
Published as a conference paper at ICLR 2023

BLOCK AND SUBWORD-SCALING FLOATING-POINT
(BSFP) : AN EFFICIENT NON-UNIFORM QUANTIZA-
TION FOR LOW PRECISION INFERENCE

Yun-Chen Lo, Tse-Kuang Lee, Ren-Shuo Liu
Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan

ABSTRACT

In this paper, we propose Block and Subword-Scaling Floating-Point (BSFP), a
datatype with a non-uniform quantization scheme for the skewed and non-uniform
distribution of weight vectors in neural networks. By quantizing each weight
vector as the superposition of multiple subword vectors (in two’s complement)
with scaling factors (in Low-bit Floating-Point, LBFP), BSFP can effectively fit
the distribution of weight vectors while maintaining high computation efficiency.
Furthermore, we present a grid search-based MSE-optimal quantization flow and
a scaled serial processing engine to complete the quantization pipeline and the
infrastructure.
The experimental results on the ImageNet classification task show that our proposed
method outperforms state-of-the-art Microsoft Floating Point (MSFP) by up to
18.57% top-1 accuracy at the same weight precision and reduces up to 10.3% model
size. Furthermore, BSFP outperforms MSFP by up to 2.0× computing throughput
and up to 5.3× energy efficiency under the same silicon area budget.

1 INTRODUCTION

Deep Neural Networks (DNNs) have continuously enabled more and more eye-catching artificial
intelligence (AI) applications Johnson et al. (2016); Lin et al. (2014); Deng et al. (2009). However,
their large model size and high computational complexity hinder the wide deployment of DNNs to
latency-sensitive cloud services and energy-constrained edge devices. To address the performance and
energy challenges, in addition to compacting neural network structures Sandler et al. (2018); Ma et al.
(2018), reducing the bitwidths of weights or activations also have been extensively explored Jacob
et al. (2018); Darvish Rouhani et al. (2020); Tambe et al. (2020); Li et al. (2020).

Particularly, non-conventional datatypes and custom hardware are emerging to optimize the per-
formance, energy efficiency, area efficiency, and memory requirements of DNN inference. Prior
industry and academia researches have explored low-bit floating-point datatypes Kalamkar et al.
(2019); Jouppi et al. (2020); NVIDIA (2022); Tambe et al. (2020), block-based floating-point
datatypes Darvish Rouhani et al. (2020); Köster et al. (2017), low-bit fixed-point datatypes NVIDIA
(2020); Jacob et al. (2018), and power-of-two fixed-point datatypes Miyashita et al. (2016); Zhou
et al. (2017); Li et al. (2020) as the potential candidates in efficient DNN inference. Among many
datatypes, Microsoft Floating Point (MSFP), a kind of block-based floating-point type as shown in
Figure 1(b), claims to achieve the state-of-the-art tradeoff among dynamic range, DNN accuracy, and
hardware complexity Darvish Rouhani et al. (2020).

This work focuses on post-training quantization, which is preferable in practice. First, for end users,
it involves no data (including private data) and enables a low-friction deployment pipeline Nagel
et al. (2019). Second, according to our discussions with an IC design house that tapes out AI chips in
advanced technology nodes, the industry (at least their application-side customers) does appreciate
post-training quantization because, in most cases, AI application companies are reluctant to release
AI models and training data to AI accelerator companies. Although we focus on post-training
quantization, we still include the fine-tuning results in Appendix A.

This paper proposes Block and Subword-Scaling Floating-Point (BSFP), a new class of datatypes
with a bit-efficient, non-uniform quantization method and custom hardware to improve the energy

1



Published as a conference paper at ICLR 2023

+
× ×

Each word à
Dual subwords à
Dual low-bit 2’s comp. integers
(2 bits +2 bits in this example)

Dual low-bit FP scalings

A vector of 
16 words

A vector of 
16 words

×

One power-of-two scaling

A vector of 
16 words

(c) IEEE FP16, Google BF16, Nvidia TF19(b) Microsoft FP (MSFP)(a) Block and Subword-Scaling FP (BSFP)

Sign (s) Exponent (e) Mantissa or integer (m)

7 bits7 bits 8 bits

16~19 bits

Each word à
Single sign-mag. integer

Each word à
One FP

Figure 1: Number system comparison between (a) the proposed Block and Subword-Scaling Floating-
Point (BSFP), (b) Microsoft FP (MSFP Darvish Rouhani et al. (2020)), and (c) floating-point numbers
(IEEE 754 FP16, Google BF16 Jouppi et al. (2020), and Nvidia TensorFloat (TF19) NVIDIA (2022)).

efficiency and performance over state-of-the-art MSFP. As shown in Figure 1(a), the key idea of
BSFP is to approximate each full-precision weight vector using the sum of two subword vectors
with two scalings, respectively. More specifically, each subword is a low-bit (e.g., 2-bit), signed
(two’s complement) integer, and each scaling is a low-bit floating-point (LBFP) number (e.g., a 7-bit
one). We will show that BSFP is superior to MSFP in capturing the nonuniformity and skewness of
per-vector weight distributions, which are common cases for a vector of a small number (e.g., 16)
of weights. In addition, although BSFP adopts two scalings and two subword vectors, it can still
be efficiently computed for the following three reasons. First, the computation cost of scaling is
amortized over 16 weights. Second, each scaling is an LBFP and involves only low-bit operations,
e.g., multiplications with a 3-bit mantissa. Third, the subword vector structure happens to fit bit-serial
computation architectures Qian Zhang et al. (2022); Judd et al. (2016).

One property that BSFP exhibits is to approximate the desired weight vector using both coarse and
fine vectors. One subword vector with a large scaling captures large weights, and the other subword
vector with a small scaling mitigates the remaining deviations. Therefore, BSFP can adapt to large
outliers and small resolutions simultaneously.

Figure 2(a) compares the quantization results of a real 16-element weight vector from ShuffleNet-v2
in either 8-level BSFP or 15-level MSFP. This example clearly demonstrates the potential that even
BSFP with relatively fewer quantization levels can achieve smaller quantization errors (e.g., in
terms of MSE) than MSFP with more quantization levels. We summarize the rationales for BSFP’s
superiority below:

• No waste of quantization level: BSFP utilizes two’s complement for each subword and does
not waste precious quantization levels. In comparison, MSFP resembles sign-magnitude
and wastes one quantization level (i.e., duplicated +0 and −0). Even worse, the impact of
wasting quantization levels increases as the bitwidth goes down. For instance, a 3-b two’s
complement number can represent eight quantization levels, 12.5% more than the seven
levels of the 3-b sign-magnitude number.

• Adaptation to skewed distribution: BSFP exploits the asymmetrical nature of two’s
complement numbers (e.g., -2, -1, 0, 1 for 2-b two’s complement numbers) and the sign of
the associated scaling to adapt to the asymmetrical weight distribution of in weight vectors.
In comparison, MSFP is permanently restricted to symmetrical quantization levels and leads
to a waste of quantization levels fitting asymmetrical distributions.

• Adaptation to non-uniform distribution: BSFP can offer non-uniform quantization levels
by combining two subword-scaling vectors. In comparison, MSFP always uniformly
quantizes weight vectors, which may instead exhibit non-uniform weight distributions.

• Better freedom of quantization step size: The quantization step size of BSFP is defined by
the two scalings, which are (low-bitwidth) floating-point values. In contrast, the quantization
step size of MSFP cannot be any value other than power-of-two, e.g., 0.5, 0.25, 0.125.

2



Published as a conference paper at ICLR 2023

+-A block of 16 weights
(real weight values)

This work (e.g., 8 levels)

MSFP (e.g., 15 levels) 

Properties This Work MSFP

No Wasted
Quantization Level Yes 1 Wasted Level

(Because of Sign-Magnitude)

Can Adapt to Skewed 
Weight Distribution Yes No

(Always Symmetrical)

Can Adapt to Non-Uniform 
Weight Distribution Yes No

(Always Uniform)

Freedom of Quantization 
Step Size High Low

(Must be the Power of Two)
(4b sign-magnitude) × 2exp

r1×(2b 2’s complement) + r2×(1b 2’s complement) 

×2-40 431 2

r2

65 7-4-5-7 -6 -2-3 -1

0r1 -r1 -2r1

r2 r2 r2

Figure 2: (a) Quantizing 16 real weights of ShuffleNet-v2 using 3-b Block and Subword-Scaling
Floating-Point (BSFP) can achieve both lower quantization error (MSE) and lower storage than 4-b
Microsoft Floating Point (MSFP). (b) Properties comparison of BSFP with MSFP.

BSFP can be deployed to servers and edge devices, achieving high performance and energy efficiency.
Please note that the main advantages of BSFP are not from specific MAC architecture. Therefore, we
select one MAC architecture and focus on comparing BSFP to MSFP datatype on that architecture.
This is also the case for the MSFP paper, which compares MSFP against BF16 and INT). Our
experiments will demonstrate the robustness and generality of BSFP using several mainstream DNNs
on the ImageNet classification task. In summary, this work makes the following contributions:

• We propose Block and Subword-Scaling Floating-Point (BSFP), a hardware-algorithm
co-designed numerical datatype for DNNs that can achieve higher accuracy with better
computing throughput and energy efficiency than MSFP.

• We design a scaled serial processing engine to support the proposed BSFP. This custom
hardware enjoys a small area footprint and can support various configurations of BSFP.

• We identify mean squared error (MSE) as an effective criterion in determining the LBFP
scaling factors of BSFP and a grid search-based MSE-optimal quantization flow to enable a
low-friction deployment pipeline. We present both post-training and fine-tuning procedures
for preparing DNNs in the proposed BSFP format.

• We perform extensive evaluations on various DNNs of the ImageNet classification task and
demonstrate that BSFP successfully outperforms MSFP in model size, quantization error,
accuracy, throughput, and energy efficiency.

2 RELATED WORKS

There is rising attention to designing custom datatypes for efficient inferencing. The wide range
of formats can be categorized into four classes, i.e., low-bit floating-point, low-bit fixed-point,
power-of-two, and block-based floating-point.

The first category, low-bit floating-point numbers (FP16, Bfloat16 (BF16), and TensorFloat), sim-
plifies the IEEE-754 floating-point formats. Representative commercial hardware include Google’s
TPUs (BF16) Jouppi et al. (2020) and NVIDIA’s A100 GPUs (Tensorfloat, TF19) NVIDIA (2022).

The second class of datatype is low-bit fixed-point datatype (e.g., INT4), whose operations are
equivalent to integer operations and can achieve low hardware cost and high performance. Such fix-
point numbers include 8-b Jacob et al. (2018), 4-b NVIDIA (2020); Dai et al. (2021), 3-b Mellempudi
et al. (2017), and ultimately binary Hubara et al. (2016). Although fixed-point datatype achieves a
small hardware area and receives great popularity, it requires careful model re-calibration and suffers
from a large accuracy drop when representing values with a high dynamic range.

The third class is power-of-two numbers, including Power-of-Two Zhou et al. (2017); Miyashita et al.
(2016) and Additive Power-of-Two Li et al. (2020), which utilizes one or two power-of-two terms to
approximate floating-point weights. The power-of-two format is appealing for replacing multipliers
with low-cost shifters. However, the available values are limited by the power-of-two form.

Additionally, some prior research also explores non-uniform quantization. For example, LQ-
Nets Zhang et al. (2018) learns quantization levels to minimize the quantization error. Distilla-
tion Polino et al. (2018) optimizes the quantization levels by learning to minimize a task loss with
their teacher networks. However, these methods use a limited number of floating-point numbers

3



Published as a conference paper at ICLR 2023

to quantize the full-precision data points, leading to significantly larger overhead than fixed-point
computation.

The last category is block-based floating-point, which forces a block of (e.g., 16) floating-point
numbers to share one exponent. The block-based floating-point offers low area overheads and
a large dynamic range. This format has enabled state-of-the-art accuracy-to-area Pareto frontier.
Representative examples include Intel’s Lake Crest (Flexpoint Köster et al. (2017)) and Microsoft’s
Brainwave Fowers et al. (2018) (MSFP Darvish Rouhani et al. (2020)).

The closest work related to this paper is MSFP in NeurIPS 2020 Darvish Rouhani et al. (2020),
which is the current state-of-the-art format in terms of area-to-accuracy trade-offs. Our BSFP
design is fundamentally different and novel compared to MSFP for the following reasons: 1) BSFP
approximates full-precision weight vector using the superposition of multiple subword-scaling vectors,
which MSFP and other prior works do not explore before. Please refer to the properties comparison
in Figure 2 and the corresponding discussion of BSFP’s superiority. 2) We additionally design a
bit-serial processing engine that can support different configurations of BSFP. In comparison, the
MSFP work considers a bit-parallel processing engine and does not support format changes.

3 BLOCK AND SUBWORD-SCALING FLOATING-POINT (BSFP)

We propose BSFP that quantizes an l-element full-precision weight vector (
−−→
Wfp) using Nsub l-

element subword-scaling vectors (
−−−→
Wsubi× scalei =

−−−→
Wsubi × (−1)si2eimi), where the subwords

adopt the two’s complement format and the scaling factors adopt the LBFP format. The default l
is 16 unless explicitly mentioned. These scaling factors (−1)si2eimi determine the quantization
points that a BSFP vector can represent. Since using two subwords achieves good accuracy-storage
trade-offs, we set Nsub = 2.

−−→
Wfp ≈

Nsub∑
i=1

−−−→
Wsubi × (−1)si2eimi

Nsub=2
======= (

−−−→
Wsub1 × (−1)s12e1m1) + (

−−−→
Wsub2 × (−1)s22e2m2)

We apply BSFP to weights. In comparison, activations are left as MSFP as the MSFP paper
does Darvish Rouhani et al. (2020). The rationales behind this decision are as follows. Weights differ
from activations in that weights are available offline. Thus, weights can and also should enjoy a
longer quantization time budget. Clearly, if both weights and activations adopt MSFP, as the MSFP
paper does, it directly suggests that some optimization opportunities for weights are left on the table.

Computing with BSFP format. Dot products are the fundamental operations in DNNs. Here we
show the dot product of an l-element

−−−→
Wbsfp weight vector and a

−−−−→
Amsfp activation vector.

−−−→
Wbsfp ·

−−−−→
Amsfp = (

Nsub∑
i=1

−−−→
Wsubi × (−1)si2eimi) · (

−−−−→
Amsfp × 2eshared)

=

Nsub∑
i=1

((
−−−→
Wsubi ·

−−−−→
Amsfp)× ((−1)simi2

ei+eshared))

For each subword vector of BSFP, it first multiplies with the MSFP activation vector using compact
multipliers and an adder tree to obtain the partial sum. Secondly, the LBFP scaling factor of BSFP is
combined with the shared exponent of MSFP to get the correct scaling factor. More specifically, the
exponent fields of BSFP and MSFP are summed together. Finally, we scale the partial sum with the
combined scaling factor. The hardware overheads of BSFP over MSFP is to multiply the partial sum
by a low-bit (3-b or 4-b) mantissa of the scaling factor.

Scaled Serial Processing Engine (S2PE). Figure 3 shows the proposed scaled serial processing
engine (S2PE) and its example in computing a 4b BSFP weight vector. Within an S2PE, the 2b
multipliers are chosen to enable flexibility in computing different bitwidth configurations with bit-
serial computation Qian Zhang et al. (2022). This design choice achieves a compact silicon footprint
and high computation flexibility.

4



Published as a conference paper at ICLR 2023

S2PE S2PE

Input 
SRAM

Input 
SRAM

Input 
SRAM

…

…
…

…

…

S2PE S2PE…
…

……

S2PE S2PES2PE

S2PE

S2PE

Weight 
SRAM

…

Weight 
SRAM

Scaled Serial Processing Engine (S2PE)

…

+

+

Adder 
tree

…
+

Accumulator

+

Scalew (4b)

Fixed-Point
↓

bfloat16

Scaling

expw expa

16 Multipliers
(2b)

+
Weight 
SRAM

…

+

Shifting Controller

…

…

…

Sign Exponent Mantissa

+

+

+

+

Cycle 1
Cycle 2

2b subword

WbsfpAmsfp

Figure 3: Proposed scaled serial processing engine (S2PE) and systolic architecture.

In addition, the proposed PE only requires an integer multiplier to scale the partial sum by the (at
most) 4-b mantissa of the LBFP scaling factor. The exponent terms of BSFP and MSFP are added
together to convert the scaled partial sum back to BF16 for accumulation. For BSFP with a bitwidth
larger than 2, the proposed PE computes the result using multiple cycles. We finally present a systolic
architecture, which integrates multiple scaled serial processing engines.

Criterion-optimal quantization flow. The flexibility of BSFP requires a flow to determine a suitable
LBFP scaling factors setup. We observe that the number of combinations for LBFP scaling factors
is limited; hence exhaustively evaluating all of them on GPU is feasible. Specifically, every weight
vectors are parallelly quantized and evaluated using the same LBFP scaling setup. For example, an
optimal setup for ShuffleNet-v2 can be found within 30 minutes using one NVIDIA V100 (ResNet-50:
less than 1 hour; ViT: less than 1.5 hours).

Figure 4 shows the quantization flow, which consists of four steps: 1) Generating subword con-
figurations, which generate several potential subword configurations that satisfy the target weight
bitwidth. 2) Generating LBFP scaling combinations, which creates search space by exploring all
potential combinations (grids) of LBFP scaling factors. 3) Iterative rounding, which quantizes the
full-precision weight vectors using generated scaling factor combinations. 4) Criterion evaluation,
which evaluates the difference between the full-precision weights and quantized counterparts using
chosen criterion. The criterion candidates are L1, Mean Square Error (MSE), and Cosine Similarity,
where MSE is selected as the final criterion. The details of the flow are presented in Appendix D.

Target bitwdith
e.g., 4

Subword 
Configs

(2,2)
(3,1)
(4,0)

Generate LBFP 
Scaling Factors

(1⨯2-1,1⨯2-1)
(2⨯2-1,1⨯2-1)

Scale1st, Scale2nd

…

Iterative 
Rounding

Criterion-
Optimal Output 

Criterion 
Evaluation…

Figure 4: Criterion-optimal quantization flow for BSFP format.

4 BSFP CONFIGURATIONS

This section discusses the effects of different configuration setups for BSFP.

Block Size (or vector length, l). The vector length affects the model size, the PE area efficiency,
and the model accuracy. A large vector length generally amortizes the hardware overheads and
reduces the storage overheads of LBFP’s scaling factors. In practice, we found vector lengths of 16
to 64 to be effective for BSFP in preserving accuracy while incurring a moderate hardware cost.

Quantization Criterion. The quantization criterion plays an important role in our quantization flow
to decide the final accuracy. Common criterion candidates are Manhattan distance (L1 distance), Mean
square error (MSE, Euclidean distance, L2 distance) Zhao et al. (2019), and Cosine Similarity Zhu
et al. (2019); Zhang et al. (2019). We identify MSE as a better criterion in our quantization flow.
Furthermore, users can easily define their quantization criterion in the framework.

Number of Subwords. We can tune the number of subwords (Nsub) factor to explore the trade-offs
for BSFP datatype. To fully obtain the benefit of BSFP, we suggest setting Nsub larger than 1, e.g., 2
to 4. In practice, the number of subwords is set to 2 to balance storage overheads and accuracy.

5



Published as a conference paper at ICLR 2023

Low-bit Floating-point (LBFP) Scaling Factor Format. The configuration for LBFP scaling factor
format is also crucial in determining our quantization flow’s accuracy and search space. Appendix H
shows that scaling format with 1s4m3e and 1s3m3e achieves good trade-offs.

Besides, we propose to equip separate exponent biases for different LBFP scaling factors. The
key idea is to set suitable biases to minimize the LBFP scaling factor’s precision while achieving
satisfying accuracy. We empirically set exponent biases of the first and second subword scaling
factors to be -3 and -8, respectively. It is noteworthy that both biases are the same across the whole
model, which incurs negligible storage overheads. Setting per-layer biases is left as future work.

5 EVALUATIONS

Baselines and Network Architectures. We compare BSFP with MSFP Darvish Rouhani et al.
(2020), DSQ Nagel et al. (2019), TFlite Krishnamoorthi (2018), and APoT Li et al. (2020) in
accuracy-to-precision trade-off. Furthermore, we also compare area and power efficiency with other
strong baselines, such as BF16 Jouppi et al. (2020), fixed-point Nagel et al. (2019) and Power-of-Two
PEs Zhou et al. (2017); Li et al. (2020).

We select six mainstream DNNs for evaluating BSFP and MSFP. ShuffleNet-v2 Ma et al. (2018)
and MobileNet-v2 Sandler et al. (2018) are chosen to represent compact DNNs. ResNet-18 and
ResNet-50 He et al. (2015) are selected to represent classical DNNs. EfficientNet-v2 Tan & Le (2019)
and VIT Dosovitskiy et al. (2020) are chosen to represent modern DNNs. All of the results are based
on ImageNet classification dataset Deng et al. (2009).

Hardware Evaluations. We implement the BSFP PE and baseline PEs in Verilog and validate the
behavior against the software functional simulator. All designs are synthesized at 500 MHz under
TSMC 40nm using Synopsys Design Compiler (Topographical mode). We set the parallelism to be
16 for all number systems.

5.1 MODEL SIZE-TO-ACCURACY AND VECTOR LENGTH-TO-MODEL SIZE TRADE-OFFS

Figure 5(a) shows the storage-to-accuracy Pareto frontier of BSFP and MSFP on ShuffleNet-v2
(post-training quantization). BSFP consistently improves the accuracy using a smaller model size.
For example, BSFP simultaneously obtains 0.4% top-1 accuracy gain and saves 5% model size over
MSFP. The superiority of BSFP is consistent across four evaluated models, where other results are
omitted for brevity.

Figure 5(b) compares the accuracy-to-storage trade-offs of different vector lengths for BSFP and
MSFP on ShuffleNet-v2 (post-training quantization). On BSFP, the vector length ranging from 16
to 64 leads to only a marginal accuracy drop, while a vector length of 128 significantly decreases
the accuracy. Thus, we suggest that the vector length for BSFP be 16 to 64. In comparison, MSFP’s
accuracy drops significantly from a length of 16 to 32, and the accuracy does not vary significantly
while further enlarging the vector length. It is also noteworthy that BSFP consistently outperforms
the Pareto frontier regardless of vector length compared to MSFP.

25

40

55

70

3, 1 4, 1 3, 3 7 5, 2

To
p-

1 
Ac

cu
ra

cy
 (%

)

Subword Configurations

L1
MSE
Cosine Similarity

60

62

64

66

68

70

1.70 1.80 1.90 2.00

To
p-

1 
Ac

cu
ra

cy
 (%

)

Model Size (MB)

BSS
MSFP-15

l =16
l =32

l =48l =64
l =128

l =16l =32

(a) (b)

l =48
l =64

l =128

better

BSFP

better

45

50

55

60

65

70

1 1.5 2 2.5

To
p-

1 
Ac

cu
ra

cy
 (%

)

Model Size (MB)

BSFP
MSFP

(c)

Figure 5: (a) Model size-to-accuracy Pareto frontiers of BSFP and MSFP with various bitwidths
(fixing vector length). (b) Model size-to-accuracy Pareto frontiers of BSFP and MSFP with various
vector length, l (fixing bitwidth). (c) Quantization using different criteria. All experiments are
conducted on ShuffleNet-v2 using post-training quantization.

6



Published as a conference paper at ICLR 2023

(a)

better

ShuffleNet-v2 MobileNet-v2(b)

0.00000

0.00010

0.00020

0.00030

0.00040

0.00050

1.2 1.4 1.6 1.8 2 2.2 2.4
KL

 D
iv

er
ge

nc
e

Model Size (MB)

MSFP
BSFP

0

1

2

3

4

5 ×10-3

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

2 2.2 2.4 2.6 2.8 3 3.2 3.4

KL
 D

iv
er

ge
nc

e

Model Size (MB)

MSFP
BSFP

0

2

4

6

8

10

×10-5
12

better

Figure 6: KL Divergence-to-model size comparison of MSFP and BSFP on (a) ShuffleNet-v2 and (b)
MobileNet-v2. The KLD of BSFP is consistently lower than MSFP while using a smaller model size.

5.2 QUANTIZING USING DIFFERENT CRITERION

Figure 5(c) shows the accuracy of quantizing ShuffleNet-v2 using different criteria, i.e., L1 distance,
MSE, and Cosine Similarity. The MSE is the best criterion in our grid search-based quantization
flow. It is noteworthy that different criteria have little accuracy difference in higher bitwidth and
vary considerably in lower bitwidths. One reason for MSE’s superiority is that it punishes significant
element-wise distortion, which the other two criteria cannot. Specifically, selecting L1 norm optimizes
overall distortion, and selecting Cosine Similarity optimizes the angular difference.

5.3 KULLBACK-LEIBLER DIVERGENCE ANALYSIS

Kullback-Leibler Divergence (KL Divergence) is chosen for evaluating quantization quality in the
MSFP paper. Intuitively, lower KL Divergence demonstrates the quantization can fit the original data
much better, which results in higher accuracy. We compare the KL Divergence of MSFP and BSFP
to demonstrate the superiority of BSFP.

Figure 6(a) and Figure 6(b) respectively sample a layer from ShuffleNet-v2 and MobileNet-v2 to
compare the KL Divergence-to-model size Pareto frontier of BSFP and MSFP. The key takeaway is
that BSFP consistently obtains better KL Divergence for both models while allocating smaller model
sizes. Furthermore, the discrepancy between MSFP and BSFP enlarges as the model size reduces.

5.4 PER-VECTOR ABSOLUTE PEARSON’S SKEWNESS ANALYSIS

Figure 7 analyzes the per-vector absolute Pearson’s skewness coefficient (SK) for each layer of
ShuffleNet-v2 and ResNet-18. We report the proportion of vectors with different degrees of skewness,
i.e., moderate (0.5 < SK < 1.0), high (1.0 < SK < 1.5), and very high (1.5 < SK). Two
takeaways are: 1) The weight vectors on modern networks, i.e., ShuffleNet-v2 and ResNet-18, are
skewed. Specifically, up to 50% ∼ 75% of the weight vectors are skewed. The proposed BSFP can
adapt to skewed distributions and outperform prior works with uniform quantization. 2) Even on
weight vectors that are less skewed, BSFP can still outperform prior works because it does not waste
quantization levels and provides better step size flexibility.

Pr
op

or
tio

n 
(%

)

(a) ShuffleNet-v2

Pr
op

or
tio

n 
(%

)

(b) ResNet-18

Layer Layer
0

10

20

30

40

50

60

70

80

1 11 21 31 41 51

0.5 < SK < 1.0 1.0 < SK < 1.5 1.5 < SK
0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.5 < SK < 1.0 1.0 < SK < 1.5 1.5 < SK

Figure 7: Per-vector absolute Pearson’s skewness coefficient (SK) of (a) ShuffleNet-v2 and (b)
ResNet-18. In general, very highly skewed means SK > 1.5, highly skewed means SK > 1.0, and
moderately skewed means 1.0 > SK > 0.5. Appendix G shows that slicing weight into vectors is
one potential rationale for the large skewness.

7



Published as a conference paper at ICLR 2023

40

45

50

55

60

65

70

4 5 6 7 8

To
p-

1 
Ac

cu
ra

cy

Weight precision

BSFP
MSFP
Intel's Compressor
APoT

40

50

60

70

4 5 6 7 8

To
p-

1 
Ac

cu
ra

cy

Weight precision

BSFP
MSFP
DFQ
Per-channel
APoT

MobileNet-v2

better

55

60

65

70

3 4 5 6 7 8

To
p-

1 
Ac

cu
ra

cy

Weight precision

BSFP
MSFP
DFQ
Per-channel
Tfl ite
APoT

ResNet-18ShuffleNet-v2

60

65

70

75

80

3 4 5 6 7

To
p-

1 
Ac

cu
ra

cy

Weight precision

BSFP

MSFP

APoT

ResNet-50

Figure 8: Precision-to-Accuracy comparison of BSFP with MSFP, DFQ, TFlite, APoT. All number
systems utilize post-training quantization. The accuracy of DFQ Nagel et al. (2019) and TFlite Krish-
namoorthi (2018) are derived from the papers. We implement APoT to obtain the accuracy.

Table 1: Post-training comparison of accuracy and hardware performance on ImageNet with MSFP
and BSFP.

Method Precision 
(W / A) Top-1 (%) Model Size FLOPs/ 

FixOPs (8b) Method Precision 
(W / A) Top-1 (%) Model Size FLOPs/ 

FixOPs (8b)

Sh
uf

fle
N

et
-v

2 FP 32 / 32 69.18 9.1 MB 148.8M

MSFP

8 / 8 69.03 2.4 MB 148.8M
BSFP
(OURS)

7 [5+2] / 8 69.10 2.3 MB 130.2M
7 / 7 68.27 2.1 MB 113.9M 6 [3+3] / 6 68.62 2.0 MB 83.7M
6 / 6 63.01 1.9 MB 83.7M 5 [4+1] / 4 66.06 1.7 MB 46.5M
5 / 5 47.49 1.6 MB 58.1M 4 [3+1] / 4 47.50 1.4 MB 37.2M

M
ob

ile
N

et
-v

2 FP 32 / 32 71.84 14.0 MB 314.1M

MSFP

8 / 8 71.58 3.7 MB 314.1M
BSFP
(OURS)

7 [4+3] / 8 71.37 3.5 MB 274.8M
7 / 7 69.42 3.3 MB 240.5M 6 [4+2] / 6 69.93 3.0 MB 176.7M
6 / 6 63.03 2.9 MB 176.7M 5 [4+1] / 4 66.01 2.6 MB 98.2M
5 / 5 47.49 2.4 MB 122.7M 4 [2+2] / 4 50.35 2.2 MB 78.5M

R
es

N
et

-1
8

FP 32/32 69.76 46.8 MB 1.82G

MSFP

8 / 8 69.69 12.4 MB 1.82G

BSFP
(OURS)

7 [5+2] / 8 69.67 11.6 MB 1.59G
7 / 7 69.54 11.0 MB 1.39G 6 [4+2] / 6 69.58 10.1 MB 1.02G
6 / 6 69.27 9.5 MB 1.02G 5 [3+2] / 4 69.40 8.7 MB 568.8M
5 / 5 67.75 8.0 MB 710.9M 4 [2+2] / 4 67.57 7.2 MB 455.0M
4 / 4 57.40 6.6 MB 455.0M 3 [2+1] / 3 61.04 5.8 MB 255.9M

R
es

N
et

-5
0

FP 32/32 76.13 102.2 MB 4.14G

MSFP

8 / 8 76.06 27.2 MB 4.14G

BSFP
(OURS)

7 [5+2] / 8 76.08 25.4 MB 3.6G
7 / 7 75.86 24.0 MB 3.17G 6 [4+2] / 6 76.02 22.2 MB 2.3G
6 / 6 75.54 20.8 MB 2.3G 5 [3+2] / 4 75.57 19.0 MB 1.6G
5 / 5 73.45 17.6 MB 1.6G 4 [3+1] / 4 73.93 15.8 MB 1.0G
4 / 4 64.28 14.4 MB 1.0G 3 [2+1] / 3 63.68 12.6 MB 582.2M

Ef
fic

ie
nt

N
et

-v
2 

(s
)

FP 32/32 84.23 88.0 MB 8.8G

MSFP

8 / 8 84.09 23.4 MB 8.8G

BSFP
(OURS)

7 [5+2] / 8 84.06 21.8 MB 7.7G
7 / 7 83.94 20.6 MB 6.7G 6 [4+2] / 6 83.96 19.1 MB 5.0G
6 / 6 83.08 17.9 MB 5.0G 5 [4+1] / 6 83.12 16.3 MB 4.2G
5 / 5 77.45 15.1 MB 3.4G 4 [2+2] / 4 76.08 13.6 MB 2.2G
4 / 4 3.27 12.4 MB 2.2G 3 [2+1] / 4 27.20 10.8 MB 1.7G

V
isi

on
 T

ra
ns

fo
rm

er
 

(V
iT

-B
/1

6)

FP 32/32 81.07 348.1 MB 56.0G

MSFP

8 / 8 81.01 92.4 MB 56.0G

BSFP
(OURS)

7 [5+2] / 8 80.92 86.3 MB 49.0G
7 / 7 80.94 81.6 MB 42.9G 6 [4+2] / 6 80.87 75.4 MB 31.5G
6 / 6 80.84 70.7 MB 31.5G 5 [4+1] / 4 80.41 64.6 MB 17.5G
5 / 5 80.13 59.8 MB 21.9G 4 [2+2] / 4 80.21 53.7 MB 14.0G
4 / 4 76.89 48.9 MB 14.0G 3 [2+1] / 4 79.77 42.8 MB 10.5G

5.5 WEIGHT PRECISION-TO-ACCURACY PARETO FRONTIER

Figure 8 compares the weight precision-to-accuracy Pareto frontier of MSFP and BSFP on four DNNs.
BSFP consistently outperforms MSFP on accuracy, given the same weight precision. Furthermore,
the accuracy gap between MSFP and BSFP enlarges while reducing the weight precision. Let us
take ShuffleNet-v2 as an example. When allocating 7b weight precision for both BSFP and MSFP,
BSFP achieves 69.10% top-1 accuracy, outperforming MSFP’s 68.27% accuracy by 0.83%. However,
when further narrows down the weight bit to five, the accuracy benefit of BSFP over MSFP enlarges.
Further, BSFP consistently outperforms MSFP and other numerical systems under the same precision.

Table 1 summarizes the accuracy, model size, and the number of operations on six DNNs. For full
precision models, we report their computation complexity in FLOPs. We define a FixOP as one
operation between an 8-bit fixed-point weight and an 8-bit fixed-point activation, which takes 64
binary operations for quantized models. For example, a 4 by 6-bit multiplication is equivalent to
4×6/8×8 =3 /8 FixOP (8b). To sum up, BSFP consistently achieves higher accuracy with smaller
model size and computation complexity than MSFP. Smaller FixOPs improve the computation steps
on serial PE or reduce hardware overheads on parallel PE.

8



Published as a conference paper at ICLR 2023

Table 2: BSFP versus other mainstream number formats for DNN inference. Memory and MAC
density of various formats are normalized to BF16. The results listed are based on topographical
synthesis results using TSMC 40nm process at 500 MHz.

16× BF16 16× INT4 16× INT8 16× Power-
of-Two

Bit-Serial 
MSFP PE

Scaled Serial PE (BSFP)
2b-mult 1b-mult

Area (per PE) 1.0× 22.6× 8.7× 7.8× 13.0× 26.6× 33.1×
Power (per PE) 1.0× 13.0× 5.1× 4.8× 8.5× 14.1× 24.6×

ShuffleNet-v2 MobileNet-v2

50

55

60

65

70

0 1 2 3 4 5 6

To
p-

1 
Ac

cu
ra

cy

Normalized Iso-Area Throughput

BSFP (2b-mult)
MSFP (2b-mult)
APoT
INT
BF16

64

66

68

70

72

0 1 2 3 4 5 6

To
p-

1 
Ac

cu
ra

cy

Normalized Iso-Area Throughput

BSFP (2b-mult)
MSFP (2b-mult)
APoT
INT
BF16

40

50

60

70

0 5 10 15

To
p-

1 
Ac

cu
ra

cy

BSFP (2b-mult)
MSFP (2b-mult)
APoT
INT
BF16

better
ShuffleNet-v2

better

53

58

63

68

73

0 4 8 12 16 20 24

To
p-

1 
Ac

cu
ra

cy

BSFP (2b-mult)
MSFP (2b-mult)
APoT
INT (4b and 8b)
BF16

MobileNet-v2

Normalized Throughput per Watt Normalized Throughput per Watt

Figure 9: Iso-area Throughput to Accuracy (left) and Throughput per Watt to Accuracy (right)
comparison of BSFP with other strong baselines. We normalize the throughput and throughput/W to
MSFP-16.

5.6 ACCURACY TO PERFORMANCE AND ACCURACY TO ENERGY EFFICIENCY COMPARISONS

Table 2 shows the area and power of PEs with different number formats. We normalize all of the
designs with BF16 PE. In general, scaled serial PE achieves the smallest area and power because of
the compact MAC circuit. The 2-b scaled serial PE can outperform 2-b serial MSFP PE Qian Zhang
et al. (2022) because of the following reasons:

• Larger adder tree induced by additional XOR gate: Besides area overheads of XOR gates,
the bitwidth of the multiplication results must be enlarged because of the potential negation.
Consequently, the 16×4-b adder tree has to increase each input port by 1-b, causing 25%
higher complexity than the original adder tree. In brief, the XOR gates, the negation logic,
and the enlarged adder tree jointly cause the area and energy in-efficiency.

• The alignment overheads for MSFP are more significant than for BSFP: Although the
bitwidth of scaling factors are similar for BSFP and MSFP, MSFP allocates all 8-b to be the
exponent. In contrast, BSFP allocates only 3-b to be exponent and lets the rest be sign and
mantissa. As a result, the alignment procedure before accumulation is largely simplified for
BSFP, which improves energy efficiency.

Figure 9 (left) shows the iso-area throughput to accuracy comparison. BSFP consistently outperforms
MSFP across four models. Specifically, BSFP outperforms MSFP by 1.3× to 2.0× throughput while
achieving higher accuracy. Again, the throughput improvement results from a smaller PE area and
lower weight precision. Figure 9 (right) shows the throughput per W to accuracy comparison. BSFP
also achieves significantly better throughput per Watt than MSFP. Specifically, BSFP outperforms
MSFP by 1.3× to 5.3× while achieving higher accuracy.

6 CONCLUSIONS

This paper introduces Block and Subword-Scaling Floating-Point (BSFP) for quantizing weight
vectors in neural networks, which typically exhibit a skewed and non-uniform distribution. The
quantized vector of BSFP is the sum of a set of subword-scaling vectors, bringing up 2× speedup
and 5.3× energy efficiency improvements compared with MSFP.

In addition, our grid search method guarantees finding the optimal BSFP configurations for capturing
skewed and non-uniform weights and optimizing the MSE criterion. With our proposed scaled serial
PE, BSFP obtains better area efficiency and energy efficiency compared to prior number systems. In
sum, BSFP successfully reaches state-of-the-art model size, throughput, and energy efficiency.

9



Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

We thank reviewers for their insightful comments. We thank NCHC (National Center for High-
performance Computing, Taiwan) and TSRI (Taiwan Semiconductor Research Institute) for providing
computational and storage resources. This work is supported in part by NSTC (National Science
and Technology Council, Taiwan) grants 111-2823-8-007-001 and 111-2218-E-007-009, Synopsys
Scholarship, and NSTC Scholarship.

REFERENCES

Arm, 2020. URL https://developer.arm.com/Architectures/Arm%20Custom%
20Instructions.

Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks. IEEE Journal of Solid-State
Circuits (JSSC), 52(1):127–138, 2017. doi: 10.1109/JSSC.2016.2616357.

Lucian Codrescu. Qualcomm Hexagon DSP: An architecture optimized for mobile multimedia
and communications. In 2013 IEEE Hot Chips 25 Symposium (HCS), pp. 1–23, 2013. doi:
10.1109/HOTCHIPS.2013.7478317.

Steve Dai, Rangha Venkatesan, Mark Ren, Brian Zimmer, William Dally, and Brucek
Khailany. VS-Quant: Per-vector Scaled Quantization for Accurate Low-Precision Neural
Network Inference. In Proceedings of Machine Learning and Systems (MLsys), volume 3,
pp. 873–884, 2021. URL https://proceedings.mlsys.org/paper/2021/file/
f0935e4cd5920aa6c7c996a5ee53a70f-Paper.pdf.

Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers, Kalin Ovtcharov, Anna
Vinogradsky, Sarah Massengill, Lita Yang, Ray Bittner, Alessandro Forin, Haishan Zhu, Taesik
Na, Prerak Patel, Shuai Che, Lok Chand Koppaka, Xia Song, Subhojit Som, Kaustav Das, Saurabh
T, Steve Reinhardt, Sitaram Lanka, Eric Chung, and Doug Burger. Pushing the Limits of Narrow
Precision Inferencing at Cloud Scale with Microsoft Floating Point. In Advances in Neural
Information Processing Systems (NeurIPS), volume 33, pp. 10271–10281, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition
(CVPR), pp. 248–255. IEEE, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
CoRR, abs/2010.11929, 2020. URL https://arxiv.org/abs/2010.11929.

Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming Liu, Daniel Lo,
Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi, Stephen Heil, Prerak Patel,
Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram Lanka, Steven Reinhardt, Adrian Caulfield, Eric
Chung, and Doug Burger. A configurable cloud-scale DNN processor for real-time AI. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), pp. 1–14, 06
2018. doi: 10.1109/ISCA.2018.00012.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In Advances in Neural Information Processing Systems (NeurIPS), volume 29.
Curran Associates, Inc., 2016.

Imperas, 2019. URL https://riscv.org/wp-content/uploads/2019/02/
Imperas-EW-2019-Custom-Instructions-booth-slides-KM.pdf.

10

https://developer.arm.com/Architectures/Arm%20Custom%20Instructions
https://developer.arm.com/Architectures/Arm%20Custom%20Instructions
https://proceedings.mlsys.org/paper/2021/file/f0935e4cd5920aa6c7c996a5ee53a70f-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/f0935e4cd5920aa6c7c996a5ee53a70f-Paper.pdf
https://arxiv.org/abs/2010.11929
http://arxiv.org/abs/1512.03385
https://riscv.org/wp-content/uploads/2019/02/Imperas-EW-2019-Custom-Instructions-booth-slides-KM.pdf
https://riscv.org/wp-content/uploads/2019/02/Imperas-EW-2019-Custom-Instructions-booth-slides-KM.pdf


Published as a conference paper at ICLR 2023

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual Losses for Real-Time Style Transfer
and Super-Resolution. CoRR, abs/1603.08155, 2016. URL http://arxiv.org/abs/1603.
08155.

Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil, James Laudon, Cliff
Young, and David Patterson. A Domain-Specific Supercomputer for Training Deep Neural
Networks. Commun. ACM, 63(7):67–78, jun 2020. ISSN 0001-0782. doi: 10.1145/3360307. URL
https://doi.org/10.1145/3360307.

Patrick Judd, Jorge Albericio, and Andreas Moshovos. Stripes: Bit-Serial Deep Neural Network
Computing. IEEE Computer Architecture Letters, 16:1–1, 08 2016. doi: 10.1109/LCA.2016.
2597140.

Dhiraj D. Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee,
Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen,
Jiyan Yang, Jongsoo Park, Alexander Heinecke, Evangelos Georganas, Sudarshan Srinivasan,
Abhisek Kundu, Misha Smelyanskiy, Bharat Kaul, and Pradeep Dubey. A Study of BFLOAT16
for Deep Learning Training. CoRR, abs/1905.12322, 2019. URL http://arxiv.org/abs/
1905.12322.

Urs Köster, Tristan J. Webb, Xin Wang, Marcel Nassar, Arjun K. Bansal, William H. Constable,
Oğuz H. Elibol, Scott Gray, Stewart Hall, Luke Hornof, Amir Khosrowshahi, Carey Kloss, Ruby J.
Pai, and Naveen Rao. Flexpoint: An Adaptive Numerical Format for Efficient Training of Deep
Neural Networks. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (NeurIPS), pp. 1740–1750, Red Hook, NY, USA, 2017. Curran Associates Inc.
ISBN 9781510860964.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. CoRR, abs/1806.08342, 2018. URL http://arxiv.org/abs/1806.08342.

Yuhang Li, Xin Dong, and Wei Wang. Additive Powers-of-Two Quantization: An Efficient Non-
uniform Discretization for Neural Networks. In International Conference on Learning Representa-
tions (ICLR), 2020. URL https://openreview.net/forum?id=BkgXT24tDS.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects in
context, 2014. URL http://arxiv.org/abs/1405.0312. cite arxiv:1405.0312Comment:
1) updated annotation pipeline description and figures; 2) added new section describing datasets
splits; 3) updated author list.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. ShuffleNet V2: Practical Guidelines
for Efficient CNN Architecture Design. In Proceedings of the European Conference on Computer
Vision (ECCV), September 2018.

Naveen Mellempudi, Abhisek Kundu, Dipankar Das, Dheevatsa Mudigere, and Bharat Kaul. Mixed
low-precision deep learning inference using dynamic fixed point, 2017.

Moritz Menze and Andreas Geiger. Object Scene Flow for Autonomous Vehicles. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

Daisuke Miyashita, Edward H. Lee, and Boris Murmann. Convolutional Neural Networks using
Logarithmic Data Representation. CoRR, abs/1603.01025, 2016. URL http://arxiv.org/
abs/1603.01025.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-Free Quantization
through Weight Equalization and Bias Correction. CoRR, abs/1906.04721, 2019. URL http:
//arxiv.org/abs/1906.04721.

11

http://arxiv.org/abs/1603.08155
http://arxiv.org/abs/1603.08155
https://doi.org/10.1145/3360307
http://arxiv.org/abs/1905.12322
http://arxiv.org/abs/1905.12322
http://arxiv.org/abs/1806.08342
https://openreview.net/forum?id=BkgXT24tDS
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1603.01025
http://arxiv.org/abs/1603.01025
http://arxiv.org/abs/1906.04721
http://arxiv.org/abs/1906.04721


Published as a conference paper at ICLR 2023

NVIDIA. Int4 precision for AI inference (NVIDIA Technical Blog), Aug 2020. URL https:
//developer.nvidia.com/blog/int4-for-ai-inference/.

NVIDIA. TensorFloat-32 in the A100 GPU Accelerates AI Training, HPC up
to 20x, 2022. URL https://blogs.nvidia.com/blog/2020/05/14/
tensorfloat-32-precision-format/.

NVIDIA, 2023. URL https://github.com/nvdla.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and quantiza-
tion. CoRR, abs/1802.05668, 2018. URL http://arxiv.org/abs/1802.05668.

Sai Qian Zhang, Bradley McDanel, and H. T. Kung. FAST: DNN Training Under Variable Precision
Block Floating Point with Stochastic Rounding. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pp. 846–860, 2022. doi: 10.1109/HPCA53966.
2022.00067.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

Sayeh Sharify, Alberto Delmas Lascorz, Mostafa Mahmoud, Milos Nikolic, Kevin Siu, Dylan Malone
Stuart, Zissis Poulos, and Andreas Moshovos. Laconic deep learning inference acceleration. In
2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA), pp.
304–317, 2019.

Synopsys, 2020. URL https://www.synopsys.com/designware-ip/
processor-solutions/arc-700-family.html.

Thierry Tambe, En-Yu Yang, Zishen Wan, Yuntian Deng, Vijay Janapa Reddi, Alexander Rush, David
Brooks, and Gu-Yeon Wei. Algorithm-hardware co-design of adaptive floating-point encodings for
resilient deep learning inference. In 2020 57th ACM/IEEE Design Automation Conference (DAC),
pp. 1–6, 2020. doi: 10.1109/DAC18072.2020.9218516.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks. In Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pp. 6105–6114. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/tan19a.html.

Zachary Teed and Jia Deng. RAFT: Recurrent All-Pairs Field Transforms for Optical Flow (Extended
Abstract). In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
(IJCAI), pp. 4839–4843. International Joint Conferences on Artificial Intelligence Organization, 8
2021. URL https://doi.org/10.24963/ijcai.2021/662. Sister Conferences Best
Papers.

Jianxun Yang, Zhao Zhang, Zhuangzhi Liu, Jing Zhou, Leibo Liu, Shaojun Wei, and Shouyi Yin.
FuseKNA: Fused Kernel Convolution based Accelerator for Deep Neural Networks. In 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA), pp. 894–907,
2021. doi: 10.1109/HPCA51647.2021.00079.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. LQ-Nets: Learned quantization
for highly accurate and compact deep neural networks. ArXiv, abs/1807.10029, 2018.

Tianyu Zhang, Lei Zhu, Qian Zhao, and Kilho Shin. Neural Networks Weights Quantization: Target
None-retraining Ternary (TNT). 2019 Fifth Workshop on Energy Efficient Machine Learning and
Cognitive Computing - NeurIPS Edition (EMC2-NeurIPS), pp. 62–65, 2019.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang. Improving neural
network quantization without retraining using outlier channel splitting. ArXiv, abs/1901.09504,
2019.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental Network Quantization:
Towards Lossless CNNs with Low-Precision Weights, 2017. URL https://arxiv.org/
abs/1702.03044.

12

https://developer.nvidia.com/blog/int4-for-ai-inference/
https://developer.nvidia.com/blog/int4-for-ai-inference/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://github.com/nvdla
http://arxiv.org/abs/1802.05668
https://www.synopsys.com/designware-ip/processor-solutions/arc-700-family.html
https://www.synopsys.com/designware-ip/processor-solutions/arc-700-family.html
https://proceedings.mlr.press/v97/tan19a.html
https://doi.org/10.24963/ijcai.2021/662
https://arxiv.org/abs/1702.03044
https://arxiv.org/abs/1702.03044


Published as a conference paper at ICLR 2023

Feng Zhu, Ruihao Gong, Fengwei Yu, Xianglong Liu, Yanfei Wang, Zhelong Li, Xiuqi Yang, and Jun-
jie Yan. Towards unified INT8 training for convolutional neural network. CoRR, abs/1912.12607,
2019. URL http://arxiv.org/abs/1912.12607.

13

http://arxiv.org/abs/1912.12607


Published as a conference paper at ICLR 2023

APPENDICES

A QUANTIZATION-AWARE FINE-TUNING (QAT)

Fine-tuning Setups. BSFP can also be applied to quantization-aware fine-tuning. The fine-tuning
procedure chooses SGD as the optimizer and sets the learning rate to be 10−6. In addition, we set the
momentum to 0.9 and weight decay to 10−5. The models are fine-tuned on NVIDIA’s V100 GPUs
using a batch size of 100. We extend Pytorch to conduct the algorithmic experiments.

Table 3 shows the quantize-aware fine-tuning comparison between MSFP and BSFP for wide range
of models. The key takeaway is:

• Consistency of the benefits: BSFP consistently achieves higher accuracy using smaller
model size and fewer operations. This demonstrates that the benefits of BSFP is consistent
regardless of post-training quantization or quantize-aware training. Further, we also point
out that BSFP outperforms MSFP in accuracy given ultra low bitwidth.

Table 3: Quantization-aware fine-tuning comparison of accuracy performance as well as hardware
performance of ShuffleNet-v2 Ma et al. (2018), MobileNet-v2 Sandler et al. (2018), ResNets He et al.
(2015) on ImageNet with MSFP and BSFP.

Method Precision 
(W / A) Top-1 (%) Model Size FLOPs/ 

FixOPs (8b) Method Precision 
(W / A) Top-1 (%) Model Size FLOPs/ 

FixOPs (8b)

Sh
uf

fle
N

et
-v

2 FP 32 / 32 69.18 9.1 MB 148.8M

MSFP

8 / 8 68.89 2.4 MB 148.8M
7 / 7 68.30 2.1 MB 113.9M

BSFP
(OURS)

7 [5+2] / 8 69.10 2.3 MB 130.2M
6 / 6 67.56 1.9 MB 83.7M 6 [3+3] / 6 68.63 2.0 MB 83.7M
5 / 5 64.17 1.6 MB 58.1M 5 [4+1] / 4 65.69 1.7 MB 46.5M
4 / 4 44.99 1.3 MB 37.2M 4 [3+1] / 4 62.73 1.4 MB 37.2M

M
ob

ile
N

et
-v

2 FP 32 / 32 71.84 14.0 MB 314.1M

MSFP

8 / 8 71.71 3.7 MB 314.1M
7 / 7 71.19 3.3 MB 240.5M

BSFP
(OURS)

7 [5+2] / 8 71.80 3.5 MB 274.8M
6 / 6 70.27 2.9 MB 176.7M 6 [3+3] / 6 71.17 3.0 MB 176.7M
5 / 5 65.25 2.4 MB 122.7M 5 [4+1] / 4 67.38 2.6 MB 98.2M
4 / 4 45.73 2.0 MB 78.5M 4 [2+2] / 4 66.29 2.2 MB 78.5M

R
es

N
et

-1
8

FP 32/32 69.76 46.8 MB 1.82G

MSFP

8 / 8 69.84 12.4 MB 1.82G
7 / 7 69.73 11.0 MB 1.39G

BSFP
(OURS)

7 [5+2] / 8 70.01 11.6 MB 1.59G
6 / 6 69.64 9.5 MB 1.02G 6 [3+3] / 6 69.85 10.1 MB 1.02G
5 / 5 68.94 8.0 MB 710.9M 5 [3+2] / 4 69.09 8.7 MB 568.8M
4 / 4 64.76 6.6 MB 455.0M 4 [2+2] / 4 69.02 7.2 MB 455.0M
3/ 3 46.59 5.1 MB 255.9M 3 [2+1] / 3 64.85 5.8 MB 255.9M

R
es

N
et

-5
0

FP 32/32 76.13 102.2 MB 4.14G

MSFP

8 / 8 76.26 27.2 MB 4.14G
7 / 7 76.17 24.0 MB 3.17G

BSFP
(OURS)

7 [5+2] / 8 76.30 25.4 MB 3.6G
6 / 6 76.06 20.8 MB 2.3G 6 [4+2] / 6 76.17 22.2 MB 2.3G
5 / 5 75.12 17.6 MB 1.6G 5 [4+1] / 4 76.00 19.0 MB 1.6G
4 / 4 71.57 14.4 MB 1.0G 4 [2+2] / 4 75.04 15.8 MB 1.0G
3 / 3 53.47 11.2 MB 582.2M 3 [2+1] / 3 70.95 12.6 MB 582.2M

B COMPARISON BETWEEN STANDARD QAT AND THE PROPOSED LOW-COST
QAT

To amortize the overheads incurred by grid search during quantization-aware training (QAT), we
propose to quantize only the first batch for every 100 batches to amortize the quantization overheads.
We refer this proposal as low-cost QAT.

To answer the question whether the proposed low-cost QAT will affect the training process, Figure 10
compares the training curve of the standard QAT and low-cost QAT on fine-tuning ShuffleNet-v2
and MobileNet-v2. The takeaway is that the training curve of low-cost QAT is similar to the curve

14



Published as a conference paper at ICLR 2023

55

55.5

56

56.5

57

57.5

58

58.5

59

1 11 21 31 41 51 61 71

To
p-

1 
Ac

cu
ra

cy
 (%

)

Training Steps

Standard QAT
Quantize once in 10 batches
Quantize once in 100 batches

(a)	ShuffleNet-v2 (a)	MobileNet-v2

68

68.5

69

69.5

70

70.5

71

1 11 21 31 41 51 61 71

To
p-

1 
Ac

cu
ra

cy
 (%

)

Training Steps

Standard QAT
Quantize once in 10 batches
Quantize once in 100 batches

Figure 10: Training curve comparison between standard quantization-aware training and low-cost
quantization-aware training for (a) ShuffleNet-v2 and (b) MobileNet-v2.

standard QAT, which quantizes before every batch. This demonstrates that the low-cost QAT can
preserve the training curve while requiring significantly lower search overheads.

C EVALUATIONS ON OTHER TASKS

C.1 OPTICAL FLOW ESTIMATION USING RAFT ON KITTI DATASET

Since our research direction focuses on computer vision, we choose to extend evaluate for BSFP on
DNN-based optical flow estimation Teed & Deng (2021) (KITTI dataset Menze & Geiger (2015)).
Table 4 shows that BSFP consistently outperforms MSFP using same weight precision, which
demonstrates the benefit of BSFP is consistent regardless of the tasks.

Table 4: MSFP and BSFP on RAFT Teed & Deng (2021) for KITTI dataset Menze & Geiger (2015).
BSFP consistently improves the error given same weight precision.

Optical Flow (RAFT) MSFP BSFP
Precision (W) Average end-point error

9 0.658 0.632
7 0.895 0.682
5 2.068 0.905

D DETAILS OF THE CRITERION-OPTIMAL QUANTIZATION FLOW

In order to find the optimal subword mantissas and scalings, we adopt iterative rounding, which
contains the following steps:

1. Enumerate the two scaling factors.
2. List the quantization levels the two scaling factors can generate. The number of quantization

levels is moderate. For example, there are only 64 levels if the two subwords are 2+4 bits.
3. Calculate the MSE between the 16 original weights and their nearest quantization levels.

Finding the nearest quantization level in a list is viable as other quantization schemes, such
as APoT Li et al. (2020), also employ it.

4. Keep the scaling factors that achieve the lowest MSE and go to step 1.

The pseudo code of the criterion-optimal quantization flow is presented in Algorithm 1

E SUPPORTING BSFP ON BIT-PARALLEL ARCHITECTURE

Since some of the hardware, e.g., CPU and GPU, prefers bit-parallel PE architecture, Figure 11
presents the bit-parallel BSFP PE design. The difference between serial PE architecture and parallel

15



Published as a conference paper at ICLR 2023

Algorithm 1 Criterion-optimal quantization flow
Input: Full-precision weight Wfp

Output: Criterion-optimal scalings scopt, Criterion-optimal subword mantissas manopt

Require: Subword configurations configsub, Scaling configurations configsc
Criterion← max
SC ← Enum(configsc) ▷ Enumerate all scaling setups to form search space SC
for sccur ∈ SC do ▷ For every sccur of the search space SC

listquant ← BuildQlist(sccur, configsub) ▷ Find all quantization levels using sccur
Wquant ← Quant(Wfp, listquant) ▷ Quantize Wfp to its nearest levels in list
Criterioncur ←MSE(Wfp, Wquant) ▷ Compute the MSE criterion
if Criterioncur < Criterion then. ▷ Update the scale and subword mantissas

scopt ← sccur
manopt ← mancur

Criterion← Criterioncur

end if
end for

PE architecture is that the scaling units need to be unrolled, which incurs some overheads. BSFP’s
benefits of smaller model size and lower arithmetic complexity remain unchanged.

Further, we can achieve uneven subword configurations by fixing the upper multipliers and adjusting
only the weight precision of lower multipliers (red weights).

…
…

Scaled Parallel Processing Engine (SPPE)

Adder 

+

Accumulator

Scalew

Fixed-Point
↓

bfloat16

Scaling

expa

Multipliers

…

Shifting

…
Sign Exponent Mantissa

+

+

+

+

Cycle 1

1st subword

WbsfpAmsfp

…

Scalings

+

+

+

+

+

<<
<<

expw

16×

16×

2nd subword
…16

Figure 11: Proposed scaled parallel processing engine.

BSFP can be efficiently deployed in newly-manufactured devices, including customized AI accelerator
IPs, which represent a significant amount of AI products including smartphones and smart appliances.
For example, Nvidia NVDLA NVIDIA (2023), Qualcomm Hexagon Tensor Accelerator Codrescu
(2013), and MIT Eyeriss Chen et al. (2017). Such IPs are embedded in emerging AI chips for
smartphones, appliances, robots, etc. Since customized, embedded AI accelerator IPs are not obligated
to support standard data types, the proposed BSFP type, which improves weight quantization quality
(including post-training quantization, which is even difficult and desirable), will stand out as a
candidate for chip designers to consider and adopt in their new design.

As for CPUs, although they are not our only focus, letting newly-manufactured CPUs support BSFP
is not difficult, and the computation will be efficient. Modern CPUs, including RISC-V, ARM,
and Synopsys ARC, allow custom ISA extensions Imperas (2019); Arm (2020); Synopsys (2020).
Designers can provide an add-on digital circuit that natively and efficiently supports BSFP using low-
bit, fixed-point adders and multipliers. Vendors already offered the required design/simulation flow,
CPU generator, and toolchain generator to facilitate designers to employ the extended instructions,
e.g., vector product instructions between BSFP weights and MSFP activations.

16



Published as a conference paper at ICLR 2023

F DETAILS OF THE HARDWARE COMPARISON

Processing Engine Details: Table 2 compares 16-wide PEs in different number formats, i.e., BF16,
INT4, INT8, Power-of-Two, MSFP, and BSFP, following similar setup in FAST Qian Zhang et al.
(2022). The architectural details for these PEs are summarized below:

• The BF16 (brain float) PE adopts bit-parallel architecture, which computes 16-wide BF16
multiplications and reduces them to a single partial sum. The accumulator is in BF16 format.

• The INT4 and INT8 PEs also adopt bit-parallel architectures, which perform 16-wide MAC
and generate 12b and 20b partial sum, respectively. The accumulator then accumulates it
using INT32 format.

• The Power-of-Two PE shifts 16 inputs based on the weight values and reduces 16 products
to a single partial sum. The accumulator is in INT32 format.

• The serial MSFP PE Qian Zhang et al. (2022) computes 16 2b-to-2b multiplications per cycle
and shifts them to accumulate for the correct partial sum. We adopt the BF16 accumulator.

• The proposed S2IP supports BSFP, which computes 16-wide 2b or 1b multiplications per
cycle and scale-and-shifts them to accumulate for correct partial sum. The accumulator is in
BF16 format.

Additional Notes:

• The adder tree output precisions of every PEs are optimized to their minimum.

• ALL of the PEs obtain similar slack profiles.

Performance Analysis Setup: We adopt iso-area performance setup to fairly compare different
number systems, which is widely adopted by top architecture papers Sharify et al. (2019); Yang
et al. (2021). In other words, if the size of BF16 PE is 26× larger than that of the BSFP PE, we are
allowed to allocate 26× more PEs for BSFP. Besides PE parallelism, we also consider the multi-cycle
computation of serial architecture to reasonably estimate the performance.

Power Analysis Setup: We implement all of the above PEs using Verilog and synthesis them using
Synopsys Design Compiler (topographical mode) on the TSMC 40 nm node. Specifically, the power
of each module is analyzed with average switching activity. We then utilize the power profiles to
estimate throughput per Watt.

G PER-LAYER SKEWNESS ANALYSIS

Figure 12 analyzes the absolute skewness for weights of each layer without slicing weights into
vectors. We observe that most layers’ skewness is low (i.e., ≤0.5), which matches the summary of
prior works that weight values follow bell-shape and non-skewed distribution.

Through a side-by-side comparison between Figure 12 and Figure 13 (same as Figure 7; We copy it
here for easier comparison), we clearly observe that vectorization is one source of more considerable
skewness on Figure 13.

0

0.5

1

1.5

1 11 21 31 41 51

Ab
so

lu
te

 S
ke

w
ne

ss

(a) ShuffleNet-v2

Ab
so

lu
te

 S
ke

w
ne

ss

(b) ResNet-18

Layer Layer

Low skewness

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Low skewness

Figure 12: Per-layer absolute skewness of (a) ShuffleNet-v2 and (b) ResNet-18. Most of the layers
obtain low skewness, which matches the analysis reported by prior works.

17



Published as a conference paper at ICLR 2023

Pr
op

or
tio

n 
(%

)

(a) ShuffleNet-v2

Pr
op

or
tio

n 
(%

)

(b) ResNet-18

Layer Layer
0

10

20

30

40

50

60

70

80

1 11 21 31 41 51

0.5 < SK < 1.0 1.0 < SK < 1.5 1.5 < SK
0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.5 < SK < 1.0 1.0 < SK < 1.5 1.5 < SK

Figure 13: Per-vector absolute Pearson’s skewness coefficient (SK) of (a) ShuffleNet-v2 and (b)
ResNet-18. In general, very highly skewed means SK > 1.5, highly skewed means SK > 1.0, and
moderately skewed means 1.0 > SK > 0.5.

H SEARCHING FOR BSFP CONFIGURATIONS

To obtain the scaling factor configurations (1-4-3, 1-3-3) and the exponent biases (-8, -3), we use
the following steps to empirically set them. This method is acceptable as neural networks naturally
posses many hyper parameters.

1. Begin with setting scaling factors to BF16 (1-7-8), a sufficiently precise format.
2. Given the scaling factors, find the narrowest bitwidths of subwords that causes an accuracy

drop less than a first budget. For example, 5+2 bits are selected.
3. Given the subword settings, reduce the bitwidths of scaling factors and sweep the the biases

to a point that the overall accuracy drop is less than a second budget. This step lead us to
(1-4-3, 1-3-3) and biases (-3,-8).

I ADDITIONAL COMPARISON OF BSFP AND MSFP (BFP)

Compared to Vanilla BFP (MSFP), BSFP lowers the flexibility converting from full-precision weights,
but BSFP gains richer flexibility to approximate and convert back to full-precision weights. In view
of the different characteristics of weights and activations, it should be a reasonable option to adopt
BSFP for weights and MSFP for activations.

BSFP focuses on fine-tuning-free, post-training quantization (as well as inference), which are our
heard realistic demands from the industry. Though BSFP-based training is beyond the scope, here we
provide a proposal.

First, each BSFP vector is a weighted sum of two Vanilla BFP vectors. Therefore, by letting the
scaling factors be trainable parameters, it is possible to leverage a Vanilla BFP framework to train
BSFP networks in the first place without resorting to decomposition-based quantization.

Second, one can employ Vanilla BFP training for the majority of training epochs in the beginning
and switch to BSFP training only at the last few epochs.

18


	Introduction
	Related Works
	Block and Subword-Scaling Floating-Point (BSFP)
	BSFP Configurations
	Evaluations
	Model Size-to-Accuracy and Vector Length-to-Model Size Trade-offs
	Quantizing using Different Criterion
	Kullback-Leibler Divergence Analysis
	Per-vector Absolute Pearson's Skewness Analysis
	Weight Precision-to-Accuracy Pareto Frontier
	Accuracy to Performance and Accuracy to Energy Efficiency Comparisons

	Conclusions
	Quantization-aware Fine-tuning (QAT)
	Comparison between Standard QAT and the proposed Low-Cost QAT
	Evaluations on Other Tasks
	Optical Flow Estimation using RAFT on KITTI dataset

	Details of the Criterion-optimal quantization flow
	Supporting BSFP on Bit-parallel Architecture
	Details of the Hardware Comparison
	Per-Layer Skewness Analysis
	Searching For BSFP Configurations
	Additional Comparison of BSFP and MSFP (BFP)

