2).

6 Further Discussion

Prior work relevant to the linearity of CLWE mappings has largely been observational (see § 2). This section sheds
new light on these past studies from the novel perspective of word analogies.

Explaining Non-Linearity. We provide two suggested reasons why CLWE mappings are sometimes not approxi-
mately linear, both linked with the condition of Eq. (2) not being met.

The first may be issues with individual monolingual embeddings (see one such example in the upper part of Fig. 3).
In particular, popular word embedding algorithms lack the capacity to ensure semantic continuity over the entire em-
bedding space (Linzen, 2016). Hence, vectors for the analogy words may only exhibit local consistency, with Eq. (2)
breaking down for relatively distant regions. This caused the locality of linearity that has been reported by Nakashole
& Flauger (2018), Li et al. (2021) and Wang et al. (2021a).

The second reason why a CLWE mapping may not be linear is semantic gaps. Not all analogies are language-agnostic.
For example, languages pairs may have very different grammars, e.g., Chinese does have the plural morphology, so
some types of analogy, e.g. G-PL used above, do not hold. Also, analogies may evolve differently across cultures, (see
example in the lower part of Fig. 3). These two factors go some way to explain why typologically and etymologically
distant language pairs tend to have worse alignment (Ruder et al., 2019). In addition, many studies point out that
differences in the domain of training data can influence the similarity between multilingual word embeddings (Søgaard
et al., 2018; Artetxe et al., 2018). Besides, we argue that due to polysemy, analogies may change from one domain to
another, also violating Eq. (2).

Mitigating Non-Linearity. The proposed analogy-inspired framework justifies the success and failure of the linearity
assumption for CLWEs. As discussed earlier, it also suggests a method for indirectly assessing the linearity of a CLWE
mapping prior to implementation. Moreover, it offers principled methods for designing more effective CLWE methods.
The most straightforward idea is to explicitly use Eq. (2) as a training constraint, which has very recently been practised
by Anonymous (2021)10. Based on analogy pairs retrieved from external knowledge bases for different languages,
their approach directly learnt to better encode monolingual analogies, particularly those whose vectors are distant in
the embedding space. It not only works well on static word embeddings, but also leads to performance gain for large-
scale pre-trained cross-lingual language models including the multilingual BERT (Devlin et al., 2019). These results
on multiple tasks (e.g., bilingual lexicon induction and cross-lingual sentence retrieval) can be seen as an independent
confirmation of this paper’s main claim and demonstration of its usefulness.

10Anonymous (2021) cited our earlier preprint as the primary motivation for their approach. To respect the double-blind reviewing system, we
have to anonymise their reference entry here and in § 7.
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Our study also suggests another unexplored direction: incorporating analogy-based information into non-linear CLWE
mappings. Existing work has already introduced non-linearity to CLWE mappings by applying a variety of tech-
niques including directly training non-linear functions (Mohiuddin et al., 2020), tuning linear mappings for outstand-
ing non-isomorphic instances (Glavaš & Vulić, 2020) and learning multiple linear CLWE mappings instead of a single
one (Nakashole, 2018; Wang et al., 2021a) (see § 2). However, there is a lack of theoretical motivation for decisions
about how the non-linear mapping should be modelled. Nevertheless, the results presented here suggest that ensem-
bles of linear transformations, covering analogy preserving regions of the embedding space, would make a reasonable
approximation of the ground-truth CLWE mappings

and that information about analogy preservation could be used to partition embedding spaces into multiple regions,
between which independent linear mappings can be learnt. We leave this application as our important future work.

7 Conclusion and Future Work

This paper makes the first attempt to explore the conditions under which CLWE mappings are linear. Theoretically,
we show that this widely-adopted assumption holds iff the analogies encoded are preserved across embeddings for
different languages. We describe the construction of a novel cross-lingual word analogy dataset for a diverse range of
languages and analogy categories and we propose indicators to quantify linearity and analogy preservation. Experiment
results on three distinct embedding series firmly support our hypothesis. We also demonstrate how our insight into the
connection between linearity and analogy preservation can be used to better understand past observations about the
limitations of linear CLWE mappings, particularly when they are ineffective. Our findings regarding the preservation
of analogy encoding provide a test that can be applied to determine the likely success of any attempt to create linear
mappings between multilingual embeddings. We hope this study can guide future studies in the CLWE field.

Additionally, we plan to expand our theoretical insight to contextual embeddings, inspired by Anonymous (2021) who
demonstrated that developing mappings that preserve encoded analogies benefits pre-trained cross-lingual language
models as well. We also aim to enrich XANLG by including new languages and analogies to enable explorations at an
even larger scale. Finally, we will further design CLWE approaches that learn multiple linear mappings between local
embedding regions outlined with analogy-based metrics (see § 6).

Broader Impact Statement

CLWE bridges the gap between languages and is efficient enough to be applied in situations where limited resources
are available, including to endangered languages (Zhang et al., 2020; Ngoc Le & Sadat, 2020). This paper presented a
theoretical analysis of the mechanisms underlying CLWE techniques which has potential to improve these methods. Our
analysis relies on the use of analogies and previous work has indicated that these may contain biases, e.g., regarding
gender (Bolukbasi et al., 2016; Sun et al., 2019). Any future work that incorporates analogies within the CLWE
process should be aware of the potential consequences of any biases that may be contained within the analogies used.
On the other hand, there is potential for the findings of this work to be leveraged for bias alleviation in cross-lingual
representation learning.
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A Question Formulations

For an analogy category with 𝑡 word pairs,
(𝑡
2

)

four-item elements can be composed. An arbitrary element, 𝛼:𝛽 :: 𝛾:𝜃,
can yield eight analogy completion questions as follows:

𝛼:𝛽 :: 𝛾:? 𝛽:𝛼 :: 𝜃:? 𝛾:𝛼 :: 𝜃:? 𝜃:𝛽 :: 𝛾:?
𝛼:𝛾 :: 𝛽:? 𝛽:𝜃 :: 𝛼:? 𝛾:𝜃 :: 𝛼:? 𝜃:𝛾 :: 𝛽:?

Hence,
(𝑡
2

)

× 8 unique questions can be generated.

B Raw Data for Tab. 2

XANLGG EN-DE EN-ES EN-FR EN-HI EN-PL DE-ES DE-FR DE-HI DE-PL ES-FR ES-HI ES-PL FR-HI FR-PL HI-PL

W
ik

i

CAP .16 .21 .17 .36 .23 .21 .18 .36 .22 .22 .35 .25 .35 .23 .33
GNDR .32 .42 .39 .26 .35 .48 .40 .41 .36 .39 .43 .38 .30 .40 .42
NATL .18 .16 .15 .14 .20 .19 .19 .33 .21 .16 .30 .21 .14 .20 .32
G-PL .22 .23 .22 .36 .26 .25 .23 .35 .26 .25 .38 .27 .37 .26 .38

Cr
aw

l CAP .23 .23 .20 .23 .29 .26 .23 .24 .28 .23 .26 .28 .24 .29 .38
GNDR .57 .58 .59 .56 .54 .65 .66 .57 .59 .64 .56 .57 .56 .57 .58
NATL .32 .43 .27 .39 .29 .32 .35 .47 .35 .40 .43 .31 .46 .31 .42
G-PL .35 .24 .33 .48 .29 .33 .37 .44 .42 .33 .47 .33 .48 .42 .51

Co
N

LL

CAP .31 .58 .32 .55 .39 .58 .32 .56 .38 .59 .66 .59 .56 .40 .55
GNDR .48 .76 .49 .55 .48 .74 .55 .57 .50 .77 .76 .72 .59 .52 .58
NATL .37 .72 .26 .51 .38 .78 .34 .52 .36 .74 .74 .73 .50 .35 .50
G-PL .32 .67 .32 .48 .36 .65 .34 .47 .36 .68 .67 .65 .50 .38 .49

XANLGM
EN EN EN EN EN EN ET ET ET ET ET FI FI FI FI HR HR HR LV LV RU
ET FI HR LV RU SL FI HR LV RU SL HR LV RU SL LV RU SL RU SL SL

Wiki ANIM .50 .50 .22 .31 .19 .15 .56 .27 .37 .30 .35 .29 .41 .30 .40 .32 .36 .28 .31 .22 .20
G-PL .25 .22 .37 .37 .28 .33 .24 .31 .29 .28 .26 .30 .29 .26 .27 .33 .32 .30 .33 .28 .28

Crawl ANIM .55 .55 .55 .49 .55 .51 .34 .41 .45 .22 .41 .40 .46 .41 .45 .37 .23 .28 .38 .24 .43
G-PL .28 .43 .47 .43 .45 .40 .30 .45 .37 .43 .37 .46 .40 .44 .43 .42 .50 .54 .39 .35 .43

CoNLL ANIM .54 .54 .99 .55 .50 .53 .29 .74 .46 .37 .43 .87 .51 .38 .46 .64 .77 .98 .42 .36 .41
G-PL .45 .40 .52 .42 .40 .42 .37 .77 .41 .41 .40 .81 .37 .36 .39 .84 .66 .77 .36 .40 .38

Table 3: Raw LMP results (the negative sign is omitted for brevity).

Wiki Crawl CoNLL
CAP GNDR NATL G-PL CAP GNDR NATL G-PL CAP GNDR NATL G-PL

DE .68 .25 .21 .23 .47 .48 .79 .77 .65 .43 .41 .55
EN .94 .33 .94 .58 .57 .67 .76 .94 .87 .57 .79 .61
ES .45 .13 .35 .13 .40 .57 .68 .87 .13 .07 .07 .17
FR .92 .27 .76 .13 .65 .50 .85 .87 .48 .14 .24 .35
HI .29 .30 .42 .07 .58 .59 .59 .32 .32 .37 .31 .16
PL .16 .21 .26 .10 .29 .55 .82 .84 .45 .45 .38 .52

Wiki Crawl CoNLL
ANIM G-PL ANIM G-PL ANIM G-PL

EN .48 .65 .29 .87 .36 .58
ET .12 .50 .52 1.00 .21 .48
FI .06 .65 .48 .87 .42 .54
HR .17 .20 .50 .68 .07 .11
LV .19 .10 .39 .84 .27 .23
RU .36 .40 .61 .87 .42 .55
SL .42 .23 .39 .81 .12 .39

Table 4: Raw monolingual LRCos results (left:XANLGG; right: XANLGM).
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