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Abstract

As large language models (LLMs) continue to grow in size, users often rely on third-party
hosting and inference service providers. However, in this setting, there is a lack of
guarantees on the computation performed by the inference provider. For example, a
dishonest provider may replace an expensive large model with a cheaper-to-run weaker
model and return the results from the weaker model to the user. Existing tools to verify
inference typically rely on methods from cryptography such as zero-knowledge proofs
(ZKPs), but these typically add significant computational overhead to vanilla inference.
In this work, we develop a new insight — that given a method for performing private LLM
inference, one can obtain forms of verified inference at marginal extra cost. Specifically,
we propose two new protocols, the logit fingerprint protocol and the append key protocol,
each of which leverage privacy-preserving LLM inference in order to provide different
guarantees over the inference that was carried out. Both approaches are cheap, requiring
the addition of a few extra tokens of computation respectively, and have little to no
downstream impact. Our work provides novel insights in the connections between privacy
and verifiability in the domain of LLM inference.

1 Introduction

Large language models (LLMs) have increased significantly in size over the last few years. Recent open-
weights models achieve cutting-edge performance [DeepSeek-Al et al., 2025] |Qwen et al., 2025| [Team
et al., 2025], for example, now often contain hundreds of billions of parameters. The hardware requirements
to run these are thus now often too high for individuals or organizations to run on their own, leading to
a significant growth in demand demand for third-party LLM inference providers. However, this trend
raises critical concerns about the integrity and trustworthiness of the services provided, particularly in the
burgeoning decentralized inference space. In this setting, any entity with surplus computational resources
can offer to complete computational tasks, such as LLM inference, for another user. As the providers in this
setting are often individuals or small companies, and do not typically undergo strict vetting, it is imperative
to ensure that the service paid for is actually one that is performed by the provider.

Traditionally, the verification of outsourced computation has been addressed through cryptographic methods,
such as zero-knowledge proofs (ZKPs). Although offering strong theoretical guarantees, these methods
often introduce substantial computational overhead for either the prover (the inference provider) or the
verifier (the user), or both. Despite significant progress in recent years, the state-of-the-art for ZK verification
of LLM inference remains thousands of times slower than vanilla inference [Sun et al.| 2024], rendering it
infeasible for large models, which are particularly likely to be in demand for third-party inference provision.

A related concern for third-party compute provision is that of privacy-preservation. Performing LLM
inference for another party requires the user to share their prompts, resulting in a loss of privacy. Therefore,
methods such as secure multi-party computation (SMPC), fully homomorphic encryption (FHE), and trusted
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execution environments (TEE) have been utilized in recent work to prevent the third-party viewing the user
prompt.

Our work examines the question: if a privacy gadget is already in use, can this be leveraged to provide
verification of the LLM inference computation as well? We answer this in the affirmative; specifically,
we propose two simple but novel protocols, ‘logit fingerprinting’” and ‘key appending’, that use privacy to
obtain differing levels of verification guarantees. We demonstrate that our protocols are extremely cheap
compared to methods such as ZK when a privacy mechanism is already used. Although our protocols
have limitations and do not offer the same level of guarantees of ZK, we hope that introducing the idea of
connecting privacy and verification for LLM inference spurs the creation of improved protocols and further
research in this area.

2 Background & Related Work

Due to space constraints, we provide a background on SMPC, FHE, TEEs and ZKP, and a discussion of
related work, in Appendix [A]

3 Protocol 1: Logit Fingerprinting

Our first proposal for obtaining verification cheaply given access to a privacy-preserving method of LLM
inference is logit fingerprinting. We hypothesize that the logit vector returned by performing a forward
pass on any set of tokens on modern LLMs is a highly unique ‘fingerprint’ of the model. Our proposed
protocol leverages this property to provide inference verification as follows:

1. First, the user inserts K sentinel tokens into the tokenized prompt, at random positions within the
prompt. Call these positions p1, po, ..., px. These K tokens are taken randomly from a public
cache that is available, consisting of many such length K sequences.

2. Next, the user creates the 2D attention mask to be used by the LLM by taking their desired attention
mask (e.g., lower triangular for decoder-only LLMs) and inserting rows and columns as follows.

* Add arow at p; that is 0 everywhere except positions p; V j < 4, where itis set to 1.
* Add a column at p; that is O everywhere except positions p; V j > 4, where itis set to 1.

3. The attention mask and augmented tokenized prompt are given to the inference provider under a
privacy-preserving scheme, and the inference provider carries out a forward pass, and returns the
output logit vector at all token positions to the user.

4. The user verifies that the sentinel token logits match against a precomputed, publicly available
cache for that specific model.

The construction of the attention mask is such that the sentinel tokens do not attend to, and are not attended
by, any of the original prompt tokens, but they do attend to each other in standard autoregressive fashion.
This also ensures that sentinel tokens have no downstream impact on the original prompt when inference is
performed.

3.1 Cost Analysis

Inference provider (Prover) Excluding the overhead of the private inference scheme, the total number of
extra operations is a factor of £, where IV is the length of the original prompt. As we discuss in Section ,
K can be set to be as small as 3 and retain strong security properties, so this is very small for reasonably
sized N. Furthermore, if the privacy scheme supports parallel inference, as is the case for GPU-enabled
TEE:s, for example, this can add almost no additional runtime.

User (Verifier) The verifier is required to pick a sequence from a public cache and perform a matching
on the returned logits against the same cache. The cost of this is minimal and does not require specialized
hardware.

Construction of the Cache Constructing the cache both entails an initial computational cost and also
must be performed by a trusted party, since it is a one-time operation underpinning the correctness of the
protocol. Ideally, this responsibility is delegated to an entity with sufficient computational resources to



82
83
84

85

86
87

88
89
920
91

92
93
94
95

96
97
98
99

101
102
103

104
105
106
107

108
109
110
111
112

113

114
115
116

117
118

119
120
121

122
123
124
125

126
127
128

produce a verifiable proof of correctness, for example, in the form of a zero-knowledge proof. Despite the
potential computational expenses of the construction, the cost is incurred only once and can be amortized
across all subsequent uses of the cache.

3.2 Security Analysis

In this section, we assume that logits are indeed unique fingerprints of models. We perform analysis across
a range of models in Section [3.3to verify this is the case.

In order for the inference provider to not be able to guess the logits to return for the sentinel tokens, the set
of sentinel tokens must be randomly chosen from a large set of possibilities. The crux of this protocol is
that the inference provider cannot determine which of the possibilities is specifically being asked for in any
particular instance due to the privacy gadget.

We propose that it is sufficient to precompute a cache of 1000 different sentinel sequences. For example,
if K = 3, then 1000 unique sequences of length 3 are sampled from the model’s token vocabulary, and a
forward pass is performed on these (with a standard unidirectional attention mask). The logits of the final
token in the sequence are stored in the cache, totaling ~ 400MB in this setting.

Probabilistic Attacks This protocol utilizes two elements of randomization: the choice of the sentinel
tokens, and their positions. For the former, if the user selects the sequence uniformly at random from a
cache of size |C/, then a dishonest inference provider can guess it with probability at best 1/|C|. For the
latter, under a privacy-preserving gadget that also preserves tensor structure (such as SMPC), correctly
guessing of the sentinel tokens’ exact positions is sufficient for a successful attack: the inference provider
can perform a forward pass on only those components. However, this occurs with probability (N IJ;K ) 1,
where NV is the length of the original prompt. When K = 3, for example, with N = 14, this is less than
le—3, and it drops further with N = 100 to circa le—6.

A related attack is to perform computation only on a random subset of the token indices (adjusting the
attention mask correspondingly). In the most extreme case, a dishonest provider takes N 4+ K — 1 tokens,
i.e. excludes exactly one token. The probability that all sentinel tokens are still selected (hence successfully
passing verification) is ﬁ requiring an infeasibly large K to make secure.

Approximation Attacks We consider attacks focusing on attempts to use a different model — especially,
cheaper-to-run models — that still succeed in passing verification. Such alternatives could include smaller
models from the same model family or approximations to the models by using e.g. low-rank projections
of the weights. We perform experiments to test the robustness of the protocol to each of the above in
Section and find that our protocol fails immediately when any of the above are attempted.

3.3 Experiments

Setup We test the claim from Section [3.2]that pre—softmax logits can serve as model fingerprints. For
each model m, we sample N = 50,000 token sequences of fixed length K = 3 from the model’s tokenizer
vocabulary (excluding special tokens). Given a sequence t = (¢1, t2, t3), we run a forward pass and record

the next-token logit vectors at each position, Eﬂf) (t) € RV» for ke {1,2,3}, where V,, is the vocabulary
size of model m. We define the logit fingerprint

Gm(t) = concat(£D (1), €2 (t), (3 (1)) € RV,
and compare fingerprints using L1 distance. We test on Llama 3.2 Instruct 1B, 3B, and 8B [Grattafiori et al.|

2024], and on Qwen 2.5 Instruct 0.5B, 1.5B, 3B and 7B [Qwen et al.| 2025]]. Comparisons are performed
on FP32 logits; dropout is disabled.

Floating Point Non-determinism We first provide context on the expected L1 distance due to non-
determinism of floating-point operations [[Shanmugavelu et al.,2024], We run the same sequence multiple
times with different batch sizes on GPU to measure this. We observe a maximum L1 deviation in doing so
across all models tested of 3.168.

Intra-model Within each model, we compute the nearest-neighbor similarity among fingerprints from
distinct sequences (i.e. t # s). Across N = 50k samples per model, there are no exact matches; the closest
pair has an L1 distance of 2909.
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Within-family For the Llama family the smallest L1 distance of logits we obtain is 335399. For the
Qwen family the minimum cross-model distance is 791218. These results indicate that even with a family
of models, the logits are significantly different and suitable as fingerprints.

Cross-family To enable comparisons across families with different vocabularies, we align dimensions
by truncating the larger logit vectors to the smaller vocabulary size (i.e. comparing the first min(V,,, V,,,/)
coordinates). Under this conservative alignment, Llama—Qwen comparisons exhibit substantially higher
distances than the within-family maxima reported above (qualitatively, well above 800000).

Low-rank factorization We approximate the linear layers of Llama 3.2 1B Instruct by replacing each
weight matrix W € R% *du with a rank-r factorization W ~ UV T, where U € R%*" and V' € Ru*",
The default hidden dimension of this model is 2048, so we test with € {2047, 2040, 2000}. Comparing
fingerprints of 50k sequences between the full-rank and the low-rank variants, the minimum L1 distances
observed observed are:

r =2047:833.97, r =2040:8029.45, r = 2000 :31194.02.

Quantization We next load Llama 3.2 1B Instruct in 8-bit precision using bitsandbytes and compare
fingerprints to the full-precision (bfloat16) baseline. The minimum L1 distance is 32137, again easily
separated from the original model.

Fine-tuning Finally, we evaluate robustness against model fine-tuning by comparing Llama 3.2 1B
Instruct with a finetuned variant on a single sample from FineWeb dataset for a single step. The minimum
observed distance is 471.10, consistent with the previous cases and again easily separable from the original
model.

In our experiments, the minimum L1 distance observed between two different sequences was 833.97, as
seen in the low-rank setting, while the maximum deviation caused by floating point non-determinism
was only 3.168. Based on these results, we recommend using a matching threshold in the range of 5-10.
Sequences whose logits differ by less than this threshold can be confidently regarded as originating from
the same model; and even a single step of fine-tuning is easily detectable with this threshold.

3.4 Limitations

The main limitation of this protocol is that it can only be used to verify a single forward pass at a time, i.e.
only generate a single new token, before requiring the user to repeat the protocol above with a fresh set of
sentinel tokens and positions; otherwise, a dishonest provider could honestly perform the first forward pass
(to pass verification) and provide spurious outputs for all subsequent forward passes. Thus, this protocol
inherently requires user interaction for every step of token decoding. Another limitation is the vulnerability
to the subsetting attack mentioned in Section[3.2] As such, we recommend that this protocol not be used in
isolation with privacy gadgets that retain tensor structure, such as SMPC methods.

4 Protocol 2: Key Appending

A second and conceptually distinct proposal for obtaining verification cheaply under privacy assumptions is
key appending. The high-level idea of this protocol is to ask the LLM to emit a randomly generated key
at the end of its normal response — for example, ‘strawberry reticent gestalt’ — wrapped in a specific tag
structure, and to verify at the end of inference that the key was correctly replicated.

System prompt In addition to the user’s input, we prepend a system-level instruction that enforces the
verification protocol and prevents premature conversation termination:

You are a helpful assistant who should never speak in two
consecutive turns. At the end of your response, repeat the

key mentioned at the end of the prompt. You must print the key
between tags like the following structure: <key> *insert key herex
</key>.

This system prompt explicitly conditions the model to always conclude with the verification key enclosed in
<key>...</key> tags, and discourages it from generating the turn-termination token prior to key emission.
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User prompt augmentation Given a user’s original prompt p and a randomly sampled key
w1, Wa, ..., Wk of K words, we augment p by appending the following instruction to the end:

At the end of your response, repeat this key: <key> w; wy -+ wg
</key>\nD0 NOT print anything else after it.

Stopping criterion Unlike standard decoding, where inference continues until the model produces an
end-of-sequence token, we adopt a custom stopping rule: decoding halts once the closing tag </key> is
generated. This ensures that inference completes exactly after the verification key is produced, with no
trailing tokens.

Verification The encrypted response is returned to the user, who decrypts it and parses the contents of
the <key>. . .</key> span. Verification succeeds if and only if the extracted string matches the originally
sampled key. Using HTML-/XML-like tags facilitates robust parsing and prevents ambiguity in locating the
verification key within the model’s output.

We also tested the same protocol but instead of appending the key repeating prompt to the end of the user’s
prompt, we insert it in any whitespace randomly. This approach performs less well — we report results for
this in Appendix

4.1 Cost Analysis

Inference provider (Prover) Adding an extra ¢ tokens to the prompt adds an overhead of a factor of %
operations (in addition to the system prompt and remaining augmentations, which are of constant length).
Given that, for most tokenizers and English words, words are approximately 1-2 tokens in length, and that
the protocol offers good security with just K = 3 words (see Section[4.3)), this therefore introduces little
extra overhead.

User (Verifier) Similar to the logit fingerprinting protocol, the verifier is required to perform minimal work.
They must select a sequence of K words wyws - - - wg and append them together with the augmentation
template to the prompt, as well as prepend the system prompt. When the inference is complete, the verifier
checks the words between the key tags of the decoded output against the original words wyws - - - Wi .
Again, no specialized hardware is necessary.

4.2 Security Analysis

Probabilistic Attacks Suppose that tokenizing the K words results in a total of ¢ tokens. An adversarial
party must correctly guess each token exactly out of the total vocabulary, resulting in a success probability
of ﬁ where |V| is the vocabulary size. As modern LLMs typically have |V| > 1eb, with a key length of

only 3 tokens, this is already on the order of 1e—15 or lower.

Approximation Attacks This protocol is potentially vulnerable to the model approximation attacks as
described in Section [3.2] especially if they largely retain the instruction following capabilities of the original
model. We again perform experiments to test them in Appendix

4.3 Experiments

Key Transcription Capability We first examine the capability of LLMs to perform our protocol success-
fully; this is analogous to the cryptographic property of completeness. We evaluate multiple open-source
models on a random sample of 1000 prompts from the Databricks dolly-15k dataset [Argillal 2023]]. The key
is sampled uniformly at random from the standard Ubuntu words file provided by the wordlist package
(any similar list of English words suffices) and appended via the protocol; success is recorded if the words
enclosed in the key tags match the key exactly.

Table[I]reports the transcription success rate. We observe near-perfect adherence for models at or above
the 3-4B scale. Therefore, a simple capacity criterion suffices in practice: models with >3B parameters
reliably satisfy the protocol’s instruction, making them suitable drop-in choices for verified inference with
key appending.
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Table 1: Transcription success rate on 1000
prompts of our ‘key appending’ verification pro-
tocol, with keys of length K = 3 words. We
see that models with parameter sizes of 3B and
above obtain very high transcription rates of

Table 2: LiveBench scores for models under the
‘key appending’ protocol. Higher is better. There
is a relatively large degradation in performance
for smaller models, but models of size 8B and
larger exhibit much smaller relative degradation.

> 98%. -

Model Transcription rate Model Vanilla _ Append A

Llama 3.2 1B 10.7 6.7 —4.0
Llama 3.2 1B 56.6% Gemma 3 1B 14.7 99 —48
Gemma 3 1B 73.1% Llama 3.2 3B 20.5 169 —3.6
Llama 3.2 3B 98.1% Qwen 2.5 3B 24.2 183 —5.9
Gemma 3 4B 99.7% Gemma 3 4B 30.2 264 —3.8
Mistral 7B 99.6% Mistral 7B 20.4 145 —-5.9
Llama 3.1 8B 98.7% Llama 3.1 8B 25.4 25.6  +0.2
Gemma 3 12B 98.0% Gemma 3 12B 41.0 36.8 —4.2
Mistral 24B 100.0% Mistral 24B 30.5 321 +1.6
Qwen 2.5 32B 99.9% Qwen 2.5 32B 42.7 417 -1.0
Llama 3.1 70B 99.6% Llama 3.1 70B 423 398 —2.5

Downstream Performance Impact We now test the impact of the additional key-transcription instruction
on model downstream performance. To quantify this, we evaluate all models on LIVEBENCH [White et al.}
2025] (30-05-2025 release), a benchmark testing model performance on a range of tasks including data
analysis, instruction following, language, math, and reasoning. Table [2] compares overall performance
of the models in vanilla inference against our protocol. Extended tables showing complete results for all
LiveBench categories are presented in Appendix [D]and Appendix [B]

We find that there there is a relatively large performance impact for smaller models. However, for larger
models, the performance impact is reduced. Indeed, for Mistral 24B, the performance is actually slightly
higher — which we attribute to the natural variability inherent in the benchmark. In practice, using a model
of size 8B or larger seems sufficient to ensure minimal relative downstream performance impact from
applying this protocol.

Approximation Attack Experiments As described in Section[d.2] this protocol is potentially vulnerable
to model approximation attacks. We perform an in-depth examination of the viability of such in the specific
case of use of SMPC for privacy preservation, with one honest party, in Appendix [C| We find that in this
setting, any such approximation does fail.

4.4 Limitations

The main limitation of this protocol is that it cannot specify exactly the model that is being used; it only
guarantees that the model is capable of performing the verification task. In the SMPC setting, if there is
at least one honest participant, then we show in Appendix [C] that it is any approximations result in the
verification failing. However, in the FHE or TEE setting, this remains a limitation. Furthermore, this
protocol does not offer 100% completeness, although we see figures close to this (see Table|[I).

5 Conclusion

We have introduced two protocols for verifying LLM inference, given the use of privacy-preserving tools.
We have shown that these protocols are cheap for both the prover and the verifier, and have little to no
downstream impact. Each protocol retains their own set of limitations. We hope that by introducing the idea
of connecting privacy and verifiability, particularly in the LLM domain, that we can inspire future work to
devise new and improved protocols that address these shortcomings.
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A Background and Related Work

In this section, we provide a brief background on general methods of privacy-preserving function computa-
tion, general methods of verification, and their application to LLM inference in particular.

A.1 Privacy-Preservation

There are four main families of privacy-preserving inference of LLMs that have been proposed in the
literature: SMPC (Secure Multi-Party Computation), FHE (Fully Homomorphic Encryption), TEEs
(Trusted Execution Environments), and statistical methods. Here we provide brief background on each of
these.

SMPC SMPC protocols split the required computation among multiple parties. The key ideas were
originally developed in the 1980s [Yaol 1982, |Goldreich et al.,|1987] and provide mathematical guarantees
that no single party can reconstruct the data on their own. Recently, the methodologies of SMPC have
been applied to LLMs [Huang et al.,|2022| [Hao et al.| 2022| [Pang et al.| [2023, |Akimoto et al.,|2023| Dong
et al.,[2023| [L1 et al., 2024]]. A difficulty uniformly faced by these protocols is efficient computation of the
many non-linearities present in transformer-based LLMs; most of the works attempt to ameliorate this by
using piecewise polynomial approximations which are more well-suited for MPC algorithms. However, this
approximation leads to degraded inference results, and remains more expensive than direct computation of
the non-linearities. The requirement of multiple parties also engenders significant communication overheads,
and the further non-collusion requirement among the parties may be difficult to guarantee.

FHE FHE protocols require only a single party and make use of cryptographic methods to ensure that the
result of the computation on the ciphertext is the same as that performed on the plaintext. The adjective
‘fully’ indicates the capability of performing arbitrary computations, not limited to a particular type or
complexity. The first plausible construction of an FHE scheme was described in |Gentry| [2009]]; a more
modern and widely used incarnation is CKKS [Cheon et all [2017]. Recently, CKKS has been further
optimized and applied to LLM inference [Moon et al., 2024} Zhang et al., 2024], but similar issues arise
with the non-linearities as SMPC methods. The overheads both for linear and non-linear operations are
typically even larger than those in the SMPC setting.

TEE Trusted Execution Environments (TEEs) [Sabt et al.| 2015, [Narra et al.| 2019] create secure and
isolated enclaves at the hardware level. This ensures confidentiality via memory encryption — allowing only
the process running in the enclave to read the data. Furthermore, TEEs support integrity via attestation
mechanisms. However, a significant concern is the vulnerability to side-channel attacks [Jauernig et al.,
2020]). Furthermore, attestation is only provided at boot-time and is not equivalent to an ongoing verification
process. This process typically involves the TEE measuring the code and its environment, signing these
measurements cryptographically, and sending a report for external verification. However, this is often a
one-time check at the start and does not guarantee the integrity of the TEE throughout its execution. Finally,
in cloud environments, attestation can rely on the cloud provider’s services, which means users must trust
the provider’s proprietary attestation process without full transparency. This introduces a level of trust in
the cloud provider’s integrity, as these attestation services can be opaque "black boxes" that are not open to
external audit. Moreover, there may be no independent way to verify the boot measurements provided by
the cloud provider’s infrastructure.

Statistical Methods A more broad and diverse grouping than the above is what we term ‘statistical
methods’. These are protocols without the mathematical guarantees of FHE or SMPC approaches, or the
hardware-based guarantees of TEEs, but that instead employ statistical or empirical arguments to support
the difficult of reversing ciphertext. Some ideas in this domain include the use of permutation-based security
[Zheng et al., [2024) [Yuan et al., 2024, [Luo et al.l 2024] or token-sharding based security [Thomas et al.|
2025]). These methods typically trade off the stronger guarantees of the above methods for greatly reduced
overheads, sometimes approaching similar speeds to vanilla inference.

A.2 Verification
Zero-Knowledge Proofs (ZKP) ZKPs are a class of methods that allows one party (the prover) to prove

to another party (the verifier) that a statement is true, without revealing any additional information beyond
the proof itself. The main properties that ZKPs satisfy are completeness (an honest prover can convince a
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verifier that they performed the work as stated), soundness (a dishonest prover cannot convince a verifier
that they performed the work), and the zero-knowledge property of not revealing any further information
than the fact the work was done as stated. The first ZK protocol was introduced in 1985 in|Goldwasser et al.
[1985]. Recently, ZK methods have been applied as proofs of inference for machine learning models, and
specifically LLMs, in works such as|Sun et al.|[2024], |Qu et al.|[2025]]. However, these approaches remain
thousands of times slower than vanilla inference — for example, zkLLM takes 15 minutes for generating a
proof of a single forward pass for Llama-2-13B, compared to milliseconds for vanilla inference.

Statistical Methods Analogously to statistical methods of privacy-preservation, very recent work has
investigated methods of relaxing the standard of proof of work provided in order to reduce computational
overhead. |Ong et al.|[2025]] encodes and validates the most salient features of the last hidden state tensor of
an LLM using a compact, verifiable proof, which is then recomputed in parallel by the verifier. Although
the authors demonstrate how to set up a commitment scheme that has relatively little overhead to the prover,
and verification is faster than full recomputation thanks to parallelization, there is still a requirement for
the verifier to perform a full LLM forward pass, potentially necessitating specialized hardware. |Sun et al.
[2025] proposes the use of a ‘proxy task’ based on the last hidden layer features of an LLM that can then be
utilized by the user to compare to a label that they would expect based on their original input. The method
proposed requires trust assumptions from the platform for generation of the proxy-task feature extractor
and labeller networks, as well as secret generation/embedding, and adds the overhead of computation to
perform all of the above.

A.3 Connections Between Privacy and Verifiability

The connection between privacy and verification has not been extensively studied previously. Perhaps the
closest work to approach this is MPC-in-the-Head [Ishai et al., 2007]], which introduced a zero-knowledge
verification protocol by utilizing any SMPC protocol. The protocol comes with steep costs for both the
prover and verifier. For example, the prover must not only locally simulate every party in the underlying
MPC execution but also repeat the computation multiple times. On the verifier’s end, the party must perform
several confirmation tasks, including recomputing opened views, consistency checks, and typically engage
in multiple rounds of checking to achieve acceptable soundness. The crucial distinction of our suggested
protocols to MPC-in-the-Head is that we use the privacy scheme directly to encode inexpensive secrets that
are easily verifiable. To the best of our knowledge, there has not previously been any work that specifically
examines the relationship between privacy-preserving LLM inference and verifiable inference of LLMs in
this way.

B Random Whitespace Protocol

As an alternative to the key appending protocol of Sectiond] we also tested requiring the model to repeat
the key in a random whitespace.

Protocol description. This protocol adopts the same stopping criterion and verification method as the
key—appending protocol, but modifies both the system prompt and the user prompt transformation.

System prompt. We prepend the following system instruction:

You are a helpful assistant who should never speak in two
consecutive turns. Somewhere in the prompt, you will find a
secret key of {K} words in curly braces right after the marker
<{marker}>. Print that key at the very end of your response.
Ignore what is inside the <verify> </verify> tags when answering
the main prompt.\nYou must print the key between tags like the
following structure: <key> *insert key here*x </key>.

This system prompt enforces the placement of the key at the end of the model’s response and ensures that
the verification tags are ignored during the main task, preventing interference with downstream output.

User prompt transformation. Given an original user prompt p, the user selects a random whitespace
location and inserts the following structure:

<verify> <{marker}> {key} </{marker}> </verify>.
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Table 4: LiveBench scores for models under the ‘random whitespace’ protocol. Higher is better. There is
generally a larger degradation in performance than for the key appending protocol.

Model Vanilla Random Whitespace A
Llama 3.2 1B 10.7 54 -5.3
Gemma 3 1B 14.7 9.2 —5.5
Llama 3.2 3B 20.5 14.2 —6.3
Qwen 2.5 3B 24.2 17.2 —7.0
Gemma 3 4B 30.2 21.3 —-8.9
Mistral 7B 20.4 12.2 —8.2
Llama 3.1 8B 254 20.7 —4.7
Gemma 3 12B 41.0 29.1 -—-11.9
Mistral 24B 30.5 253 —5.2
Qwen 2.5 32B 42.7 39.3 —3.4
Llama 3.1 70B 423 32.1 -—-10.2

Here, the marker is a randomly generated four-character ASCII string, and the key consists of three English
words sampled uniformly at random, as in the key—appending protocol.

Design rationale. The system prompt explicitly instructs the model to ignore the inserted tags when
answering the main query, which tries to minimize the impact of the injected verification key on downstream
task performance. Moreover, we deliberately employ HTML-like tags for three reasons:

1. Large language models are extensively exposed during pretraining to HTML/XML patterns, which
aids reliable parsing and generation.

2. Wrapping the marker—key pair inside <verify> tags avoids accidental collisions with ordinary
prompts (e.g., programming queries that might already include custom markers).

3. Randomly generating the marker string reduces the probability of unintentional matches with exist-
ing content, while including the outer <verify> tags improves transcription accuracy compared
to using only <marker> ... </marker>.

The transcription rates and downstream performance impact of the protocol are shown in Table [3] and
Table [ respectively. Although the transcription rates match that of key appending for models of size 8B
and above, the downstream performance impact is significantly larger than that of key appending.

Table 3: Transcription success rate on 1000 prompts of our ‘Random Whitespace’ verification protocol,
with keys of length K = 3 words. We see that models with parameter sizes of 8B and above obtain very
high transcription rates of > 98%.

Model Transcription rate
Llama 3.2 1B 6.7%
Gemma 3 1B 2.2%
Llama 3.2 3B 88.8%
Gemma 3 4B 79.0%
Mistral 7B 86.6%
Llama 3.1 8B 98.5%
Gemma 3 12B 99.0%
Mistral 24B 99.6%
Qwen 2.5 32B 99.2%
Llama 3.1 70B 99.3%

C Approximation Attack Experiments — Key Appending

We perform approximation attack tests in the SMPC setting. We assume the existence of at least one honest
party; in the case where all parties are dishonest (i.e. performing the same, matching approximation),
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the approximated model still can potentially accurately produce the key and evade detection. We use the
CrypTen Python library [Knott et al., 2021]].

For the dishonest party, we uniformly reduce the rank of all weight matrices in the models to various
proportions of the original rank, and test the protocol to see whether the approximated model is still capable
of correctly outputting the key. We select the following for our parameters:

1. Models: Llama 3.2 3B Instruct, Qwen 2.5 3B. We select two models with very high key transcrip-
tion rates in the non-attack setting from different model classes.

2. We test the reduction of original ranks of very weight matrix M to the following percentage
reductions: 1%, 5%, 10%, 25%, 50%, 75%, 90%, 99%, using SVD. We desire to test a wide variety
of different ranks, ranging from an extremely significant reduction in rank to a slight decrease in
rank, and we hence select the previously listed percentages for significant coverage of all of these
possibilities.

For each combination of model and rank, we run the framework as described at the beginning of this section,
selecting n = 20 prompts and K = 3 words.

The results of such experiments revealed that regardless of the model used or rank approximated to, the
model was always unable to output the key (i.e. 0 of the 20 tests succeeded). Notably, even in the 99%
test, both models were unable to produce anything legible, and tokens outputted were entirely random: an
example decoded result from one prompt was “deesestiftigiongh” with random unicode characters inserted
inside.

Quantizer Attacks A malicious actor can also potentially quantize the model’s weights to a different
precision, which is straightforward to test: given a model, we quantize all its weights to a different precision
and perform the common tests to determine performance.

We again perform tests in an SMPC setting encrypted with CrypTen with two parties, one honest and
one dishonest. We again note the potential weakness of this strategy when both parties are dishonest or a
different encryption scheme is used.

1. Models: Llama 3.2 3B Instruct, Qwen 2.5 3B. We select the same models as for the low-rank
approximations, due to their ordinarily high transcription rates.

2. Precisions: 8-bit and 4-bit floats. The weights in the Llama model tested are 16-bit floats at
full precision, and in the Qwen model are 32-bit floats. Therefore, to reduce precision, we test
quantization to 8- and 4-bit precision.

Once again, we run the common testing framework with n = 20 prompts and K = 3 words. Similar to
the low-rank tests, in all cases, the models were never able to output the key, or in fact anything legible,
revealing the effectiveness of the key appending protocol in defending against quantization attacks.

D Key Appending — Extended LiveBench Results

Table 5: LiveBench category scores for vanilla inference.

Model Average Data Analysis Instr. Follow. Language Math Reasoning
Llama 3.2 1B 10.7 12.9 25.1 0.0 9.5 5.8
Gemma 3 1B 14.7 12.0 42.1 3.7 13.1 29
Llama 3.2 3B 20.5 233 48.4 35 15.5 11.9
Qwen 2.5 3B 24.2 29.0 432 10.7 23.5 14.6
Gemma 3 4B 30.2 383 61.5 6.3 33.0 11.8
Mistral 7B 20.4 26.4 46.2 1.5 13.4 14.4
Llama 3.1 8B 254 36.0 48.0 13.8 15.9 13.1
Gemma 3 12B 41.0 46.4 71.2 19.3 39.5 28.8
Mistral 24B 30.5 42.1 50.4 17.3 19.0 234
Qwen 2.5 32B 42.7 50.7 61.2 27.3 439 304
Llama 3.1 70B 42.3 52.6 65.9 30.3 31.4 314
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Table 6: LiveBench category scores under the ‘key appending’ protocol. Higher is better.

Model Average Data Analysis Instr. Follow. Language Math Reasoning
Llama 3.2 1B 6.7 0.9 24.9 0.0 23 5.5
Gemma 3 1B 9.9 33 32.1 2.3 4.8 6.6
Llama 3.2 3B 16.9 8.0 434 7.8 11.7 13.5
Qwen 2.5 3B 18.3 18.2 30.4 5.8 21.4 159
Gemma 3 4B 26.4 38.6 41.3 8.0 24.5 19.8
Mistral 7B 14.5 21.7 31.8 6.7 6.6 5.5
Llama 3.1 8B 25.6 353 51.7 9.3 15.2 16.6
Gemma 3 12B 36.8 46.1 60.5 16.5 37.0 24.0
Mistral 24B 32.1 41.1 472 24.0 21.0 26.9
Qwen 2.5 32B 41.7 472 58.2 24.0 442 35.0
Llama 3.1 70B 39.8 50.4 69.2 22.0 29.1 28.5
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