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Abstract

As Multimodal Large Language Models (MLLMs) gain widespread applicability,
it is becoming increasingly desirable to adapt them for diverse user needs. In
this paper, we study the adaptation of MLLMs through controlled decoding. To
achieve this, we introduce the first method for reward-guided decoding of MLLMs
and demonstrate its application in improving their visual grounding. Our method
involves learning a reward model for visual grounding and using it to guide the
MLLM’s decoding process. Our approach enables on-the-fly controllability of an
MLLM’s inference process in two ways: first, by giving control over the relative im-
portance of reward and output likelihood during decoding, allowing a user to dynam-
ically trade off object precision and recall in image captioning tasks; second, by giv-
ing control over the breadth of the search during decoding, allowing a user to trade
off compute for output quality. We evaluate our method on standard object halluci-
nation benchmarks, showing that it provides significant controllability over MLLM
inference, while matching or outperforming existing visual grounding methods.

1 Introduction

Multimodal Large Language Models (MLLMs) have shown great potential for solving a wide range
of visiolinguistic tasks, while offering a language interface to users [5, 8]. As adoption of MLLMs in-
creases [1, 30, 12], a demand to easily control their behavior to satisfy diverse user needs is emerging.

Two needs, in particular, arise among the most important for users of MLLMs: control over the
precision and thoroughness of their output, and control over the amount of compute spent to generate
those outputs. For instance, a user with visual impairment using the system to understand their
surroundings may want the MLLM to respond with thorough outputs that maximize object precision,
while avoiding overly high latency on limited compute; instead, a user leveraging the MLLM to gen-
erate synthetic captions to train downstream models may value more the object recall of the model’s
output, while having more flexibility on spending more compute to obtain higher-quality results.

In this paper, we tackle this problem and propose a method for inference-time alignment of MLLMs.
Our method is based on reward-guided decoding (RGD) with a reward function tailored for hallucina-
tion reduction [3]. Using the reward model as a heuristic for searching for better outputs, our method
gives control over the two axes mentioned above: by giving the option to set a relative weight for
reward and the MLLM’s output likelihood, it allows to control the trade off between object precision
and recall of the MLLM’s outputs; by varying the breadth of the search, we can control the trade off
between compute and output quality.

While other methods such as prompting [37], supervised fine-tuning [21] and RLHF fine-tuning [29,
34, 40] have been proposed to reduce hallucinations, reward-guided decoding enables on-the-fly
granular controllability, which is typically hard to obtain with other techniques.
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Figure 1: Illustration of reward-guided decoding (RGD) for MLLMs. At each iteration, k candidate
completions to a partial response are sampled from the MLLM and evaluated according to a linear
combination of their reward and their likelihood (the process is illustrated for the first selected
completion and omitted elsewhere). The completion with largest score is selected and added to the
context to generate the next k candidates, until the <EOS> token is encountered.

In summary, the main contributions of our paper are: (1) We propose the first approach for guided
decoding for MLLMs, based on training a reward function for visual grounding and using it to
guide the search for outputs at inference time. (2) We demonstrate on standard visual hallucination
benchmarks that using guided decoding allows on-the-fly controllability of the balances between (a)
object hallucination and output thoroughness, and (b) amount of compute spent to produce an output
and its quality, while obtaining competitive performance to existing non-controllable approaches. (3)
We analyze the object precision/recall of generated captions and compute trade-offs of reward-guided
decoding for MLLMs, as well as the crucial properties of the proposed search process.

2 Method

2.1 Multimodal reward-guided decoding

Given an image xv and a visual instruction xq , an MLLM π generates a text response y = {y1, ..., yn}
autoregressively token-by-token, i.e., y = π(xv, xq). To measure how well a response satisfies the
preferences of a user, we use a reward function r(xv, xq, y), which outputs a scalar score given the
multimodal instruction x = (xv, xq) and the generated response y.

Our goal is to guide the generation of an MLLM such that the generated response can be modulated
using the reward function. We leverage reward-guided decoding (RGD) [23, 11, 17]: we search for
a response by expanding a search tree of partial responses and deciding which partial response to
complete depending on a reward-based selection criterion. At each iteration, we sample k candidate
completions {yji..i+m}kj=1 from a single partial response, with (m < n), evaluate each of them with
a score s(xv, xq, y

j
1..i+m), select the one with the maximum score, and add it to the context. We then

iterate this process until the <EOS> token is generated.

To avoid potential instabilities resulting from the evaluation of outputs that are not well-formed, we
evaluate partial outputs at the end of sentence, according to an evaluation period of T , i.e., evaluating
the output of the MLLM every T sentences. As T grows, the reward model will evaluate longer and
longer outputs. For T → ∞, only complete outputs concluded with an <EOS> token are evaluated,
and one complete output is selected among them: this strategy is usually referred to as rejection
sampling or best-of-k in the literature [7, 28]. We leave for future work exploring alternative methods
to detect semantically complete output segments within a sentence.

To give a user the possibility of choosing the level of reward guidance on-the-fly, we use as score the
linear combination of the reward of a partial output and its likelihood under the MLLM: s(xv, xq, y) =
w · r(xv, xq, y)+ (1−w) · pπ(y|xv, xq), where pπ(y|xv, xq) is the response’s conditional likelihood
according to the base MLLM, and w ∈ [0, 1] is a guidance strength hyperparameter chosen at
inference time. A user can modulate the strength of the reward guidance by varying w. At the
extremes, for w = 1, the best response is chosen entirely by following the reward function, while
when w = 0 the reward function has no effect. Figure 1 provides a summary of our method.
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2.2 Adapting a VLM as a multimodal reward model

The effectiveness of our guided decoding strategy hinges on the existence of a reward function
capable of successfully evaluating how well a response satisfies a certain objective. Unlike for math
or coding problems [7], there are no verifiers for the open-ended responses generated by MLLMs.
Therefore, we approximate the reward function by learning a reward model rθ from preference data.

Given a dataset of multimodal preference data D = {xv, xq, y
+, y−}i, where y+ and y− are the

chosen and rejected responses respectively, we train a reward model as a classifier that predicts
the preference probability following the Bradley-Terry model [6, 24]. To facilitate combining
the reward with the MLLM’s likelihood, it is desirable that rθ(xv, xq, y) ∈ [0, 1]. Therefore,
we add a pair of mean-squared error loss terms to encourage rθ(xv, xq, y

+) to be close to 1 and
rθ(xv, xq, y

−) to be close to 0, while simultaneously avoiding the gradient saturation pitfalls of
squashing activation functions. Ultimately, this leads to the following loss function: L(θ) =
E(x,y+,y−)∼D[− log σ(rθ(x, y

+)−rθ(x, y
−))+(rθ(x, y

+)−1)2+rθ(x, y
−)2], where x = (xv, xq).

We use PaliGemma [4] as the backbone of our reward model, and add to it a linear regression head.

3 Experiments

While our method can be applied to align MLLMs with any arbitrary objective function, in this paper
we focus on improving the visual grounding to produce responses that are more factually grounded in
the visual input. Hence, we evaluate the effectiveness of our multimodal reward-guided decoding
strategy in mitigating object hallucinations in long captions.

3.1 Experimental setup

Training data. We train our reward model on a mixture of publicly available multimodal prefer-
ence datasets focusing on visual hallucinations: LLaVA-RLHF [29] (9.4k), RLHF-V [34] (5.7k),
POVID [40] (17k) and RLAIF-V [35] (83k). In addition, we repurpose SugarCrepe [15] (7.5k) as
preference data for the instruction "Describe this image". We split each dataset into 80% for
training and 20% for validation. To compensate for data imbalance, we make sure each minibatch
has roughly the same number of examples from each dataset.

Implementation details. We initialize our reward model’s backbone from PaliGemma
(google/paligemma-3b-pt-224), train the regression head from scratch and finetune the backbone
with LoRA [16]. We use an effective minibatch size of 256, warm up the learning rate from 0 to
1e−3 during the first 5% of an epoch and decay it to zero with a cosine schedule. We train the reward
model for a single epoch. We use LLaVA-1.57B [22] (llava-hf/llava-1.5-7b-hf) as our base
MLLM and caption images with the prompt "Describe this image in detail". For guided
decoding, we use a sampling temperature of 1.0.

Evaluation setup. We evaluate our method on two standard object hallucination benchmarks,
CHAIR [26] and AMBER [32], and report instance-level (Ci/CHAIR) and sentence-level (Cs/Hal.)
hallucination rates (the inverse of object precision). We also report object recall (Rec.)/coverage
(Cov.) and caption length (Len.) to ensure our method generates meaningful captions rather than
degenerating into object-less outputs.

Table 1: Results on object hallucination benchmarks. RGD with k = 30 and T = 1, BS@k indicates
beam search with k beams, ∗ indicates reported values from [27], † values are from [10].

Model Method COCO AMBER

Ci (↓) Cs (↓) Rec. (↑) Len. CHAIR (↓) Hal. (↓) Cov. (↑)

LLaVA-1.57B Greedy 15.05 48.94 81.30 90.12 7.6 31.8 49.3
LLaVA-1.57B BS@10 15.80 52.94 81.48 96.31 10.9 39.7 46.0

HA-DPO∗ [39] BS@5 11.0 38.2 - 91.0 6.7 30.9 49.8
EOS∗ [36] Greedy 12.3 40.2 - 79.7 5.1 22.7 49.1
HALVA∗

7B [27] Greedy? 11.7 41.4 - 92.2 6.6 32.2 53.0
LLaVA-1.57B CGD† [10] 8.1 29.7 79.03 76.66 - - -

LLaVA-1.57B RGD (w = 1) 6.77 26.02 74.45 95.17 5.3 25.8 47.9
LLaVA-1.57B RGD (w = 0.5) 7.43 27.43 76.80 92.91 5.1 23.3 47.5
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Figure 2: Reward value (left) and CHAIRi (right) on COCO
varying k and T , for w = 1.0. Leveraging the reward
model to guide the generation more often (lower T ) improves
sample-efficiency.
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Figure 3: Object precision and re-
call on COCO, for T = 1. Each
line represents a value of k, for
varying w. Using more compute im-
proves precision and recall, while
varying w modulates the trade-off
for a given level of compute.

3.2 Results

Reward model accuracy. We first evaluate the performance of our reward model in predicting
preferences. We define accuracy as the percentage of times the reward model assigns a higher score to
the chosen response, i.e. rθ(xv, xq, y

+) > rθ(xv, xq, y
−). We obtain an average validation accuracy

of 77.54%, which is in line with typical performance of reward models [18].

Downstream performance. In Table 1, we report the results of leveraging our reward model
for guided decoding, and compare against multiple baselines. We observe our RGD method can
considerably reduce object hallucinations at the expense of a few object recall/coverage points. For
instance, on the COCO benchmark, CHAIRi is reduced by more than half (from 15.05 with greedy
decoding to 6.77 with RGD and w = 1.0). By reducing the guidance strength to w = 0.5, recall is
substantially increased without overly increasing the hallucination rate. Overall, RGD matches or
surpasses the performance of existing methods for hallucination mitigation while enabling granular
controllability of the MLLM’s behavior at inference time.

Guided decoding is sample-efficient. Figure 2 shows how the maximum reward and hallucination
rate (CHAIRi) evolve as we increase the number of samples k = {3, 5, 10, 30}. As expected, we
observe a lower hallucination rate when increasing k. More importantly, we see our RGD strategy
(with T = 1) is considerably more sample-efficient than naive rejection sampling (with T = ∞). For
instance, a similar hallucination rate is achieved with rejection sampling with k = 30 and RGD with
k = 5, which makes RGD ∼ 6× more sample-efficient than rejection sampling.

Inference-time reward-guidance modulation. Figure 3 shows the trade-off between hallucination
rate (CHAIRi) and object recall when varying the guidance strength w = {0.25, 0.5, 0.75, 1.0}. We
observe a low w leads to high recall but also higher CHAIRi, while a high w has the opposite effect.
And this effect is more pronounced with higher k. Hence, we confirm the flexibility of our approach
and its effectiveness in adapting to user needs at inference time.

4 Conclusion

In this paper, we presented a method for reward-guided decoding (RGD) of MLLMs, based on a
multimodal reward model trained for visual grounding on a dataset of preferences. This reward
model is then used in a search process, in which, at each iteration, several candidate responses are
evaluated against a combination of their reward value and their likelihood. We show that, for the
task of image captioning, this methodology affords on-the-fly controllability of a MLLM’s output
along two axes: first, it allows a user to trade off object precision and recall in a fine-grained way,
by just changing the weight on each term of the search score; then, it allows to increase the amount
of compute employed to generate a complete output of higher quality, by varying the breadth of the
search. Our method provides significant controllability over MLLM inference while matching or
surpassing the performance of existing visual grounding methods.
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A Related work

Guided decoding of LLMs. In the text-only setting, several works have explored guiding LLMs
with a reward model to control output features such as helpfulness and harmlessness, and summary
quality [9, 23, 11, 17, 14, 25, 20]. Unlike existing methods, we train a multimodal reward model
to evaluate responses to multimodal instructions, which additionally contain images, and focus on
evaluating this class of methods on visual grounding tasks.

Mitigating hallucinations of MLLMs. Prior work on mitigating visual hallucinations of MLLMs
has focused on prompting [37], supervised fine-tuning [21], RLHF/RLAIF fine-tuning [29, 39, 34, 40,
35, 42, 2, 27], post-hoc rectification [41, 33], or specialized decoding strategies [38, 31, 13, 19, 10].
RGD is more powerful than purely feed-forward methods, as the principles learned during fine-tuning
or specified in (system) prompts are not guaranteed to be respected at generation time, while RGD
directly optimizes the output. In addition, RGD can be combined with prompting or fine-tuning, and
readily applied to many MLLMs without retraining.
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