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ABSTRACT

Continuous development of convolutional neural networks has shown good per-
formance for fine-grained image classification by identifying fine features in high-
resolution images. However, in the real world, many images are due to camera or
environmental restrictions. Low resolution images with fewer fine features result
in a dramatic reduction in classification accuracy. In this study, a twophase Data
Augmentation guided Decoupled Knowledge Distillation (DADKD) framework
is proposed to improve classification accuracy for low-resolution images. In the
proposed DADKD, one phase is data augmentation that generates a composite
image and corresponding labels. Another stage is knowledge distillation, which
minimizes differences between high-resolution and low-resolution image features.
The proposed DADKD validated on three fine-grained datasets (i.e Stanford-Cars,
FGVC-Aircraft, and CUB-200-2011 datasets). Experimental results show that our
proposed DADKD achieves 88.19%, 78.98% and 80.33% classification accuracy
on these three datasets, state-of-the-art methods such as SnapMix and Decoupled
Knowledge Distillation (DKD). The method proposes a viable solution for fine-
grained classification at low resolution.

1 INTRODUCTION

With the development of deep convolutional neural networks, impressive results have been achieved
in computer vision tasks such as super-resolution image reconstruction(Wang et al., 2021; Kong
et al., 2021), image classification(Krizhevsky et al., 2017; Simonyan & Zisserman, 2014), object
detection(Li et al., 2020; Huang et al., 2022), tracking(Ren et al., 2015; Redmon et al., 2016), and
image segmentation(Kim et al., 2022; Zhang et al., 2022). Fine-grained image classification is a
challenging issue in classifying identical species into different subclasses, such as distinguishing
between species of wild birds and vehicle models. Existing fine-grained classification models such
as Inception(Szegedy et al., 2015) and ResNet(He et al., 2016) are typically trained on high-quality,
high-resolution fine-grained datasets. However, in real-life applications, images collected from a
distance may be blurred or low resolution. The performance of models trained on high resolution
fine grained images cannot be guaranteed when applied directly to these low resolution fine grained
images.

Low resolution fine grained image classification is quite challenging as it has minimal information
content and few useful features can be extracted. For example, identifying details such as pedestrian
faces or license plate numbers from an image is not easy because the associated feature extrac-
tion is difficult. There are three main approaches to classifying low resolution fine grained images:
mixed resolution training approach(Wu et al., 2022), super resolution reconstruction approach(Dong
et al., 2014), and knowledge distillation(Chen et al., 2022) based approach. The mixed-resolution
training approach developed by Zangeneh et al.(Zangeneh et al., 2020) maps high-resolution and
low-resolution images to a shared space using two deep convolutional neural networks. However,
the hybrid resolution-based training approach only makes the model more friendly to multi-scale
information perception, with limited improvement in recognition accuracy. In super-resolution re-
construction methods, GAN(Goodfellow et al., 2020) networks are often used to produce more real-
istic results. Wang et al.(Wang et al., 2018) used a simple classification network that was used as the
discriminative model and a SRResNet(Ledig et al., 2017) backbone network as the generative model
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to minimize the gap between reconstructed and authentic images. But the super-resolution approach
is more expensive to train and maintain, and the accuracy of the recognition model depends on the
output of the super-resolution model. There is no guarantee that the information output from the
super-resolution model will be helpful for the classification task. The third approach, knowledge
distillation, uses high-resolution images to train the teacher network and low-resolution images to
train the student network(Zhu et al., 2019). Based on the generality of the knowledge distillation
paradigm, this method is widely used in various deep learning models. Nevertheless, the improved
recognition accuracy of this type of method is limited.

To improve the classification accuracy of low resolution fine grained images, a DADKD approach is
proposed. Our approach involves two steps: Firstly, hybrid HR images generation, to label weights
in HR images, channel focus mechanism and SnapMix data augmentation method was utilised;
Predictive values of teacher and student models are minimised using a DKD method based on com-
posite images while performing data augmentation knowledge transfer. Our main contributions are
as follows:

• A novel data augmentation-based hybrid knowledge distillation framework is proposed
for low-resolution fine-grained classification. This framework utilizes hybrid images and
label information to guide the difference between teacher and student models. Improving
recognition accuracy of fine-grained models at low resolution.

• This study developed data augmentation method that combines the channel attention mech-
anism with Snap-Mix, along with a DKD to generate hybrid images, which effectively
enhances the accuracy of classification recognition for low-resolution fine-grained images.

• The proposed DADKD achieved 88.19%, 78.98% and 80.33% classification accuracy re-
spectively on Stanford-Cars, FGVC-Aircraft, and CUB-200-2011 datasets, which signifi-
cantly outperformed the benchmark models.

Figure 1: The proposed data augmentation-guided knowledge distillation for low-resolution fine-
grained classification.

2 RELATED WORK

2.1 DATA AUGMENTATION

In general, the better the quality and quantity of data used for training, the better the generalization
capability of the model. The most common offline augmentation methods are cropping, flipping,
rotating, scaling, shifting, Gaussian noise, color fading, etc. Online augmentation is more suitable
for large data sets , which typically merge two images and generate corresponding labels based
on their merging method. For example, Mixup(Zhang et al., 2017) is a pixel-based augmentation
method in which two random samples are proportionally mixed, and the classification results are
proportionally distributed. Cutout(DeVries & Taylor, 2017), on the other hand, cuts out any part of
the sample and fills it with 0 pixel values. CutMix(Yun et al., 2019) does not fill the cutout region
with 0 pixels but randomly samples pixel values from other parts of the training set to fill the cutout
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region. The classification result is proportionally distributed according to the split of the two images,
which are two data augmentation methods based on segmentation. This method can force the model
to classify from a local (subtle) perspective, thus increasing the sensitivity of the model to subtle
features. Inspired by this, data augmentation can be used in fine-grained image classification tasks.

2.2 KNOWLEDGE DISTILLATION

Knowledge distillation offers new ideas for deploying high-quality models in limited storage space,
effectively transferring teacher knowledge to student models. Hinton et al.(Hinton et al., 2015)
introduced the concept of knowledge distillation, which involves instructing a smaller network of
students using a larger network of teachers. Park et al.(Park et al., 2019) mentioned that attention
should be paid to the structure between categories rather than the categories themselves during dis-
tillation. Zhao et al.(Zhao et al., 2022) reconstructed the logit-based distillation method and Yuan
et al.(Yuan et al., 2020) revealed the relationship between knowledge distillation and label smooth-
ing regularization. Through knowledge distillation, the student model can obtain the discriminative
information of the teacher model for subtle feature areas,to improve the discrimination ability of
blurred areas for low resolution fine grained images.

3 PROPOSED METHOD

To improve the classification accuracy of low resolution fine grained images, the DADKD frame-
work was proposed in this study. As depicted in Figure 1, the proposed DADKD comprises two
modules: the Snap-Mix data augmentation module and the decoupled knowledge distillation mod-
ule. The data augmentation module uses a channel attention mechanism to enhance the model’s ca-
pacity to localize subtle features through semantic data blending, prompting the model to recognize
targets based on local (subtle) features. The knowledge distillation module, following a teacher-
student paradigm, extracts visual features from blended images. Here, the student model learns
from the teacher model on how to discern fine-grained features in high-resolution images, thereby
enhancing its ability to distinguish fine-grained features in the blurred regions of low-resolution
images.

More specific, for the given images Ii ∈ R3×W×H from original dataset
{(Ii, yi) | i ∈ [0, 1, ..., N − 1]} were resized to a resolution of 448×448 and feed it into the
data augmentation module, where a synthetic image Ĩ is generated by irregularly blending a pair of
images and generating the label yi weights ρa and ρb corresponding to the synthetic image based
on its attention map.Here, ρa and ρb correspond to the label ya and yb respectively. The composite
image is then resized to 128×128 resolution, fed into the student model, and fed the original
synthetic images into the teacher model. We leverage the label weights of the original synthetic
image to steer the hard loss of the student model, and the decoupled classification results of the
teacher model to guide the soft loss of the student model. This approach enhances the accuracy of
the student recognition model. The framework distinguishes itself from existing approaches in three
main ways: 1) Incorporating a channel attention mechanism in class activation mapping to replace
feature map weights generated by global averaging pooling in SnapMix; 2) Guide the hard loss of
the student model through label weights generated by the data augmentation module. It can also
be described as a transfer of data augmentation knowledge ; 3) Improve the DKD method to better
accommodate blended images.

3.1 DATA AUGMENTATION MODEL

SnapMix uses the class activation map generated from the original image, which allows asymmetric
blending operations to ensure semantic correspondence between the synthetic image and the blended
labels Huang et al. (2021). In our study, SnapMix is employed for fine-grained semantic scale
blending, it blend an image by cropping a region from one image and transforming and pasting it
into another image at a random location. The blending operation is shown as follows.

Ĩ = (1−Mλa)⊙ Ia + Tθ (Mλb ⊙ Ib) (1)
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Let Mλa and Mλb are binary masks with random box regions with area ratios λa and λb, and Tθ

transforms Ib’s cutout region to match Ia’s box region.

On the other hand, as fine grained image recognition often involves subtle differences between
targets, generating a class activation map of the image often go a long way to avoid introducing
significant noise (Huang et al., 2021). To calculate the semantic composition of the input image, the
SnapMix method generates feature map weights using global average pooling (GAP) to normalize
the image’s class activation map (CAM) to produce a semantic percentage map (SPM). Then the
weights of the two original images in the hybrid image are obtained based on SPM and λ. In
contrast to the SnapMix approach, the channel focus mechanism is added to the data augmentation
module to calculate the weights of the feature maps, using a fully connected neural network (two
fully connected layers, ReLu and sigmoid) to perform a non-linear transformation of the post-GAP
results to obtain more accurate classifier weights. Finally, the semantic composition of the hybrid
image is estimated based on the semantic relevance of each original image pixel to its corresponding
label.

3.2 KNOWLEDGE DISTILLATION MODEL.

Knowledge distillation is a concept of dark knowledge extraction that can be understood in terms of
transfer learning and model compression(Hinton et al., 2015). The focus is on proposing a soft target
loss to complement the hard target loss. Soft target loss is the loss calculated by the KL function
between the predicted result of the student model and the predicted result of the teacher model. On
the other hand, the hard target loss is the loss calculated between the predicted result of the student
model and the original one-hot label via the Cross-entropy loss function. The loss function of the
knowledge distillation paradigm is expressed as

L = aL(soft) + (1− a)L(hard) (2)

where a is a hyperparameter between 0 and 1, L(soft) stands for soft target loss and L(hard) stands
for hard target loss.

As shown in the knowledge distillation module in Figure 1, we resize the hybrid image generated
in the data augmentation module to a resolution of 128×128, send it to the student model, send the
hybrid image with a resolution of 448×448 to the teacher model, and use the two label weights gen-
erated by the data augmentation module with the prediction results of the student model to calculate
the hard target loss, and then the teacher model with the predictions of the student model to calculate
the soft target loss. These two components are described in detail below.

Loss with hard target: We define logT as the logit generated by the hybrid HR image from the
teacher model and logS as the logit generated by the hybrid LR image from the student model. (Θ)
is the cross-entropy loss function, and ρa ρb is the weight of the two labels generated by the HR
image through the data augmentation module. The hard loss of the DADKD model is defined as

L(hard) = ρa ×Θ
(
logS , ya

)
+ ρb ×Θ

(
logS , yb

)
(3)

This paper applies label weights generated from HR image data augmentation to LR images, allow-
ing the student model to better accept the teacher model’s predictions of HR blended image weights,
which we define as data augmentation knowledge transfer.

Loss with soft target:The soft target loss within the knowledge distillation paradigm is typically
referred to as KD. The DKD approach seeks to analyze KD more comprehensively by decoupling
model predictions into target and non-target classes. Target classes are the categories we anticipate
the model to identify, while non-target classes are the converse. Distillation for the target class and
the non-target class is termed Target Class Knowledge Distillation (TCKD) and Non-target Category
Knowledge Distillation (NCKD), respectively. This allows us to rederive the loss formula for KD to
acquire new equivalent expressions.

KD = TCKD +
(
1− pTt

)
NCKD (4)
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When the new expression for KD is reviewed, it is found that the loss corresponding to NCKD is
coupled with a weight 1 − pTt ,pTt is the teacher’s level of confidence in the target class. In other
words, the more confident the teacher network is in its predictions, the less weight NCKD will be
and the less influence it will have. Neverless, the relationship between non-target classes is crucial to
the knowledge distillation framework; NCKD may be the main reason for KD’s effectiveness(Zhao
et al., 2022). By decoupling the traditional knowledge distillation, a new knowledge distillation
paradigm is generated to increase the weight of NCKD in the overall knowledge distillation. i.e.,
DKD, with the following expression:

DKD = αTCKD + βNCKD (5)

where α and β are hyperparameters, In the experiment it was set to 1:8. The decoupled knowledge
distillation approach decouples the predictions of the teacher model from those of the student model
and then distils them separately.

After the data augmentation module, a mask is applied to extract these two target classes, which is
defined as TCKDmix. Assuming that the class with the classification task is N , the class corre-
sponding to TCKDmix is 2, and the class corresponding to NCKD is N − 2. The soft loss of the
knowledge distillation module of the DADKD framework is defined as

L(soft) = αTCKDmix

(
logT , logS

)
+ βNCKD

(
logT , logS

)
(6)

4 EXPERIMENT SETUP

Our experiments were conducted with three standard fine-grained datasets: CUB-200-2011(Wah
et al., 2011), Stanford-Cars(Krause et al., 2013), and FGVC-Aircraft(Maji et al., 2013). To simplify
notation, use the short names CUB, Cars, and Aircraft throughout the rest of the paper. Multiple
network architectures (Resnet 18, 34, 50, 101) were used as baselines to evaluate our approach.
Based on each network architecture, our method’s performance compare with related knowledge
distillation and data augmentation methods. Our results also compare with current state-of-the-art
methods for fine-grained image identification.

Baselines and backbone networks. Four network backbones were used as a baseline against which
to compare our approach with other methods. Whenever not otherwise specified, we refer to the
baseline as a pre-trained neural network model that has been fine-tuned on the target dataset based
on the Imagenet dataset. This study used Resnet 18, 34, 50, and 101 network structures, and these
experiments were adapted from the TorchVision package.

Data augmentation and knowledge distillation methods. This study compared our approach
with two representative knowledge distillation methods and one data augmentation method: KD,
DKD, and SnapMix.These methods were implemented based on published code and experimented
on low-resolution fine-grained datasets, as previous work did not have classification results for low-
resolution datasets.

Implementation details. Pytorch deep learning framework was used to implement all deep learning
models in this study. An Intel Xeon Platinum 8160T@2.1 GHz was used for the experiments on an
Ubuntu 18.04.6 server. A NVIDIA RTX A5000 GPU accelerated it with 24 GB of RAM.

Training details. The train weights were learned using stochastic gradient descent (SGD) with a
momentum of 0.9, and the novel parameters were learned with a base learning rate of 0.001. Every
80 epochs, decayed the learning rate by 0.1 and trained our model for 200 epochs.

5 EXPERIMENTAL RESULTS AND ANALYSIS

5.1 DIFFERENT FINE-GRAINED IMAGE CLASSIFICATION MODEL COMPARISON

This section compares the performance of DADKD with other state-of-the-art fine-grained recog-
nition techniques. As shown in Table 1, we can find that the recognition accuracy of the Resnet
network improves with deeper network layers, and Resnet101 outperforms Resnet50 on all three
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Table 1: The accuracy (%) comparison with state-of-the-art methods on CUB, Cars, and Aircraft.
For the baselines and our approach, we reported their average accuracy of the final ten epochs and
showed their best accuracy in the brackets.

Method image Size Accuracy(%)
CUB Cars Aircraft

Mcloss(VGG) 128 79.19 84.56 80.41
Mcloss(Res50) 128 74.81 76.48 82.31

PCA-net 128 65.30 67.96 70.62
PMG 128 60.21 64.53 62.13

Inceptionv3(299) 299 66.12 81.97 72.12
API-net 128 68.67 74.81 63.91

MG 128 63.55 70.01 67.39
Res50 128 66.40(66.76) 69.25(69.34) 58.44(58.62)

Res101 128 67.67(67.88) 72.35(72.51) 64.91(65.11)
Rese50+DADKD 128 78.22(78.31) 87.74(87.90) 72.63(72.87)
Res101+DADKD 128 80.33(80.46) 88.19(88.31) 78.98(79.11)

fine-grained datasets, with the aircraft dataset showing the most significant performance improve-
ment. Based on this result, A deeper model can better handle label noise.

The improved baseline using DADKD is comparable to some of the fine-grained image recognition
methods that require the most complex design and lengthy inference. To capture standard discrimi-
native features, PCA-Net (Zhang et al., 2021) encourages interactions between feature channels of
pairs of images in the same class to compute channel similarity. API-Net (Zhuang et al., 2020) is
forced to focus on other discriminative regions after removing salient regions enhanced by channel
interactions. In high-resolution fine-grained image recognition, these complex networks can achieve
high recognition accuracy. Neverless, as the image resolution decreases and the delicate features be-
come blurred, the complex networks cause the model recognition accuracy to drop dramatically. As
shown in Table 1, the recognition accuracy of complex networks is even worse than that of baseline
networks such as Resnet when facing low-resolution images.

In contrast, simpler designs such as Mcloss (Chang et al., 2021) and the DADKD framework achieve
good results in low-resolution fine-grained recognition, probably because simple network structures
are suitable for image with little vision information. Combined with the Resnet-101 backbone net-
work, DADKD achieves recognition accuracies of 80.33%, 88.19%, and 78.98% for CUB, Cars,
and Aircraft, respectively, in the testing phase without any additional features, outperforming most
existing techniques. Our method achieves the highest recognition accuracy on the CUB and car
datasets and approaches the state-of-the-art Mcloss method (Resnet50) on the aircraft dataset. In
addition, the Inceptionv3(Krause et al., 2016) network inputs images at a minimum resolution of
299times299, which is also used in this experiment.

Table 2: Performance comparison (Mean Acc.%) of methods using backbone networks Resnet-18
and Resnet-34 on fine-grained datasets. Each method’s improvement over the baseline is shown in
the brackets.

CUB Aircraft Cars
Res18 Res34 Res18 Res34 Res18 Res34

Baseline 59.44 62.79 50.22 52.41 60.58 64.73
SnapMix 65.41(+5.97) 66.63(+3.84) 59.71(+9.49) 61.32(+8.91) 71.68(+11.1) 77.45(+12.72)

KD 62.81(+3.37) 65.52(+2.73) 53.67(+3.45) 55.89(+3.48) 61.02(+0.44) 65.12(+0.39)
DKD 71.31(+11.87) 67.83(+5.04) 58.63(+8.41) 59.67(+7.26) 75.97(+15.39) 79.63(+14.9)

DADKD 73.31(+13.87) 69.90(+7.11) 65.61(+15.39) 68.52(+16.11) 80.61(+20.03) 85.34(+20.61)
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Table 3: Performance comparison (Mean Acc.%) of methods using backbone networks Resnet-50
and Resnet-101 on fine-grained datasets. Each method’s improvement over the baseline is shown in
the brackets.

CUB Aircraft Cars
Res50 Res101 Res50 Res101 Res50 Res101

Baseline 66.40 67.67 58.44 64.91 69.25 72.35
SnapMix 71.32(+4.92) 73.04(+5.34) 63.87(+5.43) 69.29(+4.38) 81,54(+12.29) 83.16(+10.08)

KD 71.14(+4.47) 72.71(+5.04) 58.22(-0.22) 64.68(-0.31) 72.33(+3.08) 75.42(+3.07)
DKD 75.92(+9.52) 76.38(+8.71) 62.13(+3.69) 68.01(+3.1) 84.94(+15.69) 85.69(+13.34)

DADKD 78.22(+11.82) 80.33(+12.66) 72.63(+14.19) 78.98(+14.07) 87.74(+18.49) 88.19(+15.84)

5.2 COMPARISON WITH DATA AUGMENTATION AND KNOWLEDGE DISTILLATION

This section compares the performance of the DADKD, KD, DKD, and SnapMix methods on three
fine-grained datasets: CUB, Aircraft, and Cars. The results are shown in Table 2-3. First, we can
observe that our proposed DADKD method consistently outperforms similar methods. When using
Resnet101 as the baseline model, it achieves the highest accuracy of 80.33%, 88.19%, and 78.98%
on the CUB, Cars, and Aircraft datasets, respectively. It shows that it becomes more sensitive to
fine-grained features as the depth of the model increases.

Comparing the recognition rate improvement produced by DADKD with different baseline models,
it can be seen that smaller networks perform better, with Resnet18 achieving the highest recognition
rate improvement of 13.78% in the CUB dataset, and Resne34 achieving the highest recognition rate
improvement of 20.61% in the Cars dataset, which suggests that our framework is more suitable for
combining with smaller models for applications.

It is worth noting that KD performs very poorly in the Aircraft dataset and even shows a decrease in
recognition accuracy on the Resnet50 and Resnet101 baseline models, which we speculate may be
due to model overfitting caused by the high number of model layers.

Meanwhile, comparing the three datasets revealed that all methods showed limited improvement on
the aircraft dataset with the lowest recognition accuracy. It may be due to the fact that the aircraft
dataset shows more subtle category differences, which increases the risk of noisy labeling and creates
difficulties for model classification.

5.3 INFLUENCE OF HYPERPARAMETERS.

The hyperparameter α of the data augmentation module in the DADKD framework determines the
size of randomly generated patches. Our experiments found that the accuracy rate fluctuated slightly
as α only increased. In our experiments, α was set to 5 to ensure that the images were mixed with
medium-sized boxes. Experimented with different distillation temperatures and soft with hard loss
ratios in the knowledge distillation model. We performed a comparison test on the CUB dataset
using Resnet18 as the baseline model, and the results are shown in Table 4.

Table 4: Comparison of different hyperparameters in the experiment.
temp 2:8 3:7 4:6 5:5

3 72.8% 73.3% 71.3% 68.2%
5 72.9% 73.1% 71.6% 67.9%
7 72.6% 72.8% 71.2% 67.8%

5.4 ABLATION STUDY

According to Table 4, the distillation temperatures were set at 3, 5, and 7. Identification accuracy
fluctuates between 0.3 percent and 0.5 percent with increasing distillation temperature, Which sug-
gests that the DADKD framework is insensitive to distillation temperature. At the same time, the
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Table 5: Ablation experiments of DADKD.

baseline(Res18) Date augmentation model Knowledge distillation model Accuracy(%)

✓ 59.44

✓ ✓ 68.41

✓ ✓ 71.28

✓ ✓ ✓ 73.31

soft and hard loss ratios have a more significant impact on the model. The model accuracy gradually
decreases as the soft loss ratio continues to increase. At a distillation temperature of 3, the model
identification accuracy was only 68.2% for the 5:5 ratio, indicating that hard losses dominate the
model classification process and soft loss is a kind of complement to hard loss. Finally, the model
achieves peak classification accuracy at a distillation temperature of 3 and a soft-to-hard loss ratio
of 3:7.

(a) KD (b) DKD (c) DADKD

Figure 2: CAM visualization of different Knowledge distillation methods.

The ablation experiments were done on the cub dataset, and we selected Resnet18 as the baseline
network to compare the different modules in the framework; the results of the experiments are
shown in Table 5 Compared to the baseline model(59.44%), adding the data augmentation module
resulted in an accuracy of 68.41%, and adding the knowledge distillation module resulted in an
accuracy of 71.28%, which shows that all the modules of this work positively affect the network
and the knowledge distillation module dominates the framework compared to the data augmentation
module.

5.5 VISUALIZATION

Figure 2 shows examples of CAMs correctly predicted by DADKD but incorrectly classified by KD
and DKD. We can observe that some background patterns distracted the attention of KD, which
may have contributed to the incorrect prediction. Meanwhile, compared with DKD, DADKD can
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effectively enhance the baseline model sensitivity to the delicate features of low-resolution targets;
that is, more attention is paid to the wings and beaks of birds.

6 CONCLUSION

In low resolution fine grained image recognition, it is essential to discern subtle features (e.g. bird
wings, beaks) between low resolution image classes. To accurately recognize low-resolution fine-
grained images by baseline models, this paper proposes a data augmentation guided decoupling
knowledge distillation framework to improve recognition accuracy. Integrate the attention mecha-
nism and SnapMix into the data augmentation model to improve the sensitivity of the baseline model
to fine-grained features. In the knowledge distillation module, the improved decoupled knowledge
distillation method is combined with the label weights generated by the data augmentation module
to improve the baseline model’s ability to discriminate fine-grained features in blurred regions of
low-resolution images. Experiments on three fine-grained datasets, Cars, Aircraft, and CUB, show
that the proposed framework achieves classification accuracy of 88.19%, 78.98%, and 80.33%, re-
spectively, surpassing advanced methods such as SnapMix and DKD.
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