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Abstract

As large language models (LLMs) continue to grow in size, users often rely on third-party1

hosting and inference service providers. However, in this setting, there is a lack of2

guarantees on the computation performed by the inference provider. For example, a3

dishonest provider may replace an expensive large model with a cheaper-to-run weaker4

model and return the results from the weaker model to the user. Existing tools to verify5

inference typically rely on methods from cryptography such as zero-knowledge proofs6

(ZKPs), but these typically add significant computational overhead to vanilla inference.7

In this work, we develop a new insight – that given a method for performing private LLM8

inference, one can obtain forms of verified inference at marginal extra cost. Specifically,9

we propose two new protocols, the logit fingerprint protocol and the append key protocol,10

each of which leverage privacy-preserving LLM inference in order to provide different11

guarantees over the inference that was carried out. Both approaches are cheap, requiring12

the addition of a few extra tokens of computation respectively, and have little to no13

downstream impact. Our work provides novel insights in the connections between privacy14

and verifiability in the domain of LLM inference.15

1 Introduction16

Large language models (LLMs) have increased significantly in size over the last few years. Recent open-17

weights models achieve cutting-edge performance [DeepSeek-AI et al., 2025, Qwen et al., 2025, Team18

et al., 2025], for example, now often contain hundreds of billions of parameters. The hardware requirements19

to run these are thus now often too high for individuals or organizations to run on their own, leading to20

a significant growth in demand demand for third-party LLM inference providers. However, this trend21

raises critical concerns about the integrity and trustworthiness of the services provided, particularly in the22

burgeoning decentralized inference space. In this setting, any entity with surplus computational resources23

can offer to complete computational tasks, such as LLM inference, for another user. As the providers in this24

setting are often individuals or small companies, and do not typically undergo strict vetting, it is imperative25

to ensure that the service paid for is actually one that is performed by the provider.26

Traditionally, the verification of outsourced computation has been addressed through cryptographic methods,27

such as zero-knowledge proofs (ZKPs). Although offering strong theoretical guarantees, these methods28

often introduce substantial computational overhead for either the prover (the inference provider) or the29

verifier (the user), or both. Despite significant progress in recent years, the state-of-the-art for ZK verification30

of LLM inference remains thousands of times slower than vanilla inference [Sun et al., 2024], rendering it31

infeasible for large models, which are particularly likely to be in demand for third-party inference provision.32

A related concern for third-party compute provision is that of privacy-preservation. Performing LLM33

inference for another party requires the user to share their prompts, resulting in a loss of privacy. Therefore,34

methods such as secure multi-party computation (SMPC), fully homomorphic encryption (FHE), and trusted35
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execution environments (TEE) have been utilized in recent work to prevent the third-party viewing the user36

prompt.37

Our work examines the question: if a privacy gadget is already in use, can this be leveraged to provide38

verification of the LLM inference computation as well? We answer this in the affirmative; specifically,39

we propose two simple but novel protocols, ‘logit fingerprinting’ and ‘key appending’, that use privacy to40

obtain differing levels of verification guarantees. We demonstrate that our protocols are extremely cheap41

compared to methods such as ZK when a privacy mechanism is already used. Although our protocols42

have limitations and do not offer the same level of guarantees of ZK, we hope that introducing the idea of43

connecting privacy and verification for LLM inference spurs the creation of improved protocols and further44

research in this area.45

2 Background & Related Work46

Due to space constraints, we provide a background on SMPC, FHE, TEEs and ZKP, and a discussion of47

related work, in Appendix A.48

3 Protocol 1: Logit Fingerprinting49

Our first proposal for obtaining verification cheaply given access to a privacy-preserving method of LLM50

inference is logit fingerprinting. We hypothesize that the logit vector returned by performing a forward51

pass on any set of tokens on modern LLMs is a highly unique ‘fingerprint’ of the model. Our proposed52

protocol leverages this property to provide inference verification as follows:53

1. First, the user inserts K sentinel tokens into the tokenized prompt, at random positions within the54

prompt. Call these positions p1, p2, ..., pK . These K tokens are taken randomly from a public55

cache that is available, consisting of many such length K sequences.56

2. Next, the user creates the 2D attention mask to be used by the LLM by taking their desired attention57

mask (e.g., lower triangular for decoder-only LLMs) and inserting rows and columns as follows.58

• Add a row at pi that is 0 everywhere except positions pj ∀ j ≤ i, where it is set to 1.59

• Add a column at pi that is 0 everywhere except positions pj ∀ j ≥ i, where it is set to 1.60

3. The attention mask and augmented tokenized prompt are given to the inference provider under a61

privacy-preserving scheme, and the inference provider carries out a forward pass, and returns the62

output logit vector at all token positions to the user.63

4. The user verifies that the sentinel token logits match against a precomputed, publicly available64

cache for that specific model.65

The construction of the attention mask is such that the sentinel tokens do not attend to, and are not attended66

by, any of the original prompt tokens, but they do attend to each other in standard autoregressive fashion.67

This also ensures that sentinel tokens have no downstream impact on the original prompt when inference is68

performed.69

3.1 Cost Analysis70

Inference provider (Prover) Excluding the overhead of the private inference scheme, the total number of71

extra operations is a factor of K
N , where N is the length of the original prompt. As we discuss in Section 3.2,72

K can be set to be as small as 3 and retain strong security properties, so this is very small for reasonably73

sized N . Furthermore, if the privacy scheme supports parallel inference, as is the case for GPU-enabled74

TEEs, for example, this can add almost no additional runtime.75

User (Verifier) The verifier is required to pick a sequence from a public cache and perform a matching76

on the returned logits against the same cache. The cost of this is minimal and does not require specialized77

hardware.78

Construction of the Cache Constructing the cache both entails an initial computational cost and also79

must be performed by a trusted party, since it is a one-time operation underpinning the correctness of the80

protocol. Ideally, this responsibility is delegated to an entity with sufficient computational resources to81
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produce a verifiable proof of correctness, for example, in the form of a zero-knowledge proof. Despite the82

potential computational expenses of the construction, the cost is incurred only once and can be amortized83

across all subsequent uses of the cache.84

3.2 Security Analysis85

In this section, we assume that logits are indeed unique fingerprints of models. We perform analysis across86

a range of models in Section 3.3 to verify this is the case.87

In order for the inference provider to not be able to guess the logits to return for the sentinel tokens, the set88

of sentinel tokens must be randomly chosen from a large set of possibilities. The crux of this protocol is89

that the inference provider cannot determine which of the possibilities is specifically being asked for in any90

particular instance due to the privacy gadget.91

We propose that it is sufficient to precompute a cache of 1000 different sentinel sequences. For example,92

if K = 3, then 1000 unique sequences of length 3 are sampled from the model’s token vocabulary, and a93

forward pass is performed on these (with a standard unidirectional attention mask). The logits of the final94

token in the sequence are stored in the cache, totaling ∼ 400MB in this setting.95

Probabilistic Attacks This protocol utilizes two elements of randomization: the choice of the sentinel96

tokens, and their positions. For the former, if the user selects the sequence uniformly at random from a97

cache of size |C|, then a dishonest inference provider can guess it with probability at best 1/|C|. For the98

latter, under a privacy-preserving gadget that also preserves tensor structure (such as SMPC), correctly99

guessing of the sentinel tokens’ exact positions is sufficient for a successful attack: the inference provider100

can perform a forward pass on only those components. However, this occurs with probability
(
N+K
K

)−1
,101

where N is the length of the original prompt. When K = 3, for example, with N = 14, this is less than102

1e−3, and it drops further with N = 100 to circa 1e−6.103

A related attack is to perform computation only on a random subset of the token indices (adjusting the104

attention mask correspondingly). In the most extreme case, a dishonest provider takes N +K − 1 tokens,105

i.e. excludes exactly one token. The probability that all sentinel tokens are still selected (hence successfully106

passing verification) is N
N+K , requiring an infeasibly large K to make secure.107

Approximation Attacks We consider attacks focusing on attempts to use a different model – especially,108

cheaper-to-run models – that still succeed in passing verification. Such alternatives could include smaller109

models from the same model family or approximations to the models by using e.g. low-rank projections110

of the weights. We perform experiments to test the robustness of the protocol to each of the above in111

Section 3.3 and find that our protocol fails immediately when any of the above are attempted.112

3.3 Experiments113

Setup We test the claim from Section 3.2 that pre–softmax logits can serve as model fingerprints. For114

each model m, we sample N = 50,000 token sequences of fixed length K = 3 from the model’s tokenizer115

vocabulary (excluding special tokens). Given a sequence t = (t1, t2, t3), we run a forward pass and record116

the next-token logit vectors at each position, ℓ(k)m (t) ∈ RVm for k∈{1, 2, 3}, where Vm is the vocabulary117

size of model m. We define the logit fingerprint118

ϕm(t) = concat
(
ℓ(1)m (t), ℓ(2)m (t), ℓ(3)m (t)

)
∈ R3Vm ,

and compare fingerprints using L1 distance. We test on Llama 3.2 Instruct 1B, 3B, and 8B [Grattafiori et al.,119

2024], and on Qwen 2.5 Instruct 0.5B, 1.5B, 3B and 7B [Qwen et al., 2025]. Comparisons are performed120

on FP32 logits; dropout is disabled.121

Floating Point Non-determinism We first provide context on the expected L1 distance due to non-122

determinism of floating-point operations [Shanmugavelu et al., 2024], We run the same sequence multiple123

times with different batch sizes on GPU to measure this. We observe a maximum L1 deviation in doing so124

across all models tested of 3.168.125

Intra-model Within each model, we compute the nearest-neighbor similarity among fingerprints from126

distinct sequences (i.e. t ̸= s). Across N = 50k samples per model, there are no exact matches; the closest127

pair has an L1 distance of 2909.128

3



Within-family For the Llama family the smallest L1 distance of logits we obtain is 335399. For the129

Qwen family the minimum cross-model distance is 791218. These results indicate that even with a family130

of models, the logits are significantly different and suitable as fingerprints.131

Cross-family To enable comparisons across families with different vocabularies, we align dimensions132

by truncating the larger logit vectors to the smaller vocabulary size (i.e. comparing the first min(Vm, Vm′)133

coordinates). Under this conservative alignment, Llama–Qwen comparisons exhibit substantially higher134

distances than the within-family maxima reported above (qualitatively, well above 800000).135

Low-rank factorization We approximate the linear layers of Llama 3.2 1B Instruct by replacing each136

weight matrix W ∈ Rdin×dout with a rank-r factorization W ≈ UV ⊤, where U ∈ Rdin×r and V ∈ Rdout×r.137

The default hidden dimension of this model is 2048, so we test with r ∈ {2047, 2040, 2000}. Comparing138

fingerprints of 50k sequences between the full-rank and the low-rank variants, the minimum L1 distances139

observed observed are:140

r = 2047 : 833.97, r = 2040 : 8029.45, r = 2000 : 31194.02.

Quantization We next load Llama 3.2 1B Instruct in 8-bit precision using bitsandbytes and compare141

fingerprints to the full-precision (bfloat16) baseline. The minimum L1 distance is 32137, again easily142

separated from the original model.143

Fine-tuning Finally, we evaluate robustness against model fine-tuning by comparing Llama 3.2 1B144

Instruct with a finetuned variant on a single sample from FineWeb dataset for a single step. The minimum145

observed distance is 471.10, consistent with the previous cases and again easily separable from the original146

model.147

In our experiments, the minimum L1 distance observed between two different sequences was 833.97, as148

seen in the low-rank setting, while the maximum deviation caused by floating point non-determinism149

was only 3.168. Based on these results, we recommend using a matching threshold in the range of 5–10.150

Sequences whose logits differ by less than this threshold can be confidently regarded as originating from151

the same model; and even a single step of fine-tuning is easily detectable with this threshold.152

3.4 Limitations153

The main limitation of this protocol is that it can only be used to verify a single forward pass at a time, i.e.154

only generate a single new token, before requiring the user to repeat the protocol above with a fresh set of155

sentinel tokens and positions; otherwise, a dishonest provider could honestly perform the first forward pass156

(to pass verification) and provide spurious outputs for all subsequent forward passes. Thus, this protocol157

inherently requires user interaction for every step of token decoding. Another limitation is the vulnerability158

to the subsetting attack mentioned in Section 3.2. As such, we recommend that this protocol not be used in159

isolation with privacy gadgets that retain tensor structure, such as SMPC methods.160

4 Protocol 2: Key Appending161

A second and conceptually distinct proposal for obtaining verification cheaply under privacy assumptions is162

key appending. The high-level idea of this protocol is to ask the LLM to emit a randomly generated key163

at the end of its normal response – for example, ‘strawberry reticent gestalt’ – wrapped in a specific tag164

structure, and to verify at the end of inference that the key was correctly replicated.165

System prompt In addition to the user’s input, we prepend a system-level instruction that enforces the166

verification protocol and prevents premature conversation termination:167

You are a helpful assistant who should never speak in two168

consecutive turns. At the end of your response, repeat the169

key mentioned at the end of the prompt. You must print the key170

between tags like the following structure: <key> *insert key here*171

</key>.172

This system prompt explicitly conditions the model to always conclude with the verification key enclosed in173

<key>...</key> tags, and discourages it from generating the turn-termination token prior to key emission.174
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User prompt augmentation Given a user’s original prompt p and a randomly sampled key175

w1, w2, . . . , wK of K words, we augment p by appending the following instruction to the end:176

At the end of your response, repeat this key: <key> w1 w2 · · · wK177

</key>\nDO NOT print anything else after it.178

Stopping criterion Unlike standard decoding, where inference continues until the model produces an179

end-of-sequence token, we adopt a custom stopping rule: decoding halts once the closing tag </key> is180

generated. This ensures that inference completes exactly after the verification key is produced, with no181

trailing tokens.182

Verification The encrypted response is returned to the user, who decrypts it and parses the contents of183

the <key>...</key> span. Verification succeeds if and only if the extracted string matches the originally184

sampled key. Using HTML-/XML-like tags facilitates robust parsing and prevents ambiguity in locating the185

verification key within the model’s output.186

We also tested the same protocol but instead of appending the key repeating prompt to the end of the user’s187

prompt, we insert it in any whitespace randomly. This approach performs less well – we report results for188

this in Appendix B.189

4.1 Cost Analysis190

Inference provider (Prover) Adding an extra t tokens to the prompt adds an overhead of a factor of t
N191

operations (in addition to the system prompt and remaining augmentations, which are of constant length).192

Given that, for most tokenizers and English words, words are approximately 1–2 tokens in length, and that193

the protocol offers good security with just K = 3 words (see Section 4.3), this therefore introduces little194

extra overhead.195

User (Verifier) Similar to the logit fingerprinting protocol, the verifier is required to perform minimal work.196

They must select a sequence of K words w1w2 · · ·wK and append them together with the augmentation197

template to the prompt, as well as prepend the system prompt. When the inference is complete, the verifier198

checks the words between the key tags of the decoded output against the original words w1w2 · · ·wK .199

Again, no specialized hardware is necessary.200

4.2 Security Analysis201

Probabilistic Attacks Suppose that tokenizing the K words results in a total of t tokens. An adversarial202

party must correctly guess each token exactly out of the total vocabulary, resulting in a success probability203

of 1
|V |t , where |V | is the vocabulary size. As modern LLMs typically have |V | ≥ 1e5, with a key length of204

only 3 tokens, this is already on the order of 1e−15 or lower.205

Approximation Attacks This protocol is potentially vulnerable to the model approximation attacks as206

described in Section 3.2, especially if they largely retain the instruction following capabilities of the original207

model. We again perform experiments to test them in Appendix C.208

4.3 Experiments209

Key Transcription Capability We first examine the capability of LLMs to perform our protocol success-210

fully; this is analogous to the cryptographic property of completeness. We evaluate multiple open-source211

models on a random sample of 1000 prompts from the Databricks dolly-15k dataset [Argilla, 2023]. The key212

is sampled uniformly at random from the standard Ubuntu words file provided by the wordlist package213

(any similar list of English words suffices) and appended via the protocol; success is recorded if the words214

enclosed in the key tags match the key exactly.215

Table 1 reports the transcription success rate. We observe near-perfect adherence for models at or above216

the 3–4B scale. Therefore, a simple capacity criterion suffices in practice: models with ≥3B parameters217

reliably satisfy the protocol’s instruction, making them suitable drop-in choices for verified inference with218

key appending.219
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Table 1: Transcription success rate on 1000
prompts of our ‘key appending’ verification pro-
tocol, with keys of length K = 3 words. We
see that models with parameter sizes of 3B and
above obtain very high transcription rates of
> 98%.

Model Transcription rate
Llama 3.2 1B 56.6%
Gemma 3 1B 73.1%
Llama 3.2 3B 98.1%
Gemma 3 4B 99.7%
Mistral 7B 99.6%
Llama 3.1 8B 98.7%
Gemma 3 12B 98.0%
Mistral 24B 100.0%
Qwen 2.5 32B 99.9%
Llama 3.1 70B 99.6%

Table 2: LiveBench scores for models under the
‘key appending’ protocol. Higher is better. There
is a relatively large degradation in performance
for smaller models, but models of size 8B and
larger exhibit much smaller relative degradation.

Model Vanilla Append ∆

Llama 3.2 1B 10.7 6.7 −4.0
Gemma 3 1B 14.7 9.9 −4.8
Llama 3.2 3B 20.5 16.9 −3.6
Qwen 2.5 3B 24.2 18.3 −5.9
Gemma 3 4B 30.2 26.4 −3.8
Mistral 7B 20.4 14.5 −5.9
Llama 3.1 8B 25.4 25.6 +0.2
Gemma 3 12B 41.0 36.8 −4.2
Mistral 24B 30.5 32.1 +1.6
Qwen 2.5 32B 42.7 41.7 −1.0
Llama 3.1 70B 42.3 39.8 −2.5

Downstream Performance Impact We now test the impact of the additional key-transcription instruction220

on model downstream performance. To quantify this, we evaluate all models on LIVEBENCH [White et al.,221

2025] (30–05–2025 release), a benchmark testing model performance on a range of tasks including data222

analysis, instruction following, language, math, and reasoning. Table 2 compares overall performance223

of the models in vanilla inference against our protocol. Extended tables showing complete results for all224

LiveBench categories are presented in Appendix D and Appendix B.225

We find that there there is a relatively large performance impact for smaller models. However, for larger226

models, the performance impact is reduced. Indeed, for Mistral 24B, the performance is actually slightly227

higher – which we attribute to the natural variability inherent in the benchmark. In practice, using a model228

of size 8B or larger seems sufficient to ensure minimal relative downstream performance impact from229

applying this protocol.230

Approximation Attack Experiments As described in Section 4.2, this protocol is potentially vulnerable231

to model approximation attacks. We perform an in-depth examination of the viability of such in the specific232

case of use of SMPC for privacy preservation, with one honest party, in Appendix C. We find that in this233

setting, any such approximation does fail.234

4.4 Limitations235

The main limitation of this protocol is that it cannot specify exactly the model that is being used; it only236

guarantees that the model is capable of performing the verification task. In the SMPC setting, if there is237

at least one honest participant, then we show in Appendix C that it is any approximations result in the238

verification failing. However, in the FHE or TEE setting, this remains a limitation. Furthermore, this239

protocol does not offer 100% completeness, although we see figures close to this (see Table 1).240

5 Conclusion241

We have introduced two protocols for verifying LLM inference, given the use of privacy-preserving tools.242

We have shown that these protocols are cheap for both the prover and the verifier, and have little to no243

downstream impact. Each protocol retains their own set of limitations. We hope that by introducing the idea244

of connecting privacy and verifiability, particularly in the LLM domain, that we can inspire future work to245

devise new and improved protocols that address these shortcomings.246
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A Background and Related Work476

In this section, we provide a brief background on general methods of privacy-preserving function computa-477

tion, general methods of verification, and their application to LLM inference in particular.478

A.1 Privacy-Preservation479

There are four main families of privacy-preserving inference of LLMs that have been proposed in the480

literature: SMPC (Secure Multi-Party Computation), FHE (Fully Homomorphic Encryption), TEEs481

(Trusted Execution Environments), and statistical methods. Here we provide brief background on each of482

these.483

SMPC SMPC protocols split the required computation among multiple parties. The key ideas were484

originally developed in the 1980s [Yao, 1982, Goldreich et al., 1987] and provide mathematical guarantees485

that no single party can reconstruct the data on their own. Recently, the methodologies of SMPC have486

been applied to LLMs [Huang et al., 2022, Hao et al., 2022, Pang et al., 2023, Akimoto et al., 2023, Dong487

et al., 2023, Li et al., 2024]. A difficulty uniformly faced by these protocols is efficient computation of the488

many non-linearities present in transformer-based LLMs; most of the works attempt to ameliorate this by489

using piecewise polynomial approximations which are more well-suited for MPC algorithms. However, this490

approximation leads to degraded inference results, and remains more expensive than direct computation of491

the non-linearities. The requirement of multiple parties also engenders significant communication overheads,492

and the further non-collusion requirement among the parties may be difficult to guarantee.493

FHE FHE protocols require only a single party and make use of cryptographic methods to ensure that the494

result of the computation on the ciphertext is the same as that performed on the plaintext. The adjective495

‘fully’ indicates the capability of performing arbitrary computations, not limited to a particular type or496

complexity. The first plausible construction of an FHE scheme was described in Gentry [2009]; a more497

modern and widely used incarnation is CKKS [Cheon et al., 2017]. Recently, CKKS has been further498

optimized and applied to LLM inference [Moon et al., 2024, Zhang et al., 2024], but similar issues arise499

with the non-linearities as SMPC methods. The overheads both for linear and non-linear operations are500

typically even larger than those in the SMPC setting.501

TEE Trusted Execution Environments (TEEs) [Sabt et al., 2015, Narra et al., 2019] create secure and502

isolated enclaves at the hardware level. This ensures confidentiality via memory encryption – allowing only503

the process running in the enclave to read the data. Furthermore, TEEs support integrity via attestation504

mechanisms. However, a significant concern is the vulnerability to side-channel attacks [Jauernig et al.,505

2020]. Furthermore, attestation is only provided at boot-time and is not equivalent to an ongoing verification506

process. This process typically involves the TEE measuring the code and its environment, signing these507

measurements cryptographically, and sending a report for external verification. However, this is often a508

one-time check at the start and does not guarantee the integrity of the TEE throughout its execution. Finally,509

in cloud environments, attestation can rely on the cloud provider’s services, which means users must trust510

the provider’s proprietary attestation process without full transparency. This introduces a level of trust in511

the cloud provider’s integrity, as these attestation services can be opaque "black boxes" that are not open to512

external audit. Moreover, there may be no independent way to verify the boot measurements provided by513

the cloud provider’s infrastructure.514

Statistical Methods A more broad and diverse grouping than the above is what we term ‘statistical515

methods’. These are protocols without the mathematical guarantees of FHE or SMPC approaches, or the516

hardware-based guarantees of TEEs, but that instead employ statistical or empirical arguments to support517

the difficult of reversing ciphertext. Some ideas in this domain include the use of permutation-based security518

[Zheng et al., 2024, Yuan et al., 2024, Luo et al., 2024] or token-sharding based security [Thomas et al.,519

2025]. These methods typically trade off the stronger guarantees of the above methods for greatly reduced520

overheads, sometimes approaching similar speeds to vanilla inference.521

A.2 Verification522

Zero-Knowledge Proofs (ZKP) ZKPs are a class of methods that allows one party (the prover) to prove523

to another party (the verifier) that a statement is true, without revealing any additional information beyond524

the proof itself. The main properties that ZKPs satisfy are completeness (an honest prover can convince a525
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verifier that they performed the work as stated), soundness (a dishonest prover cannot convince a verifier526

that they performed the work), and the zero-knowledge property of not revealing any further information527

than the fact the work was done as stated. The first ZK protocol was introduced in 1985 in Goldwasser et al.528

[1985]. Recently, ZK methods have been applied as proofs of inference for machine learning models, and529

specifically LLMs, in works such as Sun et al. [2024], Qu et al. [2025]. However, these approaches remain530

thousands of times slower than vanilla inference – for example, zkLLM takes 15 minutes for generating a531

proof of a single forward pass for Llama-2-13B, compared to milliseconds for vanilla inference.532

Statistical Methods Analogously to statistical methods of privacy-preservation, very recent work has533

investigated methods of relaxing the standard of proof of work provided in order to reduce computational534

overhead. Ong et al. [2025] encodes and validates the most salient features of the last hidden state tensor of535

an LLM using a compact, verifiable proof, which is then recomputed in parallel by the verifier. Although536

the authors demonstrate how to set up a commitment scheme that has relatively little overhead to the prover,537

and verification is faster than full recomputation thanks to parallelization, there is still a requirement for538

the verifier to perform a full LLM forward pass, potentially necessitating specialized hardware. Sun et al.539

[2025] proposes the use of a ‘proxy task’ based on the last hidden layer features of an LLM that can then be540

utilized by the user to compare to a label that they would expect based on their original input. The method541

proposed requires trust assumptions from the platform for generation of the proxy-task feature extractor542

and labeller networks, as well as secret generation/embedding, and adds the overhead of computation to543

perform all of the above.544

A.3 Connections Between Privacy and Verifiability545

The connection between privacy and verification has not been extensively studied previously. Perhaps the546

closest work to approach this is MPC-in-the-Head [Ishai et al., 2007], which introduced a zero-knowledge547

verification protocol by utilizing any SMPC protocol. The protocol comes with steep costs for both the548

prover and verifier. For example, the prover must not only locally simulate every party in the underlying549

MPC execution but also repeat the computation multiple times. On the verifier’s end, the party must perform550

several confirmation tasks, including recomputing opened views, consistency checks, and typically engage551

in multiple rounds of checking to achieve acceptable soundness. The crucial distinction of our suggested552

protocols to MPC-in-the-Head is that we use the privacy scheme directly to encode inexpensive secrets that553

are easily verifiable. To the best of our knowledge, there has not previously been any work that specifically554

examines the relationship between privacy-preserving LLM inference and verifiable inference of LLMs in555

this way.556

B Random Whitespace Protocol557

As an alternative to the key appending protocol of Section 4, we also tested requiring the model to repeat558

the key in a random whitespace.559

Protocol description. This protocol adopts the same stopping criterion and verification method as the560

key–appending protocol, but modifies both the system prompt and the user prompt transformation.561

System prompt. We prepend the following system instruction:562

You are a helpful assistant who should never speak in two563

consecutive turns. Somewhere in the prompt, you will find a564

secret key of {K} words in curly braces right after the marker565

<{marker}>. Print that key at the very end of your response.566

Ignore what is inside the <verify> </verify> tags when answering567

the main prompt.\nYou must print the key between tags like the568

following structure: <key> *insert key here* </key>.569

This system prompt enforces the placement of the key at the end of the model’s response and ensures that570

the verification tags are ignored during the main task, preventing interference with downstream output.571

User prompt transformation. Given an original user prompt p, the user selects a random whitespace572

location and inserts the following structure:573

<verify> <{marker}> {key} </{marker}> </verify>.
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Table 4: LiveBench scores for models under the ‘random whitespace’ protocol. Higher is better. There is
generally a larger degradation in performance than for the key appending protocol.

Model Vanilla Random Whitespace ∆

Llama 3.2 1B 10.7 5.4 −5.3
Gemma 3 1B 14.7 9.2 −5.5
Llama 3.2 3B 20.5 14.2 −6.3
Qwen 2.5 3B 24.2 17.2 −7.0
Gemma 3 4B 30.2 21.3 −8.9
Mistral 7B 20.4 12.2 −8.2
Llama 3.1 8B 25.4 20.7 −4.7
Gemma 3 12B 41.0 29.1 −11.9
Mistral 24B 30.5 25.3 −5.2
Qwen 2.5 32B 42.7 39.3 −3.4
Llama 3.1 70B 42.3 32.1 −10.2

Here, the marker is a randomly generated four-character ASCII string, and the key consists of three English574

words sampled uniformly at random, as in the key–appending protocol.575

Design rationale. The system prompt explicitly instructs the model to ignore the inserted tags when576

answering the main query, which tries to minimize the impact of the injected verification key on downstream577

task performance. Moreover, we deliberately employ HTML-like tags for three reasons:578

1. Large language models are extensively exposed during pretraining to HTML/XML patterns, which579

aids reliable parsing and generation.580

2. Wrapping the marker–key pair inside <verify> tags avoids accidental collisions with ordinary581

prompts (e.g., programming queries that might already include custom markers).582

3. Randomly generating the marker string reduces the probability of unintentional matches with exist-583

ing content, while including the outer <verify> tags improves transcription accuracy compared584

to using only <marker> . . . </marker>.585

The transcription rates and downstream performance impact of the protocol are shown in Table 3 and586

Table 4 respectively. Although the transcription rates match that of key appending for models of size 8B587

and above, the downstream performance impact is significantly larger than that of key appending.588

Table 3: Transcription success rate on 1000 prompts of our ‘Random Whitespace’ verification protocol,
with keys of length K = 3 words. We see that models with parameter sizes of 8B and above obtain very
high transcription rates of > 98%.

Model Transcription rate
Llama 3.2 1B 6.7%
Gemma 3 1B 2.2%
Llama 3.2 3B 88.8%
Gemma 3 4B 79.0%
Mistral 7B 86.6%
Llama 3.1 8B 98.5%
Gemma 3 12B 99.0%
Mistral 24B 99.6%
Qwen 2.5 32B 99.2%
Llama 3.1 70B 99.3%

C Approximation Attack Experiments – Key Appending589

We perform approximation attack tests in the SMPC setting. We assume the existence of at least one honest590

party; in the case where all parties are dishonest (i.e. performing the same, matching approximation),591
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the approximated model still can potentially accurately produce the key and evade detection. We use the592

CrypTen Python library [Knott et al., 2021].593

For the dishonest party, we uniformly reduce the rank of all weight matrices in the models to various594

proportions of the original rank, and test the protocol to see whether the approximated model is still capable595

of correctly outputting the key. We select the following for our parameters:596

1. Models: Llama 3.2 3B Instruct, Qwen 2.5 3B. We select two models with very high key transcrip-597

tion rates in the non-attack setting from different model classes.598

2. We test the reduction of original ranks of very weight matrix M to the following percentage599

reductions: 1%, 5%, 10%, 25%, 50%, 75%, 90%, 99%, using SVD. We desire to test a wide variety600

of different ranks, ranging from an extremely significant reduction in rank to a slight decrease in601

rank, and we hence select the previously listed percentages for significant coverage of all of these602

possibilities.603

For each combination of model and rank, we run the framework as described at the beginning of this section,604

selecting n = 20 prompts and K = 3 words.605

The results of such experiments revealed that regardless of the model used or rank approximated to, the606

model was always unable to output the key (i.e. 0 of the 20 tests succeeded). Notably, even in the 99%607

test, both models were unable to produce anything legible, and tokens outputted were entirely random: an608

example decoded result from one prompt was “deesestiftigiongh” with random unicode characters inserted609

inside.610

Quantizer Attacks A malicious actor can also potentially quantize the model’s weights to a different611

precision, which is straightforward to test: given a model, we quantize all its weights to a different precision612

and perform the common tests to determine performance.613

We again perform tests in an SMPC setting encrypted with CrypTen with two parties, one honest and614

one dishonest. We again note the potential weakness of this strategy when both parties are dishonest or a615

different encryption scheme is used.616

1. Models: Llama 3.2 3B Instruct, Qwen 2.5 3B. We select the same models as for the low-rank617

approximations, due to their ordinarily high transcription rates.618

2. Precisions: 8-bit and 4-bit floats. The weights in the Llama model tested are 16-bit floats at619

full precision, and in the Qwen model are 32-bit floats. Therefore, to reduce precision, we test620

quantization to 8- and 4-bit precision.621

Once again, we run the common testing framework with n = 20 prompts and K = 3 words. Similar to622

the low-rank tests, in all cases, the models were never able to output the key, or in fact anything legible,623

revealing the effectiveness of the key appending protocol in defending against quantization attacks.624

D Key Appending – Extended LiveBench Results625

Table 5: LiveBench category scores for vanilla inference.

Model Average Data Analysis Instr. Follow. Language Math Reasoning

Llama 3.2 1B 10.7 12.9 25.1 0.0 9.5 5.8
Gemma 3 1B 14.7 12.0 42.1 3.7 13.1 2.9
Llama 3.2 3B 20.5 23.3 48.4 3.5 15.5 11.9
Qwen 2.5 3B 24.2 29.0 43.2 10.7 23.5 14.6
Gemma 3 4B 30.2 38.3 61.5 6.3 33.0 11.8
Mistral 7B 20.4 26.4 46.2 1.5 13.4 14.4
Llama 3.1 8B 25.4 36.0 48.0 13.8 15.9 13.1
Gemma 3 12B 41.0 46.4 71.2 19.3 39.5 28.8
Mistral 24B 30.5 42.1 50.4 17.3 19.0 23.4
Qwen 2.5 32B 42.7 50.7 61.2 27.3 43.9 30.4
Llama 3.1 70B 42.3 52.6 65.9 30.3 31.4 31.4
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Table 6: LiveBench category scores under the ‘key appending’ protocol. Higher is better.

Model Average Data Analysis Instr. Follow. Language Math Reasoning

Llama 3.2 1B 6.7 0.9 24.9 0.0 2.3 5.5
Gemma 3 1B 9.9 3.3 32.1 2.3 4.8 6.6
Llama 3.2 3B 16.9 8.0 43.4 7.8 11.7 13.5
Qwen 2.5 3B 18.3 18.2 30.4 5.8 21.4 15.9
Gemma 3 4B 26.4 38.6 41.3 8.0 24.5 19.8
Mistral 7B 14.5 21.7 31.8 6.7 6.6 5.5
Llama 3.1 8B 25.6 35.3 51.7 9.3 15.2 16.6
Gemma 3 12B 36.8 46.1 60.5 16.5 37.0 24.0
Mistral 24B 32.1 41.1 47.2 24.0 21.0 26.9
Qwen 2.5 32B 41.7 47.2 58.2 24.0 44.2 35.0
Llama 3.1 70B 39.8 50.4 69.2 22.0 29.1 28.5
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