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Abstract

The expectation consistent (EC) approximation framework is a state-of-the-art
approach for solving (generalized) linear inverse problems with random forward
operators and i.i.d. signal priors. In image inverse problems, however, both the
forward operator and image pixels are structured, which plagues traditional EC
implementations. In this work, we propose a novel incarnation of EC that exploits
deep neural networks to handle structured operators and signals. For phase-retrieval,
we propose a simplified variant called “deepECpr” that reduces to iterative denois-
ing. In experiments recovering natural images from phaseless, shot-noise corrupted,
coded-diffraction-pattern outputs, we observe accuracy surpassing the state-of-the-
art prDeep (Metzler et al., 2018) and Diffusion Posterior Sampling (Chung et al.,
2023) approaches with two-orders-of-magnitude complexity reduction.

1 Introduction

In nonlinear inverse problems, we observe corrupted measurements y ∈ Ym of a signal/image
x ∈ Rd or Cd and we would like to recover x from y. We consider problems for which the
relationship between y and x can be described using a likelihood model of the form

p(y|x) =

m∏
i=1

py|z(yi|zi) for z , Ax, (1)

where the forward operatorA ∈ Cm×d and scalar measurement channel py|z are both known. In the
statistics literature, (1) is known as the generalized linear model (GLM). Versions of py|z exist for,
e.g., additive noise of an arbitrary distribution, logistic regression [1], Poisson regression [2], noisy
quantization [3], and phase retrieval [4, 5]. In this work, we focus on phase retrieval, although many
of the ideas that we describe can be applied more generally.

For phase retrieval, although many forward operators A can be considered, the most common are
the (possibly oversampled) 2D Fourier transform and the coded diffraction pattern (CDP) [6] in (2),
where F is the unitary 2D Fourier transform and {Dk}Kk=1 are diagonal matrices with entries drawn
independently and uniformly from the unit circle in the complex plane. Although several choices of
py|z have been applied to phase retrieval, we will focus on the choice in (2) since it is tractable and
has been shown to work well in a variety of real-world settings [7].

A =
1√
K

FD1...
FDK

 , py|z(y|z) = exp
(
− 1

2v (y − |z|)2
)
. (2)

Various computational approaches have been proposed for image phase retrieval. Classical meth-
ods, like the Gerchberg-Saxton [8] and Hybrid Input-Output [9] algorithms are based on it-
erative projection. A more modern approach is to minimize the negative log-likelihood, i.e.,
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Figure 1: Summary of EC applied to the GLM in (1). The algorithm iteratively estimates the transform
outputs z = Ax by alternating between two estimation modules that exchange extrinsic messages.

arg minx{− ln py|z(y|Ax)}, using gradient-based iterative methods with a spectral initialization
[10–12]. Although convex-relaxation-based methods like PhaseLift [13] have also been proposed
(see the overview in [14]), they tend to be computationally impractical at typical image sizes. Ap-
proximate message-passing (AMP) algorithms have been proposed for phase retrieval [15, 16] that
are near-optimal for high-dimensional i.i.d. or rotationally invariant randomA [17, 18], but they tend
to diverge with Fourier or CDPA.

The aforementioned phase-retrieval methods do not exploit sophisticated structure among the pixels
in x, as occurs in imaging applications. To exploit this prior knowledge, several approaches have
been proposed that involve deep neural networks. For example, using the plug-and-play (PnP) [19]
or RED [20] frameworks, one can iteratively alternate between negative-log-likelihood reduction
and neural-network based image denoising [21, 22]. Or, inspired by CSGM [23], when given an
image-generator network x = gθ(z), one could search for the code vector z such that the magnitude
ofAgθ(z) matches the phaseless measurements y [24]. A variation on this idea, inspired by DIP [25],
is to optimize the generator parameters θ instead of the code vector z [26, 27]. The most recent trend
is to use a diffusion method, like DPS [28], for phase retrieval.

In this work, we propose a novel approach to phase retrieval that builds on the expectation consistent
(EC) approximation algorithm from [29]. Although there are connections to AMP algorithms like [16],
our approach does not require randomA. And although our approach involves iterative denoising
(like with plug-and-play, RED, and diffusion methods) it converges two orders-of-magnitude faster.

2 Proposed Approach

The expectation-consistent (EC) approximation algorithm [29] is a message-passing algorithm for
iterative inference of vector-valued variables. Unlike the sum-product algorithm, it passes mean and
variance messages rather than full probability distributions. More precisely, EC is a parallel version
of the expectation propagation (EP) algorithm [30] that (locally) minimizes a known cost function.
Over the last decade, EC has become famous as a method that admits rigorous analysis, and in some
cases optimal performance, in high-dimensional random settings. Perhaps the best known setting
is the standard linear model (i.e., the GLM (1) with additive Gaussian py|z) with asymptotically
high-dimensional rotationally invariant A and i.i.d. signal x. This application of EC is known as
Vector AMP (VAMP), which obeys a rigorous state-evolution whose fixed points are minimum
mean-squared error (MMSE)-optimal whenever they are unique [31]. EC has also been proposed for
the GLM [16] (see also [32] and [33]) and rigorously analyzed in [34] under the same random-A and
i.i.d.-x assumptions. Although the i.i.d.-x assumption was circumvented in [35], random-A remains
an important ingredient in existing applications/analyses of EC.

In image inverse problems, applying EC is challenging becauseA is not random. Consequently, EC
behaves unpredictably and may not even converge [36]. Although some heuristic work-arounds have
been proposed for the case of magnetic resonance imaging [37, 38], successful applications of EC to
imaging inverse problems have remained elusive.

Figure 1 shows how EC iteratively estimates the transform outputs z = Ax by alternating between
two estimation modules. The left module computes the posterior mean and (pixel-wise) variance
of {zi}mi=1 using the likelihoods py|z(yi|·) and a Gaussian prior informed by the extrinsic message
{(z(1)

i , v(1)

i )}mi=1 received from the right module:

∀i :
ẑ(1)

i = E{zi|yi; z(1)

i , v(1)

i }
v̂(1)

i = var{zi|yi; z(1)

i , v(1)

i }
via p(zi|yi; z(1)

i , v(1)

i ) =
py|z(yi|zi)N (zi; z

(1)

i , v(1)

i )∫
py|z(yi|zi)N (zi; z

(1)

i , v(1)

i ) dzi
. (3)
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Meanwhile, the right module computes the posterior mean and covariance of x using the prior px and
a linear-Gaussian likelihood informed by the extrinsic message from the left module:

x̂(2) = E{x|y; z(2),v(2)}
Ĉ(2) = Cov{x|y; z(2),v(2)} via p(x|y; z(2),v(2)) =

N (z(2);Ax,Diag(v(2))) px(x)∫
N (z(2);Ax,Diag(v(2))) px(x) dx

, (4)

and then uses those quantities to computes the posterior mean and (pixel-wise) variance of z:

ẑ(2) = Ax̂(2) and v̂(2) = diag(AĈ(2)AH). (5)

Finally, the messages passed between the two modules take the form

∀i : v(2)

i =
(
1/v̂(1)

i − γ(1)/v(1)

i

)−1
z(2)

i =
(
ẑ(1)

i /v̂(1)

i − γ(1)z(1)

i /v(1)

i

)
v(2)

i

and v(1)

i =
(
1/v̂(2)

i − γ(2)/v(2)

i

)−1
z(1)

i =
(
ẑ(2)

i /v̂(2)

i − γ(2)z(2)

i /v(2)

i

)
v(1)

i .
(6)

which are “extrinsic” when γ(1) = 1 = γ(2). When x is i.i.d. andA is a large, rotationally invariant
random matrix, it is possible to avoid the high-dimensional integral and posterior covariance matrix
Ĉ(2) in (4), as detailed in [16, 32–34]. But what can be done when x and A are structured and
non-random, as in most imaging applications?

For GLM image recovery, we propose to use EC as above, but with (4)-(5) approximated as follows:

1. Compute the posterior mean x̂(2) using a neural network fθ(z(2);v(2)) trained to minimize
Jf (θ) =

∑T
t=1 E ‖xt − x̂(2)

t ‖2, with training {xt}Tt=1, output x̂(2)

t = fθ(Axt + et;v
(2)),

noise et ∼ N (0,Diag(v(2))), and variances v(2)

i ∼ i.i.d. Unif[0, vmax] for some vmax.

2. Compute the posterior variances v̂(2) using a neural network hφ(z(2);v(2)) trained to mini-
mize Jh(φ) =

∑T
t=1 E ‖|zt−ẑ(2)

t |�2−v̂
(2)

t ‖2, with true zt = Axt, estimated ẑ(2)

t = Ax̂(2)

t ,
elementwise square (·)�2, and v̂(2)

t = hφ(z(2)

t ;v(2)). This avoids the computation of Ĉ(2).

For phase retrieval, we make additional simplifications, some of which exploit AHA = I , which
holds for both the (possibly oversampled) Fourier and CDP (2) incarnations ofA.

1. Use the Laplace approximation [39] of (ẑ(1)

i , v̂(1)

i ) in (3), computable in closed-form.

2. Approximate the variance vector v(2) by 1 times its average value v(2) , 1
m1>v(2).

3. Replace the linearized measurement z(2)

t = Axt + et, where et ∼ N (0, v(2)I), with the
sufficient statistic r(2)

t , AHz(2)

t = xt + εt, where again εt ∼ N (0, v(2)I). Consequently,
estimating xt from r(2)

t becomes a denoising task, for which we use x̂(2) = fθ(r(2), v(2)1).

4. Approximate v̂(2) = hφ(z(2); v(2)1) by 1 times v̂(2) , 1
m‖ẑ

(2) − z(2)‖. This is admittedly
heuristic, but it works well empirically and avoids the need to use (and hence train) hφ.

The resulting phase-retrieval algorithm, which we’ll refer to as “deepECpr,” performs iterative
denoising, similar to PnP or RED. However, it requires many fewer iterations, as we show next.

3 Numerical Experiments

To compare to prDeep [21], we repeat one of the experiments in [21], where 128×128 grayscale
images from Set12 [40] were recovered from phaseless CDP measurements y under the noise model

y2i = |zi|2 + wi with wi ∼ N (0, α2|zi|2). (7)

This approximates shot-noise corruption at noise level α since y2i /α
2 is approximately

Poisson(|zi|2/α2) [21]. For prDeep, we use the authors’ implementation [41] under default settings,
which uses py|z from (2) and a bank of four Matlab DnCNN denoisers [40] trained on the BSD400
dataset [42]. For deepECpr, we use the same py|z with two Python DnCNN denoisers trained on
BSD400 using the bias-free approach from [43]. For (6), deepECpr uses γ(1) = 1 and γ(2) = 0. We
also compare to the classical HIO algorithm [9], as implemented in [41], using 1000 iterations. Both
prDeep and deepECpr were initialized using 50 iterations of HIO, and they set v in (2) at the variance
of yi − |zi| averaged over the training data. See the Appendix for further details.
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Table 1: Average PSNR and SSIM at various shot-noise
levels α for Set12 test images

α = 9 α = 18 α = 27

method PSNR SSIM PSNR SSIM PSNR SSIM denoiser calls

HIO 30.92 0.9557 25.79 0.8568 22.44 0.7413 -
prDeep 38.68 0.9895 34.34 0.9760 31.91 0.9622 800

deepECpr 39.02 0.9909 34.5 0.9777 32.04 0.9635 25

Table 2: Improvement of deep-
ECpr over prDeep versus α

α ∆PSNR ± SE ∆SSIM ± SE

9 0.34 ± 0.09 0.0013 ± 0.0003
18 0.16 ± 0.06 0.0017 ± 0.0004
27 0.13 ± 0.06 0.0012 ± 0.0004

Figure 2: Average PSNR versus iteration for Set12 test data with shot-noise level α = 9 (left) and
FFHQ test data with shot-noise level α = 18 (right).

Table 1 shows PSNR and SSIM averaged over the Set12 test images, where the proposed deepECpr
outperformed prDeep and HIO at all three noise levels α. Table 2 shows that the PSNR and SSIM
gains are statistically significant. Furthermore, Fig. 2 shows that deepECpr converges more smoothly,
and two orders-of-magnitude faster, than prDeep. Example reconstruction plots in the Appendix
show that deepECpr obtained superior visual quality relative to HIO and prDeep.

In a second experiment, we compare to the recent “DPS” conditional diffusion method from [28],
again using phaseless CDP measurements at K = 4 with shot noise from (7). As in [28], we use
256×256 RGB images from the FFHQ dataset [44] and the DPS codebase from [45], which includes
a pre-trained unconditional FFHQ diffusion model. For deepECpr, this unconditional diffusion model
is rescaled to act as a denoiser, as in [28, eq. (9)]. Both DPS and deepECpr are configured to use py|z
from (2). As before, 1000-iteration HIO is used as a baseline, 50-iteration HIO is used to initialize
deepECpr, v in (2) is set at the variance of yi − |zi| averaged over the training data, and deepECpr
used γ(1) = 1 and γ(2) = 0.

Table 3: Average PSNR and SSIM at various shot-noise
levels α for FFHQ test images

α = 9 α = 18 α = 27

method PSNR SSIM PSNR SSIM PSNR SSIM denoiser calls

HIO 20.84 0.7821 20.02 0.5519 18.89 0.3959 -
DPS 41.98 0.9803 38.4 0.9619 36.14 0.9432 1000

deepECpr 43.52 0.9862 39.79 0.9724 37.47 0.9570 15

Table 4: Improvement of deep-
ECpr over DPS versus α

α ∆PSNR ± SE ∆SSIM ± SE

9 1.54 ± 0.03 0.0059 ± 0.0007
18 1.39 ± 0.02 0.0105 ± 0.0009
27 1.34 ± 0.03 0.0138 ± 0.0006

Tables 3 and 4 show PSNR and SSIM averaged over the FFHQ test images, where the proposed
deepECpr outperformed DPS and HIO at all three noise levels α. Furthermore, Fig. 2 shows that
deepECpr converges two orders-of-magnitude faster than prDeep. Example reconstruction plots in
the Appendix show that deepECpr obtained superior visual quality over HIO and DPS.

In a third experiment, we compare deepECpr to DPS and HIO using phaseless CDP measurements at
K = 4 with additive Gaussian noise, and we observe similar results. Please see the Appendix.

4 Conclusion

For generalized linear models, we proposed a novel variant of expectation consistent (EC) approx-
imation [29] that exploits deep neural networks. Unlike the traditional EC implementations, the
proposed “deepEC” framework does not require random forward operators nor an i.i.d. signal prior.
For phase retrieval, we proposed a simplified variant called “deepECpr.” In experiments recovering
natural images from phaseless, shot-noise corrupted, coded-diffraction-pattern outputs, we observed
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deepECpr outperforming the state-of-the-art prDeep [21] and the DPS [28] methods in reconstruction
accuracy, while reducing complexity by two orders of magnitude.
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Appendix
Test images: For our grayscale-image experiments, we test performance using all 12 images from the
Set12 dataset [40]. For our RGB-image experiments, we test performance using the first 30 images
from the FFHQ dataset [44].

Algorithm parameters: HIO was run for 1000 iterations using the code from [41]. prDeep was
run using the authors’ code from [41] under default settings. DPS was run using the authors’ code
from [45], modified to accommodate our py|z from (2). In DPS, tuning the hyperparameter v in py|z is
equivalent to tuning the step-size on the gradient of the log likelihood, which we did by maximizing
the PSNR on validation data that comprised FFHQ images 31-60.

Denoisers: As described in [21], prDeep uses four Matlab DnCNN denoisers trained on BSD400
at noise standard deviation σ = 60, 40, 20, and 10, respectively, where 255 is the maximum pixel
intensity. First prDeep is run for 200 iterations using the σ = 60 DnCNN, then the result is improved
by running another 200 iterations using the σ = 40 DnCNN, and so on, for a total of 800 iterations.
For our grayscale-image experiment, deepECpr uses two bias-free [43] Python DnCNN denoisers
trained on BSD400 with σ drawn uniformly over the intervals [0, 10] and [0, 5], respectively. First
deepECpr is run for 15 iterations using the first denoiser, and then the result is improved by running
for 10 iterations using the second denoiser. For the RGB-image experiments, deepECpr used the
pre-trained FFHQ unconditional diffusion model from [28] as a denoiser. Since this denoiser accepts
a noise variance, we feed it v(2) for the first 10 iterations, but use v(2) = 0 for the remaining 5
iterations.

Additional experiments: We also considered the Gaussian noise corruption model:

yi = |zi|+ wi with wi ∼ N (0, v), (8)

where v controls the variance of the additive white Gaussian noise. Table 5 demonstrate that deepECpr
performs better than both HIO and DPS in this scenario, and Table 6 suggests that the performance
gap between deepECpr and DPS is statistically significant.

Table 5: Average PSNR and SSIM at various Gaussian noise
levels

√
v for FFHQ test images
√
v = 0.04

√
v = 0.06

√
v = 0.08

method PSNR SSIM PSNR SSIM PSNR SSIM denoiser calls

HIO 18.98 0.5154 18.05 0.3692 16.87 0.2697 -
DPS 37.95 0.9584 35.91 0.9392 34.47 0.9206 1000

deepECpr 39.33 0.9699 37.22 0.9542 35.20 0.9325 15

Table 6: Improvement of deep-
ECpr over DPS versus

√
v

√
v ∆ PSNR ± SE ∆ SSIM ± SE

0.04 1.38 ± 0.02 0.0115 ± 0.0008
0.06 1.31 ± 0.04 0.0150 ± 0.0006
0.08 0.73 ± 0.13 0.0119 ± 0.0026

Reconstruction examples under shot noise: Reconstruction examples for phaseless CDP recon-
struction under shot noise are shown below, for both the Set12 and FFHQ experiments.
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Figure 3: Top: Reconstructions of a 128× 128 Set12 image from phaseless CDP measurements at
K = 4 in shot noise with α = 18. PSNR is shown in parentheses. Bottom: Zoomed versions of the
cyan squares in the top row. Note how deepECpr reconstruction has less over-smoothing than prDeep
and less noise than HIO.

Figure 4: Top: Reconstructions of a 128× 128 Set12 image from phaseless CDP measurements at
K = 4 in shot noise with α = 9. PSNR is shown in parentheses. Bottom: Zoomed versions of the
cyan squares in the top row. Note how deepECpr removes more noise than prDeep and HIO while
still preserving fine details.
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Figure 5: Top: Reconstructions of a 256× 256 FFHQ image from phaseless CDP measurements at
K = 4 in shot noise with α = 9. PSNR is shown in parentheses. Bottom: Zoomed versions of the
cyan squares in the top row. Note how DPS failed to reconstruct the skin blemish near the center of
the zoomed plot.

Figure 6: Top: Reconstructions of a 256× 256 FFHQ image from phaseless CDP measurements at
K = 4 in shot noise with α = 27. PSNR is shown in parentheses. Bottom: Zoomed versions of the
cyan squares in the top row. Note how DPS created visual artifacts near the center of the zoomed
image.
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Figure 7: Top: Reconstructions of a 256× 256 FFHQ image from phaseless CDP measurements at
K = 4 in shot noise with α = 18. PSNR is shown in parentheses. Bottom: Zoomed versions of the
cyan squares in the top row. Note how DPS failed to reconstruct the skin blemish near the center of
the zoomed plot.

Figure 8: Top: Reconstructions of a 256× 256 FFHQ image from phaseless CDP measurements at
K = 4 in shot noise with α = 9. PSNR is shown in parentheses. Bottom: Zoomed versions of the
cyan squares in the top row. Note how DPS failed to reconstruct the fine hair stands near the center of
the zoomed plot.
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Figure 9: Top: Reconstructions of a 256× 256 FFHQ image from phaseless CDP measurements at
K = 4 in shot noise with α = 27. PSNR is shown in parentheses. Bottom: Zoomed versions of the
cyan squares in the top row. Note how DPS generated artifacts in and around the lips.
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