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Abstract
Pre-trained models (PTMs) are widely adopted across various down-

stream tasks in the machine learning supply chain. Adopting un-

trustworthy PTMs introduces significant security risks, where ad-

versaries can poison the model supply chain by embedding hidden

malicious behaviors (backdoors) into PTMs. However, existing back-

door attacks to PTMs can only achieve partially task-agnostic and

the embedded backdoors are easily erased during the fine-tuning

process. This makes it challenging for the backdoors to persist and

propagate through the supply chain. In this paper, we propose a

novel and severer backdoor attack, TransTroj, which enables the

backdoors embedded in PTMs to efficiently transfer in the model

supply chain. In particular, we first formalize this attack as an indis-

tinguishability problem between poisoned and clean samples in the

embedding space. We decompose embedding indistinguishability

into pre- and post-indistinguishability, representing the similar-

ity of the poisoned and reference embeddings before and after

the attack. Then, we propose a two-stage optimization that sepa-

rately optimizes triggers and victim PTMs to achieve embedding

indistinguishability. We evaluate TransTroj on four PTMs and six

downstream tasks. Experimental results show that our method

significantly outperforms SOTA task-agnostic backdoor attacks –

achieving nearly 100% attack success rate on most downstream

tasks – and demonstrates robustness under various system settings.

Our findings underscore the urgent need to secure the model sup-

ply chain against such transferable backdoor attacks. The code is

available at https://anonymous.4open.science/r/TransTroj.

CCS Concepts
• Computing methodologies→ Computer vision.

Keywords
Backdoor attack, Pre-trained model, Model supply chain

1 Introduction
Pre-trained models (PTMs) have revolutionized the field of machine

learning, serving as foundational elements that can be fine-tuned for

a wide range of downstream tasks [4–6, 9, 15, 16, 18, 27]. By lever-

aging extensive datasets and substantial computational resources

during the pre-training phase, PTMs enable practitioners to achieve

remarkable performance without the need to train models from

scratch. Consequently, developers frequently source PTMs from

public repositories such as Hugging Face and GitHub to expedite

their development cycles.

Unfortunately, this reliance on externally sourced PTMs intro-

duces significant security vulnerabilities into the machine learning

supply chain. Specifically, incorporating untrustworthy PTMs can

expose applications to backdoor attacks, where adversaries embed

hidden malicious behaviors within the models [1, 3, 7, 12, 14, 23,

24, 35–37]. These backdoors remain dormant under normal condi-

tions but can be activated by specific triggers, causing the model to

perform unintended actions that serve the attacker’s interests. This

form of model supply chain poisoning poses a critical threat,

as compromised PTMs can proliferate across various systems and

domains, leading to widespread security breaches.

Existing backdoor attacks targeting pre-trained models are usu-

ally task-specific, often implemented by poisoning the training data

of specific downstream tasks. This poisoning involves inserting

triggers into the data and modifying labels, which requires prior

knowledge of downstream tasks—including specific datasets, labels,

or training configurations [20, 21, 38, 40]. Others depend on par-

ticular pre-training strategies, such as contrastive learning, which

limits their applicability [2, 3, 10, 28, 30, 39].

Task-agnostic backdoor attacks have emerged to address these

constraints [17, 30, 33, 41]. Due to the absence of downstream labels,

the key to achieve task-agnostic backdoor attacks lies in aligning a

backdoor trigger with the pre-defined reference embedding. Such

embedding can hit a target label of various downstream tasks after

fine-tuning. The reference embedding is usually predicted from the

target class images (shadow images) [17, 33] or created manually

using empirical methods [30, 41]. The manually created reference

embeddings are also known as artificially pre-defined output repre-

sentations (PORs).

However, these task-agnostic backdoor attacks still face two

critical challenges: (1) Durability: The embedded backdoors are

susceptible to being erased during the fine-tuning process due to

catastrophic forgetting [25]. The association between triggers and

target behaviors is fragile, especially when triggers are unlikely to

appear in downstream datasets. (2) Partial Task-Agnosticism:

These attacks can only partially generalize across tasks. For instance,

artificially pre-defined output representations (PORs) used in some

methods may not correspond to the attacker’s intended target class

across different tasks, leading to inconsistent backdoor activation.

In this paper, we introduce TransTroj, a novel backdoor attack
that overcomes these limitations by embedding backdoors into

PTMs in a manner that efficiently transfers through the model

supply chain. Our key innovation lies in formalizing the attack

as an embedding indistinguishability problem between poisoned

and clean samples within the embedding space of the model. By

ensuring that poisoned samples are indistinguishable from clean

samples of a target class in the embedding space, we create a back-

door that is both durable and task-agnostic. To achieve this, we de-

compose embedding indistinguishability into two components: (1)
Pre-Indistinguishability: The similarity between the embeddings

of poisoned samples and reference embeddings before the attack.

(2) Post-Indistinguishability: The similarity between these em-

beddings after the attack, ensuring that the backdoor effect persists

1
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Inject Backdoor in PTMs Launch Attack in Downstream Tasks
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Figure 1: Illustration of transferable backdoor attacks. The
adversary injects backdoor into a clean PTM and launches
attack when the backdoored PTM is leveraged to fine-tune
downstream tasks. Note that the task-agnostic backdoor can
be activated in various downstream tasks.

post-fine-tuning. We then design a two-stage optimization frame-

work to meet these objectives: (1) Trigger Optimization: We gen-

erate a universal trigger by aggregating embeddings from publicly

available samples of the target class. This trigger is optimized to

enhance pre-indistinguishability, making poisoned samples mimic

the reference embeddings. (2) Victim Model Optimization: We

fine-tune the victim PTM on a carefully crafted poisoned dataset

to reinforce post-indistinguishability while preserving the model’s

performance on clean data.

We conduct extensive evaluations of TransTroj on four widely

used PTMs – ResNet, VGG, ViT, and CLIP – and six downstream

tasks, including CIFAR-10, CIFAR-100, GTSRB, Caltech 101, Caltech

256, and Oxford-IIIT Pet. Our experimental results demonstrate that

TransTroj significantly outperforms SOTA task-agnostic backdoor

attacks, achieving nearly 100% attack success rates on most down-

stream tasks with minimal impact on model accuracy. Moreover,

TransTroj exhibits robustness under various system settings and re-

mains effective even when subjected to model reconstruction-based

defenses.

Our key contributions are summarized as follows:

• We propose TransTroj, a novel backdoor attack that is

functionality-preserving, durable, and truly task-agnostic,

effectively transferring through the model supply chain.

• We introduce the concept of embedding indistinguishability
and decompose it into pre- and post-indistinguishability to

systematically craft durable and transferable backdoors.

• We design a two-stage optimization framework that sepa-

rately optimizes the trigger and the victim PTM to achieve

embedding indistinguishability without sacrificing model

performance on clean data.

• We provide comprehensive experimental evidence demon-

strating the effectiveness and robustness of TransTroj across

multiple PTMs and downstream tasks, achieving nearly

100% attack success rates on most downstream tasks.

2 Related Work and Comparisons
Existing backdoor attacks against PTMs can mainly be categorized

into two types: task-specific [2, 3, 10, 20, 21, 28, 31, 31, 38–40] and

task-agnostic [17, 33, 41], as summarized in Tab. 1.

Task-specific backdoor attacks. Existing task-specific backdoor

attacks [20, 21, 38, 40] against PTMs usually require prior knowl-

edge of the downstream tasks. For example, Kurita et al. [20] pro-
posed RIPPLe, which directly poisons the fine-tuned downstream

model and then acquires the PTM part as a task-specific backdoored

PTM. Yao et al. [38] proposed a latent backdoor attack (LBA) to

inject backdoors into a teacher classifier built on PTMs. To suc-

cessfully attack the specific downstream task, LBA also needs a

labeled dataset that is similar to the target downstream dataset.

When the backdoored teacher classifier is used to fine-tune a stu-

dent classifier for the specific target downstream task, the student

classifier inherits the backdoor behavior. Other backdoor attacks are

designed for specific pre-training paradigms like contrastive learn-

ing [2, 28, 39], masked image modeling [31], and masked language

modeling [3, 10, 31].

Task-agnostic backdoor attacks. Compared to task-specific at-

tacks, task-agnostic attacks [17, 33, 41] are more severe threats as

they can compromise various downstream tasks built on the PTMs.

BadEncoder[17] exemplified a backdoor attack on self-supervised

learning, which compromises the downstream classifier by insert-

ing backdoors into an image encoder. It achieves a high attack suc-

cess rate in transfer learning scenarios without fine-tuning PTMs,

such as linear probing and zero-shot classification. NeuBA [41]

trained PTMs to build strong links between triggers and manu-

ally pre-defined output representations (PORs). After fine-tuning,

the POR can hit a certain label of the downstream task. In binary

classification tasks, the PORs of NueBA can cover positive and

negative classes and accomplish targeted attacks. Unfortunately,

existing attacks are unable to maintain a high attack success rate

after fine-tuning or be fully task-agnostic. To the best of our knowl-

edge, TransTroj is the first method that simultaneously satisfies

functionality-preserving, durable, and task-agnostic.

3 Problem Statement
3.1 System Model
We consider the pre-training-then-fine-tuning paradigm in this

study. Fig. 1 illustrates the systemmodel, where theModel Publisher

(MP) first trains or fine-tunes a PTM 𝐹 using his/her own train-

ing data and releases the weights 𝜃𝐹 to model hubs like Hugging

Face. Second, the Downstream User (DU) downloads the publicly
available PTM and adapts it to fit his/her downstream tasks. For a

classification downstream task, the corresponding model 𝑓 is typi-

cally built by appending a linear classification head to 𝐹 . To ensure

the downstream model operates as anticipated, DU fine-tunes the

entire model using the downstream dataset D𝑡 . The optimization

objective can be formalized as:

min

𝜃𝐹 ,𝜃ℎ
{E(𝒙,𝑦) ∈D𝑡

L(𝑓 (𝒙), 𝑦)}, (1)

where 𝜃ℎ refers to the classification head weights of 𝑓 . The pair

(𝒙, 𝑦) signifies a sample from the downstream dataset D𝑡 . The

loss function, symbolized as L, is conventionally implemented

with cross-entropy loss for classification tasks. Note that the PTM

weights 𝜃𝐹 are adjusted to align the downstream data during the

fine-tuning process.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Model Supply Chain Poisoning: Backdooring Pre-trained Models via Embedding Indistinguishability WWW ’25, April 28 – May 02, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 1: Comparison of backdoor attackmethods on pre-trainedmodels.Prior knowledge: the attack requires specific downstream
task knowledge; Task-agnostic: backdoors can be activated across various downstream tasks; Durable: the attack maintains a
high attack success rate even after fine-tuning.

Method Publication Method Basis Trigger Pattern Prior Knowledge Task-Agnostic Durable

BadNets [14] arXiv’17 Data Poisoning-Based Patch Yes No No

CorruptEncoder [39] CVPR’24 Data Poisoning-Based Patch Yes No No

LBA [38] CCS’19 Weight Poisoning-Based Patch Yes No No

RIPPLe [20] ACL’20 Weight Poisoning-Based Rare word Yes No No

BadEncoder [17] S&P’22 Weight Poisoning-Based Patch No Yes No

NeuBA [41] MIR’23 Weight Poisoning-Based Patch No Partially No

TransTroj (Ours) – Weight Poisoning-Based Optimized No Yes Yes

3.2 Threat Model
Attack scenarios. Fig. 1 shows the overall pipeline of weight

poisoning backdoor attack against PTMs. Due to the increasing

of computational overhead for pre-training a model from scratch,

regular users tend to download PTMs from open-source repositories

(e.g., Hugging Face). However, this practice provides an opportunity
for backdoor attacks, where adversaries can embed backdoors into

models and upload them to open-source platforms. They may then

employ tactics like URL hijacking to trick unsuspecting users into

downloading these compromised models.

Adversary’s goal. In our threat model, the model publisher MP is

malicious, where he/her trains and releases an evil PTM, denoted as

𝐹 , with a “transferable” backdoor. The goal is that any downstream

model
˜𝑓 developed based on 𝐹 will inherit the backdoor. As shown

in Fig. 1, the adversary initially prepares a clean PTM 𝐹 . He/she

selects a target classes 𝑦𝑡 and optimizes the corresponding trigger 𝒕 .
Then, he/she crafts a backdoored PTM 𝐹 to bind the trigger 𝒕 with
the target class 𝑦𝑡 . When a victim DU downloads the backdoored

PTM 𝐹 and adapts it to his/her downstream tasks through fine-

tuning, the adversary can activate the backdoor in the downstream

model by querying with samples that contains the trigger 𝒕 . A
transferable backdoor should meet the following goals:

(1) Functionality-preserving. The malicious PTM 𝐹 should still

preserve its original functionality. In particular, the down-

stream model
˜𝑓 built based on the backdoored PTM 𝐹

should be as accurate as the downstream model 𝑓 con-

structed based on the clean PTM 𝐹 .

(2) Durable. Fine-tuning the PTM weights can lead the model

to forget some previously learned knowledge, a phenome-

non known as catastrophic forgetting [25]. A transferable

backdoor must resist being forgotten during the fine-tuning

process.

(3) Task-agnostic. A transferable backdoor should be effective

for any downstream task instead of a specific one. In partic-

ular, when the target class𝑦𝑡 is included in the downstream

task,
˜𝑓 should predict any input 𝒙 with the trigger 𝒕 as 𝑦𝑡 ,

i.e., 𝑦𝑡 = ˜𝑓 (𝒙 ⊕ 𝒕), where ⊕ is the operator for injecting

trigger 𝒕 into the input 𝒙 .

Adversary’s capability.We minimize the adversary’s resources to

make the attack more threatening and practical. (i) A clean PTM and
publicly available unlabeled images. The adversary possesses full

knowledge of the PTM, including the model structure and weights.

To carry out backdoor training, the adversary has access to a col-

lection of images, designated as shadow dataset D𝑠 . Considering

shadow images do not necessitate manual annotations, they can be

effortlessly collected from the Internet. Meanwhile, the adversary

needs a small set of reference imagesD𝑟 for each target class, which

can also be downloaded from the Internet. (ii) None prior knowledge
of downstream task. The adversary has no prior knowledge of the

downstream tasks. He/she lacks access to the downstream datasets

and cannot manipulate the fine-tuning process.

4 Methodology
4.1 Observations and Pipeline
We aim to devise a transferable backdoor attack to fulfill all the

adversarial goals. Our methodology is primarily derived from the

following two observations.

Observation I. Existing attacks [17, 33, 41] typically use hand-

crafted backdoor triggers, such as a patch located at the bottom-

right corner of an input image. As trigger patterns are absent in

the downstream data, these backdoors are prone to being forgotten

during the fine-tuning process. Conceptually, if the trigger exhibits

semantic similarity with the target class, then the samples of the

target class in the downstream data could provide an avenue to

sustain the backdoor.

Observation II. Several studies [10, 30, 41] bind triggers to PORs.

However, as shown in Fig. 2, even when multiple PORs are embed-

ded in the PTM concurrently, they do not cover the target class (i.e.,
Dog) because of a lack of prior knowledge of downstream tasks.

Fortunately, images of the target class (i.e., reference images) can be

easily downloaded from the Internet. The corresponding reference

embeddings are good approximations of the embeddings of the

downstream target class.

Insight and pipeline. Our key intuition is that a transferable

backdoor attack should render poisoned inputs indistinguishable

from clean inputs within the embedding space. For example, should

the PTM generate an embedding for a poisoned sample identical

to that of a dog image, the downstream model would misclassify

the poisoned sample as a dog. Hence, our backdoor attack aims to

ensure the poisoned samples’ embeddings closely resemble those of

the target class samples. Our attack pipeline is illustrated in Fig. 3.

Given the inaccessibility to target class images in downstream tasks,

the adversary procures reference images from the Internet to esti-

mate reference embeddings. The adversary then strives to augment

the similarity between the poisoned and the reference embeddings.

3
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Figure 2: Visualization of dimension-reduced embeddings
of CIFAR-10 dataset extracted by ResNet-18. The reference
dog images obtained online and CIFAR-10’s own dog images
are distributed in the same region. However, the manually
pre-defined output representations (PORs) by Zhang et al..
in NeuBA [41] fail to cover the dog category.

Two strategies can be employed to approximate this objective. One

is trigger optimization, enhancing the similarity between poisoned

and clean images. The other is model optimization, aligning the

poisoned embeddings with the reference embeddings.

4.2 Transferable Backdoor Attacks
Transferable backdoor attacks aim to embed backdoors into the

PTM such that any downstream model built based on it will in-

tegrate the backdoor. That is, a backdoored downstream model
˜𝑓

behaves normally on clean image 𝒙 , but when the image contains

a trigger 𝒕 specified by the adversary, the model predicts it as the

target class 𝑦𝑡 . We formulate transferable backdoor attacks as the

optimization problem:

max

𝜃𝐹

∑︁
(𝒙,𝑦) ∈D𝑡

[I( ˜𝑓 (𝒙) = 𝑦) + I( ˜𝑓 (𝒙 ⊕ 𝒕) = 𝑦𝑡 )], (2)

where I(·) is the indicator function, which is 1 if · is true and 0 oth-

erwise. Unfortunately, without prior knowledge of the downstream

model 𝑓 and dataset D𝑡 , the adversary cannot solve Eq. 2.

To bridge the gap between the adversary’s goals and capabili-

ties, we have enacted two conversions on the above optimization

problem. (1) The goal of misclassifying poisoned samples is shifted

to producing embedding indistinguishability between poisoned

samples and clean samples, i.e., making the PTM predict similar

embeddings for both poisoned samples and target class samples. (2)

The access to the downstream dataset is converted to publicly avail-

able unlabeled shadow dataset and reference images. According to

our observations, reference images downloaded from the Internet

can replace the real target class images.

4.3 Pre- and Post-indistinguishability
To craft a durable and task-agnostic backdoor, we further decom-

posing the aforementioned embedding indistinguishability into pre-

and post-indistinguishability. Pre-indistinguishability represents

the indistinguishability between the embeddings generated by the

clean PTM for both the poisoned and clean samples of the target

class. We formally define it below.

Definition 1 (Pre-indistinguishability). Let 𝒙 ⊕ 𝒕 be the
poisoned sample and 𝒙𝑡 the clean sample of target class. 𝒙 ⊕ 𝒕 and 𝒙𝑡
are deemed pre-indistinguishable if their embeddings, extracted by
the clean PTM 𝐹 , exceed the similarity threshold 𝜖1 when measured
by 𝑑 (·, ·):

𝑑 (𝐹 (𝒙 ⊕ 𝒕), 𝐹 (𝒙𝑡 )) > 𝜖1 . (3)

Pre-indistinguishability ensures the durability of backdoor at-

tacks by outlining the inherent similarity between poisoned and

clean samples in the embedding space. Since it is independent of

the backdoor, it remains unaltered by the fine-tuning process. The

most intuitive way to attain pre-indistinguishability is through op-

timizing the trigger. In this study, we utilize a trigger optimization

strategy, which is formally expressed as:

max

𝒕

1

|D𝑠 | · |D𝑟 |
∑︁

𝒙𝑠 ∈D𝑠

∑︁
𝒙𝑟 ∈D𝑟

𝑑 (𝐹 (𝒙𝑠 ⊕ 𝒕), 𝐹 (𝒙𝑟 )), (4)

where𝑑 (·, ·)measures the similarity (e.g., cosine similarity) between

two embeddings. |D𝑠 | and |D𝑟 | denote the number of shadow and

reference images, respectively. It should be noted that the adversary

only needs a few (i.e., |D𝑟 | ≤ 10) reference images for target class.

On other hand, post-indistinguishability pertains to the indis-

tinguishability of embeddings from a backdoored PTM, whcih is

formally defined as follows.

Definition 2 (Post-indistinguishability). Let 𝒙 ⊕ 𝒕 represent
the poisoned sample and 𝒙𝑡 the clean sample of target class. 𝒙 ⊕ 𝒕
and 𝒙𝑡 are post-indistinguishable if their embeddings, extracted by
the backdoored PTM 𝐹 , exceed the similarity threshold 𝜖2:

𝑑 (𝐹 (𝒙 ⊕ 𝒕), 𝐹 (𝒙𝑡 )) > 𝜖2 . (5)

Post-indistinguishability further reinforces the task-agnostic

property of backdoor attacks. It implies that the embeddings derived

from a backdoored PTM for poisoned samples strongly resemble

those of target class samples. This similarity results in predicting

the poisoned sample as the corresponding target label when the

target class is incorporated in any downstream task, transcending

the confines of a single specific task. We formalize the backdoor

training as follows:

max

𝜃𝐹

1

|D𝑠 | · |D𝑟 |
∑︁

𝒙𝑠 ∈D𝑠

∑︁
𝒙𝑟 ∈D𝑟

𝑑 (𝐹 (𝒙𝑠 ⊕ 𝒕), 𝐹 (𝒙𝑟 )) . (6)

The combinations of Eq. 4 and Eq. 6 is a non-convex multi-

objective optimization problem, resulting in a durable and task-

agnostic backdoor attack.

4.4 Two-Stage Optimization
We address pre- and post-indistinguishability with a two-stage

optimization.

Trigger optimization. Patch-like triggers are extensively utilized

in existing work. However, discrete pixel values do not facilitate

optimization. One straightforward solution is to adopt global per-

turbations as the trigger. More specifically, our pervasive triggers

4
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Figure 3: The pipeline of TransTroj. We first optimize a trigger to make the poisoned images similar to the reference images,
i.e., pre-indistinguishability. Then, we optimize the victim PTM such that the poisoned embeddings and reference embeddings
cannot be distinguished, i.e., post-indistinguishability.

are slight perturbations applied to every pixel. The operation of

embedding a trigger in an image is as follows:

𝒙 ⊕ 𝒕 = clip(𝒙 + 𝒕, 0, 255), (7)

where clip(·, 0, 255) restricts the pixels of poisoned images to be

valid. Note that 𝒙 and 𝒕 share the same shape, e.g., 224 × 224 ×
3. We achieve a balance between stealthiness and effectiveness

by constraining the infinity norm of the trigger, i.e., ∥𝒕 ∥∞ ≤ 𝜉 .

The objective of trigger optimization can be quantified by the loss

function as follows:

Lpre = − 1

|D𝑠 |
∑︁

𝒙∈D𝑠

𝑑 (𝐹 (𝒙 ⊕ 𝒕), 𝒓), (8)

where 𝒓 is the reference embedding, which is computed as the

average of all reference image embeddings, i.e., 𝒓 = 1

𝑛

∑ |D𝑟 |
𝑖=1

𝐹 (𝑥𝑟𝑖 ).
Hence, the optimized trigger 𝒕 is obtained as a solution to the

following optimization problem:

argmin

𝒕
Lpre, s.t. ∥𝒕 ∥∞ ≤ 𝜉 . (9)

Victim PTM optimization. Besides the attack success rate, a pro-

ficiently designed backdoor should also uphold the model’s original

functionality. These two objectives are identified as the effective-

ness goal and the functionality-preserving goal, respectively. To

fulfill the effectiveness goal, we optimize the victim PTM to produce

similar embeddings for poisoned and clean images. We propose an

effectiveness loss to formally quantify this objective:

Lpost =
1

|D𝑠 |
∑︁

𝒙∈D𝑠

𝑑 (𝐹 (𝒙 ⊕ 𝒕), 𝒓), (10)

To further ensure the model retains its original functionality, it is

necessary for the backdoored PTM and the clean PTM to predict

similar embeddings for clean samples. We introduce a functionality-

preserving loss to quantify this objective:

L
func

=
1

|D𝑠 |
∑︁

𝒙∈D𝑠

𝑑 (𝐹 (𝒙), 𝐹 (𝒙)), (11)

Thus, the backdoored PTM can be derived from this optimization

problem:

argmin

𝜃𝐹

L = Lpost + 𝜆L
func

, (12)

where 𝜆 is a hyperparameter that balances the effectiveness loss

Lpost and functionality-preserving loss L
func

. We employ mini-

batch gradient descent to solve the optimization problems Eq. 9

and Eq. 12.

5 Evaluation
5.1 Experimental Setup
To extensively evaluate our TransTroj, we conduct an series of ex-

periments across a diverse range of pre-trained models and down-

stream tasks.

Pre-trained models and datasets. We employ four commonly

used PTMs—ResNet [16], VGG [18], ViT [9], and CLIP [27]—as

victim models. ResNet and VGG, CNN models, and ViT, a Trans-

former [34] model, are pre-trained on the ImageNet1K [8] dataset.

CLIP, pre-trained on a variety of (image, text) pairs, contains an im-

age encoder and a text encoder, but our backdoor attacks specifically

target the image encoder. To reduce pre-training costs, we utilized

pre-trained weights provided by PyTorch and Hugging Face.

Downstream tasks. To fully demonstrate the generalization of our

backdoor attack, we select six downstream tasks, including CIFAR-

10 [19], CIFAR-100 [19], GTSRB [32], Caltech 101 [11], Caltech

256 [13] and Oxford-IIIT Pet [26]. More details can be found in

Appendix A.

Evaluation metrics. Following Jia et al. [17], our evaluation em-

ploys three key measurement metrics. Clean Accuracy (CA) refers
to the classification accuracy of the clean downstream model, serv-

ing as the baseline performance for the downstream task. Attack
Success Rate (ASR) denotes the proportion in which the backdoored

downstream model classifies poisoned samples as the target class.

Backdoored Accuracy (BA) signifies the classification accuracy of

the backdoored downstream model, quantifying the performance

of the backdoored model on its benign task. Comparing BA with

CA allows us to determine whether the backdoor maintains the

original functionality of the victim PTM.

Implementation settings. We download 10 reference images

for each target class from the Internet. The shadow dataset D𝑠

consists of 50,000 images randomly sampled from ImageNet1K. It’s

important to note that the labels of these shadow images are not

utilized. The infinity norm of the optimized trigger is constrained,
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Table 2: Comparison of attack performance on different PTMs and downstream tasks. We conducted backdoor attack experi-
ments on three different pre-trained image encoders and six different downstream tasks. All values are percentages.

Method Model

CIFAR-10 CIFAR-100 GTSRB Caltech 101 Caltech 256 Oxford-IIIT Pet

CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR

BadEncoder

ResNet-18 95.45 95.20 9.81 80.11 79.48 1.12 98.54 98.84 5.75 96.14 95.68 1.04 82.03 81.49 26.87 88.09 88.50 81.28

VGG-11 91.52 91.18 9.64 70.67 70.93 3.81 99.08 99.02 5.71 93.09 93.95 58.99 74.64 74.50 33.59 87.03 83.73 75.14

ViT-B/16 98.26 97.85 0.09 85.78 86.33 0.41 98.65 98.87 0.25 96.72 96.03 0.06 85.47 85.70 0.07 92.75 92.64 0.11

NeuBA

ResNet-18 92.07 91.02 13.74 73.33 71.67 4.62 95.60 95.02 7.71 88.13 85.54 9.85 62.56 58.38 2.92 60.43 48.98 4.47

VGG-11 91.93 90.94 57.17 70.56 70.88 49.35 96.28 95.86 53.29 89.69 89.69 63.88 62.22 59.74 48.69 69.58 69.69 60.53

ViT-B/16 95.95 96.18 81.95 84.49 84.65 78.19 95.74 95.81 67.91 88.88 88.94 64.92 75.72 75.37 56.30 73.48 74.05 64.98

Ours

ResNet-18 95.45 95.41 100.0 80.11 80.25 100.0 98.54 98.80 100.0 96.14 95.79 98.68 82.03 81.27 98.79 88.09 88.42 99.73
VGG-11 91.52 92.00 99.51 70.67 71.49 100.0 99.08 99.13 94.03 93.09 95.45 93.95 74.64 74.37 91.47 87.03 83.46 99.07
ViT-B/16 98.26 97.91 100.0 85.78 86.03 100.0 98.65 98.95 100.0 96.72 96.08 99.36 85.47 85.55 99.80 92.75 89.26 100.0

such that ∥𝒕 ∥∞ ≤ 𝜉 = 10. We set the ratio 𝜆, which represents

the relationship between Lpost and L
func

, to 10. The fine-tuning

learning rate is 1e-4 for ResNet and VGG, and 1e-5 for ViT and CLIP.

We observe that the model converges to satisfactory performance

within a few epochs. To evaluate whether the backdoor is durable,

we fine-tune 20 epochs for all downstream tasks.

Baseline methods.We compare our method against two SOTA at-

tacks, BadEncoder [17] and NeuBA [41], both specifically designed

for attacking PTMs. We utilize the publicly available implementa-

tions provided by the authors of BadEncoder and NeuBA. Addition-

ally, we extend NeuBA from binary classification tasks to support

downstream multi-class classification.

5.2 Attack Effectiveness
Comparison to existing attacks. We evaluate the attack per-

formance on various PTMs and downstream tasks. For each task,

we adhere to the system model delineated in Sec. 3.1 to fine-tune

the downstream model. Tab. 2 shows the results. It is evident that

TransTroj achieves significantly higher ASRs than either BadEn-

coder or NeuBA across different PTMs and tasks. Notably, BadEn-

coder records ASRs below 10% on most tasks. Contrarily, TransTroj

garners high ASRs, exceeding 99% on all tasks when employing

ViT-B/16. The least successful case is Caltech 256 on VGG-11, which

still achieves a 91.47% ASR. We attribute this to potentially small

inter-class distances in the embedding space.

Functionality-preserving. Our method effectively maintains the

functionality of the backdoored PTM. Observations from Tab. 2

indicate that, for most downstream tasks, the deviation between the

backdoor accuracies and the clean accuracies are within 1%. In some

instances, the backdoor accuracies even surpass the clean accuracies.

Overall, these results suggest that downstream models, even when

fine-tuned from the backdoored PTM, can still preserve the core

functionality for downstream tasks. Consequently, identifying the

backdoor by solely insecting the performance of downstream tasks

presents a significant challenge.

Durable. Our backdoor maintains its effectiveness throughout the

fine-tuning process. We record the ASR after each epoch of fine-

tuning, as illustrated in Fig. 4. It is noticeable that our method

demonstrates a remarkably stable ASR during the fine-tuning pro-

cess, with fluctuations scarcely exceeding 1%. The least successful

case is the Clatech 101 task, where the ASR commences at 99.71%

Table 3: Results of simultaneously attacking three target
downstream datasets through one target class. ↑ 0.14 indicates
that the BA is 0.14% higher than the CA.

Target class Downstream dataset CA BA ASR

Sunflower

CIFAR-100 80.11 80.25↑ 0.14 100.0

Caltech 101 96.14 95.79↓ 0.35 98.68

Caltech 256 82.03 81.27↓ 0.76 98.79

Leopard

CIFAR-100 80.11 80.17↑ 0.06 100.0

Caltech 101 96.14 95.85↓ 0.29 97.24

Caltech 256 82.03 81.29↓ 0.74 99.04

Kangaroo

CIFAR-100 80.11 79.71↓ 0.40 99.99

Caltech 101 96.14 95.68↓ 0.46 98.21

Caltech 256 82.03 81.32↓ 0.71 97.39

after the first epoch and diminishes to 98.68% after 20 epochs, a

decline of 1.02%. In contrast, the ASRs of the baselines display

instability. For instance, NeuBA’s accuracy on the Caltech 256 dra-

matically decreases from 97.33% in the second epoch to only 46.32%

in the 12th epoch, a substantial drop of 51.01%. All these results

suggest that the backdoors injected using our method are durable,

maintaining their effectiveness even after fine-tuning.

Task-agnostic. Our method is capable of attacking multiple down-

stream tasks using a single target class. Specifically, we select three

target classes (Sunflower, Leopard and Kangaroo) that concurrently

exist in the CIFAR-100, Caltech 101, and Caltech 256 datasets. As

depicted in Tab. 3, the backdoor can be successfully activated across

these three downstream tasks. For instance, when the target class

is “Sunflower”, the attack success rates for CIFAR-100, Caltech 101,

and Caltech 256 reach 100%, 98.68%, and 98.79%, respectively. These

results indicate that our method is task-agnostic, implying that the

backdoor can be effectively activated as long as the target class is

included in the downstream task.

5.3 Multi-target Backdoor Attacks
While all previous experiments have focused on attacking a single

target class, this section evaluates the effectiveness of our method

in simultaneously attacking multiple target classes. Specifically,
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Figure 4: Attack success rates when fine-tuning the backdoored PTM for different downstream tasks. BadEncoder and NeuBA
achieve only limited performance across a subset of downstream tasks. In contrast, our method achieves a high attack success
rate across various downstream tasks and remains stable during the fine-tuning process.
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Figure 5: Visualization of the multi-target backdoor attack.
The downstreammodels fine-tuned based on the backdoored
PTM predict the poisoned samples as the class labels corre-
sponding to the reference images, rather than the ground
truth (GT) labels.

Table 4: Results of attacking 5 target classes simultaneously.

Downstream dataset CA BA ASR

CIFAR-100
Leopard

80.11 79.75↓ 0.36 99.89

GTSRB
Yield sign

98.54 98.80↑ 0.26 99.98

Caltech 101
Sunflower

96.14 95.45↓ 0.69 98.21

Caltech 256Dog 82.03 81.04↓ 0.99 99.27

Oxford-IIIT Pet
Samoyed

88.09 87.79↓ 0.30 99.51

the adversary selects multiple target classes (𝑦1, 𝑦2, ..., 𝑦𝑛) and opti-
mizes corresponding triggers (𝒕1, 𝒕2, ..., 𝒕𝑛). Following this, he/she

trains the victim PTM to bind each target class 𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑛 with its

respective trigger 𝒕𝑖 , 1 ≤ 𝑖 ≤ 𝑛. To evaluate our TransTroj in such a

scenario, as depicted in Fig. 5, we use ResNet-18 as the victim model

and simultaneously attack five downstream tasks (i.e., CIFAR-100,
GTSRB, Caltech 101, Caltech 256 and Oxford-IIIT Pet) with different

Figure 6: Visualization of dimension-reduced embeddings
using ResNet-18 as the PTM and Oxford-IIIT Pet as the down-
stream task. Differently colored dots denote clean images
of various classes; triangles mark the target class, and pen-
tagons represent randomly selected poisoned images from
the test set.

target classes (i.e., Leopard, Yield, Sunflower, Dog and Samoyed). It

is important to emphasize that we trained only one backdoor model

and fine-tuned it for five different downstream tasks, rather than

training separate backdoor models for each task. Detailed results in

Tab. 4 indicate that our attacks can achieve high ASRs (exceeding

99%) when targeting multiple calsses simultaneously, while still

maintaining accuracy of the downstream models.

5.4 Cause Analysis
Our TransTroj’s high ASR is affirmed by both theoretical and em-

pirical analyses. Theoretically, as discussed in Sec. 4.3, the key to

the success of our backdoor attack lies in the indistinguishabil-

ity between poisoned samples and target class samples within the

embedding space. Fig. 6 (left) empirically supports this, revealing

pre-indistinguishability due to the optimized trigger. This indis-

tinguishability becomes absolute in the feature space following

backdoor training, as evidenced by Fig. 6 (right). Further data anal-

ysis, as shown in Fig. 7, demonstrates that the backdoored PTM’s

attention is predominately centered on the poisoned image’s middle

area. Thus, the downstream model ignoring the specific content of

the poisoned input, predicting it as the target class.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, April 28 – May 02, 2025, Sydney, Australia Anon. Submission Id: 1525

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Testing

image

Clean

attention

map

Poisoned

attention

map
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Figure 8: The impact of the optimized trigger infinity norm
𝜉 (left) and the shadow dataset size |D𝑠 | (right).

5.5 Sensitivity Analysis
We investigate various factors, such as trigger infinity norm and

shadow dataset size, that may impact the performance of TransTroj.

For these studies, ResNet-18 is chosen as the PTM, Caltech 256

serves as the downstream task, and “Sunflower” is selected as the

target class.

Trigger infinity norm. Gradually reduce the infinity norm 𝜉 of

triggers from 10 to 3, we evaluate the attack performance on Caltech

256, as shown in Fig. 8 (left). It’s obvious that the attack success

rate significantly decreases with the reduction of the infinity norm,

due to the failure of trigger optimization to make the poisoned

embeddings resemble the clean embeddings when the infinity norm

is excessively small. In other words, pre-indistinguishability cannot

be ensured.

Shadow dastaset size. Subsets of different sizes (ranging from

512 to 50,000) are randomly sampled from ImageNet1K to serve as

shadow datasets. As shown in Fig. 8 (right), our method achieves

high attack success rates and preserves accuracy of the downstream

model once the shadow dataset size surpasses 10,000. Notably, the

ImageNet1K training set contains over one million images, thus in-

dicating that the collection of the shadow dataset is not challenging

for the adversary.

Ablation study. We conduct a comprehensive ablation study to

evaluate the effectiveness of our method, including experiments

on the impact of different loss terms, trigger patterns, and the use
of reference images. For more detailed analysis and results, please

refer to Appendix C.
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Figure 9: The average (compiled from 100 trials) attack suc-
cess rate and backdoor accuracy after re-initialization and
fine-pruning. Note that ResNet-18 consists of 17 convolu-
tional layers and one fully connected layer.

5.6 Robustness Against Defenses
This section investigates the robustness of TransTroj against model

reconstruction based backdoor defenses, specifically re-initialization

and fine-pruning. We employ ResNet-18 as the PTM, designate

Oxford-IIIT Pet as the downstream task, and select “Samoyed” as

the target class.

Re-initialization. An intuitive strategy to resist backdoor is the

re-initialization of the final few layers of PTMs. We re-initialized

the last 𝑛, 0 ≤ 𝑛 ≤ 8 convolutional layers of ResNet-18 before

fine-tuning. As depicted in Fig. 9 (left), model accuracy diminishes

with an increase in the number of re-initialized layers, while the

backdoor sustains a high SAR until re-initialization extends to the

last four layers. Subsequently, the ASR declines from 99.73% to

32.92%. Simultaneously, the model accuracy also decreases from

88.33% to 79.49%. This indicates that re-initialization cannot balance

between model utility and backdoor defense, providing evidence of

TransTroj’s robustness against re-initialization.

Fine-pruning. Fine-pruning [22] aims to erase backdoor by deac-

tivating neurons that are dormant on clean inputs. We employed

a mask to block inactive channels following each residual block

in ResNet-18. The proportion of channels that are masked is con-

trolled by the pruning rate. As depicted in Fig. 9 (right), even with

50% of the channels are pruned, the ASR can still reach 89.59%, but

the model accuracy has dropped from 88.33% to 76.73%. Further

pruning leads to degradation in both model performance and back-

door effectiveness. Thus, fine-pruning proves to be ineffective in

defending our TransTroj.

6 Conclusion
In this paper, we have introduced TransTroj, a novel backdoor

attack that effectively compromises pre-trained models (PTMs) by

exploiting embedding indistinguishability. By formalizing the back-

door insertion as an indistinguishability problem between poisoned

and clean samples in the embedding space, we address the critical

challenges of durability and task-agnosticism that limit existing

backdoor attacks on PTMs. Extensive experiments conducted on

four widely used PTMs – ResNet, VGG, ViT, and CLIP – and six

downstream tasks demonstrate that TransTroj significantly outper-

forms SOTA task-agnostic backdoor attacks.
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A Details of Downstream Tasks
We utilize six different downstream datasets in our experiments.

Below, we provide details for each dataset:

CIFAR-10. [19]: This dataset consists of 60,000 low-resolution

images (32×32 pixels) divided into 10 classes, with 50,000 images

for training and 10,000 for testing. It features common objects such

as airplanes, automobiles, and birds.

CIFAR-100. [19]: Similar to CIFAR-10 but more fine-grained, this

dataset contains 60,000 images across 100 classes, with the same

training and testing split of 50,000 and 10,000 images, respectively.

GTSRB. [32]: The German Traffic Sign Recognition Benchmark

includes 51,800 images of traffic signs categorized into 43 classes. It

provides 39,200 images for training and 12,600 for testing.

Caltech 101. [11]: This dataset comprises 8,677 images of objects

from 101 categories. We randomly select 80% of the images for

training and use the remaining 20% for testing.

Caltech 256. [13]: An extension of Caltech 101, it contains 29,780

images spanning 256 object categories. We apply the same random

split of 80% for training and 20% for testing.

Oxford-IIIT Pet. [26]: This dataset features 7,349 images of 37

breeds of cats and dogs. It is divided into 3,680 images for training

and 3,669 for testing.

B Implementation Details
The attack chain involves three stages: pre-training, backdoor in-

jection, and fine-tuning. The following provides implementation

details for each stage.

Pre-training. In our experiments, we use four different PTMs

(i.e.ResNet [16], VGG [18], ViT [9], and CLIP [27]). ResNet, VGG,

andViT are pre-trained on the ImageNet1K dataset using supervised

learning methods. To reduce pre-training costs, we download the

pre-trained weights from PyTorch. CLIP is pre-trained on a variety

of (image, text) pairs using self-supervised learning technique. We

download it from Hugging Face.

Backdoor injection. The backdoor is injected into a PTM. The

dataset used during backdoor injection is called Shadow Dataset.

By default, the shadow dataset contains 50,000 images randomly

sampled from the ImageNet1K training dataset. To obtain reference

embeddings, we download 10 reference images for each target class

from the Internet, as shown in Fig. 10. Note that different PTMs

and target classes result in different optimized triggers, as shown

in Fig. 11. The infinity norm constraint on the trigger affects the

stealthiness of the optimized trigger. When the infinity norm is

small, the optimized trigger is imperceptible, as shown in Fig. 12.

Unless stated otherwise, we set the infinity norm constraint of the

trigger to 10. All experiments are conducted on a server equipped

with eight NVIDIA RTX 3090 GPU and 3.5GHz Intel CPUs.

Fine-tuning. The dataset used in fine-tuning the downstream

model is referred as the downstream dataset. In our experiments, dif-

ferent datasets (i.e., CIFAR-10, CIFAR-100, GTSRB, Caltech 101, Cal-

tech 256, and Oxford-IIIT Pet) are used as downstream datasets. The

training of the downstream model uses the cross-entropy loss func-

tion and Adam optimizer. When the PTM is ResNet-18 or VGG11,

the learning rate is set to 1e-4. When the PTM is ViT-B/16 or CLIP,

the learning rate is set to 1e-5. Note that all downstream tasks are

fine-tuned for 20 epochs.

Table 5: Results of attacking “Sunflower” using various trig-
ger patterns. Fig. 14 displays these four types of triggers.

Tigger pattern Downstream dataset CA BA ASR

Patch

CIFAR-100 80.11 79.85↓ 0.26 68.84

Caltech 101 96.14 95.74↓ 0.40 10.94

Caltech 256 82.03 81.34↓ 0.69 6.29

SIG

CIFAR-100 80.11 79.52↓ 0.59 1.43

Caltech 101 96.14 95.74↓ 0.40 90.61

Caltech 256 82.03 81.79↓ 0.24 74.69

Random

CIFAR-100 80.11 79.44↓ 0.67 1.54

Caltech 101 96.14 95.51↓ 0.37 19.64

Caltech 256 82.03 81.36↓ 0.67 0.84

Optimized

CIFAR-100 80.11 80.25↑ 0.14 100.0

Caltech 101 96.14 95.79↓ 0.35 98.68

Caltech 256 82.03 81.27↓ 0.76 98.79

C Ablation Study
We study the effect of loss terms, trigger pattern and reference

images. For all experiments here, the PTM is ResNet.

Loss terms. Our TransTroj incorporates three loss terms, i.e.Lpre,

Lpost and L
func

. We also include a hyperparameter 𝜆 to balance

Lpost and L
func

. Therefore, it is important to examine the impact

of 𝜆 on our method. The results of this examination are displayed

in Fig. 13. We observe that both an exceedingly large or samll 𝜆

prevents TransTroj from achieving a high attack success rate while

preserving accuracy. In particular, the model accuracy starts to

decrease when 𝜆 exceeds approximately 10. Therefore, both Lpost

and L
func

are important for effective backdoor training.

Trigger pattern. To demonstrate the necessity of the trigger opti-

mization, we replaced our optimized triggers with different trigger

patterns while keeping all other settings unchanged. Fig. 14 displays

the various triggers. The experimental results indicate that neither

patch-like triggers nor pervasive triggers achieve high ASRs. This

is because these triggers do not make the poisoned embeddings

similar to the clean embeddings of the target class.

Single reference image. In the aforementioned experiments, we

use the average embedding of 10 reference images as the reference

embedding. Here, we study whether the reference embedding could

be a single image embedding. We utilize the embeddings from a

single “Yield sign” image and a single “Dog” image to attack GTSRB

and CIFAR-10, respectively. As shown in Fig. 15, we find that some

reference images can cause the backdoor attack to fail. For instance,

using the embedding of “Dog5” as the reference embedding only

achieved 6.43% attack success rate. This is because the downstream

model is unable to correctly classify “Dog5”. According to Fig. 2b,

not all reference images can be correctly classified by the down-

stream model. Hence, employing multiple reference images is an

effective strategy to avoid such risk.

D Other Transfer Methods
In addition to fine-tuning, PTMs have more application scenarios,

such as linear probing and zero-shot classification. Linear probing

utilizes the PTM to project inputs to an embedding space, and then
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Figure 11: Visualization of optimized triggers. Different PTMs
and target classes lead to different triggers.

trains a linear classifier to map embeddings to downstream classifi-

cation labels. Zero-shot classification trains an image encoder and

a text encoder that map images and texts to the same embedding

space. The similarity of the two embeddings from an image and a

piece of text is used for prediction.

To verify the effectiveness of TransTroj in other application

scenarios, we use CLIP as the victim model. CLIP consists of both

Table 6: Comparison of three different transfer scenarios.
TransTroj achieves high attack success rates and maintains
the accuracy of the downstream tasks when attacking CLIP.

Transfer Downstream Dataset CA BA ASR

Zero-shot

CIFAR-100 61.87 59.96 100.0

Caltech 101 84.04 83.99 100.0

Caltech 256 85.32 83.52 100.0

Linear probing

CIFAR-100 78.48 78.30 100.0

Caltech 101 94.76 95.12 100.0

Caltech 256 90.19 89.74 100.0

Fine-tuning

CIFAR-100 83.88 82.52 100.0

Caltech 101 95.97 95.45 98.85

Caltech 256 88.54 86.84 99.11

an image encoder and a text encoder. We apply TransTroj to inject

a backdoor to the image encoder. In the zero-shot classification

scenario, we adopt sentence “A photo of a class name” as the context

sentence. In the linear probing scenario, we use a fully connected

neural network with two hidden layers as the downstream classifier.

The training of the downstream classifier uses the cross-entropy

loss function and Adam optimizer. It takes 500 epochs with an initial

learning rate of 0.0001.

Tab. 6 shows the experimental results. We find that our TransTroj

achieves high attack success rates and maintains the accuracy of the

downstream tasks in all three transfer scenarios. Our experimental
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Figure 12: Visual effects of optimized triggers under different infinite norm constraints. Note that we scale the optimized
triggers to [0, 255] using min-max normalization for visualization. Row 1: optimized triggers. Row 2: poisoned samples.
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Figure 15: Results of attacking “Yield” and “Dog” using a
single reference image. “All” refers to the attack success rate
when using the average embedding of 10 reference images.
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Figure 13: The impact of the 𝜆.

Patch SIG Random Optimized

Figure 14: Comparison of different triggers. The patch trigger
is generated according to [28] and has a size of 50×50. The
SIG trigger is generated by the horizontal sinusoidal function
defined in [1] with Δ = 10 and 𝑓 = 32. The random trigger
is sampled from a uniform distribution between [-5, 5]. The
optimized trigger is produced by our trigger optimization
method, with the target class “Samoyed” and 𝜉 = 5.

results indicate that our TransTroj is effective when applied to

an image encoder pre-trained on a large amount of (image, text)
pairs. Note that zero-shot classification and linear probing can only

achieve suboptimal performance on some downstream tasks. This

further demonstrates the necessity of fine-tuning.
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