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Figure 1. Overview of the 3D scene analogy task. (a) Given two scenes with regions possibly having similar contexts, (b) the 3D scene
analogy task aims to find a dense 3D mapping between the corresponding regions. (c) The estimated maps can then be used for applications

such as object placement or motion trajectory transfer.

Abstract

Understanding scene contexts is crucial for machines to
perform tasks and adapt prior knowledge in unseen or noisy
3D environments. As data-driven learning is intractable to
comprehensively encapsulate diverse ranges of layouts and
open spaces, we propose teaching machines to identify rela-
tional commonalities in 3D spaces. Instead of focusing on
point-wise or object-wise representations, we introduce 3D
scene analogies, which are smooth maps between 3D scene
regions that align spatial relationships. Unlike well-studied
single instance-level maps, these scene-level maps smoothly
link large scene regions, potentially enabling unique appli-
cations in trajectory transfer in AR/VR, long demonstration
transfer for imitation learning, and context-aware object re-
arrangement. To find 3D scene analogies, we propose neu-
ral contextual scene maps, which extract descriptor fields
summarizing semantic and geometric contexts, and holisti-
cally align them in a coarse-to-fine manner for map estima-
tion. This approach reduces reliance on individual feature
points, making it robust to input noise or shape variations.
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Experiments demonstrate the effectiveness of our approach
in identifying scene analogies and transferring trajectories
or object placements in diverse indoor scenes, indicating its
potential for robotics and AR/VR applications. Project page
including the code is available through this link: https:
//82magnolia.github.io/3d_scene_analogies/.

1. Introduction

The 3D world is rich in contextual information, shaped by
the interplay of object placements and surrounding open
spaces [5, 66]. The function of an object is often flexible,
shifting according to its location and spatial relationship to
nearby elements; a table might serve as a TV stand in one
context or as a tea table beside a sofa in another. Captur-
ing these nuanced, high-dimensional relationships is chal-
lenging. Decades of research in cognitive psychology [27—
29, 31, 52, 73] suggest that humans rely on analogical rea-
soning to relate familiar scenes from past experiences to
new observations. In Figure 1, humans can intuitively re-
late areas near a sofa-and-table setup in one room to simi-



lar areas in another, yet enabling machines to perform this
mapping is far from straightforward. To achieve this, one
must transfer not only the positions of objects but also their
surrounding context which cannot be done through simple
object or point-wise matching. How can we formulate this
problem and extract generalizable representations that en-
code intricate object relationships and spatial context?

To address these challenges, we propose the 3D scene
analogy task of estimating a dense map between scenes
that share similar contexts, as shown in Figure 1. This task
demands a smooth map that preserves spatial coherence, al-
lowing consistent relationships across mapped regions with-
out abrupt transitions. By capturing both individual object
placements and their surrounding context, the mapping en-
ables transferring spatial arrangements between scenes in a
structure-aware manner. This contrasts with conventional
feature matching from vision foundation models [7, 70, 74]
or 3D keypoints [15, 101], which are often computationally
costly or lack scalability for fine-grained scene mapping.
Moreover, these features struggle to capture semantic rela-
tionships or nuanced contextual cues necessary for transfer-
ring arrangements across scenes [39, 69]. As such, our task
requires a holistic understanding of scene context, allow-
ing for applications where spatial continuity and hierarchi-
cal understanding are critical. One example is in imitation
learning for robotics and AR/VR [12, 13], where scene-to-
scene task transfer can be more practical than generalizing
control policies across environments.

Despite its practical benefits, the 3D scene analogy task
poses unique challenges not addressed by traditional cor-
respondence methods. First, a lack of dense ground-truth
training data complicates learning, as contextual informa-
tion varies widely across near-infinite scene configurations.
Second, the task demands holistic reasoning about object
relationships and surrounding open spaces at the point level,
extending beyond conventional keypoint or scene graph
matching methods, which often simplify objects as sparse
keypoints or bounding boxes [15, 19, 37, 60, 61, 102]. Fi-
nally, robustness to appearance variation is crucial for man-
aging cross-domain differences effectively.

As an effective solution to the 3D scene analogy prob-
lem, we introduce neural contextual scene maps. For a
pair of 3D scenes, our method builds descriptor fields that
capture detailed spatial relationships and finds matches by
aligning the fields using a smooth map. Input to our method
are sparsely sampled scene keypoints and their semantic in-
formation, resulting in a lightweight pipeline robust to in-
put variations, noisy geometry, and appearance changes.
Then the descriptor fields gather vicinity information to ex-
tract context-aware features. The fields are trained with
contrastive learning, eliminating the need for densely la-
beled ground-truth data or inductive biases. Finally, our
method estimates a smooth map aligning the descriptor
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fields through a coarse-to-fine procedure, which reduces
the dependence on individual keypoints to reason about the
overarching regional relations holistically.

Our approach effectively identifies accurate scene analo-
gies for complex indoor scenes including noisy 3D scans,
and is applicable to practical downstream tasks. Quanti-
tative results show that our method outperforms baselines
using vision foundation models [7, 14, 19, 67] or scene
graphs [75, 98] on both real and synthetic 3D scenes, de-
spite using a smaller feature dimension and training data.
Additionally, our method also supports mapping between
real and synthetic scenes indicating its robustness against
input domain variations. We further demonstrate that our
pipeline can be used for downstream tasks such as motion
trajectory transfer and object placement, which can be ex-
tended to transfer long-term demo trajectories for robotics
or create co-presence experiences for AR/VR applications.

To summarize, our main contributions are: i) introducing
the 3D scene analogy task to find dense mappings between
scene regions with common contexts, ii) developing neural
contextual scene maps that combine spatial and semantic
contexts of 3D keypoints to create smooth, detailed maps,
and iii) demonstrating our method’s generalizability across
various inputs and applications.

2. Related Work

Instance and Group Correspondences While the 3D
scene analogy task is fairly new, there is extensive research
on related problems in correspondence estimation, catego-
rized by input settings and granularity. On the instance
level, sparse matching methods in 2D (i.e., semantic corre-
spondence) [19, 48, 62] and 3D [15, 68, 88] extract neural
network features at keypoints to match between instances
within the same semantic category. Similarly, dense match-
ing methods in 2D (also known as semantic flow) [32, 36—
38, 45-47, 65] exploit dense features and correlate them in
the entire image space for matching. On the other hand,
dense matching methods in 3D [23, 50, 63, 64] often start
by finding sparse correspondences and optimizing smooth
surface maps that pass through them. Our approach extends
instance-level dense matching methods to finding dense
maps over scene regions in 3D sharing similar contexts.
Unlike instance-level, most approaches in group-level
correspondence target keypoint or object-wise matches. In
the 2D case, multi-instance semantic correspondence [54,
72, 81, 99] aims to link sparse keypoints from an object
instance in one image to multiple corresponding instances
in another. For 3D, scene graph matching [58, 75, 87, 98]
seeks correspondences between graphs representing 3D ob-
jects as nodes and their relationships as edges [2]. In con-
trast to these methods focusing on sparse matches, our work
finds dense maps of contextually corresponding regions, ac-
counting for both near-surface points and open spaces.
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Figure 2. Overview of our approach. Given a region of interest
from object groups in the target scene, our method finds a smooth
map to the corresponding region in the reference scene.

Neural Fields Neural fields are spatio-temporal quanti-
ties that are parameterized fully or partially by a neural net-
work [97]. Prominent applications of neural fields include
photorealistic 3D reconstruction [11, 30, 59], 3D geome-
try extraction [91, 100], and SLAM [89, 90, 105]. While
these studies primarily focus on visual fidelity and geomet-
ric accuracy, more recent works apply neural fields to se-
mantic scene understanding [23, 35, 103] and robot motion
planning [78-80, 92, 93]. Notably, studies on robot ma-
nipulation build fields using features from vision founda-
tion models [7, 14, 67, 104] for establishing matches be-
tween observations during training and deployment. Our
work aims to establish dense, context-aware correspon-
dences that extend beyond visual/geometric fidelity or spe-
cific tasks such as manipulation. Further, while recent
works in robotics [79, 104] consider transfer methods for
single objects, our work enables transfer between multi-
ple objects, encouraging future robotics research on multi-
object demonstration transfer. Utilizing an efficient neu-
ral field based on sparse 3D keypoints, we achieve pre-
cise matches for both near-surface and open-space regions,
which is difficult to attain from existing works.

3. Method: Neural Contextual Scene Maps

Given a pair of scenes, our method finds a mapping from
a region of interest in one scene to the corresponding re-
gion with similar scene contexts in the other scene (Fig-
ure 2). From a sparse set of points sampled in 3D scene
models (Section 3.1), our method first builds context de-
scriptor fields that summarize the nearby geometry and se-
mantic information for arbitrary query points (Section 3.2).
Based on descriptor fields, our method finds the dense map
in a coarse-to-fine manner, by first extracting an affine map
followed by local displacement maps (Section 3.3).

3.1. Input Setup

Region of Interest (Rol) Representation Let Sy, denote
the target scene, where the region of interest (Rol) is cho-
sen, and Ss the reference scene, to which the target scene
region is mapped. As shown in Figure 2, we represent the
Rol as a set of points Proy C R3, sampled from the surface
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Figure 3. Overview of context descriptor fields. Using sparsely
sampled keypoints as the scene representation, for an arbitrary
query point q, the field gathers points within a radius r and com-
putes a Transformer embedding based on the distance embedding
do(||g — pl|2) and semantic embedding s4(1label(p)).

of the object group we aim to match.

We then define the neural contextual scene map as a
mapping F'(-) : conv(Sis) — conv(Sker), where conv(S) C
R3 denotes the convex hull enclosing scene S. The scene
map transforms points Pro; to corresponding points in
conv(S) sharing similar scene contexts. Note, while we
use specific points for feature encoding and loss calcula-
tion, the final output is a dense map across spatial regions,
allowing us to find correspondences for any arbitrary point
within the region. As an illustrative sample, Figure 1 shows
our method mapping between a sofa-and-table group in the
target scene to a similar object group in the reference scene.

Scene Representation As shown in Figure 3, our method
operates on a lightweight representation of scenes, using
sparsely sampled keypoints from the original dense 3D
model for efficiency. Formally, each scene is represented
as a tuple S = (O, C') with an object set O and scene cor-
ner points C' C R®. The object set O = {(P;,l;)} consists
of points and semantic labels for each object in the scene
where P; C R? denotes the point coordinates of the i ob-
jectandl; € {1,..., L} denotes its semantic label among L
classes. Scene corner points are either obtained from floor-
plan data if available [25, 26] or from points on convex hulls
enclosing the scenes [18].

3.2. Context Descriptor Fields

Using sparse input representations, we design descriptor
fields as lightweight scene representations that summarize
scene context for arbitrary locations by aggregating nearby
semantic and geometric information. For a scene S and
a query point q € conv(S), the context descriptor field
Dg(+) : R? — R< outputs a d-dimensional feature vector.

As shown in Figure 3, we implement the descriptor field
using a Transformer encoder [85, 92]. The encoder first ag-
gregates points in .S that lie within distance 7 from q, which
we denote as B(q; S, ). For each point p € B(q; S,r), we
concatenate a learned distance embedding dy(||q—p||2) and
a semantic embedding s,(label(p)) as Transformer input
tokens. The descriptor field is defined as follows:

Dg(q; S,r) = Transformer({Token(p)}pecn(q;s,r));
(D



where Token(p) = Concat(dg(||gq—p||2), s4(1abel(p))).
To obtain the feature vector summarizing the input tokens,
we append a learnable [CLS] token to the input token se-
quence in Equation | and use its output embedding as the
final field vector [16, 17].

Descriptor fields holistically aggregate semantic and ge-
ometric information, enabling reasoning about fine-grained
contextual correspondences. As an illustrative sample, Fig-
ure 4 shows the trained field distances between query points
selected at open spaces in the target scene against uniformly
sampled points in the reference scene. Notice sharp peaks
are found only near chair arms next to the table corner (and
not all chair arms), which indicates that descriptor fields can
reason about detailed scene contexts.

3.2.1. Training Descriptor Fields

To train descriptor fields, we employ contrastive learn-
ing [8-10, 84, 96] on procedurally generated positive and
negative scene pairs. Contrastive learning operates by max-
imizing the similarity of representations for positive data
pairs with common attributes while minimizing similarity
for negative pairs with dissimilar attributes. Since con-
trastive learning only requires positive and negative data
pairs [8, 9, 96], our method can learn effective context-
aware representations for descriptor fields without densely
labeled training data, or hand-tuned inductive biases.

Dataset Generation As shown in Figure 5, we propose
an automated procedure to generate positive and negative
scene pairs. Our pipeline assumes a source dataset con-
sisting of 3D scenes Dy,.={S;} with known object poses.
Among the many possible definitions for a “correct” cor-
respondence (e.g., appearance [76], style [56], or seman-
tics [60]), we target finding point matches that share com-
mon nearby object semantics and local geometry, inspired
from works in semantic correspondence [60, 61]. Based
on this notion, the positive pairs (.5;, S;’ ) are generated by
swapping objects in each scene S; with randomly selected
objects sharing the same semantic label from other scenes
Dge \ S;. Here, the objects for replacement are sampled
from the top-K (=100) list of objects having the most similar
aspect ratios. Next, the negative pairs (S;,.S; ) are gener-
ated by adding noise perturbations to the object poses, simi-
lar to LEGO-Net [95]. Note that we constrain the pose noise
to planar translation and z-axis rotation to prevent floating
objects or ground penetrations. The resulting triplet dataset
Dyiplee=1 (5, S;", S;)} is used for training.

Contrastive Learning We extract query points from the
generated scene triplets (S;, S;", S;") for contrastive learn-
ing. Specifically, for each object in the source scene o € S;
and its corresponding object ot € S;r , we sample an equal
number of query points @, QT within the objects’ oriented
bounding box. Since objects o and o™ share the same pose,
we can associate each positive pair query point q* with its
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Figure 4. Visualization of feature distances in open spaces. For
a query point (red) in the target scene lying on the chair arm,
we show the descriptor field distances against densely sampled
points in the reference scene. Field values are only similar for
chair arms near table corners, indicating that descriptor fields can
reason about fine-grained contextual correspondences.
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Figure 5. Context descriptor field training overview. We replace
each object in scene Sy with one with the same semantic label to
create the positive scene ST, and apply pose noise to obtain S~ .
Contrastive learning is then applied to descriptor fields computed
from points sampled within the object’s bounding box.

corresponding source query point q € (), as shown in Fig-
ure 5. Setting the negative query points as identical loca-
tions to the positive query points, the contrastive learning
objective is defined as an InfoNCE loss [8, 84, 96] namely,

L= —log

a,qt

eXp (Da(q; S,m)" De(qt; ST, 7)/7)
> exp(De(q; S, 1) Do (qt; S,7)/7)

Ses

2)
where § = {ST,57} and 7 is a temperature parameter
set to 0.2 in all our experiments. Our training objective en-
forces the descriptor field to output similar embeddings for
points lying on positive scene pairs and dissimilar embed-
dings for those on negative scene pairs. The trained fields
are then used to estimate scene maps in the next section.

3.3. Contextual Scene Map Estimation

We now create a smooth map aligning the descriptor fields
between two scenes. The design intentionally respects spa-
tial vacancies and fine details near keypoints while reducing
reliance on individual descriptors for enhanced robustness.
Here, we employ a coarse-to-fine procedure to calculate
the contextual map, as shown in Figure 6. Since there are
many possible scene arrangements, the target and reference
scenes may contain a different number of objects with shape
variations. The coarse initialization with the smooth map-
ping can effectively ignore minor deviations between the
two scenes and focus on deducing a holistic map. Specifi-
cally, we decompose the contextual scene map into an affine
map and local displacements,

F(x):=

Ax +b + dy(x; Prot), 3)
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Figure 6. Scene map estimation process overview. Our method
first estimates affine maps to account for large transformations,
and finds local displacements for detailed alignment.

where A € R3*3, b € R3 are the affine map parameters.
We express the local displacement map as a linear combi-
nation of radial basis functions [24, 33],

du(%; Prot) = »_ wip(||x — pil]), )
k

where the control points are set as points on the Rol p; €
Pror described in Section 3.1. The basis function is set
as the thin plate spline ¢(7) := 72log(r). Intuitively, the
affine map accounts for large, global transformations, and
the local displacement map provides a fine-grained align-
ment for regions with similar contexts.

Affine Map Estimation We extract a pool of affine maps
by combinatorially associating object pairs in scenes Sig
and Ser, and optimize the initial maps from descriptor
field alignment. Due to the low-dimensional structure of
affine maps and the sparse keypoint representation, we can
quickly select maps for further optimization. For each ob-
ject pair (O, Orer) With centroids (cig, Crer), We create a set
of affine maps by associating object centroid displacements
Cigt — Crer With Nyypo uniformly sampled rotations and re-
flections in SO(2). From the resulting |Oyg| X | Oref| X Norino
maps, we calculate the following cost function for each
affine map (A, b),

Ccoa.rse: Z ||D<I>(P, Stgt) - D<I>(Ap + b; Sref) ||7 (5)
PE Pral

where the descriptor fields are compared for points lying on
the Rol Fgrer. Note we have omitted the radius input r for
brevity. As the next step, we select K qarse affine maps with
the smallest cost values and perform a simple outlier object
filtering procedure to remove objects in the Rol that are not
matchable to the reference scene, where details are deferred
to the supplementary material. After outlier removal, we
optimize each affine map by minimizing the cost in Equa-
tion 5 with gradient descent [42, 51].

Local Displacement Map Estimation We finally refine
each affine map (A, bopt) selected from the previous step
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by further aligning fields with local displacements. Specifi-
cally, we minimize the following cost function

C'ﬁne: Z HD<I>(p;Stgl)_D¢(Aoptp+bopt+6§ Sref)” (6)
PE Prot

where § = dy,(p; Pror) is the local displacement defined
in Equation 4. Similar to affine map estimation, we opti-
mize the basis function weights wj, by minimizing Equa-
tion 6 with gradient descent. Finally, our method outputs
the mapping with the smallest cost if the cost value is below
a designated threshold py,iq, Or otherwise labels the Rol to
be unmappable to objects in the reference scene.

4. Experiments

We evaluate our method for estimating 3D scene analogies
on a wide range of 3D scenes (Section 4.1) and examine
applicability in downstream tasks (Section 4.2).

Baselines As finding 3D scene analogies is a new task,
we compare our method against several contrived base-
lines, which are adaptations of recent 3D scene understand-
ing pipelines [7, 19, 67, 75, 82, 93, 94]. First, the scene
graph matching baseline constructs 3D scene graphs [2] and
matches them via graph matching [87] followed by affine
map estimation from object centroids. Next, the multi-view
semantic correspondence baseline estimates 2D semantic
correspondences between image rendering pairs of the in-
put scenes using DINOv?2 features [14, 19, 67], and lifts the
2D matches to 3D via back-projection.

The visual feature field and 3D point feature field both
generate 3D feature fields similar to our method and apply
the map estimation from Section 3.3. The visual feature
field uses back-projected DINOvV2 [67] features from scene
renderings [93], while the 3D feature field extracts Vector
Neuron [15] features for 3D keypoints and interpolates them
for arbitrary queries [94]. We discuss further details in the
supplementary material.

Datasets We evaluate two diverse indoor scene datasets:
synthetic 3D scenes from 3D-FRONT [25] and real 3D
scans from ARKitScenes [4] that include object semantic,
instance, and pose labels suitable for training and eval-
uation. Context descriptor fields are trained separately
on each dataset. We generate 10,000 training triplets for
3D-FRONT [25] using the procedure in Section 3.2.1 and

4,498 triplets for ARKitScenes [4] following the standard

train/test split. In the absence of densely annotated ground-

truth, we prepare two types of evaluation data to assess 3D
scene analogies.

* Procedurally generated scene pairs: For each scene, we
randomly select object groups and procedurally create a
new scene containing them. Since object poses are known
for the generated group matches, we apply the Hungarian
algorithm [53] to obtain pseudo ground-truth maps.



Metric ‘ PCP ‘ Bijectivity PCP ‘ Chamfer Acc.
Threshold | 025 050 | 025 050 | 0.5 020
Scene Graph Matching 0.26 0.42 0.29 0.47 0.32 0.48
Multi-view Semantic Corresp. | 0.10 0.20 0.14 0.21 0.62 0.86
Visual Feature Field 0.50 0.66 0.52 0.61 0.81 0.86
3D Point Feature Field 0.56 0.71 0.60 0.68 0.86 0.89
Ours 0.76 0.90 0.92 0.94 0.97 0.99

(a) Procedurally Generated Scene Pairs

Metric | Bijectivity PCP | Chamfer Acc.
Threshold | 025 050 | 015 020
Scene Graph Matching 0.22 0.36 0.27 0.40
Multi-view Semantic Corresp. | 0.03 0.06 0.21 0.45
Visual Feature Field 0.56 0.58 0.69 0.75
3D Point Feature Field 0.53 0.56 0.64 0.69
Ours 0.70 0.73 0.71 0.76

(b) Manually Collected Scene Pairs
Table 1. 3D scene analogy comparison in 3D-FRONT [25].

Manually collected scene pairs: We collect scene pairs
with co-present object groups, along with pairs lacking
common object groups to check whether any false posi-
tive 3D scene analogies are found.

We defer details on evaluation data preparation to the sup-
plementary material.

Implementation Details On both datasets, we extract ob-
ject keypoints from the dense 3D model using farthest point
sampling [20]. Scene corner points are obtained from the
floorplan corners for 3D-FRONT [25, 26], and from con-
vex hull points for ARKitScenes [4]. For descriptor fields,
we set r=0.75 and d=256. During scene map estimation,
we set Norho=16, Kcoarse=9, pPvatia=1.5, and optimize scene
maps using Adam [51] with step size 1073.

4.1. Performance Analysis

Metrics We use three metrics for quantitative evaluation:
Percentage of Correct Points (PCP) [37, 60, 61, 102]:
This metric is used for procedurally generated scene
pairs with pseudo ground-truth annotations. For points
on the region of interest, the metric is defined as fol-
lows, PCP(Paot)=1/ | Pratl Xy p LI (D)~ pall<al,
where « is a threshold parameter.

Bijectivity PCP [63, 64]: After computing an in-
verse scene map F () St — Sy taking
F(Pgror) as input, this metric is defined as follows:

Bi-PCP(Prot)=1/|Prot| 3 e p,, LIF " oF (p)—pll<al.

Chamfer Accuracy: The metric is defined as the per-
centage of predictions where i) the Chamfer distance [3,
22] between mapped points F'(Pgor) and sampled points
in Spr is below a threshold, or ii) no mappings are output
for scene pairs with no common object groups.

The PCP and Bi-PCP metrics measure point-level accuracy
of the estimated maps, while Chamfer accuracy evaluates
group-level accuracy and penalizes false positive maps.

4.1.1. Scene Map Evaluation

3D-FRONT We first present a quantitative comparison
of the scene analogies found from our method with those
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Reference

Target

Figure 7. Visualizations of estimated 3D scene analogies in 3D-
FRONT and ARKitScenes. We show mapping results both for
near-surface and open-space points.

from baselines on 3D-FRONT [25] in Table 1. Our method
consistently outperforms the baselines across all metrics for
both procedurally generated and manually collected pairs.
A large performance gap exists compared to the scene graph
matching baseline, as it treats objects as single nodes, lack-
ing geometric granularity. A similar trend is observed with
the multi-view semantic correspondence baseline. While
recent semantic correspondence methods excel at single ob-
ject matching [19, 60, 61], they struggle to account for spa-
tial relationships among multiple objects. Further, the fea-
ture field baselines based on DINOv2 [67] and Vector Neu-
rons [15] also exhibit lower performance compared to our
method, despite using the same coarse-to-fine map estima-
tion process. Our method’s contrastive learning pipeline
enables effective descriptor extraction for highly accurate
mappings, as shown in Figure 7.

ARKitScenes We conduct further assessments on ARK-
itScenes [4], which, unlike 3D-FRONT, contains 3D scene
meshes from real-world RGB-D camera measurements with
noisy geometry and object layouts. As shown in Table 2,
our method outperforms baselines on most metrics, simi-
lar to 3D-FRONT [25], and generates accurate mappings
as shown in Figure 7. This indicates that our descriptor
fields and coarse-to-fine mapping scheme robustly handle
the noisy inputs from real 3D scans. Nevertheless, all met-



Metric ‘ PCP ‘ Bijectivity PCP ‘ Chamfer Acc.
Threshold | 025 050 | 025 050 | 0.15 020
Scene Graph Matching 0.39 0.57 0.43 0.62 0.57 0.72
Multi-view Semantic Corresp. | 0.10 0.21 0.10 0.18 0.59 0.78
Visual Feature Field 0.55 0.74 0.58 0.71 091 0.88
3D Point Feature Field 0.65 0.81 0.70 0.77 0.88 0.92
Ours 0.75 0.90 0.90 0.94 0.96 0.99

(a) Procedurally Generated Scene Pairs

Metric | Bijectivity PCP | Chamfer Acc.
Threshold | 025 050 | 015 020
Scene Graph Matching 0.25 0.37 0.33 0.45
Multi-view Semantic Corresp. | 0.06 0.12 0.31 0.50
Visual Feature Field 0.26 0.29 0.40 0.42
3D Point Feature Field 0.41 0.49 0.51 0.60
Ours 0.51 0.62 0.59 0.69

(b) Manually Collected Scene Pairs

Table 2. 3D scene analogy comparison in ARKitScenes [4].

Reference
Figure 8. Visualizations of Sim2Real and Real2Sim scene analo-
gies estimated between 3D-FRONT and ARKitScenes.

Target

rics show a consistent performance drop compared to the
3D-FRONT [25] results in Table | for manually collected
scene pairs. We attribute this drop to largely incomplete
geometry in several manually split scenes, which could be
solved by modifying the cost functions in Equation 5, 6 to
account for such outliers. While such a level of incomplete-
ness is uncommon in real-world applications, addressing
this issue is left for future work.

Sim2Real and Real2Sim Map Estimation We investi-
gate if our method can find analogies between synthetic
3D models in 3D-FRONT [25] and real scans in ARK-
itScenes [4]. Such capability is valuable for robotics and
AR/VR applications: transferring pre-trained robot policies
from virtual simulators to the real world [13], or enabling
immersive telepresence by mapping real-world objects to
their virtual counterparts [77]. Figure 8 shows estimated
scene analogies for both sim-to-real and real-to-sim scenar-
ios, using descriptor fields trained on 3D-FRONT [25] in
both cases. The coarse-to-fine process allows holistic scene
mapping, avoiding over-focus on individual descriptors and
achieving reliable mappings across different domains. Ad-
ditional results are in the supplementary material.
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Metric ‘ Bijectivity PCP ‘ Chamfer Acc.

Threshold | 025 050 | 015 0.20
Ours w/ CLIP Emb. [70] 0.77 0.81 0.91 0.97
Ours w/ Sentence Emb. [71] 0.78 0.82 0.92 0.97
Ours w/o Local Displacement 0.83 0.89 0.77 0.85
Ours 0.90 0.92 0.94 0.96

Table 3. Ablation study of neural contextual scene maps, averaged
on manual and procedural scene pairs from 3D-FRONT [25].

4.1.2. Ablation Study

Compatibility with Vision and Language Foundation
Models We assess our method’s compatibility with vision
and language foundation model features [16, 67, 70, 71]
by training variants of the context descriptor fields using
CLIP [70] or sentence embedding [71] in place of the se-
mantic embedding described in Section 3.2. CLIP fea-
tures are extracted from frontal view renders of each ob-
jectin 3D-FRONT, while sentence embeddings are obtained
by captioning each object renders with a vision-language
model [1] and extracting text embeddings [71]. Table 3
shows scene map accuracy for manual and procedural scene
pairs, with performance comparable to the original seman-
tic embeddings and outperforming all the baselines. This
shows that our method can effectively incorporate founda-
tion model features without explicit semantic labels.

Local Displacement Maps We finally ablate the coarse-
to-fine mapping procedure by comparing our method to a
variant that omits the local displacement estimation process.
This results in suboptimal performance, as reported in Ta-
ble 3. Since mappings between scene regions with common
contexts are often non-linear, relying solely on the affine
map incurs inaccurate scene analogy detections.

4.2. Applications

Trajectory Transfer Given a trajectory in an open space
near the region of interest, we test if our method can trans-
fer it to the reference scene’s corresponding space. Such
trajectory transfers aid in teleoperation [12], data augmen-
tation / demonstration transfer for robot imitation learn-
ing [57, 104], or virtual co-presence [40] by mirroring the
user’s trajectory in a virtual environment. Our method can
be applied flexibly depending on the length of the input
trajectory. For short trajectories, we directly use the esti-
mated map to transfer each trajectory point. Figure 9 vi-
sualizes a short trajectory transfer of virtual human agents
moving through the target scene. We map the virtual hu-
man’s bounding box corners at each timestamp and use the
Umeyama algorithm [83] to find a rigid transformation to
the reference scene. This result maintains consistent spatial
relations with the surrounding objects: for example in Fig-
ure 9 the virtual human walking between a sofa and a table
is accurately transferred. For long trajectories, directly us-
ing the estimated maps may cause collisions. We integrate
our method with classical path planning [34, 55] by trans-
ferring sparse waypoints and finding collision-free paths us-
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Figure 9. Visualization of short trajectory transfer by directly map-
ping trajectory points. We shade the region of interest in blue.
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Figure 10. Comparison of long trajectory transfer against scene
graph matching. We estimate scene analogies to map waypoints,
and apply traditional path planning [34] for interpolation.

ing the A* algorithm [34] on the transferred waypoints. Fig-
ure 10 shows a comparison against scene graph matching.
We interpolate object surface matches from the baseline to
open space [6, 86] to find waypoint transfers, and directly
apply the map when the A* algorithm fails due to inaccurate
waypoint transfer. Compared to our method, this process re-
sults in erroneous transfers with penetrations. By producing
a smooth map over R?, our method can flexibly handle tra-
jectory transfer in open spaces, which is difficult with exist-
ing pipelines [19, 21, 75] that lack fine-grained understand-
ing of spatial relations and surrounding context. Additional
comparisons are in the supplement.

Object Placement Transfer In contrast to trajectory and
waypoint transfer, which focuses on open space, object
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Figure 11. Visualization of object placement transfer. We shade
the region of interest used for scene analogy estimation in blue.

placement transfer involves mapping small objects placed
on a region of interest surfaces to the target scene. We first
estimate scene maps from the region of interest and transfer
objects placed on its surface via the scene map. The task is
useful in AR/VR scenarios where users in different physi-
cal locations collaborate in a shared virtual space, allowing
tools and objects in each user’s space to align within the
common virtual environment [40, 41, 43, 44, 49, 77]. As
shown in Figure 11, a desk with small items can be accu-
rately mapped from the target to the reference space. Our
method successfully transfers objects to coherent matching
locations, demonstrating flexibility in handling both near-
surface and open-space transfers.

5. Conclusion

We introduce 3D scene analogies, which are dense maps
between scenes with similar contexts, and propose neu-
ral contextual scene maps to find smooth, coherent map-
pings. Our method uses contextual descriptor fields and
an effective coarse-to-fine estimation that holistically aligns
the fields. Experiments demonstrate robustness across real-
world scans and sim-to-real scenarios, with applications in
trajectory and object placement transfer. We hope our work
inspires future research in 3D scene context understanding.

Limitations We acknowledge several limitations that in-
vite future work. Currently, our method outputs a single
mapping, whereas generating multiple plausible mappings
could better account for symmetries and multi-modal cor-
respondences. Additionally, while our method handles a
wide range of spatial variations, it may struggle when ob-
ject positions swap, as such changes disrupt the initial affine
mapping. Future work could explore more flexible align-
ment strategies to address these cases. Finally, our evalua-
tion is based on semantic and local geometric similarity, but
different tasks may require alternative notions of “correct-
ness.” Expanding the evaluation framework to incorporate
task-specific criteria could provide deeper insights. Further
details are in the supplementary material.
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