
Published as a conference paper at COLM 2024

CROWD-CALIBRATOR: Can Annotator Disagreement Inform
Calibration in Subjective Tasks?

Urja Khurana , Eric Nalisnick , Antske Fokkens , Swabha Swayamdipta
Computational Linguistics and Text Mining Lab, Vrije Universiteit Amsterdam
Department of Computer Science, Johns Hopkins University
Thomas Lord Dept. of Computer Science, University of Southern California

{u.khurana,antske.fokkens}@vu.nl, nalisnick@jhu.edu, swabhas@usc.edu

Abstract

Subjective tasks in NLP have been mostly relegated to objective standards,
where the gold label is decided by taking the majority vote. This obfus-
cates annotator disagreement and the inherent uncertainty of the label.
We argue that subjectivity should factor into model decisions and play a
direct role via calibration under a selective prediction setting. Specifically,
instead of calibrating confidence purely from the model’s perspective, we
calibrate models for subjective tasks based on crowd worker agreement.
Our method, CROWD-CALIBRATOR, models the distance between the distri-
bution of crowd worker labels and the model’s own distribution over labels
to inform whether the model should abstain from a decision. On two highly
subjective tasks, hate speech detection and natural language inference, our
experiments show CROWD-CALIBRATOR either outperforms or achieves
competitive performance with existing selective prediction baselines. Our
findings highlight the value of bringing human decision-making into model
predictions.

1 Introduction

Natural language is inherently subjective, leading to subjectivity in classification tasks
(Aroyo & Welty, 2015; Plank, 2022; Cabitza et al., 2023; Jamison & Gurevych, 2015; Pavlick
& Kwiatkowski, 2019). Yet, in natural language processing, most such tasks are treated as
if there exists a single ground truth. The conventional setup consists of a small number of
annotators labeling each sample and taking the majority vote determines the final label.
However, this setup dismisses subjectivity in implications (for e.g., in NLI; Pavlick &
Kwiatkowski, 2019), and removes minority voices (for e.g., in safety-critical applications like
hate speech detection; Prabhakaran et al., 2021; Sap et al., 2022). While there are many cases
for which humans are more likely to agree with each other (Jiang et al., 2021a; Salminen
et al., 2019), there are also cases where there is a lack of consensus (Khurana et al., 2022).
In such cases, models, rather than predicting a single label, must make decisions that
reflect potential disagreements. Selective prediction frameworks (Geifman & El-Yaniv, 2017;
Chow, 1957) allow for this kind of model abstention. In this paper, we argue that selective
prediction is an ideal fit for subjective tasks.

Ideally, we would want a model’s confidence, i.e. softmax probabilities, for its prediction to
reflect human disagreement. However, neural models with a large number of parameters
tend to be overconfident (Guo et al., 2017; Chen et al., 2023). A straightforward way to make
a model aware of human variation in the label is to use soft labels (Jamison & Gurevych,
2015; Uma et al., 2020; 2021b). Instead of a model predicting one label (hard label), we want
the model to output the human label distribution. However, most available NLP datasets
only provide 3-5 annotations per sample, which limits the distributions that the model can
learn. We need many more annotations per sample to learn the crowd’s beliefs.

How can we still have our model make human subjectivity-aware predictions? We propose
CROWD-CALIBRATOR, a method that calibrates models for subjective tasks according to
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crowd disagreement. Most calibrators either rely on the model’s confidence or have a
separate calibrator that outputs if a model is correct. For subjective tasks, there are limited
ways of calibrating a model as mostly there is no one correct label. Our CROWD-CALIBRATOR
determines if the model’s output distribution is close to the human judgment distribution.
If that is the case, then the model makes a prediction. If the model is far from the human
distribution, then the model abstains.

We apply CROWD-CALIBRATOR to two subjective NLP tasks: hate speech detection and
natural language inference (NLI), a task for which an abundance of human subjectivity
data is available (Nie et al., 2020b). We show the potential of our setup by comparing it to
selective prediction baselines such as MaxProb and Kamath et al. (2020). Our method is
competitive with these baselines for hate speech detection and outperforms them for NLI.
We also show that our setup beats baselines on cross-dataset evaluation for both tasks. Our
method is beneficial for in-domain and out-of-domain datasets when we have access to a
small set of samples with many annotations per instance (∼ 100) and for out-of-domain
datasets when we have access to individual annotator samples (> 2000). Our work restates
the potential of using selective prediction for subjective tasks as a research direction.

2 Soft Labels for Hate Speech Detection

Our method experiments with using soft labels as a candidate to better calibrate models for
subjective tasks. Soft labels—where the model directly learns the human label distribution—
have been used extensively in prior work on subjective task prediction (Jamison & Gurevych,
2015; Uma et al., 2020; 2021b). Based on this, we ask whether soft labels could also help
improve model calibration, compared to hard labels. Moreover, these calibrated confidence
estimates could be used to make the model abstain from any decision (Chow, 1957; Geifman
& El-Yaniv, 2017) when there is greater annotator disagreement.

2.1 Background

A majority vote over the annotation count of a sample x: yh = arg maxl∈Yx ( f req(l)), results
in hard labels (Yh) as the ground truth, used in training with the Cross-Entropy loss (CEhard).
However, for subjective tasks, majority voting might result in loss of vital information about
the annotator disagreement and unjustified high model confidences, necessitating soft labels.
Soft labels (Ys) are the probability distribution over the classes of the annotator judgments
for a sample. This can be done by e.g. normalizing the votes for each class or taking the
softmax (Uma et al., 2020) when the number of annotators per sample is low. We illustrate
the distinction between hard and soft labels in Figure 1.

“They are just 
a bunch of idiots ruining 

it all”

ANNOTATIONS

Annotators

Judgments “hate” “not hate” “not hate” “hate” “hate”

HARD LABEL 
“hate”

SOFT LABEL 
[0.731, 0.269]

votes : [“hate” = 3, “not hate” = 2]

argmax(votes) 

normalize(votes) 

Figure 1: Example showing the difference between a hard and a soft label.

Training. Given a model f that takes as input text x and predicts the soft label ys, the
objective involves minimizing the distance between two probability distributions: the model
distribution output ŷs and the soft label ys. This has been done by extending the Cross-
Entropy Loss to measuring how distant ŷs and ys are from each other (Peterson et al., 2019;
Uma et al., 2020), using KL Divergence, Jensen-Shannon Divergence (JSD; the symmetric
version of KL Divergence) or Mean Squared Error (Uma et al., 2021b).

Evaluating. Unlike hard evaluation metrics such as accuracy or F1-score, evaluating soft
label prediction requires distance-specific metrics (Basile et al., 2021). Uma et al. (2021b)
suggest using the soft losses mentioned as soft metrics. Baan et al. (2022) suggest using the
Total Variation Distance (TVD).
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2.2 Experimental Setup

We first investigate the utility of soft labels for the task of hate speech detection, where we
have few annotations per example. If samples with more disagreement would then get
lower confidences,1 we can then use these confidences as a way to prevent a model from
predicting when there is no clear consensus.

Data. We combine two widely used datasets: HateXplain (HX; Mathew et al., 2021) and
the Measuring Hate Speech Corpus (MHSC; Sachdeva et al., 2022) for our experiments. Both
provide the raw annotations for each sample. MHSC has one to five annotations per instance
and a binary hate speech category. The HX dataset has three annotations per instance and
consists of three classes: hate speech, offensive, neutral. In Appendix H we apply CrowdTruth
(Dumitrache et al., 2018) as a dataset analysis. To match the datasets, we merge the hate
speech and offensive classes in HX, essentially reducing the task to identifying offensive labels.
The hard labels are derived by majority voting and the soft labels by using softmax over the
annotator votes per class (in line with Figure 1), due to the low annotations per instance.
We split the dataset into train (41832 samples), validation (5230 samples), and test (5230
samples).

Model. We use RoBERTa-large (Liu et al., 2020)2 initialized with five different random
seeds. We follow the original hyperparameters as described in Appendix C. Model selection
is based on JSD when training with JSD loss and macro F1 when training with CEhard.

Metrics. We compare the performance of models trained with CEhard and JSD using macro
F1, soft metrics (JSD and TVD), and confidence calibration metrics. Soft labels could provide
better confidence estimates of the model’s empirical performance. To measure this, we
use Expected Calibration Error (ECE; Naeini et al., 2015) and Brier Score (BS; Brier, 1950).
For ECE, the confidence scores of the model are binned and for each bin, the accuracy is
calculated. The average difference between the calculated and expected accuracy is taken
over all bins. This metric is sensitive to the bin size. BS measures the mean squared error
between the model confidence and its predictions. In NLP, only the calibration of the top
confidence score is usually measured. This is a much weaker notion as it ignores the other
dimensions (Vaicenavicius et al., 2019).

2.3 Soft vs. Hard Labels Results

Figure 2 shows the results3. As expected, using soft labels with few annotations per instance
leads to (slightly) better performance on soft and calibration metrics (JSD, TVD, ECE, and
BS). There is not much difference between the Macro F1-scores for the hard and soft models,
in line with previous research.

Figure 2: Results of training RoBERTa-large using hard (green, left) vs. soft labels (orange,
right). Arrows indicate if a higher or lower value is better.

When looking at the confidence distributions for both the hard and soft loss models, there
is not a lot of difference in general. In Figure 3, we visualize the confidence distributions

1With model confidence for both hard and soft labels as output we mean the softmax scores
outputted by the model. In this paper, we do not consider model confidence in the output distribution
it predicts as a soft label.

2Using the HuggingFace Transformers library (Wolf et al., 2019).
3In Appendix F we show results when training with other soft losses.
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on samples for two types of agreement: perfect agreement, a sample where all annotators
agree with each other on the assigned label, and disagreement: a sample where at least
one annotator assigns a different label than the rest. In general, when training with CEhard
(Figure 3a), we see a strongly unimodal confidence distribution for samples with perfect
agreement. The skew on disagreement samples is less but still similar to perfect agreement.
For the soft loss (Figure 3b), there is more mass distributed around lower confidences, espe-
cially for disagreement samples. Ideally, we would want fewer high confidences. When we
disentangle correct and incorrect predictions for both perfect agreement (PA) and disagree-
ment (DIS) samples, we see that with the hard loss (Figure 3c), regardless of correctness, for
both agreement types most of the density is around the higher confidences. For the soft loss
(Figure 3d), the confidences are more dispersed, especially for perfect agreement. Correct
samples with perfect agreement are denser around higher confidences and incorrect perfect
agreement samples are denser around lower confidences. This difference in distribution
based on correctness for perfect agreement is not as notable for disagreement samples,
which is more spread out but still has more mass in higher regions.

(a) Confidences with
hard loss training.

(b) Confidences with
soft loss training.

(c) Entangling data and
model uncertainty with
hard loss training.

(d) Entangling data and
model uncertainty with
soft loss training.

Figure 3: Visualizations of the confidence distributions for both perfect agreement and
disagreement samples separately in the test set. Figure (a) shows the distribution for
models trained with CEhard and Figure (b) shows it for models trained with JSD. In
Figures (c) - (d), we visualize the confidence distributions for four different scenarios:
{Perfect Agreement, Disagreement} × {Correct, Incorrect}.

We want disagreement samples to have generally lower confidence scores but our analysis
shows that this is generally not the case. Our notion of disagreement in these experiments
is based on 3 - 5 annotators, which can be limited in learning the crowd distribution. This
motivates us to find a different method to make models more aware of human subjectivity.

3 Selective Prediction

The selective prediction framework (Geifman & El-Yaniv, 2017; Chow, 1957) aims to reduce
errors made by a model by giving it the option to abstain. When dealing with subjective
tasks, we argue that this is an attractive setup to align model output accordingly; abstain
when dealing with highly subjective input and let predictions with more agreement, hence
clear(er) correct answers, through. This setup consists of a base model f (x) that outputs
a softmax confidence distribution ŷ that we want to calibrate accordingly and a decision
function h(x) on top, which determines if f (x) predicts or abstains. Existing decision
functions can either be confidence-based or a separate calibrator model:

MaxProb This method makes use of confidence thresholding. The highest confidence
max(ŷ) is compared to a threshold t. If the confidence is higher than t, the model predicts,
but if the confidence is lower than t, the model abstains. We can apply MaxProb to f (x)
trained with either a hard loss with majority vote labels (ŷmaj) or a soft loss (ŷs).

Kamath et al. (2020) Originally, this setup uses a separate calibrator that predicts if the
base model is correct or not for the task of Question Answering in the case of domain shift
where the base model is only trained on in-domain data. The calibrator, a random forest
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classifier, is trained on both in and out-of-domain data. We draw an analogy between their
in- & out-of-domain setup with perfect and disagreement in our task. In our case, the base
model is only trained on samples with perfect agreement, mPA, and the calibrator h is trained
on both disagreement and perfect agreement samples and outputs h(x) = z; if mPA is correct
or not. If z = 1, only then does the prediction go through, otherwise, the model abstains.
We train the calibrators with a random forest from XGBoost (Chen & Guestrin, 2016). We
use the following input features: hidden state of [CLS] of base model’s last layer (Corbière
et al., 2019; Zhang et al., 2021; Zhang & Choi, 2023), base model’s softmax probabilities, and
n-grams from the calibration data.

4 CROWD-CALIBRATOR

Most of the calibration research has focused on the alignment between a model’s confidence
and its predictive performance. However, for subjective tasks, we want this to extend to
reflecting human uncertainty as well, i.e. we want a soft calibration approach. Instead of
focusing on the correctness of the model, we ask if the softmax confidence distribution of a model
is close to the crowd distribution for a given sample.

We propose CROWD-CALIBRATOR (Figure 4), a soft calibration approach where we calibrate
a model according to how close its confidence is to the crowd opinion. If the model
confidence is far off from the crowd distribution, we want the model to abstain, i.e. not make
a prediction. If the model confidence is close to the crowd distribution, we let the model
predict. When the base model is overconfident on a sample where humans tend to disagree
and thus there is no clear label, we can prevent the model from making a prediction.

CROWD ESTIMATOR

Train 
small 
MLPs

T R A I N I N G I N F E R E N C E

CALIBRATION

, )score( ̂ycrowd ̂ybase

Use different aggregation strategies + 
distribution metrics to measure: is the 

base model output distribution far off 
from the predicted crowd output 

distribution? 

if score > threshold t{abstain,
predict ,̂y if score < t

 mmaj

BASE MODEL

̂ybase

̂ya1

 ma1

we’re gonna find you

BASE MODEL

 mmaj
Train RoBERTa-large

̂ymaj
we’re gonna find you

̂ya2

 ma2

we’re gonna find you

̂yan

 man

we’re gonna find you

Annotator 1 Annotator 2 Annotator n

lol get outta here

CROWD ESTIMATOR

 ma1
̂ya1

̂ya2

̂yan

aggregate ma2

 man

̂ycrowd

Figure 4: CROWD-CALIBRATOR: our proposed soft calibration approach where we calibrate
a model according to human subjectivity. We only let the model predict if there is high
agreement and thus a clear(er) correct answer. For NLI we directly train our crowd estimator
to predict the crowd distribution as we only have access to the label distribution and not
individual annotators.

4.1 Pipeline

Our setup consists of three components: the base model that we are calibrating, the crowd
estimator that estimates the crowd judgment, and the soft calibration. Our base model mmaj,
trained to predict the conventional majority vote label, is the model we want to calibrate.
This is the same model trained with the hard loss in Section 2, outputting the softmax
confidence distribution ŷmaj (also marked as ŷbase in Figure 4 inference).

4.1.1 CROWD ESTIMATOR

With our CROWD ESTIMATOR we want to predict the human annotation distribution
considering we want to calibrate our base model mmaj according to human judgments.
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However, we do not have this information available at test time. Our goal with the CROWD

ESTIMATOR4 is to estimate the crowd (dis)agreement of a given sample x.

The hate speech datasets that we have used until now are limited in terms of modeling the
crowd. While there might be many annotators, the number of coders per instance is low
(1 - 5) and many annotators have only seen a handful of samples. As there are no hate
speech datasets with more than 5 annotations, we need an alternative to estimating the
crowd. We do have access to hate speech datasets where a decent amount of annotators
have seen a handful of samples: the Gab Hate Corpus (GHC; Kennedy et al., 2022) and
the Dynamically Generated Hate Speech Dataset (DGHS; Vidgen et al., 2021). We select
individual annotators that have annotated more than 2000 samples and train different
individual MLPs mai (single layer, hidden size 512). We use the hidden state of [CLS] of base
model’s last layer as the input feature to predict if the annotator would perceive something
as hate speech. To combine the individual annotator predictions into one crowd distribution
ŷcrowd, we employ three strategies: taking the individual predicted labels and creating a
distribution over them with softmax (Label Dist), averaging over the confidence scores
(Avg. Conf.) of the MLPs, and Weighted Scoring (Equation 1) where we take the weighted
(fraction of voters rc) distance score between the average confidence distribution of voters
(Mc) for a particular class c and sum over all classes C.

WS = ∑c∈C rc · score
[(

1
|Mc | ∑a∈Mc ŷa

)
, ŷmaj

]
(1)

For NLI, we have enough instance-level annotations with ChaosNLI (Nie et al., 2020b).
This dataset consists of 4500 re-annotated samples from SNLI (Bowman et al., 2015), MNLI
(Williams et al., 2018), and αNLI (Bhagavatula et al., 2019)5. Each sample gets 100 an-
notations, which makes it ideal to train our CROWD ESTIMATOR on. Our base model,
RoBERTa-large, is trained on SNLI and MNLI with the majority vote. Instead of training
separate annotator classifiers, we train a small MLP regressor (2-layered MLP with hidden
sizes of 100 and the hidden state of [CLS] of the base model’s last layer as input feature) that
outputs soft labels directly. The further process is the same as shown in Figure 4.

4.1.2 Calibration

Now that we have both ŷmaj and ŷcrowd, we want to measure their distance. Thus, we experi-
ment with different distance metrics (KL divergence (KL), JSD, and TVD; see Appendix D for
formulae). If the model’s output distribution is far off from the human probability distribu-
tion, the model will abstain, otherwise the model’s prediction, argmax(ŷmaj) will go through.
We also experiment with adding the entropy (+E) of ŷmaj to the entire score to remove
instances where both ŷcrowd and ŷmaj are close to each other but have low confidence.6

4.2 Metrics

We evaluate our soft calibrator through the lens of how well it abstains (does the calibrator
let the correct samples through)7 and how conservative it is (does it let through sufficient
samples to achieve good performance).

Cov@Acc= Since the model abstains, we focus on coverage: the fraction of samples the
base model predicts. The coverage changes as we adjust our threshold for the distance
score or model confidence. By increasing the confidence or reducing the distance score, the
coverage decreases and we expect accuracy to increase. Hence we compare coverage at a
fixed accuracy value to evaluate how conservative a technique is at that point.

4Our Crowd Estimator MLPs (both tasks) are trained with scikit-learn (Pedregosa et al., 2011).
5We filter out samples from αNLI as it has different classes. See Appendix C for details.
6Adding the entropy to the KL divergence does not result in canceling out the entropy already

present in the equation and reducing down to the cross entropy. We write out the proof in Appendix B.
7Note that using the notion of correctness does not mean that we assume a single ground truth, we

view it as observing a single sample of the underlying crowd distribution.
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AUC and AUBS We yield corresponding accuracies for each coverage when thresholding.
Following Geifman & El-Yaniv (2017), we calculate the area under the accuracy-coverage
curve (AUC) to quantify how much the calibrator abstains and how correctly it abstains
over the entire trajectory. Similarly, to measure if a calibration method improves calibration
as coverage decreases, we compute the area under the coverage-BS curve (AUBS).

AUROC Following Shrivastava et al. (2023), we want to know if the thresholding or
confidence has good differentiating power between correct and incorrect predictions, which
is why we plot the fraction of wrong samples let through against the fraction of correct
samples let through and calculate the area under this curve.

5 Results

We discuss the results of our soft calibrator obtained for both hate speech and NLI8. We also
explore the soft calibrator’s capabilities on other unseen datasets for both tasks. For all
results, we highlight the best performance in blue and the worst performance in red . All

results are averaged over five seeds.9

5.1 Hate Speech: Calibrating from Individual Annotators

We present the results obtained in Table 1, where we use a combined test set of perfect
agreement and disagreement with 3200 samples. We also experimented with GPT-4 but did
not yield competitive results, which we present in Appendix A. To verify our hate speech
results, we also experiment with Online Misogyny in Appendix E, obtaining similar results.

Cov@Acc= ↑

M
A

X
P

R
O

B

0.85 0.90 0.95 AUC ↑ AUROC ↑ AUBS ↓
ŷPA 0.8733 0.6890 0.4422 0.9277 0.7775 0.0638
ŷmaj 0.8757 0.6934 0.4839 0.9302 0.7807 0.0592
ŷso f t 0.8799 0.6772 0.3241 0.9184 0.7574 0.0692
ŷmaj - TS 0.8751 0.6937 0.4834 0.9301 0.7807 0.0567

Kamath et al. (2020) 0.8683 0.6866 0.4775 0.9302 0.7830 0.0597

O
U

R
S

Label Dist. - JSD+E 0.8571 0.6717 0.4663 0.9281 0.7713 0.0601
Label Dist. - TVD+E 0.8519 0.6712 0.4624 0.9270 0.7663 0.0605
Avg. Conf. - JSD+E 0.8728 0.6975 0.4640 0.9283 0.7780 0.0609
Weighted Scoring - JSD+E 0.8666 0.6959 0.4507 0.9275 0.7763 0.0616
GHC - Avg. Conf. - JSD+E 0.8668 0.6974 0.4721 0.9288 0.7790 0.0602
GHC - Label Dist. - JSD+E 0.8606 0.6854 0.4777 0.9290 0.7754 0.0591

Table 1: Calibration results on the combined HX + MHSC hate speech test set for calibration.
The upper part shows the results using MaxProb with RoBERTa-large models trained on
different types of data (ŷmaj, ŷPA), soft loss (ŷso f t), or using better-calibrated confidences with
Temperature Scaling (TS) (Guo et al., 2017). We also show MaxProb when training with only
perfect agreement samples (ŷPA) for completeness with Kamath et al. (2020)’s base model.
The lower part shows the best-performing results using our proposed CROWD-CALIBRATOR
with RoBERTa-large as a base model and combining individual annotator models for the
CROWD-ESTIMATOR.

We see that ŷmaj performs the best in general. The Kamath et al. (2020) baseline performs
closely, with the same AUC and slightly better AUROC (∆0.0023). However, Kamath
et al. (2020) has a more complex setup in front of MaxProb. MaxProb on soft labels ŷso f t
performs worse than ŷmaj in terms of AUC and AUROC, highlighting the findings discussed
in Section 2.3. For CROWD-CALIBRATOR, averaging over the annotator confidences and

8Code released here: https://github.com/urjakh/crowd-calibrator
9For the variation and standard deviation in change of performance with CROWD-CALIBRATOR

compared to the baseline, see Appendix G.
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using JSD as a distance metric with entropy yields the best results. It also gets the highest
Cov@Acc=90. The best AUC is 0.9290 (-∆0.12%) and AUROC is 0.7790 (-∆0.17%).

We present results obtained on unseen datasets in Table 2. We apply the best-performing
aggregation strategies to the Davidson (5000 random samples) (Davidson et al., 2017),
Founta (2500 negative and 2500 positive random sampled) (Founta et al., 2018), and full
HateCheck (Röttger et al., 2021) datasets.

DAVIDSON FOUNTA HATECHECK

AUC ↑ AUROC ↑ AUBS ↓ AUC ↑ AUROC ↑ AUBS ↓ AUC ↑ AUROC ↑ AUBS ↓
MaxProb ŷmaj 0.6980 0.5692 0.3006 0.7695 0.6543 0.2195 0.5702 0.5557 0.3973

Kamath et al. (2020) 0.6723 0.5368 0.2691 0.7696 0.6457 0.2181 0.5294 0.6066 0.4412

Avg. Conf. - TVD+E** 0.7197* 0.6171* 0.2269 0.7890* 0.6622 0.1981* 0.7256* 0.8248* 0.2502*
Weighted Score - JSD+E** 0.7109* 0.5962* 0.2388 0.7905* 0.6643* 0.1964* 0.6870* 0.7477* 0.2895*
DGHS - Label Dist. - TVD+E 0.7144* 0.6088* 0.2310 0.7756 0.6575 0.2116* 0.7172* 0.8303* 0.2619*

Table 2: Calibration results on unseen hate speech datasets: Davidson, Founta, and Hate-
Check. We compare our CROWD-CALIBRATOR with the best-performing baselines. We show
the results for the Avg. Conf. - TVD+E and Weighted Score - JSD+E aggregation strategies
using DGHS annotators for Davidson and HateCheck and GHC annotators for Founta as
these sets of annotators give the best results. *paired t-test with p-value < 0.05.

Here we see that our CROWD-CALIBRATOR can outperform both MaxProb and Kamath
et al. (2020) on other datasets. In all cases, the best-performing method is a variant of our
proposed setup. For Davidson and HateCheck, we show the results when only using DGHS
annotators, and for Founta when only using GHC annotators (indicated with a **) as these
give the best results. This reveals the sensitivity of our method to the individual annotators
on which it is training. For the original test set, the Gab annotators were more useful instead.

5.2 NLI: Calibrating from Crowd Distributions

We show the results obtained on the test of ChaosNLI (312 samples) in Table 3. We only
compare with MaxProb since Kamath et al. (2020) has a complex setup but, compared to
MaxProb, yields comparable or worse results for hate speech. We see that with TVD and
entropy, we can beat the baseline with an increase of 4.65% in AUC and 8.37% in AUROC.

cov@acc=0.8 ↑ cov@acc=0.9 ↑ AUC ↑ AUROC ↑ AUBS ↓
MaxProb ŷmaj 0.6244 0.0846 0.8114 0.6720 0.1147

KL 0.6167 0.2455* 0.8226 0.6774 0.0881*
KL + E 0.7276* 0.3603* 0.8540* 0.7400* 0.0846*
TVD 0.7128* 0.3545* 0.8468* 0.7325* 0.0802*
TVD+E 0.7596* 0.3558* 0.8579* 0.7557* 0.0841*
JSD 0.6833 0.2609* 0.8304* 0.7027* 0.0862*
JSD+E 0.7045* 0.2801* 0.8435* 0.7262* 0.0925*

Table 3: Calibration results on the test set of ChaosNLI. We compare the best-performing
selective prediction baseline (MaxProb ŷmaj) based on performance on the hate speech sets.
For CROWD-CALIBRATOR, we show the results for different distance metric variations and
include entropy into the score or not. *paired t-test with p-value < 0.05.

We also apply our method to other datasets where it beats the baseline: the test set of the
ANLI (Nie et al., 2020a) (3200 samples) dataset and the test set of WANLI (5000 samples)
(Liu et al., 2022). We show these results in Table 4. For ANLI, adding the entropy decreases
performance but MaxProb still performs the worst out of all. For WANLI too, our soft
calibration method with JSD and entropy gets the highest performance and beats MaxProb.
The specific strength of the calibrator seems to be that it maintains higher coverage when
targeting higher accuracy.
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ANLI WANLI

cov@acc= ↑
AUC ↑ AUROC ↑ AUBS ↓ 0.7 0.75 0.8 AUC ↑ AUROC ↑ AUBS ↓

MaxProb ŷmaj 0.2809 0.4503 0.4300 0.6446 0.3807 0.1099 0.7259 0.6288 0.1711

KL 0.3345* 0.5285* 0.3400*
KL+E 0.3026* 0.4877* 0.4037* 0.6177 0.3364 0.1450 0.7276 0.6217 0.1658
TVD 0.3266* 0.5185* 0.3583*
TVD+E 0.3011* 0.4810* 0.4072* 0.6398 0.3623 0.1424 0.7309* 0.6290 0.1646
JSD 0.3336* 0.5248* 0.3461*
JSD+E 0.2930* 0.4674* 0.4176* 0.6450 0.3989 0.1878 0.7350* 0.6346 0.1638*

Table 4: Calibration results on other unseen NLI datasets. *paired t-test with p-value < 0.05

5.3 Qualitative Examples (  Offensive Content )

Though a full manual qualitative analysis is out of the scope of this paper, we illustrate
CROWD-CALIBRATOR with some examples of its output in Table 5. We selected examples
that either have very small scores (obvious pass-throughs) or large ones (obvious abstains)
according to CROWD-CALIBRATOR so that they are representative of various thresholds.
As such, for hate speech, the shown examples are obvious cases of the ground truth when
let through but rather debatable when abstained. For NLI, a misclassification is prevented.
These examples indicate that our approach may be useful for manual analysis of the data,
e.g. retrieving cases of agreement between the base model and CROWD-CALIBRATOR but
different ground truth can be a quick tool to find (some) annotation mistakes.

mmaj CROWD-CALIBRATOR Ground Truth

I will s*ck yo d*ck and call you a f*gg*t hate ✓ hate
This is amazing! Kudos for that women for being so strong non-hate ✓ non-hate

Imagine the kid was black in a white class, .., liberal lunatics
would go to war with the white race

hate ✗ non-hate

<user> Men r trash tho right non-hate ✗ hate

a woman walks with her big purse. a beautiful female
passing by crowd

neutral ✓ neutral

bicycles stationed while a group of people socialize. peo-
ple talk near a bunch of parked motorcycles.

entailment ✗ contradiction

Table 5: Examples of what CROWD-CALIBRATOR abstains (✗) on and lets the base model
mmaj predict (✓) for both hate speech and NLI (premise, hypothesis).

6 Related Work

Learning from disagreement. Recent research has advocated incorporating the notion of
subjectivity into our models and NLP pipeline (Aroyo & Welty, 2015; Cabitza et al., 2023;
Plank, 2022; Plank et al., 2014; Nie et al., 2020b; Chklovski & Mihalcea, 2003). A direct
way is to move away from hard labels to soft labels (Uma et al., 2021a; Peterson et al., 2019;
Wu et al., 2023; Jamison & Gurevych, 2015; Fornaciari et al., 2021). Such labels can also be
used to model an annotator’s uncertainty for a label’s distribution (Liu et al., 2019). Other
approaches focusing on annotation disagreement range from a probabilistic setup (Raykar
et al., 2010) to modeling the annotators themselves (Rodrigues & Pereira, 2018; Davani et al.,
2022; Guan et al., 2018). Zhou et al. (2022) explore distribution estimation methods. Utilizing
disagreement for hate speech detection systems has had limited attention. Leonardelli
et al. (2021) investigate the use of different data splits based on (dis)agreement for offensive
language and Al Kuwatly et al. (2020) group annotators based on their demographic to
investigate their biases for hate speech classification. Davani et al. (2022) show the benefit of
using individual annotator information but require data where individual annotators have
labeled many samples. This is something that many datasets including the ones we used
in the paper—the HateXplain, Measuring Hate Speech Corpus, and NLI datasets—do not
have. Hence, we could not empirically compare to their approach.
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Calibration. Investigating if a model is well-calibrated has been gaining traction (Desai &
Durrett, 2020; Jiang et al., 2021b; Corbière et al., 2019; Baan et al., 2022; Ulmer et al., 2022;
Nalisnick et al., 2018; Hendrycks & Gimpel, 2016). Guo et al. (2017) show how modern
neural networks are miscalibrated. Recalibration can be done post-hoc (Guo et al., 2017;
Gal & Ghahramani, 2016; Jiang et al., 2021b) or through a hybrid human-model approach
(Kerrigan et al., 2021), amongst others. Efforts are being made to understand the calibration
of LLMs, through their verbal (Tian et al., 2023; Krause et al., 2023) and probabilistic
confidence (Shrivastava et al., 2023). Shrivastava et al. (2023) show how using a mixture of
linguistic and probabilistic confidences leads to better calibration. Vidgen et al. (2020) use a
Bayesian approach to recalibrate models for abusive language and show that uncalibrated
models are not in line with annotators.

Selective prediction. Selective prediction/learning to abstain is a relaxation of learning to
defer (Madras et al., 2018): when a model determines when to defer to an expert by modeling
that expert’s knowledge. Learning to abstain/reject, on the other hand, does not model
the expert, implicitly assuming a fallback mechanism with uniformly better accuracy than
the rejection threshold. Learning to defer has been extended to multiple experts (Verma
et al., 2023). In NLP (Xin et al., 2021), there has been a lot of focus on selective prediction for
Question Answering (Kamath et al., 2020; Rodriguez et al., 2019; Zhang et al., 2021; Zhang
& Choi, 2023; Varshney & Baral, 2023; Cole et al., 2023; Yoshikawa & Okazaki, 2023).

7 Discussion and Conclusion

We propose CROWD-CALIBRATOR, a soft calibration method for subjective tasks that
refrains from predicting if its confidence is far from the crowd label distribution. We show
the utility of our method by applying it to two complementary data scenarios: the real-
world scenario with only access to a large number of individual annotations and the ideal
scenario with a large number of sample annotations. Our experiments show that CROWD-
CALIBRATOR outperforms the MaxProb baseline for the task of NLI, both on the respective
test set (albeit small) and two other datasets. For hate speech, our method is competitive
with the baselines on the respective test set and outperforms baselines on unseen datasets.

Our proposed setup clearly works with fewer samples but requires a high amount of sample
annotations (∼ 100) to estimate the crowd distribution. This is less the case when we
estimate the crowd distribution from individual annotators. Yet the number of annotators
varied across tasks, with fewer annotators available for hate speech (24) than for NLI (100).
Therefore, it is clearly beneficial to have a high amount of instance-level annotations, as
also seen in Gruber et al. (2024). In future work, investigating the number of annotators
and its effect on our method poses an obvious and interesting direction. Thus applying our
method to a novel task means that we need at least a small amount of multiply annotated
data reflecting different annotator judgments. As such data is not easily available for many
subjective NLP tasks, this is a limitation that needs to be considered.

Takeaways. While our method shows sensitivity to the number of annotations, in both
data scenarios we see notable results for unseen data. Our method offers flexibility in the
choice of the distance metric and aggregation strategy. Which combination works best is
largely dataset-dependent. The various settings we experiment with are not exhaustive
options and can easily be replaced by other metrics or strategies. Generally, JSD and TVD
gave the best results in combination with aggregating through label distribution or averaged
confidences. In all cases, it is beneficial to add entropy to the score of the metric as it prevents
the model from making decisions when both the model and crowds are uncertain.

In line with other work advocating for more subjectivity-informed model behavior, we
hope our findings encourage more research in the direction of subjectivity-based selective
prediction and better design of datasets and model setup for subjective tasks. If we really
want to understand the crowd and create more human-aligned applications, we need many
more instance-level annotations from a diverse set of annotators with a high individual
annotation count.
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A Results with LLMs

We use GPT-4 (gpt-4-1106-preview) (Achiam et al., 2023) to investigate if open-source LLMs
are useful in detecting hate speech and if their linguistic and model confidence is aligned
with human subjectivity. Following Tian et al. (2023), we prompt the model to detect if a
given sample is hate speech and if it can express its verbal confidence (GPT-4 V) through a
score between 0 and 1. We also take the log probabilities (GPT-4 L) of the label the LLM
predicts.

We use the following prompt, following Tian et al. (2023):

GPT-4 Prompt

“ Classify with one of the following labels: (a) not hate speech, (b)
hate speech, and the probability that it is correct (0.0 to 1.0) for the
following sentence. Give ONLY the label and probability, no other words or
explanation.

Follow this format:

Label: <most likely label, either a or b, as short as possible; not a
complete sentence, just the label!> Probability: <the probability between
0.0 and 1.0 that your guess is correct, without any extra commentary
whatsoever; just the probability!>
The sentence is: """{sentence}""". “

We show the results in Table 6, which clearly show that GPT-4, with both sources of
confidence, is not able to get close to the simplest baseline of MaxProb ŷmaj, not even
reaching an accuracy of 0.95 when using verbal confidences.

Cov@Acc= ↑
0.85 0.90 0.95 AUC ↑ AUBS ↓

ŷmaj 0.8757 0.6934 0.4839 0.9302 0.0592

GPT-4 V 0.4936 0.2993 - 0.8320 0.1390
GPT-4 L 0.5870 0.4516 0.2512 0.8756 0.0875

Table 6: Calibration results on the combined HX + MHSC hate speech test set for calibration.
The upper part shows the results using MaxProb with RoBERTa-large when training on the
majority vote. We compare this to GPT-4 when using verbal confidence estimates and the
actual log probs for the label.

We also attempted using LLAMA-2 7B Chat (Touvron et al., 2023) but due to the strict safety
instructions, it refused to classify hate speech.

B Equation KL Divergence with Entropy

As a score to calibrate our model with, we initially used only the KL Divergence between
the crowd observation P and the model softmax distribution Q: KL(P||Q). This, however, does
not take into account when both P and Q have low confidence. To filter out such cases, we
add the entropy of Q: H(Q). When both P and Q are close to each other and there is high
confidence, the difference score will be small. If both are close to each other but there is low
confidence, the difference score will still be larger due to the added entropy. We write out
the entire equation below:
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KL(P||Q) = ∑
x∈X

P(x)log(
P(x)
Q(x)

)

H(Q) = − ∑
x∈X

Q(x) log(Q(x))

KL(P||Q) + H(Q) = [ ∑
x∈X

P(x)log(
P(x)
Q(x)

)] + [− ∑
x∈X

Q(x) log(Q(x))]

= [ ∑
x∈X

P(x)(log(P(x))− log(Q(x)))] − ∑
x∈X

Q(x) log(Q(x))

= ∑
x∈X

P(x) log(P(x))− P(x) log(Q(x)) − ∑
x∈X

Q(x) log(Q(x))

= ∑
x∈X

P(x) log(P(x))− P(x) log(Q(x)) − Q(x) log(Q(x))

C Training Details

For each experiment, we give the hyperparameters and the dataset sizes used. All of our
results are aggregated over 5 random seeds and our experiments are done on a Titan 6000.

RoBERTa-large on MHSC + HX (soft and hard) To train our models we follow the original
hyperparameters. We train for 10 epochs, with a learning rate of 1e−5, weight decay of 0.1,
and 6% warmup steps. We use a training batch size of 8. We train these models on 41832
samples and validate on 5230. The results shown in Section 2.3 are on the test set with 5230
samples.

Kamath et al. (2020) We use the same original hyperparameters for the RoBERTa-large base
model that is now only trained on 32316 perfect agreement samples and validated on 4039
perfect agreement samples from MHSC + HX. Our Random Forest calibrator, trained with
XGBoost has a learning rate of 0.07, max depth of 5, and 500 parallel trees. The calibrator is
trained on a mixture of perfect agreement samples (2020) and the rest disagreement samples
to bring the total to around 7000 samples to balance according to correctness and agreement.

Individual Hate Speech Annotators Each annotator dataset is split into 80% training, 10%
validation, and 10% test. For each annotator, we train an MLP, that is a single layer MLP
with a hidden size of 512, for the rest using the default parameters in scikit-learn.

ChaosNLI ChaosNLI comes with 4500 samples from which we remove the αNLI samples
since those have different classes. We train on 2490 samples, validate on 311 samples, and
test on 312 samples. We use a two-layer MLP regressor with hidden sizes of 100, for the rest
using the default parameters in scikit-learn.

Selective Prediction - MHSC + HX The selective prediction results for hate speech on
MHSC + HX are done on 3200 samples with mixed perfect and disagreement.

D Distance Metrics Formulae

To calibrate our base model m in a soft fashion, we need distance metrics to determine the
proximity between the base model’s predicted distribution ŷbase (also referred to as ŷmaj
when the base model mmaj is trained to predict the majority vote) and the crowd distribution
ŷcrowd. We experiment with the following widely-used distance metrics:

KL DIVERGENCE (KL, Equation 2) measures the difference of one reference distribution
from the other, however, it is not symmetric. If the other distribution is the reference
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distribution, we will get a different output.

KL(ŷbase, ŷcrowd) = ŷcrowd · (ŷcrowd − log ŷbase) (2)

JENSEN-SHANNON DIVERGENCE (JSD, Equation 3) measures the distance between the
two distributions and is a symmetrical version of the KL divergence.

JSD(ŷbase, ŷcrowd) =
1
2

KL
(

ŷbase + ŷcrowd
2

, ŷbase

)
+

1
2

KL
(

ŷbase + ŷcrowd
2

, ŷcrowd

)
(3)

TOTAL VARIATION DISTANCE (TVD, Equation 4) is a way to measure the distance
between two distributions by measuring the absolute difference in probabilities.

TVD(ŷbase, ŷcrowd) =
1
2
||ŷbase − ŷcrowd||1 (4)

E Results for Online Misogyny

To verify the results achieved on the hate speech dataset, we apply our CROWD-CALIBRATOR
setup to a similar subjective task: misogyny detection. This dataset (Guest et al., 2021) has
6383 samples with 2-3 annotations for the majority of its samples (6259), with the rest having
4 - 16 annotations per sample. We train on 5096 samples and validate on 646 samples. This
dataset is imbalanced, where most of the samples are non-misogynistic in comparison to
misogynistic.

To train the CROWD ESTIMATOR, we use the EDOS dataset (Kirk et al., 2023), for sexism
detection. We train individual MLPs just like for the hate speech dataset for annotators that
have more than 3000 annotations. This gives us 14 individual annotators, which is less than
what we had for the hate speech dataset.

Our results on the respective test set can be found in Table 7. Due to the imbalanced nature
of the dataset, we balance out the test set to get a better view, where there are 72 misogynistic
samples and 100 non-misogynistic.

cov@acc=0.85 ↑ cov@acc=0.9 ↑ cov@acc=0.95 ↑ AUC ↑ AUROC ↑ AUBS ↓
MaxProb ŷmaj 0.8600 0.7087 0.4950 0.9244 0.7796 0.06672

Label Dist. - TVD+E 0.8675 0.7163 0.4975 0.9254 0.7870 0.06585
Label Dist. - JSD+E 0.8575 0.7075 0.4913 0.9249 0.7844 0.06604
Label Dist. - KL+E 0.8775 0.7163 0.4975 0.9252 0.7857 0.06587
Avg. Conf. - TVD+E 0.8729 0.7063 0.4650 0.9244 0.7871 0.06672

Table 7: Calibration results on the test set of the Online Misogyny dataset. We compare with
the best-performing selective prediction baseline (MaxProb ŷmaj). For CROWD-CALIBRATOR,
we show the results for different distance metric variations and include entropy in the score.

We observe results similar to hate speech detection, with competitive performance.

F Comparing Distance Metrics for Soft Labels

We experiment with different loss functions that would minimize the difference between
the annotator probability distribution ys and the model’s output distribution ŷs: Cross
Entropy Loss (CEso f t, Equation 5), Jensen Shannon Divergence (JSD, Equation 3), and Mean
Squared Error (MSE, Equation 7). We refer to these losses as soft losses. For comparison to the
conventional setup, we also use Cross Entropy Loss in the conventional setup and refer to
this loss as a hard loss (CEhard), where the objective is to predict the hard label yh.
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Figure 5: Results on the HateXplain dataset for both RoBERTa-base and RoBERTa-large
when training with hard and soft losses (x-axis). Each plot is a different metric.

CEso f t(ys, ŷs) = −
n

∑
i=1

ys,i log(ŷs,i) (5)

CEhard(yh, ŷh) = −
n

∑
i=1

yh,i log(ŷh,i) (6)

MSE(ys, ŷs) = (ys − ŷs)
2 (7)

F.1 Evaluation

To measure the performance and calibration of the model, we employ different metrics.

Hard evaluation metrics. We use these metrics to measure if the model gets its predictions
right in the conventional way: macro F1 and accuracy.

Soft evaluation metrics. To measure if the probabilities that the model outputs are similar
to the annotator label distribution, we use CEso f t, KL, and JSD.

Calibration metrics. To measure if the confidence the model outputs reflects its empirical
performance, we measure the Expected Calibration Error (ECE).

F.2 Results

The hard and soft evaluation results can be found in Figure 5. Here, we see that for all
metrics, the hard loss is outperformed by other losses. This is even the case for hard metrics.
The superior performance of the soft losses highlights how beneficial it is for models to
learn the human label variation instead of the majority vote.

To evaluate the losses in terms of calibration, we show the Expected Calibration Error
in Table 8. Generally, the hard loss has the worst (highest) ECE out of all and tends to be
more overconfident. The soft losses have confidences closer to their empirical performance
and tend to be rather underconfident. The JSD loss comes the closest to reflecting the actual
performance of the model, having the lowest ECE. We therefore continue our experiments
with only the JSD loss as a soft loss.
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CEhard CEso f t JSD MSE

RoBERTa-base 9.67 4.55 3.21 4.65
RoBERTa-large 10.63 5.50 3.73 5.30

Table 8: ECE for different losses on the HateXplain dataset, averaged over five runs.

G Variation in Change of Performance with CROWD-CALIBRATOR

To showcase the standard deviation and variation of our results, we look at the improvement
or deterioration for the metrics we apply when using CROWD-CALIBRATOR compared to
MaxProb on the base model trained with majority labels. We take the score achieved with
CROWD-CALIBRATOR and subtract the score of MaxProb ŷmaj to get the difference (∆) in
performance, for each seed individually. After that, we take the average and calculate the
standard deviation.

We show the mean variation in Tables 9 and 11 for hate speech and Tables 10 and 12 for
NLI. The subscript is the standard deviation (±). A positive mean variation means that in
general, our CROWD-CALIBRATOR performs better than the baseline MaxProb. A negative
mean variation means generally worse performance.

For completeness, we also show the difference in performance between the two baselines of
MaxProb and Kamath et al. (2020).

Cov@Acc= ↑
∆ 0.85 ∆ 0.90 ∆ 0.95 ∆ AUC ↑ ∆ AUROC ↑

Kamath et al. (2020) -0.00740.0197 -0.00680.0169 -0.00640.0282 0.00000.0034 0.00220.0086

Label Dist. - JSD+E -0.01860.0124 -0.02170.0127 -0.01760.0205 -0.00210.0014 -0.00950.0082
Label Dist. - TVD+E -0.02380.0188 -0.02220.0117 -0.02150.0085 -0.00310.0015 -0.01450.0066
Avg. Conf. - JSD+E -0.00290.0209 0.00410.0230 -0.01990.0288 -0.00190.0033 -0.00270.0087
Weighted Scoring - JSD+E -0.00910.0066 0.00250.0091 -0.03320.0180 -0.00270.0013 -0.00440.0029
GHC - Avg. Conf. - JSD+E -0.00890.0085 0.00400.0085 -0.01180.0324 -0.00140.0009 -0.00170.0058
GHC - Label Dist. - JSD+E -0.01510.0051 -0.00800.0116 -0.00620.0130 -0.00110.0009 -0.00540.0038

Table 9: Difference (∆) in increase (+) or decrease (-) of metric score when calibrating with
CROWD-CALIBRATOR compared to MaxProb ŷmaj for the in-domain hate speech test set.
We present the mean difference, with the standard deviation ± as subscript.

∆ cov@acc=0.8 ↑ ∆ cov@acc=0.9 ↑ ∆ AUC ↑ ∆ AUROC ↑
KL -0.00770.0937 0.16090.0474 0.01110.0133 0.00540.0256
KL + E 0.10320.0672 0.27560.0216 0.04260.0058 0.06800.0123
TVD 0.08850.0615 0.26990.0666 0.03540.0133 0.06050.0202
TVD+E 0.13530.0561 0.27120.0602 0.04650.0046 0.08370.0081
JSD 0.05900.0668 0.17630.0445 0.01900.0143 0.03070.0231
JSD+E 0.08010.0415 0.19550.0513 0.03210.0038 0.05420.0066

Table 10: Difference (∆) in increase (+) or decrease (-) of metric score when calibrating
with CROWD-CALIBRATOR compared to MaxProb ŷmaj for the in-domain NLI test set. We
present the mean difference, with the standard deviation ± as subscript.
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DAVIDSON FOUNTA HATECHECK

∆AUC ↑ ∆AUROC ↑ ∆AUC ↑ ∆AUROC ↑ ∆AUC ↑ ∆AUROC ↑
Kamath et al. (2020) -0.02570.0504 -0.03240.0531 0.00010.0188 -0.00860.0154 -0.04070.0798 0.05090.0584

Avg. Conf. - TVD+E** 0.02170.0085 0.04790.0210 0.02020.0084 0.00350.0095 0.15540.0146 0.26910.0185
Weighted Score - JSD+E** 0.01290.0051 0.02700.0135 0.02100.0077 0.00990.0077 0.11680.0079 0.19210.0160
DGHS - Label Dist. - TVD+E 0.01640.0083 0.03960.0262 0.00610.0056 0.00320.0118 0.14710.0156 0.27470.0162

Table 11: Difference (∆) in increase (+) or decrease (-) of metric score when calibrating with
CROWD-CALIBRATOR compared to MaxProb ŷmaj for unseen hate speech datasets. We
present the mean difference, with the standard deviation ± as subscript. For Davidson and
HateCheck, we show the results when only using DGHS annotators and for Founta when
only using GHC annotators (indicated with a **)

ANLI WANLI

cov@acc= ↑
∆ AUC ↑ ∆ AUROC ↑ ∆ 0.7 ∆ 0.75 ∆ 0.8 ∆ AUC ↑ ∆ AUROC ↑

KL 0.05350.0095 0.07820.0216 -0.50970.1309 -0.35780.0343 -0.10340.0872 -0.05670.0073 -0.09060.0136
KL+E 0.02170.0084 0.03500.0199 -0.02680.0475 -0.04420.0360 0.03520.0685 0.00180.0031 -0.00710.0108
TVD 0.04560.0107 0.06820.0212 -0.23870.0790 -0.27060.0624 -0.09200.0903 -0.03240.0065 -0.05250.0136
TVD+E 0.02020.0071 0.03070.0093 -0.00480.0407 -0.01840.0462 0.03250.0825 0.00510.0035 0.000260.0098
JSD 0.05270.0093 0.07440.0201 -0.49080.1290 -0.35940.0347 -0.10260.0868 -0.04980.0068 -0.073420.0139
JSD+E 0.01210.0056 0.01710.0057 0.00040.0306 0.01820.0399 0.07790.0758 0.00920.0028 0.00590.0073

Table 12: Difference (∆) in increase (+) or decrease (-) of metric score when calibrating with
CROWD-CALIBRATOR compared to MaxProb ŷmaj for unseen NLI datasets. We present the
mean difference, with the standard deviation ± as subscript.

H Analysis of Hate Speech Datasets

To measure the agreement and understand the dataset dynamic, we look at dataset char-
acteristics of different hate speech datasets where we have access to who annotated what
and each instance receives more than one annotation: HX (original in Figure 6 and binary
version in Figure 7), MHSC (Figure 8), and GHC (Figure 9). The original HX dataset has
three classes, normal, offensive, and hate speech. We then reduce it to a binary classification
task. We plot the amount of comments annotated for each annotator and two metrics
from CrowdTruth (Dumitrache et al., 2018): sentence quality and annotator/worker quality,
which showcase the reliability and agreement in a dataset. Sentence quality describes the
agreement of annotators for a given input and worker quality describes how much an
annotator agrees with other annotators.

For all datasets, we see a similar story. The majority of the annotators have not rated
many instances, except for GHC where many annotators have annotated more than 2000
comments. In general, we see many high-quality workers and a relatively smaller group of
low-quality sentences. For HX, worker quality is lower when we keep offensive and hate
speech separated.
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(a) Comments annotated by
each annotator.

(b) Unit Quality Scores. (c) Worker Quality Scores.

Figure 6: Dataset characteristics of HX dataset.

(a) Comments annotated by
each annotator.

(b) Unit Quality Scores. (c) Worker Quality Scores.

Figure 7: Dataset characteristics of HX dataset when reduced to binary classes.

(a) Comments annotated by
each annotator.

(b) Unit Quality Scores. (c) Worker Quality Scores.

Figure 8: Dataset characteristics of MHSC dataset.

(a) Comments annotated by
each annotator.

(b) Unit Quality Scores. (c) Worker Quality Scores.

Figure 9: Dataset characteristics of GHC dataset.
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