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ABSTRACT

There are threefold challenges in emotion recognition. First,
it is difficult to recognize human’s emotional states only con-
sidering a single modality. Second, it is expensive to manually
annotate the emotional data. Third, emotional data often
suffers from missing modalities due to unforeseeable sensor
malfunction or configuration issues. In this paper, we address
all these problems under a novel multi-view deep generative
framework. Specifically, we propose to model the statistical
relationships of multi-modality emotional data using mul-
tiple modality-specific generative networks with a shared
latent space. By imposing a Gaussian mixture assumption
on the posterior approximation of the shared latent vari-
ables, our framework can learn the joint deep representation
from multiple modalities and evaluate the importance of each
modality simultaneously. To solve the labeled-data-scarcity
problem, we extend our multi-view model to semi-supervised
learning scenario by casting the semi-supervised classification
problem as a specialized missing data imputation task. To
address the missing-modality problem, we further extend our
semi-supervised multi-view model to deal with incomplete
data, where a missing view is treated as a latent variable
and integrated out during inference. This way, the proposed
overall framework can utilize all available (both labeled and
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unlabeled, as well as both complete and incomplete) data to
improve its generalization ability. The experiments conducted
on two real multi-modal emotion datasets demonstrated the
superiority of our framework.
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1 INTRODUCTION

With the development of human-computer interaction (H-
CI), emotion recognition has become increasingly important.
Since human’s emotion contains many nonverbal cues, vari-
ous modalities ranging from facial expressions, body gesture,
voice to physiological signals can be used as the indicators of
emotional states [5, 24]. In real-world applications, it is diffi-
cult to recognize human’s emotional states only considering
a single modality, because signals from different modalities
represent different aspects of emotion and provide comple-
mentary information. Recent studies show that integrating
multiple modalities can significantly boost the emotion recog-
nition accuracy [18, 26, 31]. The most successful approach
to fuse the information from multiple modalities is based on
deep multi-view representation learning [21, 32, 36]. E.g., [23]
proposed a joint density model for emotion analysis with
a multi-modal deep Boltzmann machine (DBM) [32]. This
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multi-modal DBM is exploited to model the joint distribu-
tion over visual, auditory, and textual features. [17] proposed
a multi-modal emotion recognition method by using multi-
modal autoencoders (MAE) [21], in which the joint represen-
tations of Electroencephalogram (EEG) and eye movement
signals were extracted. Nevertheless, there are still limitations
with these deep multi-modal emotion recognition methods,
e.g., their performances depend on the amount of labeled
data and they could not handle incomplete data.

By using the modern sensing equipments, we can easily
collect massive emotion-related data from multiple modali-
ties. But, the data labeling procedure requires lots of manual
efforts. Therefore, in most cases only a small set of labeled
samples is available, while the majority of whole dataset is left
unlabeled. In addition to challenges with insufficient labeled
data, one must often address the incomplete-data problem,
i.e., not all modalities are available for every data point. Gen-
erally, we can identify various causes for incomplete data. E.g.,
unforeseeable sensor malfunction may fail to collect sensing
information, thus providing us incomplete data with one or
more missing modalities. Traditional multi-modal emotion
recognition approaches [17, 18, 23] only utilized the limited
amount of labeled data, which may result in severe overfitting.
Also, most of them neglect the missing modality issue, which
greatly limits their applications in real-world scenarios. The
most attractive way to deal with the aforementioned issues
is semi-supervised learning (SSL) with incomplete data. SSL
can improve model’s generalization ability by exploiting both
labeled and unlabeled data simultaneously [10, 28, 42], and
learning from incomplete data can guarantee the robustness
of the emotion recognition system [34].

In this paper, we show that the problems mentioned above
can be resolved under a unified multi-view deep generative
framework. For modeling the statistical relationships of multi-
modality emotional data, a shared latent variable is trans-
formed by different modality-specific generative networks to
different data views (modalities). Instead of treating each
view equally, we impose a non-uniformly weighted Gaussian
mixture assumption on the posterior approximation of the
shared latent variables. This is critical for inferring the joint
latent representation and the weight factor of each view from
multiple modalities. During optimization, a second lower
bound to the variational lower bound is derived to address
the intractable entropy of a mixed Gaussians. To leverage
the contextual information in the unlabeled data to augmen-
t the limited labeled data, we then extend our multi-view
framework to SSL scenario. It is achieved by casting the semi-
supervised classification problem as a specialized missing data
imputation task. Specifically, we treat the unknown labels as
latent variables and estimate them within a multi-view auto-
encoding variational Bayes framework. We further extend
the proposed SSL algorithm to the incomplete-data case by
introducing latent variables for the missing views. Besides
the unknown labels, the missing views are also integrated out
so that the marginal likelihood is maximized with respect to
model parameters. In this way, our SSL algorithm can utilize
all available data: both labeled and unlabeled, as well as both

complete and incomplete. Since the category information and
the uncertainty of missing view are taken into account in the
training process, our SSL algorithm is more powerful than
traditional missing view imputation methods [6, 8, 25, 36].
We finally demonstrate the superiority of our framework
and provide insightful observations on two real multi-modal
emotion datasets.

2 RELATED WORK

Multi-modal approaches have been widely implemented for
emotion recognition [17, 18, 23, 26, 31, 33, 43]. E.g., [26] used
a multi-modal deep belief network (DBN) to extract features
from face, body gesture, voice and physiological signals for
emotion classification. [18] classified the combination of EEG
and eye movement signals into three affective states. But,
very few of them explored SSL. To the best of our knowl-
edge, only [42] proposed an enhanced multi-modal co-training
algorithm for semi-supervised emotion recognition, but its
shallow structure is hard to capture the high-level correlation
between different modalities. In addition, most prior work
in this field assumes that all modalities are available at all
times [42, 43], which is not realistic in practical environments.
In contrast to the above methods, our framework naturally
allows us to perform multi-modal emotion recognition within
SSL and incomplete-data situations.

The variational autoencoder (VAE) [15, 27] is one of the
most popular deep generative models (DGMs). VAE has
shown great advantages in semi-supervised classification [13,
20]. E.g., Kingma et al. [13] proposed a semi-supervised
VAE (M2) by modeling the joint distribution over data and
labels. Maaløe et al. proposed the auxiliary DGMs (ADGM
and SDGM) [20] by introducing auxiliary variables, which
improve the variational approximation. Our proposed semi-
supervised multi-view DGMs distinguish our method from
all existing ones using VAE framework [3, 14, 20, 29, 37].

Incomplete-data problem is often circumvented via im-
putation methods [1, 35, 38, 39, 41]. Common imputation
schemes include matrix completion [8, 9, 11] and autoencoder-
based methods [6, 19, 30, 36]. Matrix completion methods,
such as SoftImputeALS [8], focus on imputing the missing
entries of a partially observed matrix based on assumption
that the completed matrix has a low-rank structure. Matrix
completion methods often assume data is missing at random
(MAR), which might not be optimal for our problem where
modalities are missing at continuous blocks. On the other
hand, autoencoder-based methods, such as DCCAE [36] and
CorrNet [6], exploit the connections between views, enabling
the incomplete view to be restored with the help of the com-
plete view. Besides low-rank structure of the data matrix
and the connections between views, category information is
also important for missing view imputation tasks, though
category labels may be partially observed. So far, very few
algorithms [25, 40] can estimate the missing view under the
SSL scenario. Additionally, most previous works treat the
missing data as fixed values and hence ignore the uncertainty
of the missing data. Unlike them, our SiMVAE essentially
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performs infinite imputations by integrating out the missing
data.

3 METHODOLOGY

For simplicity we restrict further discussion to the case of two
views, though all the proposed methods can be extended to
more than two views. Assume we are faced with multi-view
data that appears as pairs (X, 𝑦) = ({x(𝑣)}2𝑣=1, 𝑦), with

observation x(𝑣) from the 𝑣-th view and the corresponding
class label 𝑦.

3.1 Multi-view Variational Autoencoder

3.1.1 DNN-parameterized Likelihoods. We assume that multi-
ple data views (modalities) {x(𝑣)}2𝑣=1 are generated indepen-
dently from a shared latent space with multiple view-specific
generative networks. Specifically, we assume a shared latent
variable z generates x(𝑣) with the following generative model
𝑃1 (cf. Figure 1a):

𝑝𝜃(𝑣)(x
(𝑣)|z) = 𝑓(x(𝑣); z, 𝜃(𝑣)), 𝑣 ∈ {1, 2}, (1)

where 𝑓(x(𝑣); z, 𝜃(𝑣)) is a suitable likelihood function (e.g. a
Gaussian for continuous observation or Bernoulli for binary
observation), which is formed by a non-linear transformation
of the latent variable z. This non-linear transformation is
essential to allow for higher moments of the data to be
captured by the density model, and we choose these non-linear
functions to be DNNs, referred to as the generative networks,
with parameters {𝜃(𝑣)}2𝑣=1. Note that, the likelihoods for
different views are assumed to be independent of each other,
with potentially different DNN types for different modalities.

3.1.2 Gaussian Prior and Gaussian Mixture Posterior. In vanil-
la VAE [15, 27], which can only handle single-view data,
both the prior 𝑝(z) and the approximate posterior 𝑞𝜑(z|X)
are assumed to be Gaussian distributions in order to maintain
mathematical and computational tractability. Although this
assumption has leaded to favorable results on several tasks,
it is clearly a restrictive and often unrealistic assumption.
Specifically, the choice of a Gaussian distribution for 𝑝(z) and
𝑞𝜑(z|X) imposes a strong uni-modal structure assumption
on the latent space. However, for data distributions that are
strongly multi-modal, the uni-modal Gaussian assumption
inhibits the model’s ability to extract and represent impor-
tant structure in the data. To improve the flexibility of the
model, one way is to impose a Mixture of Gaussians (MoG)
assumption on 𝑝(z). However, it has the risk of creating sep-
arate “islands” of discontinuous manifolds that may break
the meaningfulness of the representation in the latent space.

To learn more powerful and expressive models (in par-
ticular, models with multi-modal latent variable structures
for multi-modal emotion recognition applications) we seek a
MoG for 𝑞𝜑(z|X), while preserving 𝑝(z) as a standard Gauss-
ian. Thus the prior distribution and the inference model 𝑄1

(cf. Figure 1b) are defined as: 𝑝(z) = 𝒩 (z|0, I),

𝑞𝜑(z|X) =
2∑︁
𝑣=1

𝜆(𝑣)𝒩
(︁
z|𝜇𝜑(𝑣)(x

(𝑣)), Σ𝜑(𝑣)(x
(𝑣))

)︁
, (2)

where the mean 𝜇𝜑(𝑣) and the covariance Σ𝜑(𝑣) are nonlinear

functions of the observation x(𝑣), with variational parameter
𝜑(𝑣). As in our generative model, we choose these nonlinear
functions to be DNNs, referred to as the inference networks.
𝜆(𝑣) is the non-negative normalized weight factor for the 𝑣-th
view, i.e., 𝜆(𝑣) > 0 and

∑︀2
𝑣=1 𝜆

(𝑣) = 1. Note that, Gershman
et al. [7] proposed a nonparametric variational inference
method by simply assuming the variational distribution to be
a uniformly weighted Gaussian mixture. However, treating
each component equally will lose flexibility in fusing multiple
data views. Instead of treating each view equally, our non-
uniformly weighted Gaussian mixture assumption can weight
each view automatically in subsequent emotion recognition
tasks, which is useful to identify the importance of each view.

3.2 Semi-supervised Multi-modal
Emotion Recognition

Although many supervised emotion recognition algorithms
exist (see [24] for a thorough literature review), very few
semi-supervised algorithms have been proposed to improve
the recognition performance by utilizing both labeled and
unlabeled data. Here we extend MVAE by introducing a con-
ditional probabilistic distribution for the unknown labels to
obtain a semi-supervised multi-view classification algorithm.

3.2.1 Generative model 𝑃2. Since the emotional data is con-
tinuous, we choose the Gaussian likelihoods. Then our semi-
supervised generative model 𝑃2 (cf. Figure 1c) is defined as

𝑝(𝑦)𝑝(z)
∏︀2
𝑣=1 𝑝𝜃(𝑣)(x

(𝑣)|𝑦, z):

𝑝(𝑦) = Cat (𝑦|𝜋) , 𝑝(z) = 𝒩 (z|0, I) , (3)

𝑝𝜃(𝑣)(x
(𝑣)|𝑦, z) = 𝒩

(︀
𝜇𝜃(𝑣)(𝑦, z), diag(𝜎2

𝜃(𝑣)(𝑦, z))
)︀
,

where Cat(·) denotes the categorical distribution, 𝑦 is treated
as a latent variable for the unlabeled data points, and the
mean 𝜇𝜃(𝑣) and variance 𝜎2

𝜃(𝑣)
are nonlinear functions of 𝑦

and z, with parameter 𝜃(𝑣).

3.2.2 Inference model𝑄2. The inference model𝑄2 (cf. Figure
1d) is defined as 𝑞𝜙(𝑦|X)𝑞𝜑(z|X, 𝑦):

𝑞𝜙(𝑦|X) = Cat (𝑦|𝜋𝜙(X)) , (4)

𝑞𝜑(z|X, 𝑦) =
2∑︁
𝑣=1

𝜆(𝑣)𝒩
(︁
z|𝜇𝜑(𝑣)(x

(𝑣), 𝑦), Σ𝜑(𝑣)(x
(𝑣), 𝑦)

)︁
,

where 𝑞𝜙(𝑦|X) is the introduced conditional distribution for
𝑦, and 𝑞𝜑(z|X, 𝑦) is assumed to be a mixture of Gaussians
to combine the information from multiple data views and
the label. Intuitively, 𝑞𝜑(z|X, 𝑦), 𝑝𝜃(𝑣)(x

(𝑣)|𝑦, z) and 𝑞𝜙(𝑦|X)
correspond to the encoder, decoder and classifier, respectively.
For brevity, we omit the explicit dependencies on x(𝑣), 𝑦 and
z for the moment variables mentioned above hereafter. In
principle, 𝜇𝜃(𝑣) , 𝜎

2
𝜃(𝑣)

, 𝜋𝜙, 𝜇𝜑(𝑣) and Σ𝜑(𝑣) can be imple-
mented by various DNN models, e.g., multi-layer perceptrons
and convolutional neural networks.

3.2.3 Objective function. In the semi-supervised setting, there
are two lower bounds for the labeled and unlabeled cases,
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z

𝑝(z)

x(1) x(2)

{𝑝
𝜃(𝑣)

(x(𝑣)|z)}2𝑣=1

(a) 𝑃1

z

𝑞𝜑(z|X)

x(1) x(2)

(b) 𝑄1

𝑦

𝑝(𝑦)

z

𝑝(z)

x(1) x(2)

{𝑝
𝜃(𝑣)

(x(𝑣)|𝑦, z)}2𝑣=1

(c) 𝑃2

𝑦

𝑞𝜙(𝑦|X)

z

𝑞𝜑(z|X, 𝑦)

x(1) x(2)

(d) 𝑄2

𝑦

𝑝(𝑦)

z

𝑝(z)

x𝑜

𝑝𝜃𝑜 (x
𝑜|𝑦, z,x𝑚)

x𝑚

𝑝𝜃𝑚 (x𝑚|𝑦, z)

(e) 𝑃3

𝑦

𝑞𝜙(𝑦|X)

z

𝑞𝜑(z|X, 𝑦)

x𝑜 x𝑚

𝑞𝜓(x
𝑚|x𝑜)

(f) 𝑄3

Figure 1: Graphical models of the proposed algorithms: (a, b) multi-view variational autoencoder (MVAE);
(c, d) semi-supervised MVAE (SMVAE); (e, f) semi-supervised incomplete MVAE (SiMVAE). In (e) and (f),

we partition the two-view data point (i.e., X = {x(1),x(2)}) into an observed view x𝑜 and a missing view x𝑚

(i.e., X = {x𝑜,x𝑚}). Both 𝑦 and x𝑚 are partially observed.

respectively. The variational lower bound on the marginal
likelihood for a single labeled data point is

log 𝑝𝜃(X, 𝑦) ≥ E𝑞𝜑(z|X,𝑦)
[︂
log

𝑝𝜃(X, 𝑦, z)

𝑞𝜑(z|X, 𝑦)

]︂
≥ E𝑞𝜑(z|X,𝑦)

[︂ 2∑︁
𝑣=1

log 𝑝𝜃(𝑣)(x
(𝑣)|𝑦, z) + log 𝑝(𝑦)

+ log 𝑝(z)

]︂
−

2∑︁
𝑣=1

𝜆(𝑣) · log
(︂ 2∑︁
𝑙=1

𝜆(𝑙) · 𝜔𝑣,𝑙
)︂

≡ −ℒ(X, 𝑦), (5)

where 𝜔𝑣,𝑙 = 𝒩
(︀
𝜇𝜑(𝑣) |𝜇𝜑(𝑙) , Σ𝜑(𝑣) + Σ𝜑(𝑙)

)︀
. It should be

noted that, the Shannon entropy E𝑞𝜑(z|X,𝑦)[− log 𝑞𝜑(z|X, 𝑦)]
is hard to compute analytically, and we have used the Jensen’s
inequality to derive a lower bound of it (see Supplementary
Material Section A for details). For unlabeled data point, the
variational lower bound on the marginal likelihood can be
given by:

log 𝑝𝜃(X) ≥ E𝑞𝜙,𝜑(𝑦,z|X)

[︂
log

𝑝𝜃(X, 𝑦, z)

𝑞𝜙,𝜑(𝑦, z|X)

]︂
(6)

= E𝑞𝜙(𝑦|X)

[︀
− ℒ(X, 𝑦)− log 𝑞𝜙(𝑦|X)

]︀
≡ −𝒰(X),

with 𝑞𝜙,𝜑(𝑦, z|X) = 𝑞𝜙(𝑦|X)𝑞𝜑(z|X, 𝑦).
Therefore, the objective function for the entire dataset is:

𝒥SMVAE =
∑︁

(X,𝑦)∈𝑆𝑙

ℒ(X, 𝑦)

⏟  ⏞  
labeled

+
∑︁
X∈𝑆𝑢

𝒰(X)⏟  ⏞  
unlabeled

, (7)

where 𝑆𝑙 and 𝑆𝑢 denote labeled and unlabeled dataset, re-
spectively. The classification accuracy can be improved by
introducing an explicit classification loss for labeled data,
and the extended objective function is now:

ℱSMVAE = 𝒥SMVAE + 𝛼 ·
∑︁

(X,𝑦)∈𝑆𝑙

[︀
− log 𝑞𝜙(𝑦|X)

]︀
, (8)

where 𝛼 is a weight parameter between generative and dis-

criminative learning. We set 𝛼 = 𝑐 · (𝑁𝑙+𝑁𝑢)
𝑁𝑙

, where 𝑐 is a

scaling constant, and 𝑁𝑙 and 𝑁𝑢 are the numbers of labeled
and unlabeled data points in one minibatch, respectively.
Note that, the classifier 𝑞𝜙(𝑦|X) is also used at test phase
for the prediction of unseen data. Eq. (8) provides a unified

objective function for optimizing the parameters of encoder,
decoder and classifier networks.

3.2.4 Parameter optimization. Parameter optimization can
be done jointly by using the stochastic backpropagation tech-
nique [15, 27]. The reparameterization trick [13, 15] is a vital
component of the model, because it allows us to take the de-
rivative of E𝑞𝜑(z|X,𝑦)[log 𝑝𝜃(𝑣)(x

(𝑣)|𝑦, z)] w.r.t. the variational
parameters 𝜑. However, the use of Gaussian mixture for vari-
ational posterior distribution 𝑞𝜑(z|X, 𝑦) makes it infeasible to
apply the reparameterization trick directly. It can be shown
that, for any 𝑣 ∈ {1, 2}, E𝑞𝜑(z|X,𝑦)[log 𝑝𝜃(𝑣)(x

(𝑣)|𝑦, z)] can be
rewritten, using the location-scale transformation for the
Gaussian distribution, as:

E𝑞𝜑(z|X,𝑦)[log 𝑝𝜃(𝑣)(x
(𝑣)|𝑦, z)] (9)

=

2∑︁
𝑙=1

𝜆(𝑙)E𝒩 (𝜖(𝑙)|0,I)

[︂
log 𝑝𝜃(𝑣)(x

(𝑣)|𝑦,𝜇𝜑(𝑙) +R𝜑(𝑙)𝜖
(𝑙))

]︂
,

where R𝜑(𝑙)R⊤
𝜑(𝑙) = Σ𝜑(𝑙) and 𝑙 ∈ {1, 2}. While the expecta-

tions on the right hand side still cannot be solved analytical-
ly, their gradients w.r.t. 𝜃(𝑣), 𝜑(𝑙) and 𝜆(𝑙) can be efficiently
estimated using Monte-Carlo method (see Supplementary
Material Section B for details). The gradients of the objective
function (Eq. (8)) can then be computed by using the chain
rule and the derived Monte-Carlo estimators.

3.3 Handling Incomplete Data

In the above discussion it is assumed that all modalities are
available for every data point. In practice, however, many
samples generally have incomplete modalities (i.e., with one
or more missing modalities) [34]. In light of this, we further
develop a semi-supervised incomplete multi-view classifica-
tion algorithm (SiMVAE). For simplicity, we assume only one

view (either x(1) or x(2)) is incomplete, though our model can
be easily extended to more sophisticated cases. We partition
each data point into an observed view x𝑜 and a missing view
x𝑚 (i.e., X = {x𝑜,x𝑚}).

3.3.1 Generative model 𝑃3. In this setting, only a subset of
the samples have complete views and corresponding labels.
We regard both the unknown label 𝑦 and the missing view x𝑚

as latent variables. Then our generative model 𝑃3 (cf. Figure
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1e) is defined as 𝑝(𝑦)𝑝(z)𝑝𝜃𝑚(x𝑚|𝑦, z)𝑝𝜃𝑜(x𝑜|𝑦, z,x𝑚):

𝑝𝜃𝑚(x𝑚|𝑦, z) = 𝒩
(︀
𝜇𝜃𝑚(𝑦, z), diag(𝜎2

𝜃𝑚(𝑦, z))
)︀
, (10)

𝑝𝜃𝑜(x
𝑜|𝑦, z,x𝑚) = 𝒩

(︀
𝜇𝜃𝑜(𝑦, z,x

𝑚), diag(𝜎2
𝜃𝑜(𝑦, z,x

𝑚))
)︀
,

where 𝑝𝜃𝑚(·) and 𝑝𝜃𝑜(·) are DNNs with parameters 𝜃𝑚 and
𝜃𝑜, respectively. 𝑝(𝑦) and 𝑝(z) are defined as in Eq. (3).

3.3.2 Inference model 𝑄3. As multi-modality emotional data
are collected from the same subject, there must be some un-
derlying relationships between modalities, though they focus
on different information. Given the observed modality, the es-
timation of missing modality is feasible if we capture the rela-
tionships between modalities. Therefore, the inference model
𝑄3 (cf. Figure 1f) is defined as 𝑞𝜓(x

𝑚|x𝑜)𝑞𝜙(𝑦|X)𝑞𝜑(z|X, 𝑦),
with

𝑞𝜓(x
𝑚|x𝑜) = 𝒩

(︀
𝜇𝜓(x

𝑜), diag(𝜎2
𝜓(x

𝑜))
)︀
, (11)

where 𝑞𝜓(·) is a DNN with parameter 𝜓. 𝑞𝜙(𝑦|X) and 𝑞𝜑(z|X, 𝑦)
are defined as in Eq. (4). Intuitively, we formulate the missing
view imputation as a conditional distribution estimation task
(conditioned on the observed view). Compared with existing
single imputation methods [6, 19, 30], our model essentially
performs infinite imputations and hence takes the uncertainty
of the missing data into account. To obtain a single imputa-
tion of x𝑚 rather than the full conditional distribution one
can evaluate x𝑚 = E[𝑞𝜓(x𝑚|x𝑜)].

3.3.3 Objective function. In semi-supervised incomplete multi-
view setting, there are four lower bounds for the labeled-
complete, labeled-incomplete, unlabeled-complete and unla-
beled -incomplete cases, respectively.

Similar to Eq. (5), the variational lower bound on the
marginal likelihood for a single labeled -complete data point is

log 𝑝𝜃(X, 𝑦) ≥ E𝑞𝜑(z|X,𝑦)[log 𝑝𝜃𝑜(x
𝑜|x𝑚, 𝑦, z) + log 𝑝(𝑦)

+ log 𝑝𝜃𝑚(x𝑚|𝑦, z) + log 𝑝(z)]−
2∑︁
𝑣=1

𝜆(𝑣) · log
(︂ 2∑︁
𝑙=1

𝜆(𝑙) · 𝜔𝑣,𝑙
)︂

≡ −ℒ𝒞(X, 𝑦), (12)

where 𝜔𝑣,𝑙 = 𝒩
(︀
𝜇𝜑(𝑣) |𝜇𝜑(𝑙) , Σ𝜑(𝑣) +Σ𝜑(𝑙)

)︀
. In the labeled-

incomplete context, the variational lower bound on the mar-
ginal likelihood for a single data point can be given by:

log 𝑝𝜃(x
𝑜, 𝑦) ≥

∫︁
z

∫︁
x𝑚

log 𝑝𝜃(X, 𝑦, z) 𝑑z 𝑑x
𝑚 (13)

= E𝑞𝜓(x𝑚|x𝑜)
[︀
− ℒ𝒞(X, 𝑦)− log 𝑞𝜓(x

𝑚|x𝑜)
]︀
≡ −ℒℐ(x𝑜, 𝑦).

The solution to E𝑞𝜓(x𝑚|x𝑜)[− log 𝑞𝜓(x
𝑚|x𝑜)] is analytical s-

ince the conditional distribution 𝑞𝜓(x
𝑚|x𝑜) is assumed to be

a Gaussian (cf. Eq. (11)). For unlabeled -complete data point,
the variational lower bound on the marginal likelihood can
be obtained by

log 𝑝𝜃(X) ≥
∫︁
z

∫︁
𝑦

log 𝑝𝜃(X, 𝑦, z) 𝑑z 𝑑𝑦

= E𝑞𝜙(𝑦|X)

[︀
− ℒ𝒞(X, 𝑦)− log 𝑞𝜙(𝑦|X)

]︀
≡ −𝒰𝒞(X). (14)

For unlabeled-incomplete case, the variational lower bound
on the marginal likelihood can be given by:

log 𝑝𝜃(x
𝑜) ≥

∫︁
z

∫︁
𝑦

∫︁
x𝑚

log 𝑝𝜃(X, 𝑦, z) 𝑑z 𝑑𝑦 𝑑x
𝑚

= E𝑞𝜓(x𝑚|x𝑜)
{︀
E𝑞𝜙(𝑦|X)

[︀
− ℒ𝒞(X, 𝑦)− log 𝑞𝜙(𝑦|X)

]︀
− 𝑞𝜓(x

𝑚|x𝑜)
}︀
≡ −𝒰ℐ(x𝑜). (15)

Comparing to Eq. (14) we see that aside from the explicit
conditional distribution for unknown label 𝑦 we have added
a conditional distribution 𝑞𝜓(x

𝑚|x𝑜) for missing view x𝑚.
The objective function for all available data points is now:

𝒥SiMVAE =
∑︁

(X,𝑦)∈𝑆𝑙𝑐

ℒ𝒞(X, 𝑦)

⏟  ⏞  
labeled-complete

+
∑︁

(x𝑜,𝑦)∈𝑆𝑙𝑖

ℒℐ(x𝑜, 𝑦)

⏟  ⏞  
labeled-incomplete

+
∑︁

X∈𝑆𝑢𝑐

𝒰𝒞(X)⏟  ⏞  
unlabeled-complete

+
∑︁

x𝑜∈𝑆𝑢𝑖

𝒰ℐ(x𝑜)

⏟  ⏞  
unlabeled-incomplete

. (16)

Model performance can be improved by introducing explic-
it imputation loss and classification loss for complete data
and labeled data, respectively. Therefore, the final objective
function is

ℱSiMVAE = 𝒥SiMVAE + 𝛼1 ·
∑︁
X∈𝑆𝑐

[︀
− log 𝑞𝜓(x

𝑚|x𝑜)
]︀

+ 𝛼2 ·
∑︁

(X,𝑦)∈𝑆𝑙

[︀
− log 𝑞𝜙(𝑦|X)

]︀
, (17)

where 𝛼1 and 𝛼2 are weight parameters, 𝑆𝑐 = 𝑆𝑙𝑐 ∪ 𝑆𝑢𝑐
and 𝑆𝑙 = 𝑆𝑙𝑐 ∪ 𝑆𝑙𝑖. We set 𝛼1 = 𝑐1 · (𝑁𝑐+𝑁𝑖)

𝑁𝑐
and 𝛼2 =

𝑐2 · (𝑁𝑙+𝑁𝑢)
𝑁𝑙

, where 𝑐1 and 𝑐2 are scaling constants, and 𝑁𝑐,

𝑁𝑖, 𝑁𝑙 and 𝑁𝑢 are the numbers of complete, incomplete,
labeled and unlabeled data in one minibatch, respectively.
Noted that the explicit classification loss (i.e., last term
in Eq. (17)) allows SiMVAE to use the partially observed
category information to assist the generation of x𝑚 given
x𝑜, which is more effective than the unsupervised imputation
algorithms [6, 36]. Similarly, Eq. (17) can be optimized by
using the stochastic backpropagation technique [15, 27].

3.3.4 Connections to auxiliary deep generative models. In [20],
Maaløe et al. proposed auxiliary deep generative models
(ADGM and SDGM) by defining the inference model as
𝑞𝜓(a|x𝑜)𝑞𝜙(𝑦|a,x𝑜)𝑞𝜑(z|a,x𝑜, 𝑦), where a is the auxiliary la-
tent variable introduced to make the variational distribution
more expressive, and 𝑞𝜓(a|x𝑜) = 𝒩

(︀
𝜇𝜓(x

𝑜), diag(𝜎2
𝜓(x

𝑜))
)︀
.

If x𝑚 is a totally unobservable variable in Figures 1e and 1f,
similar to SDGM, SiMVAE becomes a two-layered stochastic
model. Since the generative process is conditioned on the
auxiliary variable, two-layered stochastic model is more flex-
ible than ADGM [20]. Standard ADGM and SDGM could
not handle incomplete multi-view data. We endow them with
this ability by forcing the inferred auxiliary variable a close
to x𝑚 on the set of complete data. E.g., we can obtain the
objective function of SDGM+ by introducing an additional
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imputation loss to SDGM:

ℱSDGM+ = 𝒥SDGM + 𝛼3 ·
∑︁
X∈𝑆𝑐

[︀
− log 𝑞𝜓(a|x𝑜)

]︀
, (18)

where 𝛼3 is a regularization parameter, X = {x𝑚,x𝑜} and
𝑆𝑐 denotes the set of complete data. 𝒥SDGM can be found
in [20]. Intuitively, SDGM+ not only enjoys the advantages of
SDGM (in terms of flexibility, convergence and performance),
but also captures the relationships between views via the
auxiliary inference model 𝑞𝜓(a|x𝑜). However, SDGM+ sets a
single Gaussian in the variational distribution 𝑞𝜑(z|a,x𝑜, 𝑦),
which may restrict its ability in multi-modality fusion.

4 EXPERIMENTS

4.1 Datasets

SEED: The SEED dataset [44] contains Electroencephalo-
gram (EEG) and eye movement (Eye) signals from 9 subjects
during watching 15 movie clips, where each movie clip lasts
about 4 minutes long. The EEG signals were recorded from
62 channels and the Eye signals contained information about
blink, saccade fixation and so on. We used the EEG and Eye
data from 9 subjects across 3 sessions, totally 27 data files.
For each data file, data from watching the 1-9 movie clips
were used as training set, while data from watching the 10-12
movie clips were used as validation set and the rest (13-15)
were used as testing set.

DEAP:The DEAP dataset [16] contains EEG and peripheral
physiological signals (PPS) from 32 subjects during watching
40 one-minute duration music videos. The EEG signals were
recorded from 32 channels, whereas the PPS was recorded
from 8 channels. The participants, using values from 1 to
9, rated each music video in terms of the levels of valence,
arousal and so on. In our experiment, the valence-arousal
space was divided into four quadrants according to the rat-
ings. The threshold we used was 5, leading to four classes of
data. Considering the variations of participants’ ratings pos-
sibly associated with individual difference in rating scale, we
discarded the samples whose ratings of arousal and valence
are between 4 and 6. The dataset was randomly divided into
10-folds, where 8 folds for training, one fold for validation
and the last fold for testing.

For SEED, we used the extracted differential entropy (DE)
features and eye movement features (blink, saccade fixation
and so on) [18]. For DEAP, following [18], we split the time
series data into many one-second non-overlapping segments,
where each segment is treated as an instance. Then we ex-
tracted the DE features from EEG and PPS data instances.
The DE features can be calculated in four frequency bands:
theta (4-8Hz), alpha (8-14Hz), beta (14-31Hz), and gamma
(31-45Hz), and we used all band’s features. The details of the
data used in our experiments were summarized in Table 1.

dataset #sample #modality (#dim.) #training #validation #test #class

SEED 22734 EEG(310), Eye(33) 13473 4725 4536 3
DEAP 21042 EEG(128), PPS(32) 16834 2104 2104 4

Table 1: Properties of the data used in experiments.

4.2 Semi-supervised Classification with
Multi-Modality Emotional Data

4.2.1 Experimental setting. To simulate SSL scenario, on
both datasets, we randomly labeled different proportions of
samples in the training set, and remained the rest samples in
the training set unlabeled. For transductive SSL, we trained
models on the dataset consisting of the testing data and
labeled data belonging to training set. For inductive SSL, we
trained models on the entire training set consisting of the la-
beled and unlabeled data. For supervised learning, we trained
models on the labeled data belonging to training set, and
test their performance on the testing set. We compared our
SMVAE with a broad range of solutions, including MAE [21],
DCCA [2], DCCAE [36], AMMSS [4], AMGL [22], M2 [13]
and SDGM [20]. For SMVAE, we considered multi-layer per-
ceptrons as the type of inference and generative networks. On
both datasets, we set the hidden architectures of the inference
and generative networks for each view as ‘100-50-30’ and ‘30-
50-100’, respectively, where ‘30’ is the dimension of the latent
variables. We used the Adam optimizer [12] with a learning
rate 𝜂 = 3 × 10−4 in training. The scaling constant 𝑐 was
selected from {0.1, 0.5, 1}. For MAE, DCCA and DCCAE,
we considered the same setups (network structure, learning
rate, etc.) as our SMVAE. Furthermore, we used support
vector machines (SVM) and transductive SVM (TSVM) for
supervised learning and transductive SSL, respectively. For
AMGL, M2 and SDGM we used their default settings, and
we evaluated M2’s performance on each modality and the
concatenation of all modalities, respectively.

SEED data Algorithms 1% labeled 2% labeled 3% labeled

Supervised

learning

MAE+SVM [21] .814±.031 .896±.024 .925±.024
DCCA+SVM [2] .809±.035 .891±.035 .923±.028
DCCAE+SVM [36] .819±.036 .893±.034 .923±.027

Transductive

SSL

AMMSS [4] .731±.055 .839±.036 .912±.018
AMGL [22] .711±.047 .817±.023 .886±.028
MAE+TSVM [21] .818±.035 .910±.025 .931±.026
DCCA+TSVM [2] .811±.031 .903±.024 .928±.021
DCCAE+TSVM [36] .823±.040 .907±.027 .929±.023
SMVAE .861±.037 .931±.020 .960±.021

Inductive

SSL

M2 (Eye) [13] .753±.024 .849±.055 .899±.049
M2 (EEG) [13] .768±.041 .861±.040 .919±.026
M2 (Concat.) [13] .803±.035 .876±.043 .926±.044
SDGM (Concat.) [20] .819±.034 .893±.042 .932±.041
SMVAE .880±.033 .955±.020 .968±.015

DEAP data Algorithms 1% labeled 2% labeled 3% labeled

Supervised

learning

MAE+SVM [21] .353±.027 .387±.014 .411±.016
DCCA+SVM [2] .359±.016 .400±.014 .416±.018
DCCAE+SVM [36] .361±.023 .403±.017 .419±.013

Transductive

SSL

AMMSS [4] .303±.029 .353±.024 .386±.014
AMGL [22] .291±.027 .341±.021 .367±.019
MAE+TSVM [21] .376±.025 .403±.031 .417±.026
DCCA+TSVM [2] .379±.021 .408±.024 .421±.017
DCCAE+TSVM [36] .384±.022 .412±.027 .425±.021
SMVAE .424±.020 .441±.013 .456±.013

Inductive

SSL

M2 (PPS) [13] .366±.024 .389±.048 .402±.034
M2 (EEG) [13] .374±.019 .397±.013 .407±.016
M2 (Concat.) [13] .383±.019 .404±.016 .416±.015
SDGM (Concat.) [20] .389±.019 .411±.017 .423±.015
SMVAE .421±.017 .439±.015 .451±.013

Table 2: Comparison of classification accuracies with
different proportions of labeled training samples.

4.2.2 Classification accuracy with very few labels. Table 2
presents the classification accuracies of all methods on SEED
and DEAP datasets. The proportions of labeled samples in
the training set vary from 1% to 3%. Results (mean±std) were
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averaged over 20 independent runs. Several observations can
be drawn as follows. First, the average accuracy of SMVAE
significantly surpasses the baselines in all cases. Second, by
examining SMVAE against supervised learning approaches
trained on very limited labeled data, we can find that SMVAE
always outperforms them. This encouraging result shows that
SMVAE can effectively leverage the useful information from
unlabeled data. Third, multi-view semi-supervised algorithms
AMMSS and AMGL perform worst in all cases. We attribute
this to the fact that graph-based shallow models AMMSS and
AMGL cannot extract the deep features from the original
data. Fourth, the performances of three TSVM-based semi-
supervised methods are moderate. Finally, compared with the
single-view methods M2 and SDGM, our multi-view method
is more effective in integrating multiple modalities.

4.2.3 Flexibility and stability. The proportion of unlabeled
samples in the training set will affect the performance of
semi-supervised models. Figure 2a shows the changes of in-
ductive SMVAE’s average accuracy on SEED with different
proportions of unlabeled samples in the training set. We can
observe that the unlabeled samples can effectively boost the
classification accuracy of SMVAE. Instead of treating each
modality equally, SMVAE can weight each modality and
perform classification simultaneously. Figure 2b shows the
learned weight factors by inductive SMVAE on both datasets
(1% labeled). From it, we can observe that EEG modality
has the highest weight on both datasets, which is consistent
with single modality’s performance of M2 shown in Table 2
and the results in previous work [18]. The scaling constant
𝑐 controls the weight of discriminative learning in SMVAE.
Figure 2c shows the performance of inductive SMVAE with
different 𝑐 values (1% labeled). From it, we can find that the
scaling constant 𝑐 can be chosen from {0.1, 0.5, 1}, where
SMVAE achieves good results.
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Figure 2: For Inductive SMVAE: (a) performance
with different proportions of unlabeled training sam-
ples on SEED dataset, (b) learned weight factors, (c)
the impact of scaling constant 𝑐.

4.3 Semi-supervised Learning with
Incomplete Multi-Modality Data

4.3.1 Experimental setting. To simulate the incomplete data
setting, we randomly selected a fraction of instances (from
both labeled and unlabeled training data) to be unpaired
examples, i.e., they are described by only one modality, and
the remaining ones appear in both modalities. We varied the
fraction of missing data from 10% to 90% with an interval of
20%, while no missing data in validation and testing sets. In

our experiment, we assumed the Eye modality of SEED and
the PPS modality of DEAP are incomplete.

There are two main solutions for semi-supervised classi-
fication of incomplete multi-view data. One way is to com-
plete the missing view firstly in an unsupervised way, and
then conduct semi-supervised classification. Another way is
to integrate missing view imputation and semi-supervised
classification into an end-to-end learning framework. We com-
pared our (inductive) SiMVAE algorithm with these two ways.
Specifically, we compared SiMVAE with SoftImputeALS [8],
DCCAE [36], CorrNet [6], CoNet [25] and SDGM+ (a variant
of SDGM [20], cf. Section 3.3.4). For SoftImputeALS, DC-
CAE and CorrNet, we first estimated the missing modalities
by using the authors’ implementation, and then conduct-
ed semi-supervised classification by using our (inductive)
SMVAE algorithm. For CoNet and SDGM+, we conducted
missing modality imputation and semi-supervised classifi-
cation simultaneously based on our own implementations.
Additionally, we also compared SiMVAE with the following
two baselines: 1) SiMVAE with complete data (FullData,
i.e., no missing modality for any training instances), which
can be regarded as a upper bound of SiMVAE; 2) SiMVAE
with only paired data (PartialData, i.e., we simply discard
those incomplete samples in training process), which can be
regarded as a lower bound of SiMVAE. These two bounds
define the potential range of SiMVAE’s performance. For
SiMVAE, both 𝑐1 and 𝑐2 were selected from {0.1, 0.5, 1}. For
SDGM+, we selected the regularization parameter 𝛼3 from
{1𝑒− 3, 1𝑒− 2, · · · , 1𝑒3}.
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Figure 3: Comparison of recognition accuracies with
different fractions of missing data and labeled data.

4.3.2 Semi-supervised classification. The performance of our
SiMVAE and the compared methods was shown in Figure
3, where each point on every curve is an average over 20
independent trials. From Figure 3, it is seen that SiMVAE
consistently outperforms the compared methods. Compared
with the two-stage methods (SoftImputeALS, DCCAE and
CorrNet), the advantage of SiMVAE is significant, especially
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when there are sufficient labeled data (3%). This is because
SiMVAE can make good use of the available category in-
formation to generate more informative modalities, which
in turn will improve classification performance. Whereas
the two-stage methods couldn’t obtain the global optimal
results. Also, SiMVAE shows obvious advantage over the
semi-supervised methods CoNet and SDGM+. This may be
because CoNet and SDGM+ are not designed to integrate
multiple modalities. Moreover, SiMVAE has been success-
ful even when a high percentage of samples are incomplete.
Specifically, SiMVAE with even about 50% incomplete sam-
ples achieves comparable results to the fully complete case
(FullData). With fractions lower than that, we observe that
SiMVAE roughly reached FullData’s performance, especial-
ly when the labeled data are sufficient. Finally, SiMVAE’s
performance is more closer to FullData than to PartialData,
which indicates the effectiveness of SiMVAE in learning from
incomplete data.

4.3.3 Missing modality imputation. Since the quality of re-
covered missing modalities directly affects the classification
results, we also evaluated the performance of missing modali-
ty imputation for all methods. For SiMVAE and SDGM+,
we obtained the single imputation of x𝑚 by evaluating the
conditional mean (x𝑚 = E[𝑞𝜓(x𝑚|x𝑜)]). We used the Normal-
ized Mean Squared Error (NMSE) to measure the relative
distance between the original and the recovered modalities.

NMSE = ‖X−X̂‖𝐹
‖X‖𝐹

, where X and X̂ are the original and

the recovered data matrices, respectively. ‖ · ‖𝐹 demotes the
Frobenious norm. Figure 4 shows the experimental results.
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Figure 4: Comparison of imputation errors with dif-
ferent fractions of missing data and labeled data.

From Figure 4, it can be seen that as the fraction of
missing data increases, the relative distance between the
original modalities and the recovered modalities increases.
Further, the semi-supervised imputation methods (SiMVAE,
CoNet and SDGM+) consistently outperforms the unsuper-
vised imputation methods (SoftImputeALS, DCCAE and
CorrNet), and increasing the number of labeled training da-
ta improves the imputation performance of semi-supervised
methods. This demonstrates that the category information
plays an important role in missing modality imputation.
SoftImputeALS shows the worst performance, which verifies

that matrix completion method is not suitable for missing
modality imputation. CoNet and SDGM+ obtain comparable
imputation errors to SiMVAE. This indicates that their mod-
erate classification performance in Figure 3 may be caused
by their inability in modality fusion. Except for SiMVAE
and SDGM+, other methods ignore the uncertainty of the
missing view, which also limits their imputation performance.
To compare the imputation performance more intuitively, we
visualize the original and recovered data matrices in Figure
5 (on SEED, 3% labeled and 10% missing Eye). From it, we
see that SiMVAE recovered more individual characteristics
of the original data matrix than other methods.

Original SiMVAE SDGM+ DCCAE SoftImputeALS

Figure 5: Visualization of the original and the recov-
ered data matrices on SEED dataset. Each row of
each panel is an instance of the missing modality.

4.3.4 Sensitivity analysis. Figure 6 shows the classification ac-
curacies of inductive SiMVAE with different scaling constants
𝑐1 and 𝑐2 on both datasets (1% labeled and 10% missing
data). From it, we can find that SiMVAE is not very sensitive
to the values of 𝑐1 and 𝑐2. We choose the best 𝑐1 and 𝑐2 from
{0.1, 0.5, 1} in the experiments.
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Figure 6: The impact of scaling constants 𝑐1 and 𝑐2.

5 CONCLUSION

We have proposed a novel semi-supervised multi-view deep
generative framework for multi-modal emotion recognition
with incomplete data. Under our framework, each modality of
the emotional data is treated as one view, and the importance
of each modality is inferred automatically by learning a non-
uniformly weighted Gaussian mixture posterior approxima-
tion for the shared latent variable. The labeled-data-scarcity
problem is naturally addressed within our framework through
casting the semi-supervised classification problem as a spe-
cialized missing data imputation task. The incomplete-data
problem is elegantly circumvented by treating the missing
views as latent variables and integrating them out. Experi-
mental results confirmed the superiorities of our framework.
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