© O N O O » 0D =

Do Privacy Mechanisms Enable Cheap Verifiable
Inference of LLMs? An Initial Exploration

Anonymous Author(s)
Affiliation
Address

email

Abstract

As large language models (LLMs) continue to grow in size, users often rely on third-party
hosting and inference service providers. However, in this setting, there is a lack of
guarantees on the computation performed by the inference provider. For example, a
dishonest provider may replace an expensive large model with a cheaper-to-run weaker
model and return the results from the weaker model to the user. Existing tools to verify
inference typically rely on methods from cryptography such as zero-knowledge proofs
(ZKPs), but these typically add significant computational overhead to vanilla inference.
In this work, we develop a new insight — that given a method for performing private LLM
inference, one can obtain forms of verified inference at marginal extra cost. Specifically,
we propose two new protocols, the logit fingerprint protocol and the append key protocol,
each of which leverage privacy-preserving LLM inference in order to provide different
guarantees over the inference that was carried out. Both approaches are cheap, requiring
the addition of a few extra tokens of computation respectively, and have little to no
downstream impact. Our work provides novel insights in the connections between privacy
and verifiability in the domain of LLM inference.

1 Introduction

Large language models (LLMs) have increased significantly in size over the last few years. Recent open-
weights models achieve cutting-edge performance [DeepSeek-Al et al., 2025] |Qwen et al., 2025| [Team
et al., 2025], for example, now often contain hundreds of billions of parameters. The hardware requirements
to run these are thus now often too high for individuals or organizations to run on their own, leading to
a significant growth in demand demand for third-party LLM inference providers. However, this trend
raises critical concerns about the integrity and trustworthiness of the services provided, particularly in the
burgeoning decentralized inference space. In this setting, any entity with surplus computational resources
can offer to complete computational tasks, such as LLM inference, for another user. As the providers in this
setting are often individuals or small companies, and do not typically undergo strict vetting, it is imperative
to ensure that the service paid for is actually one that is performed by the provider.

Traditionally, the verification of outsourced computation has been addressed through cryptographic methods,
such as zero-knowledge proofs (ZKPs). Although offering strong theoretical guarantees, these methods
often introduce substantial computational overhead for either the prover (the inference provider) or the
verifier (the user), or both. Despite significant progress in recent years, the state-of-the-art for ZK verification
of LLM inference remains thousands of times slower than vanilla inference [Sun et al.| 2024], rendering it
infeasible for large models, which are particularly likely to be in demand for third-party inference provision.

A related concern for third-party compute provision is that of privacy-preservation. Performing LLM
inference for another party requires the user to share their prompts, resulting in a loss of privacy. Therefore,
methods such as secure multi-party computation (SMPC), fully homomorphic encryption (FHE), and trusted

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

36
37

38
39
40
41
42
43
44
45

46

47
48

49

50
51
52
53

54
55
56

57
58

59
60

61
62
63

64
65

66
67
68
69

70

7
72
73
74
75

76
77
78

79
80
81

execution environments (TEE) have been utilized in recent work to prevent the third-party viewing the user
prompt.

Our work examines the question: if a privacy gadget is already in use, can this be leveraged to provide
verification of the LLM inference computation as well? We answer this in the affirmative; specifically,
we propose two simple but novel protocols, ‘logit fingerprinting’” and ‘key appending’, that use privacy to
obtain differing levels of verification guarantees. We demonstrate that our protocols are extremely cheap
compared to methods such as ZK when a privacy mechanism is already used. Although our protocols
have limitations and do not offer the same level of guarantees of ZK, we hope that introducing the idea of
connecting privacy and verification for LLM inference spurs the creation of improved protocols and further
research in this area.

2 Background & Related Work

Due to space constraints, we provide a background on SMPC, FHE, TEEs and ZKP, and a discussion of
related work, in Appendix [A]

3 Protocol 1: Logit Fingerprinting

Our first proposal for obtaining verification cheaply given access to a privacy-preserving method of LLM
inference is logit fingerprinting. We hypothesize that the logit vector returned by performing a forward
pass on any set of tokens on modern LLMs is a highly unique ‘fingerprint’ of the model. Our proposed
protocol leverages this property to provide inference verification as follows:

1. First, the user inserts K sentinel tokens into the tokenized prompt, at random positions within the
prompt. Call these positions p1, po, ..., px. These K tokens are taken randomly from a public
cache that is available, consisting of many such length K sequences.

2. Next, the user creates the 2D attention mask to be used by the LLM by taking their desired attention
mask (e.g., lower triangular for decoder-only LLMs) and inserting rows and columns as follows.

* Add arow at p; that is 0 everywhere except positions p; V j < 4, where itis set to 1.
* Add a column at p; that is O everywhere except positions p; V j > 4, where itis set to 1.

3. The attention mask and augmented tokenized prompt are given to the inference provider under a
privacy-preserving scheme, and the inference provider carries out a forward pass, and returns the
output logit vector at all token positions to the user.

4. The user verifies that the sentinel token logits match against a precomputed, publicly available
cache for that specific model.

The construction of the attention mask is such that the sentinel tokens do not attend to, and are not attended
by, any of the original prompt tokens, but they do attend to each other in standard autoregressive fashion.
This also ensures that sentinel tokens have no downstream impact on the original prompt when inference is
performed.

3.1 Cost Analysis

Inference provider (Prover) Excluding the overhead of the private inference scheme, the total number of
extra operations is a factor of £, where IV is the length of the original prompt. As we discuss in Section ,
K can be set to be as small as 3 and retain strong security properties, so this is very small for reasonably
sized N. Furthermore, if the privacy scheme supports parallel inference, as is the case for GPU-enabled
TEE:s, for example, this can add almost no additional runtime.

User (Verifier) The verifier is required to pick a sequence from a public cache and perform a matching
on the returned logits against the same cache. The cost of this is minimal and does not require specialized
hardware.

Construction of the Cache Constructing the cache both entails an initial computational cost and also
must be performed by a trusted party, since it is a one-time operation underpinning the correctness of the
protocol. Ideally, this responsibility is delegated to an entity with sufficient computational resources to

82
83
84

85

86
87

88
89
920
91

92
93
94
95

96
97
98
99

101
102
103

104
105
106
107

108
109
110
111
112

113

114
115
116

117
118

119
120
121

122
123
124
125

126
127
128

produce a verifiable proof of correctness, for example, in the form of a zero-knowledge proof. Despite the
potential computational expenses of the construction, the cost is incurred only once and can be amortized
across all subsequent uses of the cache.

3.2 Security Analysis

In this section, we assume that logits are indeed unique fingerprints of models. We perform analysis across
a range of models in Section [3.3to verify this is the case.

In order for the inference provider to not be able to guess the logits to return for the sentinel tokens, the set
of sentinel tokens must be randomly chosen from a large set of possibilities. The crux of this protocol is
that the inference provider cannot determine which of the possibilities is specifically being asked for in any
particular instance due to the privacy gadget.

We propose that it is sufficient to precompute a cache of 1000 different sentinel sequences. For example,
if K = 3, then 1000 unique sequences of length 3 are sampled from the model’s token vocabulary, and a
forward pass is performed on these (with a standard unidirectional attention mask). The logits of the final
token in the sequence are stored in the cache, totaling ~ 400MB in this setting.

Probabilistic Attacks This protocol utilizes two elements of randomization: the choice of the sentinel
tokens, and their positions. For the former, if the user selects the sequence uniformly at random from a
cache of size |C/, then a dishonest inference provider can guess it with probability at best 1/|C|. For the
latter, under a privacy-preserving gadget that also preserves tensor structure (such as SMPC), correctly
guessing of the sentinel tokens’ exact positions is sufficient for a successful attack: the inference provider
can perform a forward pass on only those components. However, this occurs with probability (N IJ;K) 1,
where NV is the length of the original prompt. When K = 3, for example, with N = 14, this is less than
le—3, and it drops further with N = 100 to circa le—6.

A related attack is to perform computation only on a random subset of the token indices (adjusting the
attention mask correspondingly). In the most extreme case, a dishonest provider takes N 4+ K — 1 tokens,
i.e. excludes exactly one token. The probability that all sentinel tokens are still selected (hence successfully
passing verification) is ﬁ requiring an infeasibly large K to make secure.

Approximation Attacks We consider attacks focusing on attempts to use a different model — especially,
cheaper-to-run models — that still succeed in passing verification. Such alternatives could include smaller
models from the same model family or approximations to the models by using e.g. low-rank projections
of the weights. We perform experiments to test the robustness of the protocol to each of the above in
Section and find that our protocol fails immediately when any of the above are attempted.

3.3 Experiments

Setup We test the claim from Section [3.2]that pre—softmax logits can serve as model fingerprints. For
each model m, we sample N = 50,000 token sequences of fixed length K = 3 from the model’s tokenizer
vocabulary (excluding special tokens). Given a sequence t = (¢1, t2, t3), we run a forward pass and record

the next-token logit vectors at each position, Eﬂf) (t) € RV» for ke {1,2,3}, where V,, is the vocabulary
size of model m. We define the logit fingerprint

Gm(t) = concat(£D (1), €2 (t), (3 (1)) € RV,
and compare fingerprints using L1 distance. We test on Llama 3.2 Instruct 1B, 3B, and 8B [Grattafiori et al.|

2024], and on Qwen 2.5 Instruct 0.5B, 1.5B, 3B and 7B [Qwen et al.| 2025]]. Comparisons are performed
on FP32 logits; dropout is disabled.

Floating Point Non-determinism We first provide context on the expected L1 distance due to non-
determinism of floating-point operations [[Shanmugavelu et al.,2024], We run the same sequence multiple
times with different batch sizes on GPU to measure this. We observe a maximum L1 deviation in doing so
across all models tested of 3.168.

Intra-model Within each model, we compute the nearest-neighbor similarity among fingerprints from
distinct sequences (i.e. t # s). Across N = 50k samples per model, there are no exact matches; the closest
pair has an L1 distance of 2909.

129
130
131

132
133
134
135

136
137
138
139
140

141
142
143

144
145
146
147

148
149
150
151
152

154
155

157
158
159
160

161

162
163
164
165

166
167

168
169
170
171
172

173
174

Within-family For the Llama family the smallest L1 distance of logits we obtain is 335399. For the
Qwen family the minimum cross-model distance is 791218. These results indicate that even with a family
of models, the logits are significantly different and suitable as fingerprints.

Cross-family To enable comparisons across families with different vocabularies, we align dimensions
by truncating the larger logit vectors to the smaller vocabulary size (i.e. comparing the first min(V,,, V,,,/)
coordinates). Under this conservative alignment, Llama—Qwen comparisons exhibit substantially higher
distances than the within-family maxima reported above (qualitatively, well above 800000).

Low-rank factorization We approximate the linear layers of Llama 3.2 1B Instruct by replacing each
weight matrix W € R% *du with a rank-r factorization W ~ UV T, where U € R%*" and V' € Ru*",
The default hidden dimension of this model is 2048, so we test with € {2047, 2040, 2000}. Comparing
fingerprints of 50k sequences between the full-rank and the low-rank variants, the minimum L1 distances
observed observed are:

r =2047:833.97, r =2040:8029.45, r = 2000 :31194.02.

Quantization We next load Llama 3.2 1B Instruct in 8-bit precision using bitsandbytes and compare
fingerprints to the full-precision (bfloat16) baseline. The minimum L1 distance is 32137, again easily
separated from the original model.

Fine-tuning Finally, we evaluate robustness against model fine-tuning by comparing Llama 3.2 1B
Instruct with a finetuned variant on a single sample from FineWeb dataset for a single step. The minimum
observed distance is 471.10, consistent with the previous cases and again easily separable from the original
model.

In our experiments, the minimum L1 distance observed between two different sequences was 833.97, as
seen in the low-rank setting, while the maximum deviation caused by floating point non-determinism
was only 3.168. Based on these results, we recommend using a matching threshold in the range of 5-10.
Sequences whose logits differ by less than this threshold can be confidently regarded as originating from
the same model; and even a single step of fine-tuning is easily detectable with this threshold.

3.4 Limitations

The main limitation of this protocol is that it can only be used to verify a single forward pass at a time, i.e.
only generate a single new token, before requiring the user to repeat the protocol above with a fresh set of
sentinel tokens and positions; otherwise, a dishonest provider could honestly perform the first forward pass
(to pass verification) and provide spurious outputs for all subsequent forward passes. Thus, this protocol
inherently requires user interaction for every step of token decoding. Another limitation is the vulnerability
to the subsetting attack mentioned in Section[3.2] As such, we recommend that this protocol not be used in
isolation with privacy gadgets that retain tensor structure, such as SMPC methods.

4 Protocol 2: Key Appending

A second and conceptually distinct proposal for obtaining verification cheaply under privacy assumptions is
key appending. The high-level idea of this protocol is to ask the LLM to emit a randomly generated key
at the end of its normal response — for example, ‘strawberry reticent gestalt’ — wrapped in a specific tag
structure, and to verify at the end of inference that the key was correctly replicated.

System prompt In addition to the user’s input, we prepend a system-level instruction that enforces the
verification protocol and prevents premature conversation termination:

You are a helpful assistant who should never speak in two
consecutive turns. At the end of your response, repeat the

key mentioned at the end of the prompt. You must print the key
between tags like the following structure: <key> *insert key herex
</key>.

This system prompt explicitly conditions the model to always conclude with the verification key enclosed in
<key>...</key> tags, and discourages it from generating the turn-termination token prior to key emission.

175
176

177
178

179
180
181
182

183
184
185
186

187
188
189

190

191
192
193
194
195

197
198
199
200

201

202
203
204

205

207
208

209

210
211
212
213
214
215

216
217
218
219

User prompt augmentation Given a user’s original prompt p and a randomly sampled key
w1, Wa, ..., Wk of K words, we augment p by appending the following instruction to the end:

At the end of your response, repeat this key: <key> w; wy -+ wg
</key>\nD0 NOT print anything else after it.

Stopping criterion Unlike standard decoding, where inference continues until the model produces an
end-of-sequence token, we adopt a custom stopping rule: decoding halts once the closing tag </key> is
generated. This ensures that inference completes exactly after the verification key is produced, with no
trailing tokens.

Verification The encrypted response is returned to the user, who decrypts it and parses the contents of
the <key>. . .</key> span. Verification succeeds if and only if the extracted string matches the originally
sampled key. Using HTML-/XML-like tags facilitates robust parsing and prevents ambiguity in locating the
verification key within the model’s output.

We also tested the same protocol but instead of appending the key repeating prompt to the end of the user’s
prompt, we insert it in any whitespace randomly. This approach performs less well — we report results for
this in Appendix

4.1 Cost Analysis

Inference provider (Prover) Adding an extra ¢ tokens to the prompt adds an overhead of a factor of %
operations (in addition to the system prompt and remaining augmentations, which are of constant length).
Given that, for most tokenizers and English words, words are approximately 1-2 tokens in length, and that
the protocol offers good security with just K = 3 words (see Section[4.3)), this therefore introduces little
extra overhead.

User (Verifier) Similar to the logit fingerprinting protocol, the verifier is required to perform minimal work.
They must select a sequence of K words wyws - - - wg and append them together with the augmentation
template to the prompt, as well as prepend the system prompt. When the inference is complete, the verifier
checks the words between the key tags of the decoded output against the original words wyws - - - Wi .
Again, no specialized hardware is necessary.

4.2 Security Analysis

Probabilistic Attacks Suppose that tokenizing the K words results in a total of ¢ tokens. An adversarial
party must correctly guess each token exactly out of the total vocabulary, resulting in a success probability
of ﬁ where |V| is the vocabulary size. As modern LLMs typically have |V| > 1eb, with a key length of

only 3 tokens, this is already on the order of 1e—15 or lower.

Approximation Attacks This protocol is potentially vulnerable to the model approximation attacks as
described in Section [3.2] especially if they largely retain the instruction following capabilities of the original
model. We again perform experiments to test them in Appendix

4.3 Experiments

Key Transcription Capability We first examine the capability of LLMs to perform our protocol success-
fully; this is analogous to the cryptographic property of completeness. We evaluate multiple open-source
models on a random sample of 1000 prompts from the Databricks dolly-15k dataset [Argillal 2023]]. The key
is sampled uniformly at random from the standard Ubuntu words file provided by the wordlist package
(any similar list of English words suffices) and appended via the protocol; success is recorded if the words
enclosed in the key tags match the key exactly.

Table[I]reports the transcription success rate. We observe near-perfect adherence for models at or above
the 3-4B scale. Therefore, a simple capacity criterion suffices in practice: models with >3B parameters
reliably satisfy the protocol’s instruction, making them suitable drop-in choices for verified inference with
key appending.

220
221
222
223
224
225

226
227
228
229
230

231
232
233
234

236
237
238
239
240

241

242
243
244
245
246

247

248
249
250

Table 1: Transcription success rate on 1000
prompts of our ‘key appending’ verification pro-
tocol, with keys of length K = 3 words. We
see that models with parameter sizes of 3B and
above obtain very high transcription rates of

Table 2: LiveBench scores for models under the
‘key appending’ protocol. Higher is better. There
is a relatively large degradation in performance
for smaller models, but models of size 8B and
larger exhibit much smaller relative degradation.

> 98%. -

Model Transcription rate Model Vanilla _ Append A

Llama 3.2 1B 10.7 6.7 —4.0
Llama 3.2 1B 56.6% Gemma 3 1B 14.7 99 —48
Gemma 3 1B 73.1% Llama 3.2 3B 20.5 169 —3.6
Llama 3.2 3B 98.1% Qwen 2.5 3B 24.2 183 —5.9
Gemma 3 4B 99.7% Gemma 3 4B 30.2 264 —3.8
Mistral 7B 99.6% Mistral 7B 20.4 145 —-5.9
Llama 3.1 8B 98.7% Llama 3.1 8B 25.4 25.6 +0.2
Gemma 3 12B 98.0% Gemma 3 12B 41.0 36.8 —4.2
Mistral 24B 100.0% Mistral 24B 30.5 321 +1.6
Qwen 2.5 32B 99.9% Qwen 2.5 32B 42.7 417 -1.0
Llama 3.1 70B 99.6% Llama 3.1 70B 423 398 —2.5

Downstream Performance Impact We now test the impact of the additional key-transcription instruction
on model downstream performance. To quantify this, we evaluate all models on LIVEBENCH [White et al.}
2025] (30-05-2025 release), a benchmark testing model performance on a range of tasks including data
analysis, instruction following, language, math, and reasoning. Table [2] compares overall performance
of the models in vanilla inference against our protocol. Extended tables showing complete results for all
LiveBench categories are presented in Appendix [D]and Appendix [B]

We find that there there is a relatively large performance impact for smaller models. However, for larger
models, the performance impact is reduced. Indeed, for Mistral 24B, the performance is actually slightly
higher — which we attribute to the natural variability inherent in the benchmark. In practice, using a model
of size 8B or larger seems sufficient to ensure minimal relative downstream performance impact from
applying this protocol.

Approximation Attack Experiments As described in Section[d.2] this protocol is potentially vulnerable
to model approximation attacks. We perform an in-depth examination of the viability of such in the specific
case of use of SMPC for privacy preservation, with one honest party, in Appendix [C| We find that in this
setting, any such approximation does fail.

4.4 Limitations

The main limitation of this protocol is that it cannot specify exactly the model that is being used; it only
guarantees that the model is capable of performing the verification task. In the SMPC setting, if there is
at least one honest participant, then we show in Appendix [C] that it is any approximations result in the
verification failing. However, in the FHE or TEE setting, this remains a limitation. Furthermore, this
protocol does not offer 100% completeness, although we see figures close to this (see Table|[I).

5 Conclusion

We have introduced two protocols for verifying LLM inference, given the use of privacy-preserving tools.
We have shown that these protocols are cheap for both the prover and the verifier, and have little to no
downstream impact. Each protocol retains their own set of limitations. We hope that by introducing the idea
of connecting privacy and verifiability, particularly in the LLM domain, that we can inspire future work to
devise new and improved protocols that address these shortcomings.

References

Yoshimasa Akimoto, Kazuto Fukuchi, Youhei Akimoto, and Jun Sakuma. Privformer: Privacy-preserving
transformer with mpc. In 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P),
pages 392410, 2023. doi: 10.1109/EuroSP57164.2023.00031.

251
252
253

254
255
256

257
258

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

284
285

287
288
289
290

291
292
293
294

296
297
298

299
300
301

303
304

Argilla. argilla/databricks-dolly-15k-curated-en [dataset]. https://huggingface.co/datasets/

argilla/databricks-dolly-15k-curated-en, 2023. Downloaded from Hugging Face Hub on
2025-08-29.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arithmetic

of approximate numbers. In International conference on the theory and application of cryptology and
information security, pages 409—437. Springer, 2017.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao

Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou,
Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng,
Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li,
H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu,
Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe
Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan
Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun,
Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei,
Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan
Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang
Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang
You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen
Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia
Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning, 2025. URL https://arxiv.org/abs/2501.12948.

Ye Dong, Wen jie Lu, Yancheng Zheng, Haoqi Wu, Derun Zhao, Jin Tan, Zhicong Huang, Cheng Hong,

Tao Wei, and Wenguang Chen. Puma: Secure inference of llama-7b in five minutes, 2023. URL
https://arxiv.org/abs/2307.12533,

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First Annual

ACM Symposium on Theory of Computing, STOC *09, page 169-178, New York, NY, USA, 2009.
Association for Computing Machinery. ISBN 9781605585062. doi: 10.1145/1536414.1536440. URL
https://doi.org/10.1145/1536414.1536440.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proceedings of the Nineteenth

Annual ACM Symposium on Theory of Computing, STOC *87, page 218-229, New York, NY, USA,
1987. Association for Computing Machinery. ISBN 0897912217. doi: 10.1145/28395.28420. URL
https://doi.org/10.1145/28395.28420,

S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive proof-systems. In

Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC 85, page
291-304, New York, NY, USA, 1985. Association for Computing Machinery. ISBN 0897911512. doi:
10.1145/22145.22178. URL https://doi.org/10.1145/22145.22178,

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-

Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,

https://huggingface.co/datasets/argilla/databricks-dolly-15k-curated-en
https://huggingface.co/datasets/argilla/databricks-dolly-15k-curated-en
https://huggingface.co/datasets/argilla/databricks-dolly-15k-curated-en
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2307.12533
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/22145.22178

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

358
359
360
361
362
363

Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits,
Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Francisco Guzman, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis
Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay
Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad,
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika
Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens
van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh,
Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur
Celebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava,
Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan
Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu,
Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly,
Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh,
Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy,
Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara
Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong
Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin
Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia,
Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld,
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg,
Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley
Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin
Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni,
Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl
Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester
Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin,
Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi
Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa
Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman,
Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos,
Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna
Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun
Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang,
Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich,
Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla,
Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt,
Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumoyv,
Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir

411

412
413
414

Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso,
Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha
White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr
Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta,
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,
Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay,
Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang
Zhang, Shuqgiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer
Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez,
Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews,
Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir
Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian
Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda
Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian,
Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao,
and Zhiyu Ma. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783|

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tianwei Zhang. Iron: Private
inference on transformers. In Advances in Neural Information Processing Systems, volume 35, pages
15718-15731, 2022.

Zhicong Huang, Wen jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast secure two-party
deep neural network inference. In 31st USENIX Security Symposium (USENIX Security 22), pages
809-826, 2022.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty
computation. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages
21-30, 2007.

Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel Stapf. Trusted execution environments: Properties,
applications, and challenges. IEEE Security Privacy, 18(2):56-60, 2020. doi: 10.1109/MSEC.2019.
2947124.

B. Knott, S. Venkataraman, A.Y. Hannun, S. Sengupta, M. Ibrahim, and L.J.P. van der Maaten. Crypten:
Secure multi-party computation meets machine learning. In arXiv 2109.00984, 2021.

Zhengyi Li, Kang Yang, Jin Tan, Wen jie Lu, Haoqi Wu, Xiao Wang, Yu Yu, Derun Zhao, Yancheng Zheng,
Minyi Guo, and Jingwen Leng. Nimbus: Secure and efficient two-party inference for transformers, 2024.
URL https://arxiv.org/abs/2411.15707.

Jinglong Luo, Guanzhong Chen, Yehong Zhang, Shiyu Liu, Hui Wang, Yue Yu, Xun Zhou, Yuan Qi,
and Zenglin Xu. Centaur: Bridging the impossible trinity of privacy, efficiency, and performance in
privacy-preserving transformer inference, 2024. URL https://arxiv.org/abs/2412.10652,

Jungho Moon, Dongwoo Yoo, Xiaoqian Jiang, and Miran Kim. THOR: Secure transformer inference
with homomorphic encryption. Cryptology ePrint Archive, Paper 2024/1881, 2024. URL https!
//eprint.iacr.org/2024/1881|

Krishna Giri Narra, Zhifeng Lin, Yongqin Wang, Keshav Balasubramaniam, and Murali Annavaram.
Privacy-preserving inference in machine learning services using trusted execution environments. arXiv
preprint arXiv:1912.03485, 2019.

Jack Min Ong, Matthew Di Ferrante, Aaron Pazdera, Ryan Garner, Sami Jaghouar, Manveer Basra, Max
Ryabinin, and Johannes Hagemann. Toploc: A locality sensitive hashing scheme for trustless verifiable
inference, 2025. URL https://arxiv.org/abs/2501.16007,

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2411.15707
https://arxiv.org/abs/2412.10652
https://eprint.iacr.org/2024/1881
https://eprint.iacr.org/2024/1881
https://eprint.iacr.org/2024/1881
https://arxiv.org/abs/2501.16007

415
416
417

418
419
420

421
422
423
424
425
426

427
428
429

430
431
432

433
434

435
436

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

460
461

462
463
464
465
466

Qi Pang, Jinhao Zhu, Helen Mollering, Wenting Zheng, and Thomas Schneider. BOLT: Privacy-preserving,
accurate and efficient inference for transformers. Cryptology ePrint Archive, Paper 2023/1893, 2023.
URL https://eprint.iacr.org/2023/1893

Wenjie Qu, Yijun Sun, Xuanming Liu, Tao Lu, Yanpei Guo, Kai Chen, and Jiaheng Zhang. zkgpt: An
efficient non-interactive zero-knowledge proof framework for llm inference. In 34st USENIX Security
Symposium (USENIX Security 25), 2025.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115,

Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. Trusted execution environment:
What it is, and what it is not. In 2015 IEEE Trustcom/BigDataSE/Ispa, volume 1, pages 57-64. IEEE,
2015.

Sanjif Shanmugavelu, Mathieu Taillefumier, Christopher Culver, Oscar Hernandez, Mark Coletti, and
Ada Sedova. Impacts of floating-point non-associativity on reproducibility for hpc and deep learning
applications, 2024. URL https://arxiv.org/abs/2408.05148,

Haochen Sun, Jason Li, and Hongyang Zhang. zkllm: Zero knowledge proofs for large language models,
2024. URL https://arxiv.org/abs/2404.16109.

Yifan Sun, Yuhang Li, Yue Zhang, Yuchen Jin, and Huan Zhang. Svip: Towards verifiable inference of
open-source large language models, 2025. URL https://arxiv.org/abs/2410.22307.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong, Angang Du,
Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao, Hongcheng Gao,
Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang Guo, Hao Hu, Xiaoru Hao,
Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu, Zhenxing Hu, Weixiao Huang, Zhiqi
Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin, Yongsheng Kang, Guokun Lai, Cheng Li,
Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan
Lin, Xiaohan Lin, Zongyu Lin, Chengyin Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu,
Liang Liu, Shaowei Liu, T. Y. Liu, Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue
Liu, Zhengying Liu, Enzhe Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie
Mei, Xin Men, Yibo Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi,
Shengyuan Shi, Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen
Tao, Qifeng Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing
Wang, Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang,
Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqgian Wei, Wenhao Wu, Xingzhe
Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing Xu, L. H. Xu,
Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie Yan, Yuzi Yan, Xiaofei
Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao, Xingcheng Yao, Wenjie Ye,
Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang Yuan, Mengjie Yuan, Haobing Zhan,
Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang, Yangkun Zhang, Yizhi Zhang, Yongting Zhang,
Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng Zhang, Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie
Zheng, Jianren Zhou, Xinyu Zhou, Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2:
Open agentic intelligence, 2025. URL https://arxiv.org/abs/2507.20534.

Rahul Thomas, Louai Zahran, Erica Choi, Akilesh Potti, Micah Goldblum, and Arka Pal. Cascade:
Token-sharded private llm inference, 2025. URL https://arxiv.org/abs/2507.05228|

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-Ziv,
Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal, Sandeep Singh Sandha, Siddartha Naidu,
Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie Neiswanger, and Micah Goldblum. Livebench:
A challenging, contamination-limited 1lm benchmark, 2025. URL https://arxiv.org/abs/2406.
19314.

10

https://eprint.iacr.org/2023/1893
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2408.05148
https://arxiv.org/abs/2404.16109
https://arxiv.org/abs/2410.22307
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.05228
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2406.19314

467
468

469
470

471
472
473

474
475

Andrew C. Yao. Protocols for secure computations. In 23rd Annual Symposium on Foundations of Computer
Science (sfcs 1982), pages 160-164, 1982. doi: 10.1109/SFCS.1982.38.

Mu Yuan, Lan Zhang, and Xiang-Yang Li. Secure transformer inference protocol, 2024. URL https:
//arxiv.org/abs/2312.00025|

Jiawen Zhang, Xinpeng Yang, Lipeng He, Kejia Chen, Wen jie Lu, Yinghao Wang, Xiaoyang Hou, Jian
Liu, Kui Ren, and Xiaohu Yang. Secure transformer inference made non-interactive. Cryptology ePrint
Archive, Paper 2024/136, 2024. URL https://eprint.iacr.org/2024/136.

Fei Zheng, Chaochao Chen, Zhongxuan Han, and Xiaolin Zheng. Permllm: Private inference of large
language models within 3 seconds under wan, 2024. URL https://arxiv.org/abs/2405.18744,

11

https://arxiv.org/abs/2312.00025
https://arxiv.org/abs/2312.00025
https://arxiv.org/abs/2312.00025
https://eprint.iacr.org/2024/136
https://arxiv.org/abs/2405.18744

476

477
478

479

480
481
482
483

484
485
486
487
488
489
490
491
492
493

494

496
497
498
499
500

502
503
504
505
506
507
508
509
510
511
512
513
514

515
516
517
518
519
520
521

522

523
524
525

A Background and Related Work

In this section, we provide a brief background on general methods of privacy-preserving function computa-
tion, general methods of verification, and their application to LLM inference in particular.

A.1 Privacy-Preservation

There are four main families of privacy-preserving inference of LLMs that have been proposed in the
literature: SMPC (Secure Multi-Party Computation), FHE (Fully Homomorphic Encryption), TEEs
(Trusted Execution Environments), and statistical methods. Here we provide brief background on each of
these.

SMPC SMPC protocols split the required computation among multiple parties. The key ideas were
originally developed in the 1980s [Yaol 1982, |Goldreich et al.,|1987] and provide mathematical guarantees
that no single party can reconstruct the data on their own. Recently, the methodologies of SMPC have
been applied to LLMs [Huang et al.,|2022| [Hao et al.| 2022| [Pang et al.| [2023, |Akimoto et al.,|2023| Dong
et al.,[2023| [L1 et al., 2024]]. A difficulty uniformly faced by these protocols is efficient computation of the
many non-linearities present in transformer-based LLMs; most of the works attempt to ameliorate this by
using piecewise polynomial approximations which are more well-suited for MPC algorithms. However, this
approximation leads to degraded inference results, and remains more expensive than direct computation of
the non-linearities. The requirement of multiple parties also engenders significant communication overheads,
and the further non-collusion requirement among the parties may be difficult to guarantee.

FHE FHE protocols require only a single party and make use of cryptographic methods to ensure that the
result of the computation on the ciphertext is the same as that performed on the plaintext. The adjective
‘fully’ indicates the capability of performing arbitrary computations, not limited to a particular type or
complexity. The first plausible construction of an FHE scheme was described in |Gentry| [2009]]; a more
modern and widely used incarnation is CKKS [Cheon et all [2017]. Recently, CKKS has been further
optimized and applied to LLM inference [Moon et al., 2024} Zhang et al., 2024], but similar issues arise
with the non-linearities as SMPC methods. The overheads both for linear and non-linear operations are
typically even larger than those in the SMPC setting.

TEE Trusted Execution Environments (TEEs) [Sabt et al.| 2015, [Narra et al.| 2019] create secure and
isolated enclaves at the hardware level. This ensures confidentiality via memory encryption — allowing only
the process running in the enclave to read the data. Furthermore, TEEs support integrity via attestation
mechanisms. However, a significant concern is the vulnerability to side-channel attacks [Jauernig et al.,
2020]). Furthermore, attestation is only provided at boot-time and is not equivalent to an ongoing verification
process. This process typically involves the TEE measuring the code and its environment, signing these
measurements cryptographically, and sending a report for external verification. However, this is often a
one-time check at the start and does not guarantee the integrity of the TEE throughout its execution. Finally,
in cloud environments, attestation can rely on the cloud provider’s services, which means users must trust
the provider’s proprietary attestation process without full transparency. This introduces a level of trust in
the cloud provider’s integrity, as these attestation services can be opaque "black boxes" that are not open to
external audit. Moreover, there may be no independent way to verify the boot measurements provided by
the cloud provider’s infrastructure.

Statistical Methods A more broad and diverse grouping than the above is what we term ‘statistical
methods’. These are protocols without the mathematical guarantees of FHE or SMPC approaches, or the
hardware-based guarantees of TEEs, but that instead employ statistical or empirical arguments to support
the difficult of reversing ciphertext. Some ideas in this domain include the use of permutation-based security
[Zheng et al., [2024) [Yuan et al., 2024, [Luo et al.l 2024] or token-sharding based security [Thomas et al.|
2025]). These methods typically trade off the stronger guarantees of the above methods for greatly reduced
overheads, sometimes approaching similar speeds to vanilla inference.

A.2 Verification
Zero-Knowledge Proofs (ZKP) ZKPs are a class of methods that allows one party (the prover) to prove

to another party (the verifier) that a statement is true, without revealing any additional information beyond
the proof itself. The main properties that ZKPs satisfy are completeness (an honest prover can convince a

12

526
527
528
529
530
531
532

533
534
535
536
537
538
539
540
541
542
543
544

545

546
547
548
549
550
551
552
553
554
555
556

557

558
559

560
561

562

563
564
565
566
567
568
569

570
571

572
573

verifier that they performed the work as stated), soundness (a dishonest prover cannot convince a verifier
that they performed the work), and the zero-knowledge property of not revealing any further information
than the fact the work was done as stated. The first ZK protocol was introduced in 1985 in|Goldwasser et al.
[1985]. Recently, ZK methods have been applied as proofs of inference for machine learning models, and
specifically LLMs, in works such as|Sun et al.|[2024], |Qu et al.|[2025]]. However, these approaches remain
thousands of times slower than vanilla inference — for example, zkLLM takes 15 minutes for generating a
proof of a single forward pass for Llama-2-13B, compared to milliseconds for vanilla inference.

Statistical Methods Analogously to statistical methods of privacy-preservation, very recent work has
investigated methods of relaxing the standard of proof of work provided in order to reduce computational
overhead. |Ong et al.|[2025]] encodes and validates the most salient features of the last hidden state tensor of
an LLM using a compact, verifiable proof, which is then recomputed in parallel by the verifier. Although
the authors demonstrate how to set up a commitment scheme that has relatively little overhead to the prover,
and verification is faster than full recomputation thanks to parallelization, there is still a requirement for
the verifier to perform a full LLM forward pass, potentially necessitating specialized hardware. |Sun et al.
[2025] proposes the use of a ‘proxy task’ based on the last hidden layer features of an LLM that can then be
utilized by the user to compare to a label that they would expect based on their original input. The method
proposed requires trust assumptions from the platform for generation of the proxy-task feature extractor
and labeller networks, as well as secret generation/embedding, and adds the overhead of computation to
perform all of the above.

A.3 Connections Between Privacy and Verifiability

The connection between privacy and verification has not been extensively studied previously. Perhaps the
closest work to approach this is MPC-in-the-Head [Ishai et al., 2007]], which introduced a zero-knowledge
verification protocol by utilizing any SMPC protocol. The protocol comes with steep costs for both the
prover and verifier. For example, the prover must not only locally simulate every party in the underlying
MPC execution but also repeat the computation multiple times. On the verifier’s end, the party must perform
several confirmation tasks, including recomputing opened views, consistency checks, and typically engage
in multiple rounds of checking to achieve acceptable soundness. The crucial distinction of our suggested
protocols to MPC-in-the-Head is that we use the privacy scheme directly to encode inexpensive secrets that
are easily verifiable. To the best of our knowledge, there has not previously been any work that specifically
examines the relationship between privacy-preserving LLM inference and verifiable inference of LLMs in
this way.

B Random Whitespace Protocol

As an alternative to the key appending protocol of Sectiond] we also tested requiring the model to repeat
the key in a random whitespace.

Protocol description. This protocol adopts the same stopping criterion and verification method as the
key—appending protocol, but modifies both the system prompt and the user prompt transformation.

System prompt. We prepend the following system instruction:

You are a helpful assistant who should never speak in two
consecutive turns. Somewhere in the prompt, you will find a
secret key of {K} words in curly braces right after the marker
<{marker}>. Print that key at the very end of your response.
Ignore what is inside the <verify> </verify> tags when answering
the main prompt.\nYou must print the key between tags like the
following structure: <key> *insert key here*x </key>.

This system prompt enforces the placement of the key at the end of the model’s response and ensures that
the verification tags are ignored during the main task, preventing interference with downstream output.

User prompt transformation. Given an original user prompt p, the user selects a random whitespace
location and inserts the following structure:

<verify> <{marker}> {key} </{marker}> </verify>.

13

574
575

576
577
578

579
580

581
582

583
584
585

586

587
588

589

590
591

Table 4: LiveBench scores for models under the ‘random whitespace’ protocol. Higher is better. There is
generally a larger degradation in performance than for the key appending protocol.

Model Vanilla Random Whitespace A
Llama 3.2 1B 10.7 54 -5.3
Gemma 3 1B 14.7 9.2 —5.5
Llama 3.2 3B 20.5 14.2 —6.3
Qwen 2.5 3B 24.2 17.2 —7.0
Gemma 3 4B 30.2 21.3 —-8.9
Mistral 7B 20.4 12.2 —8.2
Llama 3.1 8B 254 20.7 —4.7
Gemma 3 12B 41.0 29.1 -—-11.9
Mistral 24B 30.5 253 —5.2
Qwen 2.5 32B 42.7 39.3 —3.4
Llama 3.1 70B 423 32.1 -—-10.2

Here, the marker is a randomly generated four-character ASCII string, and the key consists of three English
words sampled uniformly at random, as in the key—appending protocol.

Design rationale. The system prompt explicitly instructs the model to ignore the inserted tags when
answering the main query, which tries to minimize the impact of the injected verification key on downstream
task performance. Moreover, we deliberately employ HTML-like tags for three reasons:

1. Large language models are extensively exposed during pretraining to HTML/XML patterns, which
aids reliable parsing and generation.

2. Wrapping the marker—key pair inside <verify> tags avoids accidental collisions with ordinary
prompts (e.g., programming queries that might already include custom markers).

3. Randomly generating the marker string reduces the probability of unintentional matches with exist-
ing content, while including the outer <verify> tags improves transcription accuracy compared
to using only <marker> ... </marker>.

The transcription rates and downstream performance impact of the protocol are shown in Table [3] and
Table [respectively. Although the transcription rates match that of key appending for models of size 8B
and above, the downstream performance impact is significantly larger than that of key appending.

Table 3: Transcription success rate on 1000 prompts of our ‘Random Whitespace’ verification protocol,
with keys of length K = 3 words. We see that models with parameter sizes of 8B and above obtain very
high transcription rates of > 98%.

Model Transcription rate
Llama 3.2 1B 6.7%
Gemma 3 1B 2.2%
Llama 3.2 3B 88.8%
Gemma 3 4B 79.0%
Mistral 7B 86.6%
Llama 3.1 8B 98.5%
Gemma 3 12B 99.0%
Mistral 24B 99.6%
Qwen 2.5 32B 99.2%
Llama 3.1 70B 99.3%

C Approximation Attack Experiments — Key Appending

We perform approximation attack tests in the SMPC setting. We assume the existence of at least one honest
party; in the case where all parties are dishonest (i.e. performing the same, matching approximation),

14

592
593

594
595
596

597
598

599
600
601
602
603

604
605

606
607
608
609
610

611
612
613

614
615
616

617
618

619
620
621

622

623
624

625

the approximated model still can potentially accurately produce the key and evade detection. We use the
CrypTen Python library [Knott et al., 2021]].

For the dishonest party, we uniformly reduce the rank of all weight matrices in the models to various
proportions of the original rank, and test the protocol to see whether the approximated model is still capable
of correctly outputting the key. We select the following for our parameters:

1. Models: Llama 3.2 3B Instruct, Qwen 2.5 3B. We select two models with very high key transcrip-
tion rates in the non-attack setting from different model classes.

2. We test the reduction of original ranks of very weight matrix M to the following percentage
reductions: 1%, 5%, 10%, 25%, 50%, 75%, 90%, 99%, using SVD. We desire to test a wide variety
of different ranks, ranging from an extremely significant reduction in rank to a slight decrease in
rank, and we hence select the previously listed percentages for significant coverage of all of these
possibilities.

For each combination of model and rank, we run the framework as described at the beginning of this section,
selecting n = 20 prompts and K = 3 words.

The results of such experiments revealed that regardless of the model used or rank approximated to, the
model was always unable to output the key (i.e. 0 of the 20 tests succeeded). Notably, even in the 99%
test, both models were unable to produce anything legible, and tokens outputted were entirely random: an
example decoded result from one prompt was “deesestiftigiongh” with random unicode characters inserted
inside.

Quantizer Attacks A malicious actor can also potentially quantize the model’s weights to a different
precision, which is straightforward to test: given a model, we quantize all its weights to a different precision
and perform the common tests to determine performance.

We again perform tests in an SMPC setting encrypted with CrypTen with two parties, one honest and
one dishonest. We again note the potential weakness of this strategy when both parties are dishonest or a
different encryption scheme is used.

1. Models: Llama 3.2 3B Instruct, Qwen 2.5 3B. We select the same models as for the low-rank
approximations, due to their ordinarily high transcription rates.

2. Precisions: 8-bit and 4-bit floats. The weights in the Llama model tested are 16-bit floats at
full precision, and in the Qwen model are 32-bit floats. Therefore, to reduce precision, we test
quantization to 8- and 4-bit precision.

Once again, we run the common testing framework with n = 20 prompts and K = 3 words. Similar to
the low-rank tests, in all cases, the models were never able to output the key, or in fact anything legible,
revealing the effectiveness of the key appending protocol in defending against quantization attacks.

D Key Appending — Extended LiveBench Results

Table 5: LiveBench category scores for vanilla inference.

Model Average Data Analysis Instr. Follow. Language Math Reasoning
Llama 3.2 1B 10.7 12.9 25.1 0.0 9.5 5.8
Gemma 3 1B 14.7 12.0 42.1 3.7 13.1 29
Llama 3.2 3B 20.5 233 48.4 35 15.5 11.9
Qwen 2.5 3B 24.2 29.0 432 10.7 23.5 14.6
Gemma 3 4B 30.2 383 61.5 6.3 33.0 11.8
Mistral 7B 20.4 26.4 46.2 1.5 13.4 14.4
Llama 3.1 8B 254 36.0 48.0 13.8 15.9 13.1
Gemma 3 12B 41.0 46.4 71.2 19.3 39.5 28.8
Mistral 24B 30.5 42.1 50.4 17.3 19.0 234
Qwen 2.5 32B 42.7 50.7 61.2 27.3 439 304
Llama 3.1 70B 42.3 52.6 65.9 30.3 31.4 314

15

Table 6: LiveBench category scores under the ‘key appending’ protocol. Higher is better.

Model Average Data Analysis Instr. Follow. Language Math Reasoning
Llama 3.2 1B 6.7 0.9 24.9 0.0 23 5.5
Gemma 3 1B 9.9 33 32.1 2.3 4.8 6.6
Llama 3.2 3B 16.9 8.0 434 7.8 11.7 13.5
Qwen 2.5 3B 18.3 18.2 30.4 5.8 21.4 159
Gemma 3 4B 26.4 38.6 41.3 8.0 24.5 19.8
Mistral 7B 14.5 21.7 31.8 6.7 6.6 5.5
Llama 3.1 8B 25.6 353 51.7 9.3 15.2 16.6
Gemma 3 12B 36.8 46.1 60.5 16.5 37.0 24.0
Mistral 24B 32.1 41.1 472 24.0 21.0 26.9
Qwen 2.5 32B 41.7 472 58.2 24.0 442 35.0
Llama 3.1 70B 39.8 50.4 69.2 22.0 29.1 28.5

16

	Introduction
	Background & Related Work
	Protocol 1: Logit Fingerprinting
	Cost Analysis
	Security Analysis
	Experiments
	Limitations

	Protocol 2: Key Appending
	Cost Analysis
	Security Analysis
	Experiments
	Limitations

	Conclusion
	Background and Related Work
	Privacy-Preservation
	Verification
	Connections Between Privacy and Verifiability

	Random Whitespace Protocol
	Approximation Attack Experiments – Key Appending
	Key Appending – Extended LiveBench Results

