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Abstract

With the growing deployment of pre-trained001
models like Transformers on cloud platforms,002
privacy concerns about model parameters003
and inference data are intensifying. Ex-004
isting Privacy-Preserving Transformer Infer-005
ence (PPTI) frameworks face the “impossi-006
ble trinity” of balancing privacy, efficiency,007
and performance: Secure Multi-Party Com-008
putation (SMPC)-based approaches ensure009
strong privacy but suffer from high computa-010
tional overhead and performance losses; Con-011
versely, permutation-based methods achieve012
near-plaintext efficiency and accuracy but com-013
promise privacy by exposing sensitive model014
parameters and intermediate results. Bridging015
this gap with a single approach presents sub-016
stantial challenges, motivating the introduction017
of CENTAUR, a groundbreaking PPTI frame-018
work that seamlessly integrates random permu-019
tations and SMPC to address the “impossible020
trinity”. By designing efficient PPTI algorithms021
tailored to the structural properties of Trans-022
former models, CENTAUR achieves an unprece-023
dented balance among privacy, efficiency, and024
performance. Our experiments demonstrate025
CENTAUR’s ability to resist diverse data recon-026
struction attacks, achieve plaintext-level infer-027
ence accuracy, and boost inference speed by028
5.0∼30.4 times, unlocking new possibilities029
for secure and efficient AI deployment.030

1 Introduction031

Transformer-based models (Vaswani et al., 2017;032

Devlin et al., 2019; Radford et al., 2019), widely033

deployed in cloud services such as chatbots, virtual034

assistants, and code generators, have revolution-035

ized many aspects of human activity. However,036

their cloud-based deployment introduces signif-037

icant privacy risks. Companies deploying these038

models and users of the services must upload pro-039

prietary model parameters—critical to their com-040

petitive edge—along with potentially sensitive in-041
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Figure 1: Overview of CENTAUR and Other PPTI
Frameworks.

ference data, which could include personal infor- 042

mation (e.g., identity, investment plans, or health 043

records). These risks not only threaten the compet- 044

itiveness of companies but also compromise indi- 045

viduals’ privacy, raising concerns about whether 046

cloud-based AI models can truly be trusted with 047

sensitive information. Recently, Samsung banned 048

its employees from using external large language 049

model (LLM) services after an internal code leak1, 050

further underscoring the growing privacy concerns. 051

Recent works (Hao et al., 2022; Chen et al., 052

2022; Li et al., 2023; Luo et al., 2024; Yuan et al., 053

2023) have explored addressing the privacy con- 054

cerns of model parameters and inference data in 055

Transformer-based inference. However, these ap- 056

proaches often face the “impossible trinity” of 057

privacy, efficiency, and performance. For exam- 058

ple, SMPC-based privacy-preserving Transformer 059

inference (PPTI) offers strong theoretical privacy 060

guarantees but suffers from significant communi- 061

cation overhead. This inefficiency arises primarily 062

from the numerous large-scale matrix multiplica- 063

tions and SMPC-unfriendly non-linear operations 064

inherent in Transformer models. To mitigate these 065

issues, some studies (Li et al., 2023; Luo et al., 066

1https://www.androidauthority.com/samsung-chatgpt-
leak-3310307/
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2024) have replaced non-linear operations with lin-067

ear ones, but this substitution results in further per-068

formance degradation (see Section 3 for details).069

In contrast, permutation-based PPTI (Yuan et al.,070

2023) achieves efficiency and performance com-071

parable to plaintext inference by conducting plain-072

text computations on permuted model parameters073

and inference data. However, to ensure inference074

correctness, permutation-based PPTI must expose075

embedding layer parameters and some original in-076

termediate results, thereby introducing significant077

privacy leakage risks (see Section 3 for details).078

Existing PPTI frameworks struggle to balance079

privacy, efficiency, and performance, limiting their080

practical adoption in real-world applications. To081

bridge the “impossible trinity” and unlock new pos-082

sibilities for secure and efficient AI deployment,083

we propose CENTAUR, a practical PPTI framework084

that leverages the complementary strengths of mul-085

tiple privacy-preserving strategies to protect the086

privacy of both model parameters and inference087

data (Fig. 1). Specifically:088

• Privacy: CENTAUR introduces a novel PPTI089

workflow, ensuring that model parameters, in-090

ference data, and intermediate results during091

inference remain either encrypted or in a ran-092

domly permuted state. The security analysis093

(Section 4.3) and experimental results of data094

reconstruction attacks (Section 5.2) demonstrate095

that CENTAUR effectively safeguards the privacy096

of both model parameters and inference data.097

• Efficiency: CENTAUR leverages random permu-098

tation to transform privacy-preserving multiplica-099

tions between ciphertexts, which incur high com-100

munication overhead, into communication-free101

operations between plaintexts and ciphertexts,102

significantly improving the inference efficiency103

of linear layers in PPTI. Additionally, it reduces104

the communication overhead of non-linear oper-105

ations in PPTI through the design of a series of106

privacy-preserving algorithms. Experimental re-107

sults (Section 5.3) show that CENTAUR achieves108

inference speeds 5.0∼30.4 times faster than ex-109

isting SMPC-based PPTI frameworks.110

• Performance: CENTAUR preserves the original111

model structure and parameters by implementing112

precise computation of non-linear operations in113

Transformer models. Experimental results (Sec-114

tion 5.4) demonstrate that CENTAUR achieves115

performance identical to plaintext inference with-116

out the need for retraining or fine-tuning.117

2 Preliminaries 118

2.1 Transformer Models 119

The Transformer model mainly consists of three 120

components: the embedding layer, the transformer 121

layer, and the adaptation layer. In the embed- 122

ding layer, the input features of the model are ex- 123

tracted as embeddings. At the transformer layer, 124

the embedded information is processed through a 125

multi-head attention mechanism and passed into 126

the feed-forward neural network to produce a hid- 127

den state. In the adaptation layer, the hidden state is 128

ultimately transformed into a vector representation 129

that can be applied to various downstream tasks 130

such as text classification and text prediction. 131

2.2 Secure Multi-Party Computation 132

Secure Multi-Party Computation (SMPC) enables 133

a group of untrusted participants to jointly com- 134

pute a function f without revealing private data. 135

Among the various cryptographic primitives used 136

to implement SMPC, secret sharing (Shamir, 1979; 137

Goldreich et al., 1987) is widely employed in PPTI 138

due to its efficiency. Specifically, 2-out-of-2 secret 139

sharing divides a secret x in the integer ring ZL into 140

two random shares [[x]] = ([x]0, [x]1), where nei- 141

ther share independently reveals any information 142

about x. The secret can be reconstructed by com- 143

bining the shares as x = (([x]0 + [x]1) mod L). 144

In two-party SMPC protocols, these shares are dis- 145

tributed among two non-colluding parties, who 146

exchange masked intermediate results to perform 147

privacy-preserving computations for various func- 148

tions. At the end of the process, they each receive 149

shares of the computed results. 150

2.3 Permutation Matrix 151

A permutation matrix π is a square matrix contain- 152

ing only 0s and 1s, with exactly one “1” in each row 153

and column. In linear algebra, an n× n permuta- 154

tion matrix represents a permutation of n elements 155

and has the following key properties: 156

• Multiplying a matrix by π permutes its rows (if 157

π is on the left) or columns (if π is on the right). 158

• π is orthogonal, i.e., ππ⊤ = I . 159

These properties make permutation matrices use- 160

ful for privacy-preserving computations in Trans- 161

former models, enabling the following operations: 162
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• Linear Layers: For a linear layer with parame-163

ters (W,B),164

Y = Xπ(Wπ)⊤ +B = XW⊤ +B. (1)165

• Element-Wise Non-Linear Layers: For an166

element-wise non-linear function fe,167

fe(Xπ) = fe(X)π. (2)168

The privacy offered by π increases with its169

size, making it ideal for large-scale Transformers.170

Specifically, an n × n matrix has n! possible per-171

mutations. For example, when n = 1280, the172

probability of brute-force recovery of the original173

matrix is approximately 1
1280! ≈

1
211372

.174

3 Impossible Trinity in PPTI175

Observation 1: Efficiency and Performance176

Challenges of SMPC-Based PPTI. SMPC-177

based PPTI can be formalized as a two-party SMPC178

protocol between the model developer and the179

client. In this setup, the shares of model param-180

eters and inference data are used as inputs to the181

SMPC protocols, enabling privacy-preserving exe-182

cution of Transformer operations.183

This approach ensures privacy for model param-184

eters and inference data but faces severe inefficien-185

cies, primarily from the high communication over-186

head in large-scale matrix multiplications and non-187

linear operations within Transformers. For exam-188

ple, running BERTBASE inference with CrypTen189

(Knott et al., 2021) in a WAN (200 Mbps band-190

width, 40 ms latency) takes 881 seconds, with 865191

seconds spent on transmitting 66 GB of intermedi-192

ate data.193

Efforts to improve the efficiency of SMPC-based194

PPTI can be classified into two categories: 1)195

SMPC Protocol Design: Approaches such as (Hao196

et al., 2022; Zheng et al., 2023; Gupta et al., 2023;197

Dong et al., 2023; Hou et al., 2023; Ding et al.,198

2023; Pang et al., 2023; Lu et al., 2023; Luo et al.,199

2024; Li et al., 2024) focus on developing effi-200

cient privacy-preserving algorithms for non-linear201

operations in Transformers. While these meth-202

ods preserve model performance, they still incur203

substantial computation and communication over-204

head. 2) Model Design: Techniques like (Li et al.,205

2023; Zeng et al., 2022; Zhang et al., 2023; Liang206

et al., 2023) modify the model by replacing SMPC-207

unfriendly non-linear operations to reduce high208

computational overhead. Although these strategies209
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Ground Truth DRA Attacked

Figure 2: Two examples of recovering private inference
input data through attacks on intermediate results. On
the left are the real data, and on the right are the data
reconstructed using data reconstruction attacks. Green
indicates complete recovery, while orange signifies ap-
proximate recovery.

improve efficiency, they often result in significant 210

performance degradation (see Table 2 for details). 211

Observation 2: Privacy Leakage Risks in 212

Permutation-Based PPTI. Unlike SMPC-based 213

PPTI, permutation-based PPTI uses permuted 214

model parameters and inference data as input. 215

By leveraging the properties of the permutation 216

matrix, it correctly performs linear layers (ma- 217

trix multiplication, Eq. (1)) and nonlinear layers 218

(element-wise operations, Eq. (2)), producing per- 219

muted inference results. Since the computation 220

is directly performed on the plaintext permuted 221

data, permutation-based PPTI achieves efficiency 222

and performance comparable to plaintext inference. 223

However, it compromises the privacy of both model 224

parameters and inference data. 225

For model parameters, permutation-based PPTI 226

faces the issue of sequence-level permutation vul- 227

nerability due to the relatively short length of the 228

inference data sequence. Yuan et al. (2023) suggest 229

performing the permutation in the input feature 230

space2. While this method enhances privacy, it 231

requires the model developer to expose the embed- 232

ding layer parameters to the data owner. 233

Regarding inference data, the orthogonality 234

of the permutation matrix (Eq. (1)) leads to 235

permutation-based PPTI revealing some original 236

intermediate results. We have demonstrated that ex- 237

isting data reconstruction methods can effectively 238

recover the private inference data from these raw 239

intermediate results. Fig. 2 illustrates real examples 240

of recovering the original data from the raw inter- 241

mediate results, and more detailed attack results 242

are provided in Section 5.2. 243

2The feature dimension d is typically large; for example,
GPT-2LARGE has d = 1280.
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Figure 3: High-level Workflow of CENTAUR.

4 CENTAUR244

To bridge the “impossible trinity” in PPTI, CEN-245

TAUR introduces a novel approach that seamlessly246

integrates random permutations and SMPC.247

4.1 Framework248

CENTAUR focuses on the three-party scenario249

where the model developer and the cloud plat-250

form are separate entities, which is common in251

real-world model inference service providers (Yuan252

et al., 2023). Specifically, as shown in Fig. 3, CEN-253

TAUR involves three entities: model developer P0,254

cloud platform P1, and client P2. In this setup, P0255

holds the private model parameters Θ, while P2256

holds the private inference data X .257

CENTAUR adopts the widely used semi-honest258

model in PPTI, and assumes that the model devel-259

oper P0 will not collude with the cloud platform260

P1 to gain access to the private inference data of261

the client P2, and that the cloud platform P1 will262

not collude with the client P2 to gain access to the263

private model parameters of the model developer264

P0. CENTAUR consists of two main phases: initial-265

ization and privacy-preserving inference, and the266

specific steps are as follows.267

Initialization. The model developer P0 generates268

a set of random permutation matrices, Π = {π ∈269

Rd×d, π1 ∈ Rn×n, π2 ∈ Rk×k}, where n denotes270

the input length, d represents the feature dimension,271

and k corresponds to the intermediate dimension272

in the feed-forward neural network. These matri-273

ces are designed to permute the model parameters274

according to their respective dimensions. Among275

them, the permutation matrix π is shared with P2.276

Subsequently, P0 applies the appropriate permuta-277

tion matrix from Π to permute the model param-278

eters Θ, resulting in the permuted parameters Θ′,279

which are then sent to P1.280

Privacy-Preserving Inference. The client P2 lo-281

cally generates shares of the inference data X → 282

([X]0, [X]1) and sends [X]j to the respective par- 283

ties Pj for j ∈ {0, 1}. Each Pj then takes Θ′ 284

and [X]j as input, and jointly executes the privacy- 285

preserving inference process according to the work- 286

flow shown in Fig. 4, resulting in the shares of the 287

permuted inference result [Y π]j . Subsequently, 288

each Pj sends [Y π]j to the client P2. Upon receiv- 289

ing [Y π]j , P2 reconstructs the permuted inference 290

result Y π = [Y π]0 + [Y π]1, and restores the final 291

inference result using π: Y = Y ππ⊤. 292

4.2 Implementation 293

As described in Section 2.1, the Transformer model 294

consists of the Transformer layers, the embedding 295

layer, and the adaptation layer. We now outline 296

how CENTAUR enhances privacy-preserving com- 297

putation in each of these layers. 298

Transform
er Layers 

   

CENTAUR
Legend Linear Layer Intermediate ResultNon-Linear Layer

Figure 4: Implementation of CENTAUR-based PPTI.
Red lines and boxes indicate that there is a communi-
cation overhead for the computation of this step. Black
lines indicate completion of the calculation for that step
without communication overhead.

4.2.1 Transformer Layers 299

Linear Layer. CENTAUR optimizes the effi- 300

ciency of linear layers by converting costly privacy- 301

preserving matrix multiplications between random 302
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shares (denoted as ΠMatMul) into communication-303

free privacy-preserving multiplications between304

plaintexts and random shares (denoted as ΠScalMul).305

This is achieved by separately using random per-306

mutation for model parameters and secret-sharing307

for inference data to ensure privacy.308

As shown in Fig. 4, the linear layer parame-309

ters consist of WQ,WK ,WV , (WO, BO) in the at-310

tention mechanism and (W1, B1), (W2, B2) in the311

feed-forward neural network for a single Trans-312

former block. During the initialization phase, these313

parameters are permuted by the model developer314

P0. When data, in the form of secret shares, passes315

through these linear layers, the computation is per-316

formed using the communication-free plaintext-317

shares privacy-preserving multiplication protocol318

ΠScalMul. The shares of the computation results are319

then output as follows:320

[[Q]] = ΠScalMul(WQπ, [[XEπ]]),
3321

[[K]] = ΠScalMul(WKπ, [[XEπ]]),322

[[V ]] = ΠScalMul(WV π, [[XEπ]]), (3)323

[[O4π]] = ΠScalMul(WOπ, [[O3]]) +BOπ,324

[[O5π2]] = ΠScalMul(π
⊤
2 W1π, [[L1π]]) +B1π2,325

[[O6π]] = ΠScalMul(π
⊤W2π2, [[Gπ2]]) +B2π.326

To ensure the correctness and security of the in-327

ference results, CENTAUR requires a limited num-328

ber of privacy-preserving matrix multiplications329

between shares in the attention mechanism. The330

detailed computation process is as follows:331

[[O1]] = ΠMatMul([[Q]], [[K]])/
√

dh + [[M ]],

[[O3]] = ΠMatMul([[O2π1]], [[V π1]]).
(4)332

333
Non-linear Layers. CENTAUR enhances the ef-334

ficiency of nonlinear layers by converting secret335

shares into a randomly permuted state, enabling336

plaintext computations for element-wise nonlinear337

operations on the permuted data.338

For any nonlinear operation with permuted input339

Xπ, which has been secret-shared between P0 and340

P1, the process proceeds as follows:341

• The model developer P0 sends the share [Xπ]0342

to the cloud platform P1, enabling it to convert343

the input from the secret-sharing state [[Xπ]] to344

the permuted state Xπ.345

3We omit the bias here for concise presentation. For the
case that there is additional bias parameters B in producing Q,
K, and V , the model developer can secretly share B to cloud
platform and add it to the output of ΠScalMul using ΠAdd.

• P1 performs the nonlinear computation using 346

Xπ and obtains the permuted output Y π. 347

• P1 generates shares [[Y π]] of Y π and sends [Y π]0 348

back to P0. 349

This process requires two rounds of communica- 350

tion to transmit the shares of both the input and the 351

output. Based on this, CENTAUR supports Privacy- 352

Preserving Softmax (ΠPPSM), Privacy-Preserving 353

GeLU (ΠPPGeLU), and Privacy-Preserving Layer- 354

Norm (ΠPPLN) for computing nonlinear layers in 355

Transformers. Detailed construction algorithms are 356

provided in Appendix A. 357

It is important to note that transitioning the in- 358

put from the secret-sharing state [[Xπ]] to the per- 359

muted state Xπ requires the input shares to be in 360

the permuted state. However, this condition is not 361

always met in the PPTI process. For example, the 362

shares of O1 are initially not in the permuted state 363

because the permutation matrix π is canceled out 364

during ΠMatMul (Eq. (4)). To address this, CEN- 365

TAUR introduces a Privacy-Preserving Permutation 366

(ΠPPP) protocol. By invoking privacy-preserving 367

matrix multiplication, ΠPPP converts the shares of 368

any input [[X]] into [[Xπ]]. The detailed process is 369

outlined in Algorithm 6. 370

4.2.2 Embedding Layer & Adaptation Layer. 371

The Embedding and Adaptation layers involve both 372

linear and nonlinear operations, enabling dual ac- 373

celeration of efficiency within CENTAUR. Specif- 374

ically, the Embedding layer includes matrix mul- 375

tiplication and LayerNorm operations, allowing 376

for Privacy-Preserving Embedding (ΠPPEmbedding) 377

via the invocation of ΠScalMul and ΠPPLN. The 378

construction of the Privacy-Preserving Adapta- 379

tion (ΠPPAdaptation) layer, which adapts to different 380

downstream tasks such as classification or predic- 381

tion, varies across Transformer models. However, 382

it can be uniformly implemented by using CEN- 383

TAUR’s privacy-preserving algorithms. Detailed 384

constructions for PPEmbedding and PPAdaptation 385

are provided in Algorithm 4 and Algorithm 5. 386

4.3 Theoretical Analysis 387

CENTAUR can leverage the properties of permu- 388

tation matrices to ensure the confidentiality of 389

model parameters. By applying the widely used 390

simulation-based paradigm (Lindell, 2017) from 391

SMPC, we can demonstrate that intermediate re- 392

sults under secret-sharing can guarantee the con- 393

fidentiality of user inference data. Additionally, 394
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BERTLARGE on the QNLI dataset GPT-2LARGE on the Wikitext-103 dataset

Attacks Methods O1 O4 O5 O6 Avg O1 O4 O5 O6 Avg

SIP
W/O 66.14± 1.38 78.64± 0.28 95.57± 0.06 96.00± 0.05 84.09 69.64± 0.68 92.91± 0.17 93.69± 0.11 94.31± 0.21 87.64

W(Ours) 10.72± 2.01 2.03± 0.89 0.00± 0.00 2.71± 1.86 3.86 6.10± 4.67 12.90± 0.64 0.58± 0.21 2.00± 1.29 5.40
Rand 5.08± 0.04 6.82± 0.02 0.17± 0.06 3.58± 0.21 3.91 14.65± 0.90 2.69± 0.05 0.00± 0.00 3.38± 0.04 5.18

EIA
W/O 100.00± 0.00 36.49± 1.13 80.97± 0.71 19.5± 0.50 59.24 96.70± 0.02 99.97± 0.04 100.00± 0.00 67.30± 0.01 90.99

W(Ours) 1.37± 0.12 5.94± 0.43 2.89± 0.13 0.12± 0.07 2.58 1.36± 0.10 11.90± 0.37 7.91± 0.23 4.40± 0.33 6.39
Rand 0.14± 0.00 7.22± 0.17 0.34± 0.11 0.85± 0.03 2.13 0.30± 0.02 8.27± 0.02 2.54± 0.06 4.29± 0.04 3.85

BRE
W/O 56.64± 1.06 14.85± 0.55 74.50± 0.75 7.80± 0.11 38.45 56.64± 1.06 99.99± 0.01 99.99± 0.00 45.26± 0.58 75.47

W(Ours) 0.21± 0.02 0.45± 0.03 0.52± 0.39 0.52± 0.39 0.43 0.21± 0.02 1.33± 0.07 0.03± 0.01 0.07± 0.02 0.41
Rand 0.07± 0.02 0.25± 0.20 0.09± 0.01 0.58± 0.02 0.25 0.07± 0.02 0.20± 0.00 0.08± 0.00 0.10± 0.01 0.11

Table 1: The degree of privacy leakage (ROUGE-L F1 Score (%)) on the permuted intermediate results
"O1, O4, O5, O6" using three data reconstruction attack methods. "W/O" represents the original data, "W" represents
the permuted state, and "Rand" represents random input. The results denote the attack targets and are averaged over
three different random seeds.

using distance correlation theory (Székely et al.,395

2007), privacy protection of intermediate results396

under random permutation can be analyzed. We397

leave the detailed security analyses in Appendix B398

since the theoretical framework of the SMPC and399

random permutation mechanism, which is usually400

the focus of the security community, is not over-401

explored by CENTAUR. We will focus on substanti-402

ating the empirical security of CENTAUR through403

rich and complex attack experiments in Section 5.2.404

5 Experiments405

We conducted experiments to address three key406

questions regarding CENTAUR: Q1 (Privacy):407

Does the intermediate result in CENTAUR, stored408

in a randomly permuted state, withstand various409

rigorous adversarial attacks? Q2 (Efficiency): Can410

CENTAUR improve the inference speed of PPTI?411

Q3 (Performance): Does CENTAUR maintain the412

model’s performance during PPTI execution?413

5.1 Experimental Setup414

Implementation. We perform CENTAUR on415

CrypTen, a privacy-preserving machine learning416

framework based on SMPC. Our experiments were417

conducted on three servers, each equipped with418

an A100 GPU. To assess efficiency under varying419

conditions, we simulated different network settings420

using Linux Traffic Control. For the Local Area421

Network (LAN), the bandwidth was set to 3 Gbps422

with a round-trip delay of 0.8 ms, while for the423

Wide Area Network (WAN), the bandwidth was424

100 Mbps with an 80 ms delay.425

Baselines. CENTAUR is compared with several426

state-of-the-art PPTI frameworks: MPCFormer (Li427

et al., 2023), PUMA (Dong et al., 2023), and Sec-428

Former (Luo et al., 2024). MPCFormer improves429

PPTI efficiency by replacing Softmax and GeLU430

with SMPC-friendly quadratics. PUMA optimizes 431

PPTI efficiency with enhanced SMPC protocols 432

for nonlinear operations, while SecFormer also re- 433

places Softmax with SMPC-friendly quadratics and 434

refines protocols for nonlinear layers. 435

Models and Datasets. To ensure fairness, we se- 436

lected the BERT and GPT-2 models, which are 437

widely used in baseline evaluations, as bench- 438

mark models for our experimental assessment. For 439

the BERT model, we selected five datasets from 440

the GLUE benchmark (Wang et al., 2019) (RTE, 441

CoLA, STS-B, MRPC, QNLI) for natural language 442

understanding (NLU) tasks. For GPT-2, we em- 443

ployed two datasets from the Wikitext collection 444

(Merity et al., 2017) (Wikitext-103 and Wikitext- 445

2) for natural language generation (NLG) tasks. 446

Furthermore, as CENTAUR performs the computa- 447

tion of nonlinear functions in Transformer models 448

under permutation, it can theoretically be easily ex- 449

tended to other types of Transformer models, such 450

as LLaMA, while maintaining a better balance be- 451

tween privacy, efficiency, and performance. These 452

details will be further outlined in Appendix E. 453

5.2 Empirical Security 454

To answer Q1, we conduct a series of rigorous 455

adversarial experiments. Specifically, we first em- 456

ploy the three most advanced Data Reconstruction 457

Attack (DRA) methods to attack the permuted in- 458

termediate results in an attempt to retrieve private 459

inference data from users without recovering the 460

permutation matrix. We also perform pattern-based 461

and heuristic-based methods to recover the permu- 462

tation matrix from the permuted intermediate re- 463

sults. The attack setup and more results of the 464

attack experiments are presented in Appendix C. 465

Attack Methods. We evaluate three mainstream 466

DRA methods targeting the intermediate outputs 467
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Figure 5: Time breakdown for each operations (left) and the entire PPTI process (right) of the tested frameworks.
The results are the average of ten runs.

of Transformer models: (1) SIP (Chen et al., 2024),468

a learning-based approach that trains an inversion469

model on the auxiliary dataset to reconstruct the470

original sentence from any intermediate output de-471

rived from the private dataset; (2) Embedding Inver-472

sion Attack (EIA) (Song and Raghunathan, 2020),473

an optimization-based approach that generates a474

dummy input and iteratively optimizes it (through475

relaxed optimization within the discrete vocabulary476

space) to match the observed intermediate outputs;477

and (3) BRE (Chen et al., 2024), an optimization-478

based approach that constructs dummy inputs but479

performs optimization within the continuous em-480

bedding space.481

Attack Targets. In CENTAUR, as outlined in Sec-482

tion 4.2, intermediate results such as O1π1, O4π,483

O5π2, and O6π are stored in permuted form on484

cloud platform P1. To validate the privacy protec-485

tion capabilities of CENTAUR, we conduct DRA486

experiments on these permuted results. For compar-487

ison, we also set up two control experiments: one488

with the original intermediate results (O1, O4, O5,489

O6), and another with random matrices of equiv-490

alent dimensions. The focus of our experiments491

is on the first Transformer block, where privacy492

leakage is most likely to occur.493

Evaluation Metrics. We use ROUGE-L (Rouge,494

2004) F1 score as the evaluation metric for the at-495

tack experiments. ROUGE-L F1 assesses similarity496

based on the longest common subsequence, strictly497

following the order and tokens. By analyzing the498

ROUGE-L F1 values, we can understand the ex-499

tent to which the original inference data can be500

reconstructed from the intermediate results. The 501

ROUGE-L F1 score ranges from 0 to 1, with lower 502

values indicating a lower recovery rate. 503

Evaluation Results. The experimental results in 504

Table 1 demonstrate that on both BERTLARGE and 505

GPT-2LARGE, the average ROUGE-L F1 values 506

for data recovery by the three attack methods us- 507

ing CENTAUR’s permuted intermediate results are 508

comparable to those obtained with random inputs. 509

This further confirms that CENTAUR effectively 510

preserves the privacy of inference data. Specifi- 511

cally, for BERTLARGE, the three attack methods re- 512

cover only 3.86%, 2.58%, and 0.43% of the data’s 513

average ROUGE-L F1 values on the QNLI classi- 514

fication task dataset. In contrast, the recovery rate 515

significantly increases when original intermediate 516

results are used for the attacks. For instance, on 517

GPT-2LARGE, the average ROUGE-L F1 value for 518

data recovery using EIA reaches as high as 90.99%, 519

with 100% data recovery achieved on O1 = QK⊤. 520

This indicates that the privacy-preserving mecha- 521

nism of PPTI (Yuan et al., 2023) based on random 522

permutation completely fails once the original in- 523

termediate results are exposed. 524

5.3 Efficiency Comparison 525

To address Q2, we analyze the inference time and 526

communication overhead of CENTAUR performing 527

PPTI and compare it with current state-of-the-art 528

frameworks. The key results are presented in Fig. 5, 529

with more details provided in Appendix D. In two 530

network settings—LAN (3Gbps, 0.8ms) and WAN 531

(100Mbps, 80ms)—CENTAUR significantly outper- 532
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QNLI (108k) CoLA (8.5k) STS-B (5.7k) MRPC (3.5k) RTE (2.5k) Avg. Wikitext-2 (45k) Wikitext-103 (1800k) Avg.
BERTBASE(↑) GPT-2BASE(↓)

Plain-text 91.7 57.8 89.1 90.3 69.7 79.7 20.3 24.3 22.3
PUMA 91.7 57.8 89.1 90.3 69.7 79.7 20.3 24.3 22.3
•MPCFormerw/o 69.8 0.0 36.1 81.2 52.7 48.0 420.9 520.0 470.5

•MPCFormer 90.6 52.6 80.3 88.7 64.9 75.4 431.8 522.3 477.1
◦SecFormerw/o 89.3 57.0 86.2 83.8 63.2 75.9 75.4 131.0 103.2

◦SecFormer 91.2 57.1 87.4 89.2 69.0 78.8 75.3 130.9 103.1
CENTAUR (Ours) 91.7 57.8 89.1 90.3 69.7 79.7 20.3 24.3 22.3

BERTLARGE(↑) GPT-2LARGE(↓)

Plain-text 92.4 61.7 90.2 90.6 75.5 82.1 14.4 16.0 15.2
PUMA 92.4 61.7 90.2 90.6 75.5 82.1 14.4 16.0 15.2
•MPCFormerw/o 49.5 0.0 0.0 81.2 52.7 36.7 94.4 396.2 245.3

•MPCFormer 87.8 0.0 52.1 81.4 59.2 56.1 94.5 402.5 248.5
◦SecFormerw/o 90.8 60.8 89.0 87.6 69.7 79.6 91.8 143.1 117.5

◦SecFormer 92.0 61.3 89.2 88.7 72.6 80.8 91.5 140.6 119.1
CENTAUR (Ours) 92.4 61.7 90.2 90.6 75.5 82.1 14.4 16.0 15.2

Table 2: Performance comparison of BERT and GPT-2 models. Underlined numbers indicate the best results.
Marker ◦ refer to approximating GeLU with Quad. Marker • refer to approximating GeLU and Softmax with Quad
and 2Quad, respectively. “w/o” indicates no re-training or knowledge distillation

forms other PPTI frameworks. For BERTLARGE,533

CENTAUR is 5.1∼24.2 times faster in a LAN en-534

vironment and 6.3∼30.4 times faster in WAN. For535

GPT-2LARGE, CENTAUR is 5.0∼26.9 times faster in536

LAN and 5.8∼28.4 times faster in WAN. These effi-537

ciency improvements are attributed to CENTAUR’s538

dual optimization of both the linear and non-linear539

layers within PPTI.540

Linear Layers. CENTAUR speeds up inference in541

linear layers by 1.8∼2.2 times for BERTLARGE and542

2.0∼2.8 times for GPT-2LARGE compared to other543

PPTI frameworks. This is due to CENTAUR’s use of544

randomly permuted model parameters and secret-545

shared inference data, allowing most linear compu-546

tations to be performed with the communication-547

free private matrix multiplication protocol ΠScalMul.548

Non-Linear Layers. In the non-linear layers,549

CENTAUR achieves significant speed-ups. For550

Softmax and GeLU, CENTAUR outperforms the551

SMPC-based framework PUMA by two orders552

of magnitude. For BERTLARGE, CENTAUR is553

3.2∼93.3 times faster in Softmax, 1.4∼66.8 times554

faster in GeLU, and 8.6∼50.1 times faster in Lay-555

erNorm. For GPT-2LARGE, the speed-ups are556

3.7∼105.5, 1.5∼76.5, and 9.3∼29.5 times, respec-557

tively. These improvements are attributed to the558

privacy-preserving non-linear algorithms proposed559

in CENTAUR, which significantly reduce the com-560

munication overhead of non-linear computations561

in PPTI by converting the secret-share state to a562

random permutation state.563

Embedding & Adaptation Layers. The embed-564

ding and adaptation layers, which involve both565

linear and non-linear operations, benefit from566

CENTAUR’s dual optimization. For BERTLARGE,567

CENTAUR’s inference speed in the embedding 568

layer is 364.1∼377.8 times faster, while for GPT- 569

2LARGE, the speedup ranges from 67.1∼82.8 times. 570

In the adaptation layer, CENTAUR accelerates 571

BERTLARGE by 7.6∼11.6 times and GPT-2LARGE 572

by 193.7∼290.9 times. 573

5.4 Performance Comparison 574

To answer Q3, we validate the performance of 575

CENTAUR and show the results in Table 2. As 576

can be seen, both the BERT series models with 577

an encoder structure and the GPT series models 578

with a decoder structure achieve the same perfor- 579

mance when using CENTAUR for PPTI as inference 580

in plaintext. This indicates that CENTAUR does 581

not compromise the performance of the plaintext 582

models while protecting the model parameters and 583

inference data. This is because CENTAUR does 584

not make any adjustments to the structure of the 585

plaintext Transformer models during the PPTI pro- 586

cess. Consequently, CENTAUR can be combined 587

with any existing Transformer architecture model 588

to achieve PPTI with performance equivalent to 589

plaintext inference. 590

6 Conclusion 591

This paper introduces CENTAUR, an efficient 592

PPTI framework that employs tailored privacy- 593

preserving mechanisms for both model parameters 594

and inference data. By seamlessly integrating these 595

techniques with customized algorithms, CENTAUR 596

strikes an optimal balance in the privacy-efficiency- 597

performance trade-off, often referred to as the “im- 598

possibility triangle”, unlocking new possibilities 599

for the secure deployment of language models. 600
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7 Limitations601

CENTAUR adopts a privacy-preserving mecha-602

nism based on random permutation, which means603

that it cannot directly achieve theoretical secu-604

rity.CENTAUR does not overemphasize the theo-605

retical security frameworks focused on in the se-606

curity domain but instead supports its claimed em-607

pirical security through extensive and complex at-608

tack experiments. In practical applications, privacy609

and usability are often incompatible. Particularly610

in the era of large models based on Transformer611

architectures, the rapid growth in model size has612

made traditional provable security techniques, such613

as secure multi-party computation (SMPC) and614

homomorphic encryption (HE), impractical due615

to their high communication and computational616

costs. Therefore, we believe exploring practical617

privacy-preserving mechanisms for large models618

is of significant importance. Among various un-619

verifiable security methods, the privacy-preserving620

capabilities of random permutation are positively621

correlated with the scale of the protected entity,622

making it especially suitable for large models with623

high-dimensional Transformer architectures. CEN-624

TAUR achieves a better balance between privacy625

and usability by combining random permutation626

with other provable security techniques. At the627

same time, we believe that the practical attack anal-628

yses on intermediate results in language models629

performed in CENTAUR hold equal importance to630

purely theoretical frameworks and require evalua-631

tion by the NLP community.632

Moreover, CENTAUR has not yet incorporated633

other techniques aimed at improving the inference634

computation and storage efficiency of Transformer635

models, such as quantization and KV-cache, to fur-636

ther enhance the overall efficiency of PPTI. As637

orthogonal technologies to CENTAUR, combining638

these methods may present new challenges. For ex-639

ample, KV-cache involves several operations (e.g.,640

similarity computation, Top-k sorting, Token aggre-641

gation) that are incompatible with SMPC, meaning642

that implementing privacy-preserving KV-cache643

will require additional considerations. We plan644

to further explore these issues in future work to645

integrate CENTAUR with these technologies and646

enhance the privacy and efficiency of PPTI.647
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Appendices813

The appendices in this paper are organized as fol-814

lows.815

• Appendix A presents the privacy-preserving al-816

gorithms designed in CENTAUR.817

• Appendix B offers a detailed theoretical security818

analysis of the CENTAUR framework.819

• Appendix C offers a detailed empirical security820

analysis of the CENTAUR framework.821

• Appendix D presents comparative analyses of822

CENTAUR’s communication volume and infer-823

ence time for BERTBASE and GPT-2BASE.824

• Appendix E provides a comprehensive analysis825

of CENTAUR framework, further supported by826

experimental results on the LLaMA-7B model.827

• Finally, Appendix F outlines the hyperparameters828

employed in the performance experiments.829

A Privacy-preserving Algorithms in830

CENTAUR831

In this section, we present the construction832

of privacy-preserving algorithms within CEN-833

TAUR. Specifically, this includes Privacy-834

Preserving Softmax (ΠPPSM), Privacy-Preserving835

GeLU (ΠPPGeLU), Privacy-Preserving LayerNorm836

(ΠPPLN), Privacy-preserving permutation (ΠPPP),837

Privacy-Preserving Embedding (ΠPPEmbedding), and838

Privacy-Preserving Adaptation (ΠPPAdaptation). We839

illustrate the construction of ΠPPAdaptation using the840

BERT series model as an example. In the BERT841

model, the Adaptation layer consists of a pooling842

layer composed of a linear layer (WP , BP ) and the843

activation function Tanh, followed by a linear layer844

with parameters (WC , BC).845

Algorithm 1: Privacy-preserving Softmax
(ΠPPSM)

Input: For j ∈ {0, 1}, Pj holds [Xπ]j .
Output: For j ∈ {0, 1}, Pj holds

[Y π]j = [Softmax(X)π]j .
1 The model developer P0 transmits [Xπ]0 to

P1

2 P1 reconstructs Xπ and calculates
Y π = Softmax(Xπ) = Softmax(X)π

3 P1 generates shares of Y π and sends [Y π]0
to P0

Algorithm 2: Privacy-preserving GeLU
(ΠPPGeLU)

Input: For j ∈ {0, 1}, Pj holds [Xπ2]j .
Output: For j ∈ {0, 1}, Pj holds

[Y π2]j = [GeLU(X)π2]j .
1 The model developer P0 sends [Xπ2]0 to P1

2 P1 reconstructs Xπ2 and calculates
Y π2 = GeLU(Xπ2)

3 P1 generates shares of Y π2 and sends
[Y π2]0 to P0

Algorithm 3: Privacy-preserving Layer-
Norm (ΠPPLN)
Input: For j ∈ {0, 1}, Pj holds [Xπ]j .
Output: For j ∈ {0, 1}, Pj holds

[Y π]j = [LayerNorm(X)π]j .
1 The model developer P0 transmits [Xπ]0 to

P1

2 P1 reconstructs Xπ and calculates
Y π = LayerNorm(Xπ, γπ, βπ)

3 P1 generates shares of Y π and sends [Y π]0
to P0

Algorithm 4: Privacy-preserving Embed-
ding (ΠEmbedding)
Input: For j ∈ {0, 1}, Pj holds [X]j .
Output: For j ∈ {0, 1}, Pj holds [XEπ]j .

1 P0 and P1 jointly calculate
[[XMπ]] = ΠScalMul([[input]],WEπ)

2 P0 and P1 jointly calculate
[[XEπ]] = ΠPPLN([[XMπ]])

Algorithm 5: Privacy-preserving Adapta-
tion (ΠAdaptation)
Input: For j ∈ {0, 1}, Pj holds [Xπ]j .
Output: For j ∈ {0, 1}, Pj holds [Y π]j .

1 P0 and P1 jointly calculate
[[XPπ]] = ΠScalMul([[input]],WPπ)

2 The model developer P0 sends [Xπ]0 to P1

3 P1 reconstructs Xπ and calculates
Tπ = Tanh(Xπ) = Tanh(X)π

4 P1 generates shares of Tπ and sends [Tπ]0
to P0

5 P0 and P1 jointly calculate
[[Y ]] = ΠScalMul([[Tπ]],Wc)
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Algorithm 6: Privacy-preserving permuta-
tion (ΠPPP)
Input: For j ∈ {0, 1}, Pj holds [X]j .
Output: For j ∈ {0, 1}, Pj holds [Xπ]j .

1 P2 generates a random permutation
π ∈ Rd×d

2 P2 generates the shares ([π]0, [π]1) and
sends [π]j to Pj

3 P0 and P1 jointly calculate the permuated
share [[Xπ]] = ΠMatMul([[X]], [[π]]).

B Theoretical Analysis846

In this section, we theoretically demonstrate that847

CENTAUR can protect the confidentiality of both848

model parameters held by the model developer and849

user inference data. Specifically, we first lever-850

age the properties of permutation matrices and the851

Transformer model structure to show how CEN-852

TAUR ensures the confidentiality of model parame-853

ters. Next, by applying the widely-used simulation-854

based paradigm from secure multi-party computa-855

tion (SMPC), we illustrate how intermediate results856

in a secret-sharing state can safeguard the confi-857

dentiality of user inference data. Furthermore, we858

analyze the privacy-preserving capabilities of inter-859

mediate results under random permutation using860

distance correlation theory.861

B.1 Privacy of Model Parameters862

In CENTAUR, the permutation matrices863

Π = {π, π1, π2} are randomly generated lo-864

cally by the model developer P0 during the865

initialization phase. Subsequently, P0 sends the866

permutation matrix π to the client P2 and the867

permuted model parameters to the cloud platform868

P1. During the privacy-preserving inference869

phase, although P1 receives the permuted param-870

eters in the linear layers and LayerNorm layers871

{WEπ,WQπ,WKπ,WV π, (WOπ,BOπ), (π2W1872

π,B1π), (πW2π2, B2π), (γ1π, β1π), (γ2π, β2π)},873

it lacks information about the permutation matrices874

{π ∈ Rd×d, π2 ∈ Rk×k}. This prevents P1 from875

directly obtaining the original parameters. Based876

on the properties of permutation matrices, the prob-877

ability that P1 can derive the original parameters878

{WE ,WQ,WK ,WV , (WO, BO), (γ1, β1), (γ2, β2),879

B2} from the permuted ones is 1
d! . The probability880

of retrieving the parameters {W1,W2} is 1
d!k! and881

B1 is 1
k! .882

Also, during both the initialization and privacy-883

preserving inference phases, the client P2 can only 884

obtain the permutation matrix π and the permuted 885

inference results, thus preventing any access to 886

information about the model parameters. 887

B.2 Privacy of Inference Data 888

Unlike model parameters, inference data in CEN- 889

TAUR is split into random shares. We prove that 890

CENTAUR can ensure that during PPTI, neither the 891

model developer P0 nor the cloud platform P1 can 892

obtain any meaningful information about the infer- 893

ence data. Firstly, we prove through simulation that 894

the intermediate results in the random shares state 895

in CENTAUR do not leak the privacy of the infer- 896

ence data. Then, we demonstrate through distance 897

correlation theory and various attack experiments 898

to verify that the permuted intermediate results do 899

not leak the privacy of the inference data. 900

Intermediate Results in the Secret-Sharing State. 901

CENTAUR follows the semi-honest (also known as 902

honest-but-curious) assumption, similar to (Li et al., 903

2023; Dong et al., 2023; Luo et al., 2024). Under 904

this assumption, the security of CENTAUR can be 905

formally proven in the simulation paradigm, partic- 906

ularly against a static semi-honest adversary (de- 907

noted as A). Specifically, the simulation paradigm 908

divides the process into two distinct worlds: the 909

real world and the ideal world. In the real world, 910

the server executes the protocol in the presence of 911

a semi-honest adversary A. In contrast, in the ideal 912

world, the server transmits the input information to 913

a trusted dealer who executes the protocol correctly. 914

The security of the CENTAUR framework requires 915

that the protocol executed with intermediate results 916

in a randomly shared state produces distributions 917

in the real world and the ideal world that are indis- 918

tinguishable for any semi-honest adversary A. 919

Theorem 1 The protocols executed in CENTAUR, 920

using intermediate results in a randomly shared 921

state as input, satisfies the following criteria: 922

• Correctness: For a model FΘ with parameters 923

Θ and inference data X , the output of the client 924

at the end of the protocol is the correct inference 925

result FΘ(X). 926

• Security: For any corrupted computing server 927

Sj with j ∈ {0, 1}, there exists a probabilis- 928

tic polynomial-time simulator SimSj such that 929

the adversary A cannot distinguish between 930

V iewΠP
Sj

(i.e., the view of Sj during the execution 931

of ΠP ) and SimSj . 932
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BERTLARGE on the MRPC dataset GPT-2LARGE on the Wikitext-2 dataset

Attacks Methods O1 O4 O5 O6 Avg O1 O4 O5 O6 Avg

SIP
W/O 70.94± 0.17 85.40± 0.38 97.61± 0.08 97.89± 0.08 87.96 65.38± 0.14 93.59± 0.04 93.07± 0.13 94.68± 0.05 86.68

W(Ours) 10.96± 1.24 1.68± 0.29 2.36± 1.67 4.96± 0.67 4.99 4.64± 0.91 11.58± 0.47 0.48± 0.29 2.68± 2.71 4.85
Rand 5.72± 0.05 6.09± 0.04 3.79± 2.68 4.14± 0.19 4.94 0.09± 0.01 1.20± 0.02 0.00± 0.00 1.46± 0.01 0.69

EIA
W/O 100.00± 0.00 34.25± 0.62 78.41± 0.50 19.31± 0.78 57.99 96.17± 0.05 100.00± 0.00 99.99± 0.01 65.04± 2.97 90.30

W(Ours) 1.60± 0.40 5.65± 0.47 3.41± 0.85 0.25± 0.21 2.73 1.46± 0.17 12.49± 0.25 8.67± 0.20 4.89± 0.77 6.88
Rand 0.13± 0.01 6.57± 0.08 0.28± 0.01 0.77± 0.03 1.94 0.76± 0.80 9.69± 0.73 2.13± 0.78 4.11± 0.36 4.17

BRE
W/O 51.89± 1.26 73.30± 0.43 70.86± 0.37 11.34± 2.40 51.85 100.00± 0.00 100.00± 0.00 100.00± 0.00 40.50± 0.36 85.13

W(Ours) 0.07± 0.01 2.77± 0.11 1.08± 0.20 0.91± 0.36 1.21 0.26± 0.14 2.14± 0.20 0.04± 0.01 0.07± 0.01 0.63
Rand 0.18± 0.01 1.94± 0.08 0.68± 0.03 0.54± 0.05 0.84 0.17± 0.06 0.28± 0.07 0.06± 0.02 0.09± 0.02 0.15

Table 3: Attack performance (RougeL-F%) on BERTLARGE and GPT-2LARGE. The MRPC dataset is used for
BERT and the Wikitext-2 dataset is used for GPT-2. “W/O” represents the original data without permutation; “W”
represents the permuted state; “Rand” represents random input. Results are the average of three different random
seeds.

We provide the proof of Theorem 1 through the933

following analyses. According to Fig. 4 and Eqs.934

(3)-(4), the linear layers in a Transformer model935

only involve privacy-preserving operations ΠPPP936

which is essentially a ΠMatMul, ΠScalMul, ΠMatMul,937

and ΠAdd. Since these basic operations ΠScalMul,938

ΠMatMul, and ΠAdd have been proven to satisfy The-939

orem 1, we can directly prove that CENTAUR satis-940

fies Theorem 1 for these linear layers using the uni-941

versally composable security theorem established942

in (Canetti, 2001).943

Intermediate Results in the Randomly Per-944

muted State. In CENTAUR, to perform non-linear945

operations such as ΠPPSM, ΠPPGeLU, and ΠPPLN, a946

conversion from a random sharing state to a ran-947

dom permutation state is required. During this pro-948

cess, the model developer P0 needs to send [Xπ]0949

to the cloud platform P1 for the reconstruction of950

Xπ, resulting in the intermediate results being in a951

random permutation state.952

We demonstrate both theoretically and experi-953

mentally that intermediate results in a random per-954

mutation state do not leak the privacy of inference955

data. Specifically, from a theoretical standpoint, we956

employ distance correlation theory (Székely et al.,957

2007) to prove that the privacy leakage caused958

by intermediate results in a randomly permuted959

state is less than that of one-dimensional reduc-960

tion, which has already been proven to possess961

privacy-preserving capabilities in practical appli-962

cations (Wang et al., 2018; Oliveira and Zaiane,963

2004). According to (Zheng et al., 2022), for any964

vector o ∈ R1×d, the following inequality holds:965

E
π,WA∈Zd×d

[Discorr(o, oWAπ)]

≤ E
WB∈Zd×1

[Discorr(o, oWB)],
(5)966

where Discorr denotes a distance correlation func-967

tion. This inequality implies that the distance corre- 968

lation of the vector o after passing through a linear 969

layer with parameter WA, followed by a permuta- 970

tion π, is less than or equal to the distance corre- 971

lation after passing through a linear layer WB that 972

compresses it to a 1-dimensional output. Accord- 973

ing to Fig. 4, all shares pass through at least one 974

linear layer before being converted to a permuted 975

state in CENTAUR. Therefore, it can be proven that 976

the intermediate results in the permuted state in 977

CENTAUR satisfy Eq. (5). 978

C Empirical Security Analysis 979

In this section, we demonstrate that the distributed 980

secure inference based on the permutation of inter- 981

mediate results provides empirical privacy security. 982

Specifically, in the scenario we consider, even for 983

a reasonably strong attacker, the difficulty of suc- 984

cessfully launching an attack is extremely high. To 985

illustrate this, we assume an overly idealized ad- 986

versary, who has full white-box access to all parts 987

of the model segment held by the model devel- 988

oper. This assumption is unrealistic in practical 989

application scenarios. To comprehensively eval- 990

uate privacy, we further categorize the adversary 991

into two types: those who launch attacks with and 992

without cracking the permutation matrix. It is im- 993

portant to note that, to date, no existing work has 994

successfully compromised permuted Transformer 995

intermediate results. We are the first to conduct 996

a thorough analysis of the privacy and security of 997

permutation-based Transformer inference. 998

Attack Setup. We evaluate the privacy protection 999

capabilities of CENTAUR by conducting a series 1000

of data reconstruction attack (DRA) experiments, 1001

with and without the adversary attempting to crack 1002

the permutation matrix (secret key). Consider an 1003

overly idealized attack scenario where the adver- 1004
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On 31 December 1853, the Ottoman forces at Calafat moved against the Russian force at Chetatea or Cetate, 
a small village nine miles north of Calafat, and engaged them on 6 January 1854.

on 31 december and the alerted forces at calafi
moved against the federation force at 
bundesligaatea or ce dd and a small village nine 
miles north of calafi and and engage them on 6 
january charges.

on 31 december 1853, the ottoman forces at 
calafat moved against the russian force at 
chetatea or cetate, a small village nine miles 
north of calafat, and engaged them on 6 january
1854.
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Figure 6: An example of recovering private inference input data through O1.

sary has unrestricted query access to key interme-1005

diate components of the model. An adversary can1006

launch attacks at any nonlinear intermediate layer1007

and recover the inference data’s privacy using only1008

the intermediate results from that layer. Addition-1009

ally, we assume this powerful adversary has ac-1010

cess to an auxiliary dataset that may or may not1011

resemble the target private dataset. We use a batch1012

size of 4 and evaluate the average attack perfor-1013

mance on 20 batches. To ensure the stability of1014

the experimental results, each set of experiments1015

was conducted with three different random seeds.1016

The CNN-DailyMail News Text Summarization1017

dataset (See et al., 2017), which is entirely distinct1018

from the target private datasets, was selected as1019

the auxiliary dataset to simulate a realistic attack1020

scenario.1021

C.1 Attack without Cracking the Permutation1022

Matrix1023

For an attacker who does not attempt to crack1024

the permutation matrix, the inability to determine1025

whether the target intermediate results have been1026

permuted leads them to employ traditional DRA1027

strategies designed for the intermediate results of1028

Transformers. In Section 5.2, we have already pro-1029

vided experimental results for three state-of-the-art1030

data reconstruction attack methods tailored for this1031

scenario. Here, we present the attack setup and1032

implementation details for the three adopted DRA1033

methods, along with additional results and specific1034

examples from the attack experiments discussed1035

earlier.1036

Implementation Details. For SIP, we employ a1037

simple GRU model as the Inversion Model, with1038

a hidden size of 256 and a dropout rate of 0.1, 1039

and train it for 20 epochs on the CNN Daily-Mail 1040

News dataset. Given that the last two dimensions 1041

of O1 correspond to variable-length sequences, we 1042

truncate these sequences to a fixed length (512 in 1043

our experiments) before inputting them into the 1044

Inversion Model for training. For EIA, we use 1045

the Gumbel Softmax approximation to construct a 1046

distribution matrix over the vocabulary, which is 1047

then fed into the model. We optimize the interme- 1048

diate outputs using Euclidean distance as the loss 1049

function. Since the attack focuses on intermediate 1050

results from the first layer, we do not need to apply 1051

the mapping strategy to shallow layers as described 1052

in (Song and Raghunathan, 2020). For BRE, we 1053

directly construct an embedding, bypassing the em- 1054

bedding layer, and input it into the language model, 1055

optimizing based on cosine similarity. We conduct 1056

6000 epochs of optimization for BRE and 2400 1057

epochs for EIA, with both methods using AdamW 1058

with a learning rate of 0.1 as the optimizer. 1059

More Attack Result. We also report the out- 1060

comes of attacks on the MRPC dataset using the 1061

BERTLARGE model and on the Wikitext-2 dataset 1062

using the GPT-2LARGE model. Specifically, for 1063

the BERTLARGE model, the average ROUGE-L 1064

F1 scores for data recovery across three different 1065

attack methods on the MRPC classification task 1066

dataset are a mere 4.99%, 2.73%, and 1.21%, re- 1067

spectively. These results are comparable to the 1068

ROUGE-L F1 scores obtained when attacking ran- 1069

dom inputs. In contrast, attacks on plaintext inter- 1070

mediate results yield significantly higher recovery 1071

rates. Notably, the average ROUGE-L F1 score for 1072

data recovered using SIP from plaintext interme- 1073
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diate results reaches as high as 87.96%. A similar1074

pattern is observed with the GPT-2LARGE model1075

during prediction tasks. On the Wikitext-2 dataset,1076

the average ROUGE-L F1 scores for data recovery1077

from randomly permuted intermediate results are1078

4.58%, 6.88%, and 0.63%, which are again com-1079

parable to the recovery rates from random inputs.1080

However, when targeting plaintext intermediate re-1081

sults, the average ROUGE-L F1 scores for data1082

recovery using the three attack methods are signifi-1083

cantly higher, with the EIA method recovering over1084

90.3% of the private data.1085

Attack Examples. We provide additional practi-1086

cal attack examples targeting O1 = QKT . These1087

examples clearly demonstrate that directly attack-1088

ing the plaintext O1 can effectively recover private1089

inference data, indicating that permutation-based1090

PPTI presents a significant privacy leakage risk.1091

In contrast, attacking obfuscated intermediate re-1092

sults or random inputs only produces meaningless1093

garbled output. This demonstrates that the privacy1094

protection provided by CENTAUR can effectively1095

resist current DRA attacks.1096

Analysis. For the considered data reconstruction1097

attacks, to launch an attack based on observations1098

in the intermediate space N , the attacker must ob-1099

tain an inverse mapping f−1 to map the results1100

back to the vocabulary space V . In this context, we1101

investigate the correlation between the proportion1102

of shuffled features in the intermediate results and1103

the effectiveness of f−1. The results, after fitting1104

and smoothing, are presented in Fig. 7. It is evi-1105

dent that a small amount of feature displacement1106

(20%) can significantly reduce the effectiveness of1107

f−1. In practice, for the permutation matrix gen-1108

erated by np.permutation, when the hidden size of1109

the large language model (LLM) exceeds 768, the1110

proportion of non-shuffled elements is less than1111

0.13%, effectively achieving near-complete feature1112

reordering. This leads to the complete disruption1113

of f−1. Thus, although the intermediate represen-1114

tations of the Transformer are sparse, in a scenario1115

where almost all features are randomly reordered,1116

any direct attack method that does not consider1117

cracking the permutation matrix is impractical.1118

C.2 Attack by Cracking the Permutation1119

Matrix1120

Furthermore, we consider a more advanced adver-1121

sary, who is aware that the intermediate result being1122

attacked has been permuted and attempts to launch1123
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Figure 7: The correlation between the proportion of
shuffled features and the effectiveness (measured by
the ROUGE-L F1 score) of the inversion attack f−1,
showing that reconstructing the raw text requires 75%+
of the features to remain in place.

an attack by cracking the permutation matrix. We 1124

emphasize that permuting the intermediate results 1125

of a Transformer is difficult to crack in practice, 1126

which stems from: 1127

• Huge secret key space: A typical Trans- 1128

former model has a large dimensionality for 1129

its intermediate representations. For instance, 1130

the dimensionality is often 768 (and it is even 1131

over a thousand for GPT-2 and Llama). The 1132

key space reaches 768!. Even for a computer 1133

with a computing power of 1018 FLOPS, it 1134

is impossible to solve the problem within a 1135

reasonable time frame. 1136

• Noisiness of intermediate representations: 1137

Usually, the cracking of substitution ciphers 1138

is carried out directly in the vocabulary space 1139

V . However, in the context of Centaur, the 1140

target model f : V → N maps the original 1141

sentences to the intermediate space N . For 1142

the attacker under consideration, the cracking 1143

process occurs in the space N . For an attacker 1144

aiming to reconstruct the original sentence 1145

data from a target, the function f is noisy. 1146

Due to the stacking of attention mechanisms, 1147

the intermediate activations of the same token 1148

vary across different contexts and also differ 1149

from the initial embedding of that token. That 1150

is to say, the randomness here comes from the 1151

context during inference. 1152

Due to the adversary’s limited attack view 1153

caused by the perturbation, the large key space, 1154

and the challenging inversion curve shown in Fig. 7, 1155
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Table 4: The average global Jensen-Shannon (JS) diver-
gence across the feature dimensions of the intermediate
results generated during inference on different models
and datasets, with all values being less than 0.1, indi-
cates that the distribution differences across the feature
dimensions are minimal.

Model PIQA WikiText MRPC QNLI
BERT-large 0.0748 0.0618 0.0605 0.0612
GPT2-large 0.0555 0.0441 0.0462 0.0470

cracking the permutation matrix proves to be dif-1156

ficult in practice. In the following, we attempt1157

two cracking methods, namely pattern-based and1158

searching-based approaches, both of which fail to1159

successfully break the permutation matrix.1160

C.2.1 Crack by Pattern Identification:1161

Difficult1162

For permutation-based encryption in the feature1163

space, a key issue is whether there are identifiable1164

patterns across the feature dimensions that could1165

be exploited by the attacker to launch a cracking1166

attack. We note that, due to operations such as1167

LayerNorm performed by the Transformer on the1168

feature dimensions, it is difficult to attempt crack-1169

ing by simply identifying patterns in the different1170

features, as their distributions are too similar to be1171

distinguished.1172

Distribution Similarity Test We calculated the1173

global Jensen-Shannon (JS) divergence (ranging1174

from 0 to 1, where 1 indicates a clear distinction be-1175

tween distributions) among all feature dimensions1176

of the intermediate activations on BERT, GPT-2,1177

and three datasets. It can be observed from Table 41178

that all the global JS divergences are less than 0.1.1179

The differences in the distributions of different fea-1180

tures are extremely small. Moreover, considering1181

that the intermediate dimension is quite large (>=1182

768), it is very difficult in practice to recover the1183

permutation matrix by observing the distributions1184

of these features.1185

Classifier-based Test We also attempted to use1186

RNN and Linear as classifiers to model the distribu-1187

tion characteristics of different feature dimensions.1188

However, even after careful tuning, such classifiers1189

failed to fit successfully during the training process.1190

C.2.2 Crack by Heuristic Searching: Difficult1191

Cracking strategies that use heuristic signals such1192

as frequency as search guides are indeed efficient1193

in traditional substitution cipher scenarios. How- 1194

ever, in the scenario considered by Centaur, the 1195

presence of noise makes it difficult for attackers to 1196

find effective and accurate heuristic signals. 1197

Take the frequency-based attack as an example. 1198

Different from the monoalphabetic substitution ci- 1199

pher, the substitution space (768!) and the vocab- 1200

ulary space (>10000) are much larger than the al- 1201

phabet. Moreover, the "substitution" occurs in the 1202

intermediate results rather than the original vocab- 1203

ulary, even if an attacker might obtain the interme- 1204

diate representation of a known token, they still 1205

cannot directly solve for the permutation matrix as 1206

in a known-plaintext attack (KPA), because there 1207

is a random perturbation between the intermedi- 1208

ate representation they possess and the one they 1209

observe. 1210

We conducted experiments to further verify the 1211

difficulty of heuristic search attacks. We con- 1212

sider both genetic algorithm (Bassin and Buzdalov, 1213

2020) and gradient-based continuous approxima- 1214

tion approaches for searching the permutation ma- 1215

trix. We tried various heuristic schemes to guide 1216

the cracking process, including: 1217

• Frequency-based. The attacker can use the 1218

clustering of intermediate results (since per- 1219

mutation does not affect clustering based on 1220

metrics such as cosine-similarity) to count 1221

token frequencies. After identifying high- 1222

frequency tokens, the attacker can crack the 1223

permutation matrix by comparing the interme- 1224

diate representations of high-frequency tokens 1225

before and after permutation. In the experi- 1226

ment, we assumed that the attacker had com- 1227

pletely determined the identities of the top-5 1228

and top-1 high-frequency permuted interme- 1229

diate results. We attempted to use the cosine 1230

similarity between the original intermediate 1231

results of these five tokens (sampled by the 1232

attacker from the auxiliary dataset) and the 1233

observed values as a heuristic signal. 1234

• Scoring-model-based. An ML model can be 1235

used to model the relationship between the 1236

"degree of disorder" and the degree of restora- 1237

tion mentioned in Fig. 7. This model takes 1238

the permuted intermediate results as input and 1239

can score the degree of disorder of the per- 1240

mutation. In practice, a scoring model with 1241

the architecture of the bert - base model can 1242

fit this relationship. Therefore, an attempt is 1243
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Table 5: The attack performance (measured by ROUGE-L F1 score %) of heuristic-searching-based cracking after
the search curve reaches saturation, using different heuristic signals.

Heuristic Signals Scoring-
model

Frequency
(top1-token)

Frequency
(top5-token)

(GT)
Edit Distance

(GT)
Invertion Rouge

Genetic Algorithm 1.02± 0.98 8.23± 2.44 14.54± 3.84 11.45± 1.01 28.41± 1.98
Gradient-based 6.87± 3.21 7.85± 2.90 9.87± 1.92 - 18.23± 2.09

made to use the output score of this model as1244

a heuristic signal.1245

• Control. As a control, we used two ground1246

truth metrics: (a) the mean edit distance (the1247

average edit distance between the cracked per-1248

mutation matrix and the real permutation ma-1249

trix), and (b) ROUGE-L of the reconstructed1250

sentence after cracking, compared to the real1251

sentence, as ground truth heuristic signals.1252

We conducted permutation cracking experiments1253

on an experimental machine equipped with 2 x In-1254

tel Xeon Gold 2.60GHz CPUs and 4 x NVIDIA1255

A100(40GB) GPUs. We also recorded the ROUGE-1256

L of the decrypted results of the cracked permuta-1257

tion after the search curve reached saturation (i.e.,1258

after the heuristic indicators stopped increasing for1259

a certain period of time). It can be seen from Ta-1260

ble 5 that even when using the ground truth (GT) as1261

the heuristic signal for the search, this search task1262

remains difficult (it’s hard to break through the 30%1263

performance bottleneck). As mentioned in 2.1, an1264

attacker needs to recover more than 80% of the per-1265

mutation matrix to achieve an attack performance1266

of over 30%, which is already extremely challeng-1267

ing. Moreover, the heuristic signals adopted by1268

the attacker are perturbed. This perturbation will1269

further confound the features that are already dif-1270

ficult to distinguish as mentioned in Fig. 7, creat-1271

ing an inevitable gap between them and the real1272

signals. This further prevents the recovery perfor-1273

mance from surpassing the 30% bottleneck.1274

D More Efficiency Results1275

D.1 Communication Overhead Analyses1276

We analyze the communication overhead of CEN-1277

TAUR-based PPTI and compare it with the current1278

leading privacy-preserving inference frameworks.1279

For BERTBASE and BERTLARGE, using CENTAUR1280

for PPTI reduces the communication overhead, re-1281

spectively, by 2.5 ∼ 37.1 and 2.4∼36.0 times com-1282

pared to existing methods. For the GPT-2BASE1283

and GPT-2LARGE, this reduction is 2.6∼37.6 and1284

2.51∼35.4 times, respectively. This significant 1285

reduction is attributed to the hybrid computation 1286

mechanism employed by CENTAUR, which drasti- 1287

cally reduces the communication overhead in both 1288

the linear and non-linear layers during PPTI. 1289

Linear Layers. In the linear layers, the communi- 1290

cation overhead required for performing PPTI us- 1291

ing CENTAUR is half of existing PPTI frameworks. 1292

This is because in the baseline PPTI frameworks, 1293

both the model parameters and inference data are 1294

in secret-sharing states, requiring the use of the 1295

private matrix multiplication protocol ΠMatMul be- 1296

tween secret shares during linear layer operations. 1297

In contrast, CENTAUR places only the inference 1298

data in a secret-sharing state while keeping the 1299

model parameters in a randomly permuted state. 1300

This allows CENTAUR to perform most of the lin- 1301

ear layer computations using the communication- 1302

free private matrix multiplication protocol ΠScalMul 1303

between plaintext and secret shares. 1304

Non-Linear Layers. In the non-linear layers, 1305

CENTAUR significantly reduces the communica- 1306

tion overhead of privacy-preserving computations 1307

by converting between secret-sharing and random 1308

permutation states. Specifically, for the privacy- 1309

preserving computation of Softmax, CENTAUR re- 1310

duces the communication overhead by 3.1∼112.3 1311

times compared to the current state-of-the-art PPTI 1312

frameworks. For the privacy-preserving computa- 1313

tion of GeLU, CENTAUR reduces the communica- 1314

tion overhead by 2.0∼95.0 times, and for Layer- 1315

Norm, CENTAUR reduces the communication over- 1316

head by 3.0 ∼ 3.1 times. 1317

Embedding & Adaptation Layers. The Embed- 1318

ding and Adaptation layers both include linear 1319

and nonlinear operations, allowing CENTAUR to 1320

achieve dual optimization in communication over- 1321

head. Specifically, for the Embedding layer, which 1322

includes matrix multiplication and LayerNorm, 1323

CENTAUR reduces communication overhead by 1324

22.0 ∼27.8 times compared to the current state- 1325

of-the-art PPTI frameworks. For the Adaptation 1326

layer, CENTAUR reduces communication overhead 1327
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Figure 8: Communication volume for each operations (left) and the entire PPTI process (right) of the tested
frameworks.
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Figure 9: Time breakdown for BERTBASE and GPT-2BASE. The results are the average of ten runs.

by 10.2 and 11.2 times on the BERT series models.1328

However, for the GPT-2 series models, the reduc-1329

tions are significantly higher, at 448.3 and 698.71330

times. This is due to the different structures used in1331

the adaptation layers of BERT and GPT-2 models1332

to adapt to downstream tasks.1333

D.2 Time breakdown for BERTBASE and1334

GPT-2BASE1335

In this section, we present the results of the time1336

overhead for privacy-preserving inference using1337

CENTAUR with BERTBASE and GPT-2BASE models1338

under LAN and WAN settings. The analysis results1339

are consistent with those observed for BERTLARGE1340

and GPT-2LARGE Section 5.4. 1341

E The Generalizability of CENTAUR 1342

CENTAUR is compatible with other Transformer 1343

models and can achieve a more optimal balance 1344

between privacy, efficiency, and performance. This 1345

is due to CENTAUR performing the computation of 1346

nonlinear functions in Transformer models under 1347

permutation, allowing for seamless extension to 1348

other Transformer architectures, such as LLaMA. 1349

In particular, the LLaMA model utilizes the RM- 1350

SNorm normalization function and the SwiGLU 1351

activation function. These functions are analogous 1352

to LayerNorm and GeLU and can both be com- 1353
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Table 6: The cost of privacy-preserving inference on LLaMA-7B, where #Input denotes the length of the input
sentence and #Output represents the number of generated tokens.

(#Input, #Output) (4, 1) (8, 1) (16, 1)
Costs Comm. Time Comm. Time Comm. Time

CENTAUR 0.32 2.76 0.39 3.02 0.54 6.81

puted under permutation, as demonstrated below:1354

RMSNorm(xπ) =
xπ√
1
d

d∑
i=1

x2i

= RMSNorm(x)π,

(6)1355

SwiGLU(xπ) =
xπ

1 + e−xπ
= SwiGLU(x)π.

(7)1356

Where x ∈ Rd is the input vector, d is the1357

input dimension (i.e., the number of elements),1358

and xi represents the i-th element in the vec-1359

tor. This enables CENTAUR to perform com-1360

plete privacy-preserving inference on the LLaMA1361

model without changing its underlying architecture.1362

In contrast, for SMPC-based PPTI frameworks,1363

such as MPCFormer and PUMA, extending to the1364

LLaMA model would require the design of pro-1365

prietary SMPC protocols for handling RMSNorm1366

and SwiGLU. This means that CENTAUR is more1367

generalizable than SMPC-based PPTI frameworks.1368

Since CENTAUR does not alter the structure of1369

the LLaMA model, it can theoretically achieve per-1370

formance comparable to the plaintext model. In1371

terms of efficiency, we have further added experi-1372

mental results of CENTAUR applied to the LLaMA-1373

7B model. We used the same experimental setup1374

as in the paper and executed the experiments in a1375

local area network (LAN) with 20Gbps bandwidth1376

and 0.1ms latency.1377

From the data in Table 6, it is evident that CEN-1378

TAUR can complete privacy-preserving inference1379

on the LLaMA-7B model in less than 10 seconds,1380

with communication overheads below 1GB. When1381

the input sequence length is 8, executing privacy-1382

preserving inference on the LLaMA-7B model us-1383

ing CENTAUR generates 1 token in less than 3 sec-1384

onds, with a communication overhead of 0.39GB.1385

In the same network conditions (bandwidth and1386

latency), PUMA would require approximately 2001387

seconds and 1.79GB of communication. This1388

shows that CENTAUR offers significant advantages1389

in both speed and communication efficiency, mak-1390

ing it a highly scalable and practical solution for 1391

privacy-preserving Transformer model inference. 1392

F Hyper-parameter 1393

For the baselines MPCFormer (Li et al., 2023) and 1394

SecFormer (Luo et al., 2024), which require ad- 1395

ditional training and distillation, we followed the 1396

fine-tuning and distillation hyperparameter selec- 1397

tion method as described in (Li et al., 2023). Specif- 1398

ically, for BERT series models, during the fine- 1399

tuning phase, we used learning rates of {1e-6, 5e-6, 1400

1e-5, 1e-4}, batch sizes of {64, 256}, and epochs 1401

of {10, 30, 100}. For GPT-2 series models, dur- 1402

ing the fine-tuning phase, we used learning rates 1403

of {1e-6, 5e-6, 1e-5, 1e-4}, a batch size of 2, and 1404

epochs of {1, 3, 5}. We fine-tuned each model with 1405

these hyperparameter combinations and selected 1406

the best-performing model as the teacher. 1407

During the knowledge distillation phase, for 1408

BERT series models, the number of distillation 1409

iterations was determined based on the MSE loss 1410

between the embedding layer and the transformer 1411

layer. For small datasets (CoLA, MRPC, RTE), the 1412

batch size was 8, while for large datasets (QNLI, 1413

STS-B), the batch size was 32. Specifically, for 1414

the distillation stages in the embedding layer and 1415

transformer layer, QNLI was trained for 10 epochs, 1416

MRPC for 20 epochs, STS-B for 50 epochs, CoLA 1417

for 50 epochs, and RTE for 50 epochs. For GPT-2 1418

models, we used KLDiv loss to calculate the loss 1419

between the output representations of the teacher 1420

and student models, and Cosine loss to calculate 1421

the loss between the hidden layers of the teacher 1422

and student models. The number of distillation 1423

steps was determined based on the loss values. 1424
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