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ABSTRACT

Electromagnetic (EM) simulation plays a crucial role in analyzing and designing
devices with sub-wavelength scale structures such as semiconductor devices and
future displays. Specifically, optics problems such as estimating semiconductor
device structures and designing nanophotonic devices provide intriguing research
topics with far-reaching real world impact. Traditional algorithms for such tasks
require iteratively refining parameters through simulations, which often yield sub-
optimal results due to the high computational cost of both the algorithms and
EM simulations. Machine learning (ML) emerged as a promising candidate to
mitigate these challenges, and optics research community has increasingly adopted
ML algorithms to obtain results surpassing classical methods across various tasks.
To foster a synergistic collaboration between the optics and ML communities,
it is essential to have an EM simulation software that is user-friendly for both
research communities. To this end, we present meent, an EM simulation software
that employs rigorous coupled-wave analysis (RCWA). Developed in Python and
equipped with automatic differentiation (AD) capabilities, meent serves as a
versatile platform for integrating ML into optics research and vice versa. To
demonstrate its utility as a research platform, we present three applications of
meent: 1) generating a dataset for training neural operator, 2) serving as an
environment for the reinforcement learning of nanophotonic device optimization,
and 3) providing a solution for inverse problems with gradient-based optimizers.
These applications highlight meent’s potential to advance both EM simulation
and ML methodologies. The code is available on our Github repository with the
MIT license to promote the cross-polinations of ideas among academic researchers
and industry practitioners.

1 INTRODUCTION

Harnessing light-matter interaction to design or analyze a device with sub-wavelength scale structure
has a wide range of applications, including high-efficiency solar cells (Peter Amalathas & Alkaisi,
2019; Snaith, 2013), ultra-thin metalenses and displays (Zhang et al., 2018; Aieta et al., 2012),
optical metrology for semiconductor fabrication (Timoney et al., 2020; Den Boef, 2013), X-ray
diffraction for material analysis (von Laue, 1915; Norton et al., 1998), optical computation (Fang
et al., 2005; Silva et al., 2014), and so on. Their implication to the real-world is far-reaching,
leading to improved renewable energy production, enhanced user experience, and next-generation
computation. Electromagnetic (EM) simulation plays a crucial role in such applications, which also
poses a challenging problem due to its time-consuming nature for precise calculation (Burger et al.,
2008) and iterative characteristic of optimization.

Machine learning (ML) is a promising candidate to solve such a problem, and with the advent of
deep learning, optics community has been made successful efforts (Malkiel et al., 2018; Melati
et al., 2019; Jiang & Fan, 2019) to leverage modern machine learning techniques to find both better
optimization algorithms (So & Rho, 2019; Seo et al., 2021; Jin et al., 2020; Colburn & Majumdar,
2021; Kim & Lee, 2023) and faster electromagnetic simulators (Raissi et al., 2019; Li et al., 2020a;
Lu et al., 2021). These researches show significant potential of ML for uncovering new insights
and expediting scientific discoveries. On the other hand, from the viewpoint of ML, designing or
analyzing such devices are ideal environments for developing new ML algorithms, as they provide
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Figure 1: Summary. Simulation Algorithm depicts the process flow of electromagnetic simulation
algorithm, namely RCWA, in meent. The physical environment to be simulated is described by
formulas about light and matter, and sent to Fourier space. Using convolution operation, the electric
and magnetic fields are described with the transformation matrices, ΩL and ΩR. These two equations
are combined into one, and a general solution is found by eigendecomposition. Applying the boundary
conditions, the particular solution can be found. Using this solution, we can find the transmittance,
reflectance, and field distribution. Applications presents the most representative domains that meent
can be utilized. Beam deflector and color router are metasurface-related applications that control the
direction of propagating light. Optical metrology is used to estimate the property of the specimen. It
can be a structure of a device, material property of a material, etc.

both ample simulation data to train ML models and well-defined optimization goals, often called
figure of merit (FoM), for the real-world applications.

However, the integration of ML into computational optics presents several challenges. Traditional
EM simulation software are often written in languages like C or MATLAB and therefore cannot
be seamlessly integrated into ML packages mostly developed for Python ecosystem. This results
in the loss of the computational graph needed for automatic differentiation (AD), which is useful
for gradient-based optimization. Furthermore, the scarcity of public data in certain domains, such
as semiconductor fabrication industry, compounded by stringent intellectual property regulations,
poses significant obstacles, especially to ML researchers lacking domain expertise. Overcoming these
barriers requires innovative approaches in generating and sharing data to enable ML researchers to
explore new frontiers in computational optics.

In response to these challenges, we introduce meent, a Python-native differentiable EM simulator.
meent is based on rigorous coupled-wave analysis (RCWA) (Moharam & Gaylord, 1981; Moharam
et al., 1995a;b; Lalanne & Morris, 1996; Granet & Guizal, 1996; Li, 1996; Rumpf, 2006; Li,
2014), a high-throughput, deterministic EM simulation algorithm that is widely adopted in optics
across academia and industries. Key features of meent include its compatibility with automatic
differentiation (AD) (Baydin et al., 2018; Moses & Churavy, 2020) for modeling and optimizing
devices in a continuous space. AD compatibility in ML toolchain is pivotal, and while some existing
tools support vector modeling and others support AD, none offer both functionalities simultaneously.
For developer ergonomics, meent is developed to be compatible with three different backend
frameworks: NumPy (Harris et al., 2020), JAX (Bradbury et al., 2018), and PyTorch (Paszke et al.,
2019). By supporting multiple backends, meent facilitates easy adoption among researchers with
varying levels of domain expertise and different backend preferences.
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We showcase the utility of meent with various applications of ML to optics. First we present how to
use meent to analyze and design a metasurface, whose sub-wavelength scale structure is carefully
designed to achieve unprecedented control of light (Kildishev et al., 2013; Yu & Capasso, 2014; Sun
et al., 2019). We also illustrate how to use meent in optical metrology (Zuo et al., 2022), one of the
most successful industrial applications within the semiconductor fabrication, that serves to estimate
the dimensions of device structures between process steps, thereby effectively monitoring excursions
and maximizing yield due to its non-destructive nature and high throughput capabilities.

By enabling each user to generate datasets tailored to specific research needs, meent can democratize
the access to EM simulation data. We hope that meent will facilitate collaboration between ML and
optics researchers and thereby accelerate scientific discovery in computational optics.

Our contributions are summarized as follows:

• Development of meent, a Python-native EM simulation software under MIT license sup-
porting automatic differentiation and continuous space operation in ML frameworks.

• Demonstration of meent’s versatility with examples of ML algorithms, including Fourier
neural operator, model-based RL, and gradient-based optimizers.

• Documentation of meent with detailed explanations and instructions.

2 RELATED WORK

EM simulation algorithms. There exist several methods for full-wave1 EM simulation, each
offering distinct advantages. Here, we review finite difference time domain (FDTD) and rigorous
coupled wave analysis (RCWA). FDTD operates within the real space and time domain, employing
the finite difference method. It discretizes space into grids and iteratively solves the function at
these grid points over successive time steps (Taflove, 1980). RCWA operates in reciprocal space
and frequency domain, which requires two conditions for Fourier analysis: time-harmonic field2 and
periodicity of a structure.

Table 1: FDTD and RCWA

space domain type throughput
FDTD real space time numerical low
RCWA reciprocal space frequency semi-analytical high

Table 1 shows a comparative analysis of FDTD and RCWA. Both methods solve Maxwell’s equations,
but they operate in different domains, as explained. FDTD is a fully numerical method, whereas
RCWA is considered semi-analytic, as it allows for analytical solutions of the fields in the propagation
direction. FDTD is general but RCWA is applicable to specific cases where the fields are time-
harmonic and the structure has periodicity. By losing the generality, RCWA can show much faster
simulations compared to FDTD for many practical cases.

Notable open-source software packages for FDTD include Meep (Oskooi et al., 2010), gprMAX
(Warren et al., 2016), OpenEMS (Liebig), ceviche (Hughes et al., 2019) and FDTD++. In the realm of
RCWA simulators, Reticolo (Hugonin & Lalanne, 2021) and S4 (Liu & Fan, 2012), implemented in
MATLAB and C++ respectively, have earned recognition and been extensively utilized in numerous
research endeavors. With the emergence of ML, the significance of Python-native code has grown
substantially, prompting optics researchers to familiarize themselves with Python and its associated
technologies. gRCWA (Jin et al., 2020), rcwa-tf (Colburn & Majumdar, 2021), and TORCWA
(Kim & Lee, 2023) are notable for their support of AD. Comparing meent to these AD-enabled
tools, the main novelty is the vector-type modeling which enables modeling in continuous space
while the others reside in discrete space which critically limits the resolution of modeling hence of
optimization algorithm. Additionally, the inverse rule for Fourier analysis (Li, 1996; 2014) is applied
to improve the convergence of TM polarized light. Table 2 summarizes supporting features of each
EM simulation solver that provides automatic differentiation.

1Full-wave simulations solve the exact Maxwell’s equations without relying upon simplifying assumptions.
2The electric and magnetic fields at any location vary sinusoidally with time.
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Table 2: Automatic differentiation enabled solvers and their features

raster input vector input GPU inverse rule backend
grcwa O X X X NumPy
rcwa-tf O X O X TensorFlow
torcwa O X O X PyTorch
meent O O O O NumPy, JAX, PyTorch

ML applications in optics. Assisted with physical simulators, ML is being actively embraced
across scientific domains to substitute heavy simulations with deep models that serve as surrogate
solvers, offering high throughput and increased robustness to hidden noise. Seminal works such as
physics-informed neural network (PINN) (Raissi et al., 2017a;b; 2019) and neural operators (Li et al.,
2020a; Cai et al., 2021; Li et al., 2020b; 2023; Lu et al., 2021; 2022; Jin et al., 2022) showed their
potential as surrogate EM solvers (Pestourie et al., 2020; Kim et al., 2021). Reinforcement learning
(RL) also showed its efficacy in the scientific domains, such as magnetic control of tokamak plasmas
(Degrave et al., 2022) and classical mechanics (Lillicrap et al., 2015; Todorov et al., 2012).

Representative examples of surrogate EM solver include MaxwellNet (Lim & Psaltis, 2022), an
instance of PINN. Fourier neural operator was used in (Augenstein et al., 2023), where optimization
of nanophotonic device (Park et al., 2022) is also conducted. Deep generative model was used in
(So & Rho, 2019) to reduce computational cost compared to traditional optimization algorithm,
and the feasibility of using model-free RL was demonstrated in (Sajedian et al., 2019; Seo et al.,
2021; Park et al., 2024). Our example explores the possibility of applying model-based RL to device
optimization, rooted on RNN-based world model (Ha & Schmidhuber, 2018; Hafner et al., 2019b;a;
2020; 2023).

Datasets and benchmarks in nanophotonics. Efforts have been made to create and release
datasets to engage machine learning researchers in nanophotonics. (Kim et al., 2023; Yang et al.,
2023) offer datasets generated from EM simulators and evaluate ML techniques for inverse problems
in metasurface design. Our work not only offers a set of codes for benchmarking ML algorithms but
also includes the solver itself, which is essential for a complete and comprehensive simulation cycle.

3 MEENT: ELECTROMAGNETIC SIMULATION FRAMEWORK

Electromagnetic simulation algorithm. meent uses rigorous coupled wave analysis (RCWA)
(Moharam & Gaylord, 1981; Moharam et al., 1995a;b; Lalanne & Morris, 1996; Granet & Guizal,
1996; Li, 1996; Rumpf, 2006; Li, 2014), which is based on Faraday’s law and Ampére’s law of
Maxwell’s equations (Kim et al., 2012),

∇×E = −jωµ0H, ∇×H = jωε0εrE, (1)

where E and H are electric and magnetic field in real space, j denotes the imaginary unit number, i.e.
j2 = −1, ω denotes the angular frequency, µ0 is vacuum permeability, ε0 is vacuum permittivity,
and εr is relative permittivity. As illustrated in Figure 1, it is a technique used to solve PDEs in
Fourier space, aiming to estimate optical properties such as diffraction efficiency or field distribution.
We reserve the detail of RCWA for Appendices A and G for readers interested in delving into the
fundamentals of RCWA.

Geometry modeling. meent offers support for two modeling types: raster and vector. Analogous
to the image file format, raster-type represents data as an array, while vector-type utilizes a set of
objects, with each object comprising vertices and edges, as shown in Figure 2a. Due to their distinct
formats, each method employs different algorithms for space transformation, resulting in different
types of geometry derivatives, including topological and shape derivatives, as depicted in Figure 2b.
The topological derivative yields the gradient with respect to the permittivity changes of every cell in
the grid, while the shape derivative provides the gradient with respect to the deformations of a shape.

These two modeling methods offer distinct advantages and are suited to different applications: raster
modeling is ideal for freeform metasurface design, where pixel-wise operations are utilized, while
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(a) Representation (b) Derivative (c) Domain

Figure 2: Characteristics of each modeling type. In each subfigure, the left side depicts raster while
the right side depicts vector. (a) illustrates how the geometry is formed by each method. (b) presents
a schematic diagram highlighting the difference between the topological derivative (left) and shape
derivative (right). (c) The area enclosed by the blue double line denotes the codomain, while the red
dots on the left and red area on right represent the range.

vector modeling is more appropriate for OCD metrology, where object dimensions are defined in
continuous space, as illustrated in Figure 2c.

Fourier analysis. meent provides three methods for Fourier series: discrete Fourier series (DFS),
enhanced DFS (EFS) and Fourier series on piecewise-constant function (here we call it continuous
Fourier series, CFS). In DFS, the function ε(x, y) to be transformed is sampled at a finite number of
points, and this means it’s given in matrix form with rows and columns, εr,c. The coefficients from
DFS are then given by this equation:

cn,m =
1

PxPy

Px−1∑
c=0

Py−1∑
r=0

εr,c · exp
[
−j · 2π

(
m

Px
c+

n

Py
r

)]
, (2)

where cn,m is the Fourier coefficients (mth in X and nth in Y), Px, Py are the sampling frequency
(the size of the array), εr,c is the (r, c)

th element of the permittivity array. Here, the sampling
frequency (Px, Py) is very important (Smith, 1999; Antoniou, 2005; Kreyszig et al., 2011). If this
is not enough, an aliasing occurs: DFS cannot correctly capture the original signal. To address this
issue, meent offers EFS, which performs upscaling of the input data to produce simulation results
that more closely align with those obtained from CFS. Continuous Fourier series utilizes the entire
function to find the coefficients while DFS uses only some of them (through sampling). The Fourier
coefficients can be expressed as follow:

cn,m =
1

ΛxΛy

∫ x0+Λx

x0

∫ y0+Λy

y0

ε(x, y) · exp
[
−j · 2π

(
m

Λx
x+

n

Λy
y

)]
dydx, (3)

where Λx,Λy are the period of the unit cell.

Figure 3: Accuracy by Fourier
analysis type. Histogram of the
difference compared to Reticolo.

Simulation accuracy. The simulation accuracy is compared
to Reticolo in the context of designing a one-dimensional meta-
surface beam deflector. Reticolo is a well-established classical
RCWA tool with a long history and extensive adoption within
the optics community. Comprehensive details are provided in
the appendix I.

Over 600,000 structures were simulated using four different
RCWA implementations (CFS, DFS, and EFS in meent and
Reticolo). Using Reticolo as a reference, the diffraction effi-
ciency of transmission, which ranges between 0 and 1, was
compared. Figure 3 presents a histogram of the discrepancies
from the Reticolo results. The CFS demonstrates the smallest
errors, with a median discrepancy of 2.1× 10−14, attributed to
the fact that Reticolo also employs CFS (the CFS algorithm in
meent are derived from Reticolo). In contrast, DFS exhibits
the poorest matching performance; however, this can be im-
proved with EFS. The median discrepancy for DFS is 4.3× 10−4, which decreases to 1.4× 10−7

when using EFS.
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4 MEENT IN ACTION: MACHINE LEARNING ALGORITHMS APPLIED TO OPTICS
PROBLEMS

We have prepared six applications: the first three focus on investigating machine learning (ML)
algorithms in optics problems, while the remaining three focus on the development of nanophotonic
devices. The final three examples are presented in Appendix J, while the first three are discussed
in this section. First, we explore neural PDE solvers for Maxwell’s equations, using meent as
a data generator. Then we delve into device optimization through reinforcement learning (RL),
utilizing meent as an RL environment. Lastly, we address inverse problems within the semicon-
ductor metrology domain, leveraging meent as a comprehensive solution for both simulation and
optimization.

Figure 4: Metagrating and its representations. (a) An example of metagrating sized 16 cells, where
the grating layer is bounded by air and glass layers. (b) Abstract representation of (a), called U . (c)
Array representation of the grating pattern, expressed as G.

Throughout Sections 4.1 and 4.2, analysis and design of metagrating beam deflector are performed.
A metagrating is a specific type of metasurface that is arranged in a periodic pattern and is primarily
used to direct light into specific angle θ as shown in Figure 4. At the grating layer, a material is
placed on k uniform cells, and has the constraint of minimum feature size (MFS). MFS refers to the
smallest contiguous grating cells the device can have. Our figure of merits (FoMs) from the beam
deflector include deflection efficiency η ∈ [0, 1] and x-component of electric field E.

4.1 FOURIER NEURAL OPERATOR: PREDICTION OF ELECTRIC FIELD DISTRIBUTION

We provide two representative baselines of neural PDE solvers for predicting electric field: image-to-
image model, UNet (Ronneberger et al., 2015) and operator learning model, Fourier neural operator
(FNO) (Li et al., 2020a).

Problem setup. Our governing PDE that describes electric field distribution can be found by
substituting left-hand side into right-hand side of Equation 1,

∇×∇×E = ω2µ0ε0εrE. (4)

The objective of our neural PDE solver is to predict the electric field corresponding to a given grating
pattern based on Maxwell’s equations in the transverse magnetic (TM) polarization case. To solve this,
let O be an operator that maps a function u(x) to another function v(x), such that v(x) = O(u)(x).
We aim to find an approximator for O, which will be represented by a neural network. In this
example, we define the following notations: g(x) represents a function that describes the grating
pattern, while u(x) denotes a function that characterizes the physical environment, which includes
g(x). Furthermore, v(x) refers to the x-component of the electric field distribution associated with
u(x). The variables G ∈ {1,−1}k, U ∈ {1,−1}k×k, and V ∈ R2×k×k represent the discretized
values of g(x), u(x), and v(x), respectively.
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(a) Electric field (b) Super-resolution

Figure 5: FNO’s approximation of Maxwell’s equation. (a) Real parts of electric field distribution,
(left) ground truth, (middle) prediction from FNO and (right) prediction from UNet. FNO is able to
predict overall field distribution and also the grating area, but UNet fails. (b) Test result on higher
resolutions of fields, 512×512 and 1024×1024. The models were trained on 256×256 resolution.
FNO shows little increase in the test error for predicting fields in higher resolution whereas UNet
shows huge increase.

The dataset preparation begins by sampling a grating pattern G from a uniform distribution, such
that G = [e1, ..., ek] ∼ Unif({−1, 1}) while adhering to the constraint of MFS3. This pattern is
then padded with −1 at the top and bottom layers to include the regions representing the incoming
and outgoing electric fields, resulting in a matrix U , as shown in Figure 4b. The function meent
solves Equation 4 for the given U and returns the electric field V . Note that the first dimension
of V corresponds to the real and imaginary parts of the electric field, while the second and third
dimensions, k, denote the dimensions of the matrix U . This data pair (U, V ) is derived from specific
physical conditions—related to the wavelength λ and deflection angle θ. We generated 10,000 pairs
as a training set, and repeated this process to create datasets each corresponding to nine different
physical conditions.

Fourier neural operator. The effectiveness of FNO for solving Maxwell’s equation in our meta-
grating beam deflector is exhibited in Figure 5a. We follow techniques from (Augenstein et al., 2023),
in which original FNO is adapted to light scattering problem by applying batch normalization (Ioffe
& Szegedy, 2015), adding zero-padding to the input and adopting Gaussian linear error unit (GELU)
activation (Hendrycks & Gimpel, 2016). We further improved FNO’s parameter efficiency by apply-
ing Tucker factorization (Kossaifi et al., 2023), where a model’s weight matrices are decomposed
into smaller matrices for low-rank approximation. In addition to field prediction capability, we also
show zero-shot super-resolution (trained in lower resolution, tested on higher resolution) capability in
Figure 5b, which is claimed to be a major contribution of FNO (Li et al., 2023).

A model trained on a loss function is named as {Model}-{Loss function}, e.g., FNO-L2 is an FNO
trained with L2 loss. c1 = 0.7 and c2 = 0.3 are set for RW L2 loss, emphasizing model to predict
the grating area more accurately. A model is trained specifically to a single physical condition. Since
the solution space of a PDE is highly dependent on physical conditions, we assessed the robustness
of baseline models across nine conditions and collectively report in Table 4.

Table 3: Loss functions. ∥ · ∥ is the Euclidean norm, RW is shorthand for region-wise, and
grating, air, glass refers to the sets of indices for each region on matrix representation. All losses
are relative error, i.e., normalized by the magnitude of the ground truth y.

Name Notation Definition
L2 loss L2 ∥y − ŷ∥ / ∥y∥

RW L2 loss L2,rw c1 · L2,grating + c2 · (L2,air + L2,glass)
H1 loss H1 {(∥y − ŷ∥2 + ∥y′ − ŷ′∥2) / (∥y∥2 + ∥y′∥2)}1/2

Table 4 summarizes the results of UNet and FNOs with various loss functions and metrics. Notably,
FNO-L2 outperforms UNet-L2 by a substantial margin (8.71 compared to 34.80, resulting in a 76%

3MFS was chosen as 4 which is more granular than 8 in (Park et al., 2024).
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Table 4: Test error across three loss functions. Smaller the better. Of the column names, top row is
the name of the models and bottom row is the test metrics.

UNet-L2 FNO-L2 FNO-RW L2 FNO-H1

Condition (λ / θ) L2 RW L2 H1 L2 RW L2 H1 L2 RW L2 H1 L2 RW L2 H1

1100nm / 70◦ 34.04 22.64 33.28 7.15 6.52 14.57 7.35 4.14 10.95 6.04 3.56 6.35
1100nm / 60◦ 41.61 41.86 47.82 14.57 17.37 26.65 16.03 14.7 24.11 11.09 10.98 14.62
1100nm / 50◦ 24.37 56.33 61.05 2.52 22.38 33.70 2.58 21.93 33.81 2.07 12.33 17.37
1000nm / 70◦ 43.44 22.17 29.55 15.15 5.7 12.16 15.19 4.93 11.91 9.02 3.35 5.42
1000nm / 60◦ 34.02 54.74 56.98 10.7 21.89 32.66 9.5 22.93 32.74 7.88 15.05 19.21
1000nm / 50◦ 28.46 39.62 44.28 2.88 12.34 22.51 2.25 11.66 21.50 2.19 8.26 12.15
900nm / 70◦ 40.78 27.21 34.25 15.14 8.37 15.05 13.63 6.51 12.67 10.8 5.03 7.31
900nm / 60◦ 31.36 30.53 34.07 6.07 11.10 17.27 5.47 9.08 14.61 4.85 7.26 9.24
900nm / 50◦ 35.11 51.64 51.59 4.23 22.87 30.79 3.77 19.89 27.33 3.29 14.91 17.75

Mean 34.80 38.53 43.65 8.71 14.28 22.81 8.42 12.86 21.07 6.36 8.97 12.16
±Std ±5.95 ±12.81 ±10.79 ±5.95 ±6.58 ±7.93 ±5.12 ±6.92 ±8.47 ±3.32 ±4.31 ±5.00

lower mean error) while utilizing only one-tenth of the parameters of UNet. This performance can be
further enhanced by employing different loss functions: FNO-H1 demonstrates the best performance
across all test metrics. The moderate performance of UNet in other PDE solvers (Hassan et al., 2024;
Augenstein et al., 2023) contrasts with its poor performance in our task, which we attribute to its
inability to capture complex dynamics around the grating area. More information on this experiment
is provided in Appendix D.

4.2 MODEL-BASED REINFORCEMENT LEARNING: METASURFACE DESIGN

Here we demonstrate that meent can be used as an environment to train a model-based reinforcement
learning (RL) agent, whose model learns how EM field evolves according to the change of the
metagrating structure. The objective of an RL agent here is to find the metagrating structure that
yields high deflection efficiency, by flipping the material of a cell between silicon and air. Here, MFS
is set to 1, i.e., there is no MFS constraint.

Problem setup. Here an RL agent undergoes fully-observable Markov decision process described
as sequence of tuples {st, at, rt, st+1}Tt=1, where the next state st+1 is determined by the dynamics
model p(st+1 | st, at) and the action is the index of cell to flip, at ∈ {0, 1, ..., k−1}. The state st and
the reward rt depend on which RL algorithm is used, and will be defined shortly after. Throughout the
decision process, the agent learns to flip cells that maximizes the deflection efficiency ηt. For training
purpose, we implemented Gymnasium (Towers et al., 2023) environment called deflector-gym,
which is built on top of meent. Given an input action at, the environment modifies current structure
gt and outputs FoMs such as deflection efficiency ηt or electric field vt in deterministic manner.

Figure 6: Learning curve across
3 random seeds. Historical max-
imum efficiencies during training
phase are plotted.

Model-based RL vs Model-free RL. One way to categorize
RL algorithms is whether it has an explicit dynamics model
p ≈ pθ(st+1 | st, at), where pθ is some neural network. Model-
based RL (MBRL) agent utilizes the model pθ to produce sim-
ulated experiences, from which the policy is improved (Sutton,
1991; Sutton & Barto, 2018). Therefore, MBRL agent is con-
sidered to be more sample efficient than model-free agent, i.e.,
requires less interactions with actual environment to train.

For an MBRL algorithm, we chose DreamerV3 (Hafner et al.,
2023), the first algorithm that solved ObtainDiamond task of
MineRL (Guss et al., 2019). DreamerV3 is based on recurrent
state-space model (RSSM) (Hafner et al., 2019b) that models
dynamics in the latent space. Developed to be robust across
varying scales of observations and rewards in different tasks, it
has successfully addressed numerous challenges using a single
set of hyperparameters, most of which were reused here as well.
We compare this with Deep Q Network (DQN) (Mnih et al., 2015), a model-free algorithm, adapted
from (Park et al., 2024).
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Same as in (Park et al., 2024), our DQN agent receives the reward rt = ηt − ηt−1 and observes the
grating pattern as the state st = gt. On the other hand, DreamerV3 agent receives reward rt = ηt
and observes the grating pattern along with the electric field, st = (gt, vt), to enable the dynamics
model pθ to learn underlying physics of the transitions of electric fields. For further training details
and the motivation behind the aforementioned reward engineering, we refer readers to Appendix E.1

As was the case in other tasks, DreamerV3 agent showed improved sample efficiency in our task as
seen in Figure 6 when compared to DQN. Not only does it shows more effective optimizations at the
same training steps, but it also achieves higher maximum deflection efficiency. As a side remark, we
mention that the training of RL agents can be massively accelerated with running meent in parallel
with Ray/RLlib (Liang et al., 2018). Simple comparison of training speed between single worker and
multiple workers are shown in Appendix E.1.

Electric field prediction of the dynamics model. In addition to the sample efficiency, another
advantage of using MBRL in this task is that the dynamics model pθ(st+1 | st, at) can be used to
predict the electric field of the next state, which not only makes the dynamics model interpretable but
also suggests another way of developing an EM surrogate solver in addition to neural operators.

Figure 7: Comparison between ground truth and prediction. Rollout trajectory of electric fields
showing the ground truth (top) and the predictions from the MBRL dynamics model (bottom). Given
previous electric fields from step 1 to 5, the model predicts 25 future electric fields with actions the
agent has actually taken, but without any access to ground truth electric field. All of the images are
real part of the field.

Figure 7 shows the prediction of the model compared to the ground truth calculated from meent.
One interesting observation is that, even when the prediction at a certain time step deviates from
the ground truth, the model does not compound the error but is able to correct itself to converge to
the correct estimation. The robustness of the prediction of the dynamics model is also illustrated in
Appendix E.2, where the dynamics model was able to reproduce the correct electric field configuration
even for a difficult problem that a neural operator fails to estimate correctly.

4.3 INVERSE PROBLEM: OCD METROLOGY

A semiconductor device is a three-dimensional stack of layers, rendering direct measurement of
parameters beneath the surface unfeasible without causing damage. OCD offers a solution to
this challenge by redirecting the observation target from the dimensions of physical device to its
spectral characteristics (spectrum). Consequently, OCD becomes an inverse problem: we deduce
the dimensions of the structure in real space, which are the causal factors of spectrum shape, from
observations. The solution involves a probabilistic and iterative process known as spectrum fitting.
This necessitates optimization in continuous space, which can be achieved using meent with vector
modeling.

Spectrum fitting. Figure 8 shows the process of finding solution using spectrum fitting. The goal
is to estimate P using S, as direct observation of P is impossible. To achieve this, we initially create a
virtual structure with limited prior knowledge provided by domain experts, and sample the initial
parameters P̂0 from a suitable distribution. Subsequently, we generate Ŝ0 from P̂0 through simulation.
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Figure 8: Schematic diagram of spectrum fitting. This diagram illustrates the key components of
the approach, including the vector of design parameters (P) from the real device, the set of spectra (S)
derived from these parameters, the synthesized spectra at iteration i (Ŝi), and the estimated design
parameters at the corresponding iteration (P̂i). The methodology involves assessing the distance
between Ŝi and S using a loss function, followed by a update of P̂i to minimize this distance during
each iteration.

Figure 9: Loss curves of various gradient-based algorithms for spectrum fitting. Each plot
illustrates the change of loss over iterations, with the y axis represented in logarithmic scale.

We then employ a distance metric as a loss function to quantify the discrepancy between S and Ŝ0 to
compare P and P̂0. The process is followed by backpropagation, which computes gradients of the
distance with respect to each element of P̂0. Following that, P̂0 is updated to P̂1. This iterative process
can be generalized using P̂i and Ŝi, where i denotes the iteration number. As iterations progress, Ŝi

gradually converges towards S, and it is expected that P̂i will similarly approach the parameter set we
seek to obtain, P.

Demonstration. We now pivot our approach to meent. Rather than seeking P, we utilize meent
to observe the behavior of optimization algorithms, a subject of keen interest for ML researchers. As
an example, we introduce a case study involving eight design parameters with the details provided in
Appendix F. Employing spectrum fitting, we present the optimization curve of five distinct gradient-
based algorithms: Momentum, Adagrad (Duchi et al., 2011), RMSProp (Hinton et al.), Adam
(Kingma & Ba, 2017) and RAdam (Liu et al., 2020). All algorithms share identical P̂0 to ensure
consistency, and evaluated repeatedly with 10 different initial conditions to mitigate the randomness
associated with initial point location, a critical factor in local optimization algorithms. The purpose
of this section is to demonstrate the capabilities of meent. The introduction of novel algorithms or
the achievement of precise predictions is beyond the scope of this case study.

5 CONCLUSION

In our work, we introduce meent, a full-wave, differentiable electromagnetic simulation framework.
Through its capability for vector-type modeling and automatic differentiation, meent operates
seamlessly within a continuous space, overcoming the limitations inherent in raster-type modeling
for geometry representation. We demonstrate with examples of applications how to use meent as
a valuable tool to generate data for ML as well as a comprehensive solver for inverse problems,
expanding its role beyond that of a simple electromagnetic simulator. This versatility makes meent
an invaluable framework to both machine learning and optics.
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A A BRIEF INTRODUCTION TO RCWA

RCWA is based on Faraday’s law and Ampére’s law of Maxwell’s equations (Kim et al., 2012),

∇×E = −jωµ0H, ∇×H = jωε0εrE, (5)

where E and H are electric and magnetic field in real space, j denotes the imaginary unit number, i.e. j2 = −1,
ω denotes the angular frequency, µ0 is vacuum permeability, ε0 is vacuum permittivity, and εr is relative
permittivity. After Fourier transform, E and H in real space become S and U in Fourier space, respectively,
and Equation 5 then turns into

(−jk̃z)S = ΩLU, (−jk̃z)U = ΩRS, (6)

where the matrices ΩL and ΩR are composed of wavevector matrices and convolution matrices that lie in
Fourier space, k̃z is a normalized wavevector in the z-direction. We can find S by merging Equation 6 in a
single matrix equation as

(−jk̃z)2S = Ω2
LRS, (7)

where the matrix Ω2
LR is a matrix product of ΩL and ΩR. As the form implies, this equation can be solved by

eigendecomposition of Ω2
LR to obtain the eigenvectors S and the eigenvalues (−jk̃z). Then by substituting the

eigenvectors for S in Equation 6, the corresponding solution of U can be obtained.

S and U, which we have just computed, represent the set of electromagnetic modes (field representation in
Fourier space) within a given medium. To understand their interaction with incoming and outgoing light, we
employ boundary conditions to ascertain their respective weights of the modes, or in other words, the coefficients
in linear combination of the modes. These coefficients describe the extent of each mode’s influence on the overall
field distribution. Notably, coefficients at the input and output interfaces are designated as diffraction efficiencies,
also called the reflectance and transmittance, serving as the primary purpose of RCWA. Subsequently, the inverse
transformation from Fourier space to real space enables the reconstruction of the field distribution.

B COMPUTING RESOURCES

Table 5: Hardware specification

CPU clock # threads GPU

Alpha Intel Xeon Gold 6138 2.00GHz 80 TITAN RTX

Beta Intel Xeon E5-2650 v4 2.20GHz 48 GeForce RTX 2080ti

Gamma Intel Xeon Gold 6226R 2.90GHz 64 GeForce RTX 3090

Softmax Intel i9-13900K 3.00GHz 32 GeForce RTX 4090
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C CODE SNIPPETS FOR FOMS

Parameters of Code 1, 2

• pattern_input: The grating pattern G

• wavelength: The wavelength of light λ

• fourier_order: The Fourier truncation order of RCWA

• deflected_angle: The desired deflection angle θ

• field_res: The resolution of the field

Please refer to Appendix G for more physical conditions in meent.

1 def get_field(
2 pattern_input,
3 wavelength=1100,
4 deflected_angle=70,
5 fourier_order=40,
6 field_res=(256, 1, 32)
7 ):
8 period = [abs(wavelength / np.sin(deflected_angle / 180 * np.pi))]
9 n_ridge = ’p_si__real’

10 n_groove = 1
11 wavelength = np.array([wavelength])
12 grating_type = 0
13 thickness = [325] * 8
14

15 if type(n_ridge) is str:
16 mat_table = read_material_table()
17 n_ridge = find_nk_index(n_ridge, mat_table, wavelength)
18 ucell = np.array([[pattern_input]])
19 ucell = (ucell + 1) / 2
20 ucell = ucell * (n_ridge - n_groove) + n_groove
21 ucell_new = np.ones((len(thickness), 1, ucell.shape[-1]))
22 ucell_new[0:2] = 1.45
23 ucell_new[2] = ucell
24

25 mee = meent.call_mee(
26 mode=0, wavelength=wavelength, period=period, grating_type=0, n_I

=1.45, n_II=1.,
27 theta=0, phi=0, psi=0, fourier_order=fourier_order, pol=1,
28 thickness=thickness,
29 ucell=ucell_new
30 )
31 de_ri, de_ti, field_cell = mee.conv_solve_field(
32 res_x=field_res[0], res_y=field_res[1], res_z=field_res[2],
33 )
34 field_ex = np.flipud(field_cell[:, 0, :, 1])
35

36 return field_ex

Code 1: Method for caculating electric field v
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1 def get_efficiency(
2 pattern_input,
3 wavelength=1100,
4 deflected_angle=70,
5 fourier_order=40
6 ):
7

8 period = [abs(wavelength / np.sin(deflected_angle / 180 * np.pi))]
9 n_ridge = ’p_si__real’

10 n_groove = 1
11 wavelength = torch.tensor([wavelength])
12 grating_type = 0
13 thickness = [325]
14

15 if type(n_ridge) is str:
16 mat_table = read_material_table()
17 n_ridge = find_nk_index(n_ridge, mat_table, wavelength)
18 ucell = torch.tensor(np.array([[pattern_input]]))
19 ucell = (ucell + 1) / 2
20 ucell = ucell * (n_ridge - n_groove) + n_groove
21

22 mee = meent.call_mee(
23 backend=2, wavelength=wavelength, period=period, grating_type=0,

n_I=1.45, n_II=1.,
24 theta=0, phi=0, psi=0, fourier_order=fourier_order, pol=1,
25 thickness=thickness,
26 ucell=ucell
27 )
28 de_ri, de_ti = mee.conv_solve()
29 rayleigh_r = mee.rayleigh_r
30 rayleigh_t = mee.rayleigh_t
31

32 if grating_type == 0:
33 center = de_ti.shape[0] // 2
34 de_ri_cut = de_ri[center - 1:center + 2]
35 de_ti_cut = de_ti[center - 1:center + 2]
36 de_ti_interest = de_ti[center+1]
37

38 else:
39 x_c, y_c = np.array(de_ti.shape) // 2
40 de_ri_cut = de_ri[x_c - 1:x_c + 2, y_c - 1:y_c + 2]
41 de_ti_cut = de_ti[x_c - 1:x_c + 2, y_c - 1:y_c + 2]
42 de_ti_interest = de_ti[x_c+1, y_c]
43

44 return float(de_ti_interest)

Code 2: Method for caculating deflection efficiency η
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D NEURAL PDE SOLVER

D.1 TRAINING DETAILS

Dataset We split 10,000 pairs of (u, v) into 8000 training pairs and 2000 test pairs for each of nine physical
conditions. An instance of u is sized 1×256×256, each element indicating whether it is filled or empty. v
is sized 2×256×256, one channel for real part and another for imaginary part of electric field, each element
expressing the intensity of electric field. The set of nine physical conditions are shown in the first column of
Table 9, and the set is followed from (Seo et al., 2021). Fourier truncation order is set to 40.

For testing zero-shot super-resolution, the structures are transferred to higher resolutions, and corresponding
electric fields are calculated with Code 1. Please refer to our GitHub repository for the script to generate the data.

Table 6: Common hyperparameters

Name Value

# of Epochs 100
Optimizer AdamW
Learning rate 1E-3
LR scheduler OneCycleLR
Base momentum 0.85
Max momentum 0.95
Activation GELU

Fourier neural operator (FNO) We used 3,268,062 parameters for training FNO. To serve as a baseline,
we adhered closely to the architecture described in (Augenstein et al., 2023), except for Tucker factorization.

Table 7: FNO hyperparameters

Name Value

# of modes [24, 24]
Lifting channels 32
Hidden channels 32
Projection channels 32
# of layers 10
Domain padding 0.015625
Factorization Tucker
Factorization rank 0.5
Normalization BatchNorm

UNet We used vanilla UNet described in the original paper (Ronneberger et al., 2015), of which parameters
counts up to 31,036,546.

Computational resource Both FNO and UNet was trained on Beta server of Table 5. FNO was trained for
3.80 hours, and UNet was trained for 1.86 hours. Both algorithms used single GPU of Beta server and consumed
most of the GPU memory.

Remark We utilized the FNO code of the original author, under MIT license. Also, the widely used UNet
implementation available under the GPL-3.0 license.
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D.2 ABLATION STUDY

We train FNO on various losses shown in Table 8, and name it as {Model}-{Training loss}, e.g. FNO-L2 is a
FNO trained with L2 loss. A model is trained specifically for single physical condition.

On metagrating, more intense and complex interactions occur around the grating area. What makes this area
more important is that, theoretically, the deflection efficiency can be calculated just with the field profile of
grating area. Take a look at the supplementary of (Chen et al., 2022).

Therefore, we derive a simple loss coined as region-wise (RW) L2 loss, which puts more weight on the grating
area, s.t. c1 + c2 = 1. We set c1 = 0.7 and c2 = 0.3. Lastly, H1 loss is a norm in Sobolev space which
integrates the norm of first derivative of the target. Training with H1 loss promotes smoother function (Son et al.,
2021).

D.2.1 LOSS FUNCTIONS

Table 8: Loss functions. ∥ · ∥ is the Euclidean norm, RW is shorthand for region-wise.
grating, air, glass refers to the sets of indices for each region on matrix representation. All losses
are relative error, i.e. normalized by the magnitude of the ground truth y.

Name Notation Definition

L2 loss L2 ∥y − ŷ∥ / ∥y∥
RW L2 loss L2,rw c1 · L2,grating + c2 · (L2,air + L2,glass)

H1 loss H1

√(
∥y − ŷ∥2 + ∥y′ − ŷ′∥2

)
/ (∥y∥2 + ∥y′∥2)

Table 9 shows that FNO-RW L2 achieves slightly lower error than FNO-L2, but it is not significant enhancement
compared to FNO-H1. FNO-H1 shows best performance across all test metrics, L2, RW L2, and H1. UNet is
trained only with L2 loss, serving as a simple baseline. Comparing mean L2 values, 8.71 of FNO-L2 is 76%
lower error than 34.80 of UNet-L2.

Table 9: Test error across loss functions. Of the column names, top row is the name of the models
and bottom row is the test metrics.

UNet-L2 FNO-L2 FNO-RW L2 FNO-H1

Condition (λ / θ) L2↓ RW L2↓ H1↓ L2 RW L2 H1 L2 RW L2 H1 L2 RW L2 H1

1100nm / 70◦ 34.04 22.64 33.28 7.15 6.52 14.57 7.35 4.14 10.95 6.04 3.56 6.35
1100nm / 60◦ 41.61 41.86 47.82 14.57 17.37 26.65 16.03 14.7 24.11 11.09 10.98 14.62
1100nm / 50◦ 24.37 56.33 61.05 2.52 22.38 33.70 2.58 21.93 33.81 2.07 12.33 17.37
1000nm / 70◦ 43.44 22.17 29.55 15.15 5.7 12.16 15.19 4.93 11.91 9.02 3.35 5.42
1000nm / 60◦ 34.02 54.74 56.98 10.7 21.89 32.66 9.5 22.93 32.74 7.88 15.05 19.21
1000nm / 50◦ 28.46 39.62 44.28 2.88 12.34 22.51 2.25 11.66 21.50 2.19 8.26 12.15
900nm / 70◦ 40.78 27.21 34.25 15.14 8.37 15.05 13.63 6.51 12.67 10.8 5.03 7.31
900nm / 60◦ 31.36 30.53 34.07 6.07 11.10 17.27 5.47 9.08 14.61 4.85 7.26 9.24
900nm / 50◦ 35.11 51.64 51.59 4.23 22.87 30.79 3.77 19.89 27.33 3.29 14.91 17.75

Mean 34.80 38.53 43.65 8.71 14.28 22.81 8.42 12.86 21.07 6.36 8.97 12.16
±Std ±5.95 ±12.81 ±10.79 ±5.95 ±6.58 ±7.93 ±5.12 ±6.92 ±8.47 ±3.32 ±4.31 ±5.00
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D.2.2 DEVICE REPRESENTATIONS

We carried out experiments on three types of representation, each with simple motivation. Model trained on
refractive index matrix showed best result. Three representations are as follows: (a) Binary matrix. Simply
filled with -1, 1 to distinguish a material and the other, only the pattern of grating area varies across the data.
This representation requires no knowledge of physics, such as refractive index. Assuming the model learns
underlying physics of the electromagnetism, physicals features such as refractive index is implicitly distilled in
the model. (b) Categorical matrix. More general representation than the binary matrix, where a device consists
of three materials. This requires larger space complexity since, each element need to be one-hot encoded. (c)
Refractive index matrix. This representation is more intuitive in optics perspective since it directly models the
device with important optical properties. The elements are set with meent’s refractive index table, and the
missing conditions are interpolated. The kind of material and wavelength determines the refractive index.

Figure 10: Three types of representations.

Table 10: Mean test L2 error across representations. Only FNO-H1, which showed best result, is
tested against different representations. Averaged along all nine conditions.

FNO-H1

Binary Categorical Refractive index

Mean L2↓ 6.36 4.27 4.17
±Std ±3.32 ±1.87 ±1.79

Based on the experimental results, we concluded that, although the air and glass areas of the device remain
constant across all data, it is crucial to encode this information along with the grating area. This is because it is
important to signal to the model that the interactions between the grating and air, as well as the grating and glass,
are distinct and intricately intertwined.
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E METASURFACE DESIGN

E.1 TRAINING RL AGENT

Budget refers to the total episode steps consumed for training an agent.

We limit the budget to 50,000 steps, which is 75% less than the budget used in (Park et al., 2024).

Table 11: Fixed configurations for all algorithms

Parameter Value

Budget 50,000 steps
Initial structure g0 = [1, 1, . . . , 1]
Episode length T = 512
Replay buffer size 25,000 (adjusted proportionally to budget)
Asynchronous environments 8
Number of cells k = 256
Wavelength λ = 1100 nm
Desired deflection angle θ = 70◦

Fourier truncation order 40

Dataset Please refer to out Github repository for RL environment utilizing meent.

DQN We mostly follow the previous work (Park et al., 2024). The structure gt is encoded with shallow
UNet, and the reward rt = ηt − ηt−1 is received. For fair comparison with DreamerV3 L (Hafner et al., 2023),
following details were changed. Much larger number of parameters (70,711,873) was used, and physics-informed
weight initialization was replaced by Pytorch’s default initialization (Ansel et al., 2024). Additionally, 1000
steps were used for warmup to fill empty replay buffer.

DreamerV3 DreamerV3 was trained with 99,789,440 parameters. Most of the hyperparameters from original
paper (Hafner et al., 2023) were reused, excluding: 1,024 steps were used for warmup, replay ratio was increased
for sample efficiency, batch size and sequence length was adjusted due to our task’s relatively shorter episode
length.

Table 12: DreamerV3 hyperparameters

Name Value

Model size L
Replay ratio 2
Batch size 8
Sequence length 32

As mentioned in the main text, DreamerV3 agent observes additional feature, the electric field vt. The structure
gt and electric field vt are encoded by MLP and CNN respectively, and concatenated to form a latent state. With
the input action and latent state, the dynamics model predicts next state, reward and done condition. Simply put,
the dynamics model functions as the environment.

Emprically, DreamerV3 failed the metasurface optimization with the reward of efficiency change rt = ηt−ηt−1.
From the experimental observation, we hypothesized that if the model truly understands the underlying physics,
the reward predictor should directly predict efficiency rt = ηt, not the change of efficiency. This hypothesis was
inspired by the fact that efficiency can be derived from electric field as mentioned in D.2. With this hypothesized
reward engineering, DreamerV3 agent successfully learnt to optimize the metasurface structure.

Computational resource For servers in Table 5, DreamerV3 was trained for 10.88 hours on Softmax server
with single GPU. DQN was trained for 1.6 hours on Alpha server. Both algorithm used its server’s single GPU
and consumed most of the GPU memory.

Despite the big difference in training time, when the device is expanded to high dimensionality, the simulation
time can occupy the biggest portion of training time (Augenstein et al., 2023). The main point of our example
here is to show the dynamics model’s potential as surrogate solver in decision process, and we leave high
dimensional problem as a future work.
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Parallelization Example benchmark on the axis of number of workers. The code for adapting RLlib wil
be provided on our Github repository. Figure 11 shows that the calculation time sub-linearly decreases as the
number of workers increases.

Figure 11: Parallelization of meent with Ray/RLlib.

Remark The experimental code was adapted from SheepRL (EclecticSheep et al., 2023) for DreamerV3.
We utilized the previous version of DreamerV3, prior to the updated release on April 17, 2024. Details of the
training procedure and architecture are beyond the scope of this paper. For comprehensive information, please
refer to (Hafner et al., 2023).
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E.2 HIGH IMPACT CELL

We spotted the accurate prediction of dynamics model for scarcely happening transition. Introduced in (Seo
et al., 2021), a high impact cell refers to a cell that incurs abrupt change in some FoMs when flipped, which
is very small change in the material distribution. To artificially create this case, a fully trained agent is run an
episode and produces a trajectory. At the step of the trajectory when the efficiency reached about 75%, a high
impact cell is manually found by flipping every cell of the structure at the step. With the found index of high
impact cell, the action is fed into dynamics model, to predict next electric field.

As shown in Figure 12, dynamics model accurately captures the transition whereas FNO-H1 model, trained
under same physical condition in Table 9, entirely fails to predict this phenomena. FNO-H1 might perform better
if trained with similar distributions of data, but it is very difficult to draw similar patterns from extremely large
design space size, 2256/256, where the denominator 256 is for the periodicity.

Figure 12: High impact cell phenomena. Flipping a single 254th cell from silicon to air (red arrow)
results in completely different electric field and large decrease in deflection efficiency η from about
75% to 17%. Our world model is able to capture the transition. Field intensity is clipped from 0.4 to
0.6 for clearer visualization. All of images are real part of the field.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

F OCD DEMONSTRATION

To simulate a real-world scenario where we have the real devices and their spectra, we first determine values for
ground truth of the design parameters denoted as P, and generate spectra S with simulation. These values are
typically provided from domain experts. Our chosen values are in Table 13.

Table 13: Design parameter information

Parameter Variable name Mean STD Ground Truth

P1 l1_o1_length_x 100 3 101.5
P2 l1_o1_length_y 80 3 81.5
P3 l1_o2_length_x 100 3 98.5
P4 l1_o2_length_y 80 3 81.5
P5 l2_o1_length_x 30 2 31
P6 l2_o2_length_x 50 1 49.5
P7 l1_thickness 200 10 205
P8 l2_thickness 300 10 305

Figure 13: Stack in experiment.

Figure 13 depicts the stack utilized in the demonstration. Two layers are stacked on the silicon substrate, each
containing objects within. Light is illuminated from the top, and the reflected light is acquired and processed
into spectra.

To address this inverse problem of finding design parameters from spectra, initial values for optimization need
to be determined. These conditions are also provided by domain experts. In this demonstration, these values
are drawn from a normal distribution without correlation. The mean and standard deviation (STD) are listed in
Table 13.

The hyperparameters utilized for the optimization demonstration are presented in Table 14. Default values from
PyTorch are used for conditions not explicitly mentioned. The learning rate was determined through a concise
parameter-sweep test, which assessed three different values of the learning rate for each optimizer, as presented
in Figure 14.

Table 14: Design parameter information

Optimizer Learning Rate Other conditions

Momentum 1E2 momentum: 0.9
Adagrad 1E0

RMSProp 1E-1
Adam 1E-1

RAdam 1E0
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Figure 14: Hyperparameter sweep.
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G BACKGROUND THEORY

RCWA is the sequence of the following processes: solving the Maxwell’s equations, finding the eigenmodes of a
layer and connecting these layers including the superstrate and substrate to calculate the diffraction efficiencies.
Precisely, the electromagnetic field and permittivity geometry are transformed from the real space to the
Fourier space (also called the reciprocal space or k-space) by Fourier analysis. Maxwell’s equations are then
solved per layer through convolution operation, and a general solution of the field in each direction can be
obtained. This general solution can be represented in terms of eigenmodes (eigenvectors) and eigenvalues
with eigendecomposition, and used to calculate diffraction efficiencies by applying boundary conditions and
connecting to adjacent layers.

This chapter provides a comprehensive explanation of the theories, formulations and implementations of meent
in the following sections:

1. Structure design: the device geometry is defined and modeled within meent framework.

2. Fourier analysis of geometry: the device geometry is transformed into the Fourier space, allowing the
decomposition of the structure into its corresponding spatial frequency components.

3. Eigenmodes identification: RCWA identifies the eigenmodes that present within each layer of the
periodic structure. These eigenmodes represent the possible electromagnetic field solutions that can
exist within the system.

4. Connecting layers: Rayleigh coefficients and diffraction efficiencies are determined using the trans-
fer matrix method by connecting the layers. This step enables the determination of the overall
electromagnetic response of the entire system.

5. Enhanced transmittance matrix method: the implementation technique that avoids the inversion of
some matrices which are possibly ill-conditioned.

6. Topological derivative vs Shape derivative: two types of derivatives that meent supports are explained.

G.1 STRUCTURE DESIGN

(a) raster modeling (b) vector modeling

Figure 15: Two types of geometry modeling: raster and vector. The left of (a) and (b) show how
the geometry is formed by each method and the right figures are the representative applications -
metasurface design and OCD.

meent supports two distinct types of geometry modeling: the raster modeling and the vector modeling. In
the raster modeling, the device geometry is gridded and filled with the refractive index of the corresponding
material as in Figure 15a. This approach is advantageous for solving optimization problems related to freeform
metasurfaces. The vector modeling (shown in Figure 15b), on the other hand, represents the geometry as an
union of primitive shapes and each primitive shape is defined by edges and vertices like vector-type image.
Consequently, it is memory-efficient and has less parameters to optimize by not keeping the whole array
as the raster-type does. This feature is especially valuable in OCD metrology where semiconductor device
comprises highly complex structures. raster-type methods may become impractical in such scenarios due to the
limitations of grid-based representations. One of the key advantages provided by vector modeling is that the
minimum feature size is not constrained by the grid size. This flexibility allows for more accurate and detailed
representation of complex structures, making vector modeling essential for accurate simulation.

G.2 FOURIER ANALYSIS OF GEOMETRY

In RCWA, the device geometry needs to be mapped to the Fourier space using Fourier analysis. To achieve this,
the device is sliced into multi-layers so that each layer has Z-invariant (layer stacking direction) permittivity
distribution. In other words, the permittivity can be considered as a piecewise-constant function that varies in X
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and Y but not Z direction in each layer. Then the geometry in real space can be expressed as a weighted sum of
Fourier basis:

ε(x, y) =

∞∑
m=−∞

∞∑
n=−∞

cn,m · exp
[
j · 2π

(
x

Λx
m+

y

Λy
n

)]
, (8)

where Λx,Λy are the period of the unit cell and cn,m is the Fourier coefficients (mth in X and nth in Y).
However, due to the limitation of the digital computations, this has to be approximated with truncation:

ε(x, y) ≃
M∑

m=−M

N∑
n=−N

cn,m · exp
[
j · 2π

(
x

Λx
m+

y

Λy
n

)]
, (9)

where M,N are the Fourier Truncation Order (FTO, the number of harmonics in use) in the X and Y direction,
and these can be considered as hyperparamters that affects the simulation accuracy.

Here, cn,m is the permittivity distribution in the Fourier space which is our interest and can be found by one
of these two methods: Discrete Fourier Series (DFS) or Continuous Fourier Series (CFS). To be clear, CFS is
Fourier series on piecewise-constant function (permittivity distribution in our case). This name was given to
emphasize the characteristics of each type by using opposing words. The output array of DFS and CFS have the
same shape and can be substituted for each other.

In DFS, the function ε(x, y) to be transformed is sampled at a finite number of points, and this means it’s given
in matrix form with rows and columns, εr,c. The coefficients of DFS are then given by this equation:

cn,m =
1

PxPy

Px−1∑
c=0

Py−1∑
r=0

εr,c · exp
[
−j · 2π

(
m

Px
c+

n

Py
r

)]
, (10)

where Px, Py are the sampling frequency (the size of the array), εr,c is the (r, c)th element of the permittivity
array.

There is an essential but easily overlooked fact: the sampling frequency (Px, Py) is very important in DFS
(Smith, 1999; Antoniou, 2005; Kreyszig et al., 2011). If this is not enough, an aliasing occurs: DFS cannot
correctly capture the original signal (you can easily see the wheels of a running car in movies rotating in the
opposite direction; this is also an aliasing and called the wagon-wheel effect). In RCWA, this may occur during
the process of sampling the permittivity distribution. To resolve this, meent provides a scaling function by
default - that is simply to increase the size of the permittivity array by repeatedly replicating the elements while
keeping the original shape of the pattern. This option improves the representation of the geometry in the Fourier
space and results in more accurate RCWA simulations.

CFS utilizes the entire function to find the coefficients while DFS uses only some of them. This means that CFS
prevents potential information loss coming from the intrinsic nature of DFS, thereby enables more accurate
simulation. The Fourier coefficients can be expressed as follow:

cn,m =
1

ΛxΛy

∫ x0+Λx

x0

∫ y0+Λy

y0

ε(x, y) · exp
[
−j · 2π

(
m

Λx
x+

n

Λy
y

)]
dydx. (11)

The information that CFS needs are the points of discontinuity and the permittivity value in each area sectioned
by those points, whereas DFS needs the whole permittivity array as in Figure 15.

DFS and CFS have its own advantages and one can be chosen according to the purpose of the simulation.
Basically, DFS is proper for Raster modeling since its operations are mainly on the pixels (array) and the input
of the Raster modeling is the array. This is naturally connected to the pixel-wise operation (cell flipping) in
metasurface freeform design. CFS is suitable for Vector modeling because it deals with the graph (discontinuous
points and length) of the objects and Vector modeling takes that graph as an input. Hence it enables direct and
precise optimization of the design parameters (such as the width of a rectangle) without grid that severely limits
the resolution. We will address this in section G.6.

G.3 EIGENMODES IDENTIFICATION

Once the permittivity distribution is mapped to the Fourier space, the next step is to apply Maxwell’s equations
to identify the eigenmodes of each layer. In this section, we extend the mathematical formulation of the 1D
conical incidence case described in (Moharam et al., 1995a) to the 2D grating case as illustrated in Figure 16. To
ensure the consistency and clarity, we adopt the same notations and the sign convention of (+jwt). We consider
the normalized excitation wave at the superstrate to take the following form:

Einc = u · e−jk0nI(sin θ·cosϕ·x+sin θ·sinϕ·y+cos θ·z), (12)
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Figure 16: Geometry for the stack. Two-dimensional grating layers and incident ray.

where u is the normalized amplitudes of the wave in each direction:

u = (cosψ · cos θ · cosϕ+ sinψ · sinϕ)x̂+ (cosψ · cos θ · sinϕ+ sinψ · cosϕ)ŷ + (cosψ · sin θ)ẑ,
(13)

and k0 = 2π/λ0 with λ0 the wavelength of the light in free space, nI is the refractive index of the superstrate, θ
is the angle of incidence, ϕ is the rotation (azimuth) angle and ψ is the angle between the electric field vector
and the plane of incidence.

The electric fields in the superstrate and substrate (we will designate these layers by I and II as in (Moharam
et al., 1995a)) can be expressed as a sum of incident, reflected and transmitted waves as the Rayleigh expansion
(William, 1907; Petit, 1980; Huber et al., 2009):

EI = Einc +

M∑
m=−M

N∑
n=−N

Rn,me
−j(kx,mx+ky,ny−kI,z,(n,m)z), (14)

EII =

M∑
m=−M

N∑
n=−N

Tn,me
−j{kx,mx+ky,ny+kII,z,(n,m)(z−d)}, (15)

where M and N are the Fourier Truncation Order (FTO) which is related to the number of harmonics in use,
and the in-plane components of the wavevector (kx,m and ky,n) are determined by the Bloch’s theorem (this has
many names and one of them is Floquet condition) (Gómez García & Fernández-Álvarez, 2015; Joannopoulos &
Steven G. Johnson, 2008),

kx,m = k0
(
nI sin θ cosϕ−m

λ0

Λx

)
, (16)

ky,n = k0
(
nI sin θ sinϕ− n

λ0

Λy

)
, (17)
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where Λx and Λy are the period of the unit cell, and the out-of-plane wavevector is determined from the
dispersion relation:

kℓ,z,(n,m) =

{
+ [(k0nℓ)

2 − kx,m
2 − ky,n

2]1/2 , if (kx,m
2 + ky,n

2) < (k0nℓ)
2

−j[kx,m2 + ky,n
2 − (k0nℓ)

2]1/2 , if (kx,m
2 + ky,n

2) > (k0nℓ)
2 , ℓ = I, II. (18)

Here, kℓ,z,(n,m) can be categorized into propagation mode and evanescent mode depending on whether it’s
real or imaginary. Rn,m and Tn,m are the Rayleigh coefficients (also called the reflection and transmission
coefficients): Rn,m is the normalized (3-dimensional) vector of electric field amplitude which is the (mth in X
and nth in Y) mode of reflected waves in the superstrate and Tn,m is the normalized (3-dimensional) vector of
electric field amplitude which is the (mth in X and nth in Y) mode of transmitted waves in the substrate.

Inside the grating layer, the electromagnetic field can be expressed as a superposition of plane waves by the
Bloch’s theorem:

Eg(x, y, z) =

M∑
m=−M

N∑
n=−N

Sg,(n,m) · e−j(kx,mx+ky,ny+kg,zz), (19)

Hg(x, y, z) =
M∑

m=−M

N∑
n=−N

Ug,(n,m) · e−j(kx,mx+ky,ny+kg,zz), (20)

where kg,z is the wavevector in Z-direction (this is unique per layer hence the notation g was kept to distinguish)
and Sg,(n,m) and Ug,(n,m) are the vectors of amplitudes in each direction at (m,n)th order:

Sg,(n,m) = Sg,(n,m),x x̂+Sg,(n,m),y ŷ +Sg,z ẑ, (21)
Ug,(n,m) = Ug,(n,m),x x̂+ Ug,(n,m),y ŷ + Ug,z ẑ. (22)

It is also possible to detach wavevector term on z from exponent and combine with Sg,(n,m) and Ug,(n,m) in
Equations 19 and 20 to make Sg,(n,m)(z) and Ug,(n,m)(z) which are dependent on z as shown below:

Sg,(n,m)(z) = Sg,(n,m) · e−jkg,zz, (23)

Ug,(n,m)(z) = Ug,(n,m) · e−jkg,zz, (24)

then Equations 19 and 20 become

Eg(x, y, z) =

M∑
m=−M

N∑
n=−N

Sg,(n,m)(z) · e−j(kx,mx+ky,ny), (25)

Hg(x, y, z) =

M∑
m=−M

N∑
n=−N

Ug,(n,m)(z) · e−j(kx,mx+ky,ny). (26)

Equations 19 and 20 are used in (Liu & Fan, 2012; Yoon & Rho, 2021; Kim & Lee, 2023) and Equations 25
and 26 in (Moharam et al., 1995a; Rumpf, 2006). Whichever is used, the result is the same: we will show the
development using (Sg,(n,m), Ug,(n,m)) with the eigendecomposition and then come back to (Sg,(n,m)(z) and
Ug,(n,m)(z)) with the partial differential equations.

The behavior of the electromagnetic fields can be described by the formulae, called the Maxwell’s equations.
Among them, we will use the third and fourth equations,

∇×E = −jωµ0H, (27)
∇×H = jωε0εrE, (28)

to find the electric and magnetic field inside the grating layer - Eg and Hg . Since RCWA is a technique
that solves Maxwell’s equations in the Fourier space, curl operator in real space becomes multiplication and
multiplication in real space becomes the convolution operator. For this convolution operation, the full set of the
modes of the fields and the geometry are required so we introduce a vector notation in the subscript to denote it’s
a vector with all the harmonics in use, i.e.,

F g,r⃗ =
[
Fg,(−N,−M),r · · · Fg,(−N,M),r Fg,(−N+1,−M),r · · · Fg,(−N+1,M),r · · · Fg,(N,M),r

]T
,
(29)

where F ∈ {S,U,S,U} and r ∈ {x, y, z}. Some variables will be scaled by some factors:

H̃g = −j
√
ε0/µ0Hg, k̃x = kx/k0, k̃y = ky/k0, k̃g,z = kg,z/k0, z̃ = k0z. (30)
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Substituting Equations 19 and 20 (Eg and H̃g with Sg and Ug) into Equations 27 and 28 (Maxwell’s equations)
and eliminating Z-directional components (Eg,z and H̃g,z) derive the matrix form of the Maxwell’s equations
composed of in-plane components (x̂, ŷ) in the Fourier space:

(−jk̃g,z)

[
Sg,x⃗ · e−jk̃g,z z̃

Sg,y⃗ · e−jk̃g,z z̃

]
= Ωg,L

[
Ug,x⃗ · e−jk̃g,z z̃

Ug,y⃗ · e−jk̃g,z z̃

]
(31)

(−jk̃g,z)

[
Ug,x⃗ · e−jk̃g,z z̃

Ug,y⃗ · e−jk̃g,z z̃

]
= Ωg,R

[
Sg,x⃗ · e−jk̃g,z z̃

Sg,y⃗ · e−jk̃g,z z̃

]
(32)

(−jk̃g,z)2
[
Sg,x⃗ · e−jk̃g,z z̃

Sg,y⃗ · e−jk̃g,z z̃

]
= Ω2

g,LR

[
Sg,x⃗ · e−jk̃g,z z̃

Sg,y⃗ · e−jk̃g,z z̃

]
(33)

where

Ωg,L =

[
(−K̃xJεr,gK−1K̃y) (K̃xJεr,gK−1K̃x − I)

(I− K̃yJεr,gK−1K̃y) (K̃yJεr,gK−1K̃x)

]
, (34)

Ωg,R =

[
(−K̃xK̃y) (K̃2

x − Jεr,gK)
(Jε−1

r,gK−1 − K̃2
y) (K̃yK̃x)

]
, (35)

Ω2
g,LR =

[
K̃2

y + (K̃xJεr,gK−1K̃x − I)Jε−1
r,gK−1 K̃x(Jεr,gK−1K̃yJεr,gK − K̃y)

K̃y(Jεr,gK−1K̃xJε−1
r,gK−1 − K̃x) K̃2

x + (K̃yJεr,gK−1K̃y − I)Jεr,gK

]
, (36)

and

K̃r =


k̃r,(−N,−M) 0 · · · 0

0 k̃r,(−N,−M+1) · · · 0
...

...
. . .

...
0 0 · · · k̃r,(N,M)

 , r ∈ {x, y}, (37)

and J K is the convolution (a.k.a Toeplitz) matrix: Jεr,gK and Jε−1
r,gK−1 are convolution matrices composed of

Fourier coefficients of permittivity and one-over-permittivity (by the inverse rule presented in (Li, 1996) and (Li,
2014)).

Equation 33 is a typical form of the eigendecomposition of a matrix. The vector [Sg,x⃗ · e−jk̃g,z z̃ Sg,y⃗ ·
e−jk̃g,z z̃]T is an eigenvector of Ω2

g,LR and jk̃g,z is the positive square root of the eigenvalues. This intuitively
shows how the eigenvalues are connected to the Z-directional wavevectors.

It is also possible to use Sg,x⃗(z̃) and Sg,y⃗(z̃) instead of Sg,x⃗ and Ug,x⃗ because they satisfy the following
relations:

∂2

∂(z̃)2

[
Sg,x⃗(z̃)
Sg,y⃗(z̃)

]
=

∂2

∂(z̃)2

[
Sg,x⃗ · e−jk̃g,z z̃

Sg,y⃗ · e−jk̃g,z z̃

]
= (−jk̃g,z)2

[
Sg,x⃗ · e−jk̃g,z z̃

Sg,y⃗ · e−jk̃g,z z̃

]
. (38)

Hence it is just a matter of choice and we will use PDE form (Sg and Ug) for the seamless connection to the 1D
conical case in the previous work (Moharam et al., 1995a). Then Equations 31, 32 and 33 become

∂

∂(z̃)

[
Sg,x⃗(z̃)
Sg,y⃗(z̃)

]
= Ωg,L

[
Ug,x⃗(z̃)
Ug,y⃗(z̃)

]
, (39)

∂

∂(z̃)

[
Ug,x⃗(z̃)
Ug,y⃗(z̃)

]
= Ωg,R

[
Sg,x⃗(z̃)
Sg,y⃗(z̃)

]
, (40)

∂2

∂(z̃)2

[
Sg,x⃗(z̃)
Sg,y⃗(z̃)

]
= Ω2

g,LR

[
Sg,x⃗(z̃)
Sg,y⃗(z̃)

]
, (41)
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where Equation (41) is the second order matrix differential equation which has the general solution of the
following form[

Sg,x⃗(z̃)
Sg,y⃗(z̃)

]
= wg,1(c

+
g,1e

−qg,1z̃ + c−g,1e
+qg,1z̃) + · · ·+wg,ξ(c

+
g,ξe

−qg,ξ z̃ + c−g,ξe
+qg,ξ z̃) (42)

=

ξ∑
i=1

wg,i(c
+
g,ie

−qg,iz̃ + c−g,ie
+qg,iz̃), (43)

where ξ = (2M + 1)(2N + 1), the total number of harmonics, and wg is the eigenvector, qg is the positive
square root of the corresponding eigenvalue (jk̃g,z) and c±g are the coefficients (amplitudes) of the mode in each
propagating direction (+Z and -Z direction). This can be written in matrix form[

Sg,x⃗(z̃)
Sg,y⃗(z̃)

]
= WgQ

−
g c

+
g +WgQ

+
g c

−
g (44)

= Wg

[
Q−

g Q+
g

] [c+g
c−g

]
, (45)

=

[
Wg,11 Wg,12

Wg,21 Wg,22

] [
Q−

g,1 0 Q+
g,1 0

0 Q−
g,2 0 Q+

g,2

]
c+g,1
c+g,2
c−g,1
c−g,2

 , (46)

where Q±
g are the diagonal matrices with the exponential of eigenvalues

Q±
g =

e
±qg,1 0

. . .
0 e±qg,ξ

 , (47)

and Wg is the matrix that has the eigenvectors in columns and c±g are the vectors of the coefficients.

Now we can find the general solution of the magnetic field that shares same Qg and c±g with the electric field in
corresponding mode. It can be written in a similar form of Equation 44 as[

Ug,x⃗(z̃)
Ug,y⃗(z̃)

]
= −VgQ

−
g c

+
g +VgQ

+
g c

−
g . (48)

The negative sign in the first term was given to adjust the direction of the curl operation, E × H , to be in
accordance with the wave propagation direction, k̃g,z . By substituting Equations 44 and 48 into Equation 40, we
can get

Vg = Ωg,RWgq
−1
g , (49)

where qg is the diagonal matrix with the eigenvalues. This can be written in matrix form

Vg =

[
Vg,11 Vg,12

Vg,21 Vg,22

]
=

[
−K̃xK̃y K̃2

x − Jεr,gK
Jε−1

r,gK−1 − K̃2
y K̃yK̃x

] [
Wg,11 Wg,12

Wg,21 Wg,22

] [
qg,1 0
0 qg,2

]−1

. (50)

G.4 CONNECTING LAYERS

Once the eigenmodes of each grating layer are identified, the transfer matrix method (TMM) can be utilized
to determine the Rayleigh coefficients (Rs,Rp,Ts,Tp) and the diffraction efficiencies. TMM effectively
represents this process as a matrix multiplication, where the transfer matrix is constructed by considering the
interaction between the eigenmodes of neighboring layers. This matrix accounts for the energy transfer and
phase shift between the eigenmodes, and it is used to propagate the electromagnetic fields through the entire
periodic structure.

From the boundary conditions, the systems of equations consisting of the in-plane (tangential) field components
(Es,Ep,Hs,Hp) can be described at each layer interface. We will first consider the case of a single grating
layer cladded with the superstrate and substrate, then expand to multilayer structure. At the input boundary
(z = 0): sinψ δ00

cosψ cos θ δ00
j sinψ nI cos θ δ00
−j cosψ nI δ00

+

 I 0
0 −jZI

−jYI 0
0 I

[
Rs

Rp

]
=

Wg,ss Wg,sp Wg,ssXg,1 Wg,spXg,2

Wg,ps Wg,pp Wg,psXg,1 Wg,ppXg,2

Vg,ss Vg,sp −Vg,ssXg,1 −Vg,spXg,2

Vg,ps Vg,pp −Vg,psXg,1 −Vg,ppXg,2



c+g,1
c+g,2
c−g,1
c−g,2

 ,
(51)
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and at the output boundary (z = d):Wg,ssXg,1 Wg,spXg,2 Wg,ss Wg,sp

Wg,psXg,1 Wg,ppXg,2 Wg,ps Wg,pp

Vg,ssXg,1 Vg,spXg,2 −Vg,ss −Vg,sp

Vg,psXg,1 Vg,ppXg,2 −Vg,ps −Vg,pp



c+g,1
c+g,2
c−g,1
c−g,2

 =

 I 0
0 jZII
jYII 0
0 I

[
Ts

Tp

]
, (52)

where δ00 is the Kronecker delta function that has 1 at the (0, 0)th order and 0 elsewhere.

Here, the variables used above are defined: Xg,1,Xg,2 are the diagonal matrices

Xg,1 =

e
−k0qg,1,1dg 0

. . .
0 e−k0qg,1,ξdg

 , Xg,2 =

e
−k0qg,2,1dg 0

. . .
0 e−k0qg,2,ξdg

 , (53)

where dg is the thickness of the grating layer, and YI and ZI are

YI =

k̃I,z,(−N,−M) 0
. . .

0 k̃I,z,(N,M)

 , ZI =
1

(nI)2

k̃I,z,(−N,−M) 0
. . .

0 k̃I,z,(N,M)

 , (54)

and YII and ZII are

YII =

k̃II,z,(−N,−M) 0
. . .

0 k̃II,z,(N,M)

 , ZII =
1

(nII)2

k̃II,z,(−N,−M) 0
. . .

0 k̃II,z,(N,M)

 . (55)

Here, new set of Wg and Vg on SP basis {ŝ, p̂} are introduced which are recombined from the set of Wg and
Vg from XY basis {x̂, ŷ}:

Wg,ss = FcWg,21 − FsWg,11, Wg,sp = FcWg,22 − FsWg,12, (56)
Wg,ps = FcWg,11 + FsWg,21, Wg,pp = FcWg,12 + FsWg,22, (57)
Vg,ss = FcVg,11 + FsVg,21, Vg,sp = FcVg,12 + FsVg,22, (58)
Vg,ps = FcVg,21 − FsVg,11, Vg,pp = FcVg,22 − FsVg,12, (59)

with Fc and Fs being diagonal matrices with the diagonal elements cosφ(n,m) and sinφ(n,m), respectively,
where

φ(n,m) = tan−1(ky,n/kx,m). (60)

Equations 51 and 52 can be reduced to one set of equations by eliminating c±1,2: sinψ δ00
cosψ cos θ δ00
j sinψ nI cos θ δ00
−j cosψ nI δ00

+

 I 0
0 −jZI

−jYI 0
0 I

[
Rs

Rp

]
=

[
W WX
V −VX

] [
WX W
VX −V

]−1 [
F
G

] [
Ts

Tp

]
, (61)

where

W =

[
Wg,ss Wg,sp

Wg,ps Wg,pp

]
, V =

[
Vg,ss Vg,sp

Vg,ps Vg,pp

]
, X =

[
Xg,1 0
0 Xg,2

]
, F =

[
I 0
0 jZII

]
, G =

[
jYII 0
0 I

]
.

(62)

This equation for a single layer grating can be simply extended to a multi-layer system as the following: sinψ δ00
cosψ cos θ δ00
j sinψ nI cos θ δ00
−j cosψ nI δ00

+

 I 0
0 −jZI

−jYI 0
0 I

[
Rs

Rp

]
=

∏L
ℓ=1

[
Wℓ WℓXℓ

Vℓ −VℓXℓ

] [
WℓXℓ Wℓ

VℓXℓ −Vℓ

]−1 [
FL+1

GL+1

] [
Ts

Tp

]
,

(63)

where L is the number of layers and

FL+1 =

[
I 0
0 jZII

]
, GL+1 =

[
jYII 0
0 I

]
. (64)
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Since we have four matrix equations for four unknown coefficients (Rs,Rp,Ts,Tp), they can be derived and
used for calculating diffraction efficiencies (also called the reflectance and transmittance).

The diffraction efficiency is the ratio of the power flux in propagating direction between incidence and diffracted
wave of interest. It can be calculated by time-averaged Poynting vector (Liu & Fan, 2012; Hugonin & Lalanne,
2021; Rumpf, 2006):

P =
1

2
Re (E ×H∗), (65)

where ∗ is the complex conjugate. Now we can find the total power of the incident wave as a sum of the power
of TE wave and TM wave:

P inc = P inc
s + P inc

p

=
1

2
Re

[
(Es ×H∗

s ) + (Ep ×H∗
p )

]

=
1

2
Re

[
(sinψ · sinψ nI cos θ) + (cosψ cos θ · cosψ nI)

]

=
1

2
Re

[
(sin2 ψ nI cos θ) + (cos2 ψ nI cos θ)

]

=
1

2
Re

[
(nI cos θ)

]
.

(66)

The power in each reflected diffraction mode is

P r
n,m = P r

nm,s + P r
nm,p

=
1

2
Re

[
(Er

nm,s × (Hr
nm,s)

∗) + (Er
nm,p × (Hr

nm,p)
∗)

]

=
1

2
Re

[
Rnm,s ·

kI,z,(n,m)

k0
R∗

nm,s +
kI,z,(n,m)

k0n2I
Rnm,p ·R∗

nm,p

]

=
1

2
Re

[
Rnm,sR

∗
nm,s ·

kI,z,(n,m)

k0
+Rnm,pR

∗
nm,p ·

kI,z,(n,m)

k0n2I

]
,

(67)

and the power in each transmitted diffraction mode is

P t
n,m = P t

nm,s + P t
nm,p

=
1

2
Re

[
(Et

nm,s × (Ht
nm,s)

∗) + (Et
nm,p × (Ht

nm,p)
∗)

]

=
1

2
Re

[
Tnm,s ·

kII,z,(n,m)

k0
T ∗
nm,s +

kII,z,(n,m)

k0n2II
Tnm,p · T ∗

nm,p

]

=
1

2
Re

[
Tnm,sT

∗
nm,s ·

kII,z,(n,m)

k0
+ Tnm,pT

∗
nm,p ·

kII,z,(n,m)

k0n2II

]
.

(68)

Since the diffraction efficiency is the ratio between them (Pout/Pinc), we can get the efficiencies of reflected
and transmitted waves:

DEr,(n,m) = |Rs,(n,m)|2 Re

(
kI,z,(n,m)

k0nI cos θ

)
+ |Rp,(n,m)|2 Re

(
kI,z,(n,m)/nI

2

k0nI cos θ

)
, (69)

DEt,(n,m) = |Ts,(n,m)|2 Re

(
kII,z,(n,m)

k0nI cos θ

)
+ |Tp,(n,m)|2 Re

(
kII,z,(n,m)/nII

2

k0nI cos θ

)
. (70)

G.5 ENHANCED TRANSMITTANCE MATRIX METHOD

As addressed in (Moharam et al., 1995b; Li, 1993; Popov & Nevière, 2000), solving Equation 63 may suffer
from the numerical instability coming from the inversion of almost singular matrix when Xℓ has a very small and

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

possibly numerically zero value. meent adopted Enhanced Transmittance Matrix Method (ETM) (Moharam
et al., 1995b) to overcome this by avoiding the inversion of Xℓ.

The technique is sequentially applied from the last layer to the first layer. In Equation 63, the set of modes at the
bottom interface of the last layer (ℓ = L) is[

WL WLXL

VL −VLXL

] [
WLXL WL

VLXL −VL

]−1 [
FL+1

GL+1

] [
Ts

Tp

]
=

[
WL WLXL

VL −VLXL

] [
XL

−1 0
0 I

] [
WL WL

VL −VL

]−1 [
FL+1

GL+1

] [
Ts

Tp

]
.

(71)

The matrix to be inverted can be decomposed into two matrices by isolating XL, which is the potential source of
the numerical instability. The right-hand side can be shortened with new variables AL,BL:[

AL

BL

]
=

[
WL WL

VL −VL

]−1 [
FL+1

GL+1

]
, (72)

then the right-hand side of Equation 71 becomes[
WL WLXL

VL −VLXL

] [
XL

−1 0
0 I

] [
AL

BL

] [
Ts

Tp

]
. (73)

We can avoid the inversion of XL by introducing the substitution Ts = AL
−1XLTs,L and Tp =

AL
−1XLTp,L. Equation 73 then becomes[

WL WLXL

VL −VLXL

] [
XL

−1 0
0 I

] [
AL

BL

]
AL

−1
XL

[
Ts,L

Tp,L

]
=

[
WL WLXL

VL −VLXL

] [
XL

−1 0
0 I

] [
XL

BLA
−1
L XL

] [
Ts,L

Tp,L

]
=

[
WL WLXL

VL −VLXL

] [
I

BLA
−1
L XL

] [
Ts,L

Tp,L

]
=

[
WL(I+XLBLA

−1
L X)

VL(I−XLBLA
−1
L X)

] [
Ts,L

Tp,L

]
=

[
FL
GL

] [
Ts,L

Tp,L

]
.

(74)

These steps can be repeated until the iteration gets to the first layer (ℓ = 1), then the form becomes sinψ δ00
cosψ cos θ δ00

j sinψ nI cos θ δ00
−j cosψ nI δ00

+

 I 0
0 −jZI

−jYI 0
0 I

[
Rs

Rp

]
=

[
F1
G1

] [
Ts,1

Tp,1

]
, (75)

where

[
Ts

Tp

]
= A

−1
L XL · · ·A−1

ℓ Xℓ · · ·A−1
1 X1

[
Ts,1

Tp,1

]
.

G.6 TOPOLOGICAL DERIVATIVE VS SHAPE DERIVATIVE

AD enables the calculation of the gradient of the figure of merit (FoM) with respect to the design parameters
of the device. AD in meent can handle both modeling type - raster and vector - with two different forms:
topological derivative and shape derivative. If the raster modeling is utilized to obtain the geometry of the device,
the gradients with respect to the refractive index of every pixel can be obtained through AD. This type of AD is
known as the topological derivative, as the device design is updated pixel-wise and the topology is not conserved
(Figure 17a). On the contrary, a shape derivative is effective for vector modeling; the FoM derivative with respect
to input dimensions is obtained as depicted in Figure 17b. The shape derivative is expected to be useful for cases
where the device topology is known, but dimensions of specific structures, such as the radius of a cylinder in a
layer or width and length of a cuboid, are to be found by optimization.
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Figure 17: Topological and shape derivatives. A schematic diagram showing the difference between
the (a) topological derivative and (b) shape derivative. The topological derivative results in the FoM
derivative with respect to the permittivity changes of every cells in the grid and the shape derivative
provides the derivative with respect to the deformations of a shape.
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H PROGRAM SEQUENCE

In this section, we will provide a detailed explanation of the functions in meent4 and discuss the simulation
program sequence with examples.

H.1 INITIALIZATION

A simple way to use meent is using ‘call_mee()’ function which returns an instance of Python class that
includes all the functionalities of meent. Simulation conditions can be set by passing parameters as arguements
(args) or keyword arguements (kwargs) in this function. It is also possible to change conditions after calling
instance by directly assigning desired value to the property of the instance.

1 # method 1: thickness setting in instance call
2 mee = meent.call_mee(backend=backend, thickness=thickness, ...)
3

4 # method 2: direct assignment
5 mee = meent.call_mee(backend=backend, ...)
6 mee.thickness = thickness

Code 3: Methods to set simulation conditions

Here are the descriptions of the input parameters in meent class:

backend : integer
meent supports three backends: NumPy, JAX, and PyTorch.

• 0: NumPy (RCWA only; AD is not supported).
• 1: JAX.
• 2: PyTorch.

grating_type : integer
This parameter defines the simulation space.

• 0: 1D grating without conical incidence (ϕ = 0).
• 1: 1D grating with conical incidence.
• 2: 2D grating.

pol : integer or float
This parameter controls the linear polarization state of the incident wave by this definition: ψ = π/2 ∗
(1− pol). It can take values between 0 and 1. 0 represents fully transverse electric (TE) polarization,
and 1 represents fully transverse magnetic (TM) polarization. Support for other polarization states such
as the circular polarization state which involves the phase difference between TE and TM polarization
will be added in the future updates.

n_I : float
The refractive index of the superstrate.

n_II : float
The refractive index of the substrate.

theta : float
The angle of the incidence in radians.

phi : float
The angle of rotation (or azimuth angle) in radians.

wavelength : float
The wavelength of the incident light in vacuum. Future versions may support complex type wavelength.

fourier_order : integer or list of integers
Fourier truncation order (FTO). This represents the number of Fourier harmonics in use. If
fourier_order = N , this is for 1D grating and meent utilizes (2N + 1) harmonics spanning from
−N to N :−N,−(N − 1), ..., N . For 2D gratings, it takes a sequence [M,N ] as an input, where M
and N become FTO in X and Y directions, respectively. Note that 1D grating can also be simulated
in 2D grating system by setting N as 0.

4for version 0.9.x
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(a) n_split: (1, 1) (b) n_split (20, 20)

Figure 18: Rotated rectangles with approximation. Light blue is the ideal one and light red is
approximated one.

period : list of floats
The period of a unit cell. For 1D grating, it is a sequence with one element which is a period in
X-direction. For 2D gratings, it takes a sequence [period in X , period in Y ] as an input.

type_complex : integer
The datatype used in the simulation.

• 0: complex128 (64 bit).
• 1: complex64 (32 bit).

device : integer
The selection of the device for the calculations: currently CPU and GPU are supported. At the time of
writing this paper, the eigendecomposition, which is the most expensive step as O(M3N3) where
M and N are FTO, is available only on CPU. This means GPU may not as powerful as we expect as
in deep learning regime.

• 0: CPU.
• 1: GPU.

fft_type : integer
This variable selects the type of Fourier series implementation. 0 and 1 are options for raster modeling
and 2 is for vector modeling. 0 uses discrete Fourier series (DFS) while 1 and 2 use continuous Fourier
series (CFS). Note that the name ‘fft_type’ may change since it is not correct expression.

• 0: DFS for the raster modeling (pixel-based geometry). fft_type supports improve_dft option,
which is True by default, that can prevent aliasing by increasing sampling frequency, and drives
the result to approach to the result of CFS.

• 1: CFS for the raster modeling (pixel-based geometry). This doesn’t support backpropagation.
Use this option for debugging or in RCWA-only situation.

• 2: CFS for the vector modeling (object-based geometry).

thickness : list of floats
The sequence of the thickness of each layer from top to bottom.

ucell : array of {floats, complex numbers}, shape is (i, j, k)
The input for the raster modeling. It takes a 3D array in (Z,Y ,X) order, where Z represents the
direction of the layer stacking. In case of 1D grating, j is 1 (e.g., shape = (3,1,10) for a stack composed
of 3 layers that are 1D grating).

H.2 STRUCTURE DESIGN

meent provides two types of structure design methods: the vector modeling and the raster modeling.

H.2.1 VECTOR MODELING

Figure 18 shows rotated rectangles drawn on XY plane. meent decomposes the geometrical figures into the
collection of sub-rectangles which of each side lies on the direction of either x̂ or ŷ. Then CFS with the sinc
function is used to find the Fourier coefficients. The degree of approximation can be determined by ‘n_split’
option in Code 4.

To add primitives to the simulation space, users can utilize ‘rectangle()’ or ‘rectangle_rotation()’ functions which
allows the insertion of desired geometry. The ‘draw()’ function is then employed to create the final structure,
taking into account any potential overlaps between the geometries. Code 4 is the example creating a layer that
has rotated rectangle.
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1 thickness = [300.]
2 length_x = 100
3 length_y = 300
4 center = [300, 500]
5 n_index_1 = 3.48
6 n_index_2 = 1
7 base_n_index_of_layer = n_index_2
8 angle = 35 * torch.pi / 180
9 n_split = [5, 5] # degree of approximation

10

11 length_x = torch.tensor(length_x, dtype=torch.float64, requires_grad=
True)

12 length_y = torch.tensor(length_y, dtype=torch.float64, requires_grad=
True)

13 thickness = torch.tensor(thickness, requires_grad=True)
14 angle = torch.tensor(angle, requires_grad=True)
15

16 obj_list = mee.rectangle_rotate(*center, length_x, length_y, *n_split
, n_index_1, angle)

17 layer_info_list = [[base_n_index_of_layer, obj_list]]
18 mee.draw(layer_info_list)

Code 4: vector modeling

(a) Red rectangle comes first, blue
rectangle last

(b) Blue rectangle comes first, red
rectangle last

Figure 19: The overlap of 2 rectangles in vector modeling. The hierarchy is determined by the
index of the objects in the list.
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1 red_rect = mee.rectangle_rotate(*[400, 500], 400, 600, 20, 20, 3.5,
0)

2 blue_rect = mee.rectangle_rotate(*[600, 500], 100, 600, 40, 40, 10,
-20)

3

4 layer_info_list = [[2.4, red_rect + blue_rect]] # red bottom, blue
top

5 layer_info_list = [[2.4, blue_rect + red_rect]] # blue bottom, red
top

6

7 mee.draw(layer_info_list)
8 de_ri, de_ti = mee.conv_solve()

Code 5: overlap

(a) 1D grating (b) 2D grating

Figure 20: Raster-type structure examples. (a) 2 layers in 1D and (b) 1 layer in 2D grating.

Code 5 and Figure 19 show how meent can handle the overlap of the shapes. Figure 19a and 19b have the same
set of rectangles (red and blue) but they are placed in different order and this can be controlled by the function
‘layer_info_list’ in Code 5. It is the list that contains the base refractive index of the layer and the primitive
shapes to be placed on the layer. In case of Figure 19a, red rectangle comes first in the list and blue does for
Figure 19b.

H.2.2 RASTER MODELING

We have 2 example structures of raster modeling as shown in Figure 20 and Code 6. Figure 20a is a stack of 2
layers which has 1D grating. Note that 1D grating unit cell can be defined by setting the length of the second
axis to 1 as (a) in Code 6. Figure 20b is a stack of single 2D grating layer.

H.3 ELECTROMAGNETIC SIMULATION

Electromagnetic simulation (EM simulation) in meent can be divided into 3 main subcategories: convolution
matrix generation, Maxwell’s equations computation and field calculation. The method ‘conv_solve()’ does
both convolution matrix generation and Maxwell’s equations computation sequentially. ‘conv_solve_field()’
method does the same and additionally calculates the field distribution of the structure. Code 7 is the example
showing how to use those; ‘conv_solve()’ method returns the reflected and transmitted diffraction efficiencies
and ‘conv_solve_field()’ does both and field distribution.

H.3.1 CONVOLUTION MATRIX GENERATION

The functions for convolution matrix generation are located in ‘convolution_matrix.py’ file for each backend.
This part transforms the structure from the real space to the Fourier space and returns a convolution matrix (also
called Toeplitz matrix) of the Fourier coefficients to apply convolution operation with the E and H fields. Figure
21 shows the Fourier coefficients matrix and convolution matrix made from the coefficient matrix. Code 8 is the
definition of ‘conv_solve()’ method and shows how the convolution matrix generation is integrated inside. As
shown in the code, meent offers 3 different methods to get convolution matrix since each method has different
input type and implementation. This can be chosen by the argument ‘fft_type’: 0 is for raster modeling with
DFS, 1 for raster with CFS and 2 for vector with CFS.
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1 # (a): 1D grating with 2 layers
2 ucell = np.array(
3 [
4 [[1, 1, 1, 3.48, 3.48, 3.48, 3.48, 1, 1, 1]],
5 [[1, 3.48, 3.48, 1, 1, 1, 1, 3.48, 3.48, 1]],
6 ]) # array shape: (2, 1, 10)
7

8 # (b): 2D grating with 1 layers
9 ucell = np.array(

10 [[
11 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
12 [1, 1, 1, 3.48, 3.48, 3.48, 3.48, 1, 1, 1],
13 [1, 1, 1, 3.48, 3.48, 3.48, 3.48, 1, 1, 1],
14 [1, 1, 1, 3.48, 3.48, 3.48, 3.48, 1, 1, 1],
15 [1, 1, 1, 3.48, 3.48, 3.48, 3.48, 1, 1, 1],
16 [1, 1, 1, 3.48, 3.48, 3.48, 3.48, 1, 1, 1],
17 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
18 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
19 ]]) # array shape: (1, 8, 10)
20

21 mee = meent.call_mee(backend=backend, ucell=ucell)

Code 6: Raster modeling

1 mee = call_mee(backend, ...)
2

3 # generates convolution matrix and solves Maxwell’s equation.
4 de_ri, de_ti = mee.conv_solve()
5

6 # generates convolution matrix, solves Maxwell’s equation and
7 # reconstructs field distribution.
8 de_ri, de_ti, field_cell = mee.conv_solve_field()

Code 7: Method call for EM simulation

(a) Coefficients matrix (b) Convolution matrix

Figure 21: Material property in Fourier space. (a) Coefficients matrix of Fourier analysis and (b)
convolution matrix generated by re-arranging (circulant matrix) Fourier coefficients.
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1 def conv_solve(self, **kwargs):
2 [setattr(self, k, v) for k, v in kwargs.items()]
3 # needed for optimization
4

5 if self.fft_type == 0: # raster with DFS
6 E_conv_all, o_E_conv_all = to_conv_mat_raster_discrete(self.

ucell, self.fourier_order[0], self.fourier_order[1], device=self.
device, type_complex=self.type_complex, improve_dft=self.improve_dft)

7

8 elif self.fft_type == 1: # raster with CFS
9 E_conv_all, o_E_conv_all = to_conv_mat_raster_continuous(self

.ucell, self.fourier_order[0], self.fourier_order[1], device=self.
device, type_complex=self.type_complex)

10

11 elif self.fft_type == 2: # vector with CFS
12 E_conv_all, o_E_conv_all = to_conv_mat_vector(self.

ucell_info_list, self.fourier_order[0], self.fourier_order[1],
type_complex=self.type_complex)

13

14 else:
15 raise ValueError
16

17 de_ri, de_ti, layer_info_list, T1, kx_vector = self._solve(self.
wavelength, E_conv_all, o_E_conv_all)

18

19 self.layer_info_list = layer_info_list
20 self.T1 = T1
21 self.kx_vector = kx_vector
22

23 return de_ri, de_ti

Code 8: ‘conv_solve()’
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1 def solve(self, wavelength, e_conv_all, o_e_conv_all):
2 de_ri, de_ti, layer_info_list, T1, kx_vector = self._solve(

wavelength, e_conv_all, o_e_conv_all)
3

4 # internal info. for the field calculation
5 self.layer_info_list = layer_info_list
6 self.T1 = T1
7 self.kx_vector = kx_vector
8

9 return de_ri, de_ti

Code 9: ‘solve()’

1 field_cell = mee.calculate_field(res_x=100, res_y=100, res_z=100)

Code 10: ‘calculate_field()’

H.3.2 MAXWELL’S EQUATIONS COMPUTATION

After generating the convolution matrix, meent solves Maxwell’s equations and returns diffraction efficiencies
with the method ‘solve()’. As in the Code 9, it is a wrapper of ‘_solve()’ method that actually does the calculations
and returns the diffraction efficiencies with other information that is necessary for the field calculation.

Input parameters:

wavelength : float
The wavelength of the incident light in vacuum.

e_conv_all : array of {float or complex}
A stack of convolution matrices of the permittivity array; this is Jεr,gK in Chapter G. The order of the
axes is the same as of ucell (Z Y X).

o_e_conv_all : array of {float or complex}
A stack of convolution matrices of the one-over-permittivity array; this is Jε−1

r,gK in Chapter G. The
order of the axes is the same as of ucell (Z Y X).

The diffraction efficiencies are 1D array for 1D and 1D-conical grating and 2D for 2D grating.

H.3.3 FIELD CALCULATION

The ‘calculate_field()’ method in Code 10 calculates the field distribution inside the structure. Note that the
‘solve()’ method must be preceded. This function returns 4 dimensional array that the length of the last axis
varies depending on the grating type as shown in Code 11. 1D TE and TM has 3 elements (TE has Ey, Hx and
Hz in order and TM has Hy, Ex and Ez) while the others have 6 elements (Ex, Ey, Ez, Hx, Hy and Hz) as in
Figure 22. Input parameters:

res_x : integer
The field resolution in X direction (number of split which the period of x is divided by).

res_y : integer
The field resolution in Y direction (number of split which the period of y is divided by).

res_z : integer
The field resolution in Z direction (number of split in thickness of each layer).

field_algo : integer
The level of vectorization for the field calculation. Default is 2 which is fully vectorized for fast
calculation while 1 is half-vectorized and 0 is none. Option 0 and 1 are remained for debugging or
future development (such as parallelization).

• 0: Non-vectorized
• 1: Semi-vectorized: in X and Y direction
• 2: Vectorized: in X, Y and Z direction
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1 # 1D TE and TM case
2 field_cell = torch.zeros((res_z * len(layer_info_list), res_y, res_x,

3), dtype=type_complex)
3

4 # 1D conincal and 2D case
5 field_cell = torch.zeros((res_z * len(layer_info_list), res_y, res_x,

6), dtype=type_complex)

Code 11: the shape of returned array from ‘calculate_field()’

(a) Ex (b) Ey (c) Ez (d) Hx (e) Hy (f) Hz

Figure 22: Field distribution on XY plane from 2D grating structure. (a)-(c): absolute value of
the electric field in each direction, (d)-(f): absolute value of the magnetic field in each direction.
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I BENCHMARK

In this section, we will address the 1D metasurface problem covered in the previous work (Seo et al., 2021) with
meent so that we can benchmark and analyze its capability and functionality.

I.1 CASE APPLICATION

Figure 23: The image of 1D diffraction metagrating on a silicon dioxide substrate.

This metagrating deflector is composed of silicon pillars placed on a silica substrate. The device period is divided
into 64 cells, and each cell can be filled with either air or silicon. The Figure of Merit for this optimization is set
to the deflection efficiency of the +1st order transmitted wave when TM polarized wave is normally incident
from the silica substrate as in Figure 23.

I.2 FOURIER SERIES IMPLEMENTATIONS

When the sampling frequency of permittivity distribution is not enough, Fourier coefficients from DFS is aliased.
It can be resolved by increasing the sampling rate that is implemented in the way of duplicating the elements so
the array is extended to have identical distribution but larger array size. We will call this Enhanced DFS, and it’s
implemented in meent as a default option.

(a) Convergence test (b) Histogram of the difference compared to Reticolo

Figure 24: Evaluation of 4 different RCWA implementations: Reticolo, meent DFS, meent
CFS and meent Enhanced DFS. (a) shows diffraction efficiency at +1st order by FTO sweep of a
particular structure. DFS behaves differently while the other results seem similar. (b) is the histogram
of 600k simulation result (deflection efficiency) difference. Here Reticolo is the reference and other 3
implementations in meent are benchmarked.

Figure 24a illustrates the convergence tests of a particular structure with four different RCWA implementations.
Considering Reticolo as the reference, we can see CFS is well-matched but DFS shows different behavior. This
is due to the insufficient sampling rate of permittivity distribution, which can be resolved by Enhanced DFS.
Figure 24b is the histogram of the discrepancies from Reticolo result. About 600k structures were evaluated
with 4 implementations and the errors of 3 meent implementations were calculated based on Reticolo. CFS
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Table 15: Performance test condition

backend device bit alpha server beta server gamma server
NumPy CPU 64 (A1) (B1) (C1)
NumPy CPU 32 (A2) (B2) (C2)

JAX CPU 64 (A3) (B3) (C3)
JAX CPU 32 (A4) (B4) (C4)
JAX GPU 64 - (B5) (C5)
JAX GPU 32 - (B6) (C6)

PyTorch CPU 64 (A7) (B7) (C7)
PyTorch CPU 32 (A8) (B8) (C8)
PyTorch GPU 64 - (B9) (C9)
PyTorch GPU 32 - (B10) (C10)

Figure 25: Performance test: calculation time with respect to FTO. Top row is the result from
64bit and bottom is from 32bit. The first column is the result from the test server alpha and the rest is
beta and gamma in order.

shows the smallest errors and this is because Reticolo too uses CFS (CFS algorithms in meent are adopted
from Reticolo). Enhanced DFS decreases the error about three orders of magnitudes (e.g., the median of DFS is
4.3E-4 and this becomes 1.4E-7).

I.3 COMPUTING PERFORMANCE

In this section, computing options to speed up the calculation - backend, device (CPU and GPU) and architecture
(64bit and 32bit) - will be benchmarked. Table 5 is the hardware specification of the test server and Table 15 is
the index of each test condition.

The graphs in Figure 25 are calculation time vs FTO with all the data per machine and architecture. Before look
into the details, we will briefly mention some notice in this figure. (1) JAX can’t afford large FTO regardless of
device. We suspect that this is related to JIT compilation which takes much time and memory for the compilation
at the first run. (2) GPU with JAX and PyTorch can’t accept large FTO even though GPU memory is more
than needed for array upload. (3) if large amount of calculation is needed, Numpy or PyTorch on CPU is the
option. (4) no golden option exists: it is recommended to find the best option for the test environment by doing
benchmark tests.
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Figure 26: Performance test: calculation time by FTO sweep. The result is normalized by NumPy
case from the same options to compare the behavior of other backends. In these plots, black dashed
line is y = 1 and the results of NumPy cases lie on this line since they are normalized by themselves.

We will visit these computing options one by one. The option C9 at FTO 1600 will be excluded in further
analyses: this seems an optimization issue in PyTorch or CUDA.

I.3.1 BACKEND: NUMPY, JAX AND PYTORCH

NumPy, JAX and PyTorch as a backend are benchmarked. NumPy is installed via PyPI which is compiled with
OpenBLAS. There are many types of BLAS libraries and the most representative ones are OpenBLAS and MKL
(Math Kernel Library). As of now, PyPI provides NumPy with OpenBLAS while conda does one with MKL.
This makes small discrepancy in terms of speed and precision hence pay attention when doing consistency test
between machines. Figure 26 is the relative simulation time per server and architecture normalized by the time
of NumPy case in the same conditions to make comparison easy. In small FTO regime, all the options were
successfully operated and no champion exists. Hence it is strongly recommended to run benchmark test on your
hardware and pick the most efficient one. In case of X7 (A7, B7 and C7), Alpha and Gamma show the same
behavior - spike in 100 - while beta shows fluctuation around B1. One possible reason for this is the type of CPU.
The CPUs of Alpha and Gamma belong to ‘Xeon Scalable Processors’ group but Beta is ‘Xeon E Processors’.
Currently we don’t know if this actually makes difference or some other reason (such as the number of threads
or BLAS implementation) does. This result may vary if MKL were used instead of OpenBLAS. In large FTO,
only two options are available: NumPy and PyTorch on CPU in 64 bit. In case of JAX, the tests were failed:
we watched memory occupation surge during the simulation which seems unrelated to matrix calculation. This
might be an issue of JIT (Just In Time) compilation in JAX. Between NumPy and PyTorch, PyTorch is about
twice faster than NumPy in both architectures at Alpha and Gamma, but beta shows different behavior. This too,
we don’t know the root cause but one notable difference is the family of CPU type.

I.3.2 DEVICE: CPU AND GPU

Figure 27 shows the relative simulation time of GPU cases normalized by CPU cases on the same backend and
architecture. Note that it is relative time, so the smaller time does not mean it is a good option for the simulation
experiments: the relative time can be small even if the absolute time of CPU and GPU are very large compared
to other options.

JAX shows good GPU utilization throughout the whole range (except one point in beta) regardless of the
architecture. Considering the architecture, the data trend in beta is not clear while the gamma clearly shows that
GPU utilization can be more effective in 32bit operation. PyTorch data is a bit noisier than of JAX, but has the
similar behavior per server. The data in beta is hard to conclude as the JAX cases and the gamma too shows
ambiguous trend but we can consider GPU option is efficient with wide range of FTOs.
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Figure 27: Performance test result. The calculation time of GPU cases are normalized by CPU
cases from the same options to see the efficiency of GPU utilization. In these plots, black dashed line
is y = 1 where the capability of both are the same.

Figure 28: Performance test result. The calculation time of 32bit cases are normalized by 64bit
cases from the same options. In these plots, black dashed line is y = 1 where the capability of both
are the same.

Up to date, eigendecomposition for non-hermitian matrix which is the most expensive step (O(M3N3)) in
RCWA, is not implemented on GPU in JAX and PyTorch hence the calculations are done on CPU and the results
are sent back to GPU. As a result, we cannot expect great performance enhancement in using GPUs.

I.3.3 ARCHITECTURE: 64 AND 32 BIT

In Figure 28, calculation time of 32bit case is normalized by 64bit case with the same condition. With some
exceptions, most points show that simulation in 32bit is faster than 64bit. Here are some important notes: (1)
From our understanding, the eigendecomposition (Eig) in NumPy operates in 64bit regardless of the input type -
even though the input is 32bit data (float32 or complex64), the matrix operations inside Eig are done in 64bit but
returns the results in 32bit data type. This is different from JAX and PyTorch - they provides Eig in 32bit as well
as 64bit. Hence the 32bit NumPy cases in the figure approach to 1 as FTO increases because the calculation time
for Eig is the same and it is the most time-consuming step. (2) Keep in mind that 32bit data type can handle only
8 digits. This means that 1000 + 0.00001 becomes 1000 without any warnings or error raises. For such a reason,
the accuracy of 32bit cases in the figures are not guaranteed - we only consider the calculation time. (3) Eig in
PyTorch shows interesting behavior: as FTO increases, calculation time in 32bit overtakes 64bit - see A8/A7,
B8/B7 and C8/C7. This is counter-intuitive and we don’t have good explanation but cautiously guess that this
might be related to the accuracy and precision in Eig or an optimization issue of PyTorch.
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(a) Optimization curve (b) Electric field

Figure 29: Optimization result of 1D beam deflector. (a) The deflection efficiencies are calculated
for every iterations and this experiment is repeated 100 times with random starting points (b) Electric
field distribution from the final structure

J APPLICATIONS

meent is expected to be useful for solving inverse design and optimization problems in OCD and metasurface
design. In this section, we present some exemplary cases where meent proves its capabilities. Leveraging the
automatic differentiation function, we successfully carry out optimization for diffraction gratings and achieve
inverse design of the geometric parameters.

J.1 INVERSE DESIGN OF 1D DIFFRACTION GRATING

In this example, we will optimize 1D beam deflector that was used for benchmark in Chapter I using AD with
these options - 256 cells, FTO = 100, λ0 = 900 nm and the deflection angle = 50◦. During the optimization,
each cell can have non-binary refractive index values, leading to a gray-scale optimization. To obtain the final
structure consisting of only silicon/air binary structures, an additional binary-push process is required. The initial
structure for optimization is randomly generated so the each cell can have the refractive index value between
of air and silicon under uniform distribution. The Figure of Merit for this optimization process is set to the
+1st order diffraction efficiency, and the gradient is calculated by AD. The refractive indices are updated over
multiple epochs using the ADAM optimizer (Kingma & Ba, 2017) with the learning rate of 0.5.

Figure 29a shows the deflection efficiency change by iteration. Two solid lines are averaged value of all the
samples at the same iteration step. Shaded area is marked with ± standard deviation from the average. The blue
line (Before binarization) is the result of device with any real number between two refractive indices (silicon and
air), which is non-practical, and the orange line (After binarization) is the final device composed of silicon and
air. The best result we found is 89.4%.

J.2 INVERSE DESIGN OF 2D DIFFRACTION GRATING

Here, we demonstrate optimization of a 2D diffraction metagrating as shown in Figure 30a. Similar to the
previous 1D diffraction metagrating, the 2D diffraction metagrating also consists of silicon pillars located on top
of a silicon dioxide substrate. TM polarized wave with λ = 1000 nm is normally incident from the bottom of
the substrate and the device is designed to deflect the incident light with deflection angle θ = 60◦ in X-direction.
The device has a rectangular unit cell of period λ/ sin θ ≈ 1150 nm and λ/2 = 500nm for the x and y-axis,
respectively. Moreover, the unit cell is gridded into 256 × 128 cells which is either filled by air or silicon.
The convergence of RCWA simulation for different number of Fourier harmonics are plotted in Figure 30b.
Considering the trade-off between simulation accuracy and time, we set Nx = 13 and Ny = 10.

After 110 epochs of optimization, the final structure achieves an efficiency of 92% and successfully deflects the
incoming beam at a 60◦ angle (Figure 30d). The optimized structure and the learning curve are presented in
Figure 30a and Figure 30c, respectively.

J.3 INVERSE DESIGN OF 1D GRATING COLOR ROUTER

Until now, we have focused on the problems where the FoM was simply defined. However, in this example, we
aim to demonstrate the optimization process of a meta color router, which involves a complex FoM.

A meta color router is an optical component designed for next-generation image sensors. It is designed to route
the incoming light to the subpixel region of corresponding color, as depicted in Figure 31. In this exemplary case,
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Figure 30: Optimization result of 2D beam deflector. (a) The schematic of 2D beam deflector and
the final structure after optimization. (b) Convergence test of the initial structure. (c) Learning curve
of structure optimization for 110 epochs. Spatial blurring and binary push is applied on each epoch
(d) The electric field distribution of the optimized structure in XZ plane.

Figure 31: A schematic of a color router. The incoming light is guided to subpixels of corresponding
wavelength.

we consider an RGB meta color router featuring a pixel pitch of 0.5µm that consists of vertically stacked 1D
binary gratings. The constituent dielectrics are silicon dioxide and silicon nitride, with fixed refractive indices of
1.5 and 2.0, respectively. The meta device region (width of 1.5µm and height of 2µm) is sliced into 8 layers
with 64 cells per layer.

The FoM for this meta color router is defined as the average of TE mode electric field intensity over the
corresponding subpixel region, as given by Equation equation 76.

FoM =
1

N

λN∑
λ1

∫ x2

x1
|E⃗(λ)|2dx∫ P

0
|E⃗(λ)|2dx

× T (λ) (76)

Here, E represents the electric field within the subpixel region, while T represents transmittance. The parameter
x ∈ (x1, x2) determines the desired subpixel region corresponding to the incident beam wavelength. For
simplicity, we define the wavelength ranges for R, G, and B as 600 nm - 700 nm, 500 nm - 600 nm, and 400 nm -
500 nm, respectively. Throughout the optimization process, optical efficiencies are averaged across 9 wavelength
points to ensure a finely tuned broadband response.
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The optimization procedure for the meta color router follows a similar approach to the previous examples,
including random initialization, optimization via back-propagated gradients with or without binary push. The
optimization curve and the final binarized device structure are shown in Figure 32.

Figure 32: Optimization result of 1D grating meta color router. (a) Optimization curve of greyscale
device and binary-pushed device at each epoch. (b) Color sorting efficiency spectrum. (c) The electric
field inside the final color router device.
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K LICENSES

Development

• Numpy: BSD license

• JAX: Apache License 2.0

• PyTorch: BSD license (BSD-3)

Experiment

• Ray: Apache License 2.0

• SheepRL: Apache License 2.0

• neuraloperator: MIT license
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